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A Survey of Scheduling and 
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for Data-Intensive 
Application Workflows

ABSTRACT

This chapter presents a comprehensive survey of algorithms, techniques, and frameworks used for sched-
uling and management of data-intensive application workflows. Many complex scientific experiments 
are expressed in the form of workflows for structured, repeatable, controlled, scalable, and automated 
executions. This chapter focuses on the type of workflows that have tasks processing huge amount of 
data, usually in the range from hundreds of mega-bytes to petabytes. Scientists are already using Grid 
systems that schedule these workflows onto globally distributed resources for optimizing various objec-
tives: minimize total makespan of the workflow, minimize cost and usage of network bandwidth, minimize 
cost of computation and storage, meet the deadline of the application, and so forth. This chapter lists 
and describes techniques used in each of these systems for processing huge amount of data. A survey of 
workflow management techniques is useful for understanding the working of the Grid systems providing 
insights on performance optimization of scientific applications dealing with data-intensive workloads.
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INTRODUCTION

Scientists and researchers around the world have 
been conducting simulations and experiments as a 
part of medium to ultra large-scale studies in high-
energy physics, biomedicine, climate modeling, 
astronomy and so forth. They are always seeking 
cutting-edge technologies to transfer, store and 
process the data in a more systematic and con-
trolled manner as the data requirements of these 
applications range from megabytes to petabytes. 
Thus, to help them manage the complexity of 
execution, transfer and storage of results of these 
large-scale applications, the use of a Workflow 
Management Systems (WfMS) is in wide practice 
(Yu & Buyya, 2005).

Scheduling and managing computational tasks 
of a workflow were the main focus of WfMS in the 
past. With the emergence of globally distributed 
computing resources and increasing output data 
from scientific experiments, scientists began to re-
alize the necessity of handling data in conjunction 
with computational tasks. Scientific workflows 
were then modeled taking into account the flow of 
data. However, even with a plethora of techniques 
and systems, many challenges remain in the area 
of data management related to workflow creation, 
execution, and result management (Deelman & 
Chervenak, 2008; Gil et al., 2007).

Some challenges for managing data-intensive 
application workflows are:

• High throughput data transfer mechanisms
• Massive, cheap, green and low latency 

storage solutions and their interfaces
• Composition of scientific applications as 

workflows
• Multi-core technology and workflow man-

agement systems
• Standards for Interoperability between 

workflow systems
• Globally distributed data and computation 

resources

In this chapter, we classify and survey tech-
niques that have been used for managing and 
scheduling data-intensive application workflows 
to meet the challenges listed above. The classifica-
tion is based on techniques that take into account 
data, storage, platform and application character-
istics. We sub-divide each general heading into 
more specific techniques. We then list and describe 
several work under each sub-heading. Most sys-
tems use a combination of existing techniques to 
achieve the objectives of an application workflow.

The rest of the chapter is organized as follows. 
In next section, we present previous studies that 
focused more on systems side of Grid workflows 
and Data Grids along with their taxonomy. We 
then describe the terms and definitions used in 
this chapter followed by an abstract model of a 
WfMS and its component responsible for data 
and computation management. In the rest of the 
chapter, we present the survey. We finally conclude 
identifying some future trends in management of 
data-intensive application workflows.

RELATED WORK

Over the last few years, we can find much work 
being done on data-intensive environments and 
workflow management systems. We list tax-
onomies for Data Grid Systems and Workflow 
management Systems that present the grounds 
for our survey.

Venugopal, Buyya, & Ramamohanarao (2006) 
proposed a comprehensive taxonomy of data Grids 
for distributed data sharing, management and pro-
cessing. They characterize, classify and describe 
various aspects of architecture, data transporta-
tion, data replication and resource allocation, and 
scheduling for Data Grids systems. They list the 
similarities and differences between Data Grids 
and other distributed data-intensive paradigms 
such as content delivery networks, peer-to-peer 
networks, and distributed databases.
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Yu & Buyya (2005) proposed taxonomy of 
workflow management systems for Grid com-
puting. They characterize and classify different 
approaches for building and executing workflows 
on Grids. They present a survey of representative 
Grid workflow systems highlighting their features 
and pointing out the differences. Their taxonomy 
focuses on workflow design, workflow schedul-
ing, fault management and data movement.

Bahsi, Ceyhan & Kosar (2007) presented a 
survey and analysis on conditional workflow 
management. They studied workflow management 
systems and their support for conditional structures 
such as if, switch and while. With case studies 
on existing WfMS, they listed the differences in 
implementation of common conditional structures. 
They show that the same structure is implemented 
in completely different ways by different WfMS. 
A system or a user can define explicit conditions 
in the structure of a workflow to manage the data 
flow across resources and between tasks for data-
intensive application workflows.

Yu, Buyya, & Ramamohanarao (2008) listed 
and described several existing workflow sched-
uling algorithms developed and deployed in 
various Grid environments. They categorized the 
scheduling algorithms as either best effort based 
or Quality of Service (QoS) constraint based 
scheduling. Under best-effort scheduling, they 
presented several heuristics and meta-heuristics 
based algorithms, which intend to optimize work-
flow execution times on community Grids. Under 
QoS constraint based scheduling algorithms, 
they examined algorithms, which intend to solve 
performance optimization problems based on two 
QoS constraints, deadline and budged. They also 
list some of the techniques we have explicitly 
described for data-intensive workflows in this 
chapter.

Kwok & Ahmad (1999) surveyed different 
static scheduling techniques for scheduling ap-
plication Directed Acyclic Graphs (DAGs) onto 
homogeneous platforms. In their model, tasks are 
scheduled onto multiprocessor systems. The model 

also assumes that communication is achieved 
solely by message passing between processing 
elements. They proposed taxonomy that clas-
sified the scheduling algorithms based on their 
functionality. Their survey also provides examples 
for each algorithm along with the overview of 
the software tools for scheduling and mapping.

TERMS AND DEFINITIONS

In this section, we define the terms data-intensive, 
scientific workflow and workflow scheduling as 
applicable for scientists working on distributed, 
heterogeneous, large-scale platforms such as 
Grids and Clouds.

Data-Intensive

A data-intensive computing environment consists 
of applications that produce, manipulate, or ana-
lyze data in the range of hundreds of megabytes 
(MB) to petabytes (PB) and beyond (Moore, 
Prince, & Ellisman, 1998). A data-intensive ap-
plication workflow has higher data workloads 
to manage than its computational parts. In other 
words, the requirements of resource interconnec-
tion bandwidth for transferring data outweigh 
the computational requirements for processing 
tasks. This, as a consequence, demands more 
time to transfer and store data as compared to 
task execution of a workflow. It is common to 
characterize the distinction between data-intensive 
and compute-intensive by defining a threshold for 
the Computation to Communication Ratio (CCR). 
Applications with lower values of this ratio are 
distinctly data-intensive in nature.

Scientific Workflow

Standard application components of scientific, 
data-intensive applications can be combined to 
process the data in a structured way in contrast to 
executing monolithic codes (Deelman et al., 2003). 
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The application is represented as a workflow 
structure, which consists of tasks, data elements, 
control sequences and their dependencies. Ac-
cording to Zhao et al. (2008), scientific workflow 
management systems are engaged and applied to 
the following aspects of scientific computations: 
1) describing complex scientific procedures, 2) 
automating data derivation processes, 3) high 
performance computing (HPC) to improve 
throughput and performance, and 4) provenance 
management and query.

Workflow Scheduling

In simple terms, a process of mapping of tasks in 
a workflow (or an entire workflow) to compute 
resources for execution (preserving dependen-
cies between tasks) is termed as scheduling of 
workflows. Once the workflow is instantiated in 
the form of a DAG, middleware technologies, 
such as Pegasus (Deelman et al., 2005), Gridbus 
Workflow Management System (Yu & Buyya, 
2004) and so forth, are used to schedule the 
jobs described in the nodes of the DAG onto the 
specified resources in their specified order. The 
objectives of scheduling a workflow can vary from 
application to application. Most often, a data-
intensive application workflow is scheduled to 
optimize the data-transfer time/cost, storage space, 
total execution time or a combination of these.

Resource Broker

A resource broker is an intermediate entity that 
acts as a mediator between Grid resources and 
end users. It performs resource allocation and/or 
scheduling, and manages execution of applications 
on behalf of one or multiple users. For instance, 
the Grid Service Broker (Venugopal, Buyya, & 
Winton, 2006) developed as part of the Gridbus 
Project, mediates access to distributed resources 
by discovering resources, scheduling tasks, moni-
toring and collating results.

ABSTRACT MODEL 
OF A WORKFLOW 
MANAGEMENT SYSTEM

Figure 1 shows the architecture of a Grid workflow 
system based on the workflow reference model 
(Hollingsworth, 1994) proposed by Workflow 
Management Coalition (WfMC) (www.wfmc.
org) in 1994. We have extended it to include 
components that manage data in addition to tasks.

Yu et al. (2005) have described the abstract 
model in detail, but without the data-centric com-
ponents. The build time and run time borders 
separate the functionality of the design to defining 
and executing tasks, respectively. At the core of 
the run time, we propose components to actively 
process both data and tasks equally, different from 
the model presented by Yu et al. (2005), where 
data was not given as high priority as tasks.

The scheduler, that forms the core of the en-
gine, handles data flow schedules on top of task 
schedules. For example, if a workflow is modeled 
such that the data transfer tasks are separate from 
computation tasks, the scheduler may apply a dif-
ferent scheduling policy to the data transfer tasks. 
Similarly, when there is no distinction between 
these tasks, the scheduler may prioritize data 
transfers between certain tasks over computa-
tion depending on the structure of the workflow, 
scheduling objectives, and so forth.

We propose to add a data provenance (also 
referred to as lineage and pedigree) manager 
component to the architecture. It keeps the re-
cord of data entities associated with the tasks in 
a workflow. The scheduler may interact with this 
component for determining specific data flow 
paths between tasks and distributed resources. For 
example, when a workflow is executed a number 
of times, previously produced data may exist that 
could be reused. In such cases, intermediate data 
transfer may not be scheduled for some tasks. 
Similarly, the scheduler may take reference of 
provenance data to create/dissolve data transfer 
and data cleanup tasks for storage aware sched-
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uling. Simmhan, Plale, & Gannon (2005) have 
surveyed and described systems using provenance 
for data-intensive environments in greater detail.

We envision each component in the core 
architecture to handle data as a first class citizen 
as also proposed by Kosar & Livny (2004). Data 
movement component, in particular, should be 
smart enough to overlap data transfer tasks with 
computation so that wait-times for data-avail-
ability is minimized. Data-transfer tasks could 
be prioritized for different tasks. Similarly, fault 
tolerance policies should be capable of handling 

frequent failures of data transfer tasks. Schedul-
ing steps heavily depend on the capability of data 
movement and fault tolerance components for 
data-intensive applications as the repercussions 
of failure of data transfer tasks can affect the 
performance of the entire workflow. Different 
from generic WfMS models, a higher and more 
sophisticated coordination mechanism is required 
between these components for handling data-
intensive application workflows.

New models for IT service delivery (e.g. Clouds 
Computing) are emerging. Workflow systems 

Figure 1. An abstract model of a workflow management system
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should be capable of interacting with these types of 
service oriented architectures so that it can better 
utilize the storage and compute facilities provided 
by them for optimized data delivery, storage and 
distributed access. Access and security policies 
may different than existing Grid infrastructures 
when resources are from centralized data centers.

SURVEY

In this section, we characterize and classify key 
concepts and techniques used for scheduling and 
managing data-intensive application workflows. 
As shown in Figure 2, we have classified the 
techniques into seven major categories: (a) data 
locality, (b) data transfer, (b) data-footprint, (c) 
granularity, (d) model, (e) platform, (f) miscel-
laneous technologies. In this section, we describe 
each of these categories and their branches in 
detail.

Data Locality

In data-intensive computing environments, the 
amount of data involved is huge. Transferring 
data between computing nodes takes significant 
amount of time depending on the size of data and 
network capacity between participating nodes. 
Hence, most scheduling techniques target on op-
timizing data transfers by exploiting the locality 
of data. These techniques can be classified into: 
(a) spatial clustering, (b) task clustering, and (c) 
worker centric.

Spatial Clustering

Spatial clustering creates a task workflow based 
on the spatial relationship of files in the input 
data set. In spatial clustering, clusters of jobs are 
created based on spatial proximity, each job then 
assigned to a cluster, each cluster to a grid site 
and during the execution of the workflow, all jobs 
scheduled belonging to the cluster to the same site 

(Meyer, Annis, Wilde, Mattoso, & Foster, 2006). 
It improves data reuse and reduces total number 
of file transfers by clustering together tasks with 
high input-set overlap. These clustered tasks are 
scheduled to the resource with the maximum 
overlap of input data. This reduction benefits the 
Grid as a whole by reducing traffic between the 
sites. It also benefits the application by improving 
its performance.

Meyer et al. (2006) presented a generalized 
approach to planning spatial workflow schedules 
for Grid execution based on the spatial proximity 
of files and the spatial range of jobs. They pro-
posed SPCL (for “spatial clustering”) algorithm 
that takes advantage of data locality through the 
use of dynamic replication and schedule jobs in 
a manner that reduces the number of replicas cre-
ated and the number of file transfers performed 
when executing a workflow. They evaluated their 
solution to the problem using the file access pat-
tern of an astronomy application that performs 
coaddition of images from the Sloan Digital Sky 
Survey (SDSS) (SDSS Project, 2000).

Brandic, Pllana & Benkner (2006) developed 
QoS-aware Grid Workflow Language (QoWL), 
by extending the Business Process Execution 
Language (BPEL) that allows users to define 
preferences regarding the execution location af-
finity for activities with specific security and legal 
constraints. Using QoS parameters that directs 
the WfMS to restrict the movement of sensitive 
and proprietary data to only agreed domains is 
very important for certain kinds of applications. 
A set of QoS-aware service-oriented components 
is provided for workflow planning to support 
automatic constraint-based service negotiation 
and workflow optimization.

Task Clustering

With task clustering, small tasks are grouped 
together as one executable unit such that the over-
head of data movement can be eliminated. Task 
clustering groups tasks so that the intermediate 
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files produced by each task in the group remains 
in the same computing node the grouped task was 
submitted to. Other tasks in the same group can 
now access the file locally. This scheme reduces 
the need to transfer the intermediate output files 
in case the tasks in the group were scheduled 
to different computing nodes. Clustering also 
eliminates the overhead of running small tasks.

Singh, Kesselman, & Deelman (2005) explored 
approaches for restructuring of workflows so 
that the dependencies in the workflow graph can 

be reduced. They group independent jobs at the 
same level into clusters. Their task clustering does 
not imply that the tasks in a group is scheduled 
to one processor or executed sequentially. They 
show workflow performance using clustering with 
centralized (single submit host) and distributed 
(multiple submit hosts) job submission. In the 
centralized submission, the whole workflow is 
submitted and executed using a single submit host. 
In order to increase the dispatch rate of jobs for 
execution, their distributed job submission strat-

Figure 2. Classification of management techniques for data-intensive application workflows
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egy has a central manager, multiple submit hosts 
and worker nodes. The workflow is restructured 
with multiple clusters at each level. The number 
of clusters at each level is equal to the number of 
submit hosts in the pool. The schedulers on the 
submit hosts then try to find suitable nodes for 
the submitted jobs.

Pandey et al. (2009) used task clustering to 
schedule data-intensive tasks for a medical ap-
plication workflow. They clustered tasks based 
on their execution time, data transfer and level. If 
tasks were having high deviation and value of av-
erage execution time, they were executed without 
clustering. Tasks with lower deviation and value 
of execution time were clustered together. They 
showed that clustering tasks for data-intensive 
application workflows has better makespan than 
scheduling the workflow without clustering, 
mainly attributed to the decrease in file transfers 
between tasks in the same cluster.

Worker Centric

Worker centric approaches exploit locality of in-
terest present in data-intensive environments. Ko, 
Morales, & Gupta (2007) presented an algorithm 
where one global scheduler, upon receiving a 
request from a worker (computation node), cal-
culates the weight of each unscheduled task and 
chooses the best task to assign to the requesting 
worker. The weight calculation procedure takes 
into account the set of files already present at the 
worker’s site and additional files required by the 
worker for the task. This scheme exploits locality 
of file access, and thus minimizes both the number 
of files that need to be transferred as well as prefers 
workers that accessed the same files in the past. 
They proposed both deterministic and random-
ized metrics that can be used with worker-centric 
scheduling and found that metrics considering 
the number of file transfers generally gave better 
performance over metrics considering the overlap 
between a task and a storage. They experiment 
with traces of Coadd (SDSS Project, 2000).

Data Transfer

Researchers have proposed several mechanisms 
for transferring data so that data transfer time is 
minimized. These techniques are: (a) data paral-
lelism, (b) data streaming, and (c) data throttling.

Data Parallelism

Data Parallelism denotes that a service is able to 
process several data fragments simultaneously 
with a minimal performance loss. This capability 
involves the processing of independent data on dif-
ferent computing resources. Glatard, Montagnat, 
Lingrand, & Pennec (2008) designed and imple-
mented a workflow engine named MOTEUR. They 
propose algorithms that combine well-defined data 
composition strategies and fully parallel execution. 
They adopted the Simple Concept Unified Flow 
Language (SCUFL) as the workflow description 
language for conveniently describing data flows. 
In their system, tasks and data are scheduled such 
that most data sets are processed by independent 
computing resources, but by preserving the pre-
cedence constraints. They evaluated the system 
using a medical imaging application run on the 
EGEE (Enabling Grids for E-Science EU IST 
project, http://www.eu-egee.org) grid.

Data Streaming

In data streaming, real-time data generated 
through simulation or experiment is delivered in 
an asynchronous, high-throughput, low-latency 
and robust way to data analysis and storage 
machines. Bhat et al. (2007) investigated data 
streaming for executing scientific workflows on 
the Grid. They proposed the design, implementa-
tion and experimental evaluation of an application 
level self-managing data streaming service that 
enables efficient data transport to support Grid-
based scientific workflows. The system provides 
adaptive buffer management mechanisms and 
proactive QoS management strategies based on 
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model-based online control and user-defined 
policies. They showed that online data streaming 
could have significant impact on the performance 
and robustness of the data-intensive application 
workflow applications in Grids. They used a fusion 
simulation workflow consisting of long-running 
coupled simulations to evaluate the data streaming 
service and its self-managing behaviors.

Bhat, Parashar, & Klasky (2007) investigated 
reactive management strategies for in-transit data 
manipulation for data-intensive scientific and 
engineering workflows. Their framework for 
in-transit manipulation consists of processing 
nodes in the data path between the source and the 
destination. Each node is capable of processing, 
buffering and forwarding the data. Each node 
processes the data depending on its capabilities 
and the amount of processing still remaining. 
The data is dynamically buffered as it flows 
through the node. Eventually the processed data 
is forwarded until it reaches the sink. The choice 
between forwarding and further processing is 
dependent upon the network congestion. They 
used application level online controllers for high 
throughput data streaming.

Korkhov et al. (2007) & Afsarmanes et al. 
(2002) proposed Grid-based Virtual Laboratory 
AMsterdam (VLAM-G), a data-driven WfMS. 
Their system uses Globus services (Globus Proj-
ect, 1996) to allow data streams to be established 
efficiently and transparently between remote 
processes composing a scientific workflow. The 
execution engine initiates ‘point-to-point’ data 
streams between workflow components allow-
ing intermediate data to flow along the workflow 
pipeline, without requiring local storage. They 
use unidirectional, typed streams to ensure that 
proper connection can be established. Control and 
monitoring communication is not transmitted on 
such typed streams. They model the system such 
that all the resources needed for data stream driven 
distributed processing have to be made available 
(e.g. by advance reservation) simultaneously in 

contrast to the scenario where Grid resources join 
and leave anytime.

Data Throttling

Data throttling is a process of describing and 
controlling when and at what rate data is to be 
transferred in contrast to moving data from one 
location to another as early as possible. In sci-
entific workflows with data-intensive workload, 
individual tasks may have to wait for large amounts 
of data to be delivered or produced by other tasks. 
Instead of transferring the data immediately to a 
task, it can be delayed or transferred using lower 
capacity links so that the resources can be dedi-
cated to serve other critical tasks.

Park & Humphrey (2008) identified the limita-
tion of current systems in that there is no control 
available regarding the arrival time and rate of 
data transfer between nodes. They designed and 
implemented new capabilities for higher efficiency 
and balance in Grid workflows by creating a 
data-throttling framework that regulates the rate 
of data transfers between the workflow tasks via 
a specially created QoS-enabled GridFTP server. 
Their workflow planner constructs a schedule that 
both specify when/where individual tasks are to be 
executed, as well as when and at what rate data is 
to be transferred. The planner allows a workflow 
programmer/engine to specify the requirements on 
the data movement delay. This delay helps keep 
a balance between execution time of workflow 
branches by eliminating unnecessary bandwidth 
usage, resulting in more efficient execution.

DAGMan (Directed Acyclic Graph MANager) 
(DagMan, 2002) is a workflow engine under the 
Pegasus (Deelman et al., 2005) WfMS. It supports 
job and data throttling using parameters. Pegasus 
uses DAGMan to run the executable workflow. 
In DAGMan a “prescript” and a “postscript” 
step, associated with each workflow job, are re-
sponsible for transferring input files and deleting 
output files, respectively. It controls the number 
of prescripts that can be concurrently (across all 
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jobs) started using the MAXPRE parameter. This 
serves as a convenient workflow-wide throttle on 
the data transfer load that the workflow manager 
can impose on the Grid from the submit host.

Data Footprint

Workflow systems adopt several mechanisms to 
track and utilize the data footprint of the applica-
tion. These mechanisms can be classified into: (a) 
cleaning jobs, (b) restructuring of workflow, (c) 
data placement & replication.

Cleaning Jobs

Cleaning jobs are introduced in the workflow to 
remove the data from the resources once its no 
longer needed. When applications require large 
amount of data storage, tasks in the workflow can 
only be scheduled to those compute resources that 
can provide temporary storage large enough to hold 
the input and output files the tasks need. Schedul-
ing decisions should take into consideration the 
storage capability of the compute resource for all 
tasks with data-intensive workloads.

Singh et al. (2007) presented two algorithms 
for reducing the data footprint of workflow type 
applications. The first algorithm adds a cleanup 
job for a data file when that file is no longer re-
quired by other tasks in the workflow or when it 
has already been transferred to permanent storage. 
Given the possibility of data being replicated on 
multiple resources, the cleanup jobs are made on a 
per resource basis. The algorithm is applied after 
the executable workflow has been created, but 
before it is executed. The second algorithm is an 
improvement in terms of the number of cleanup 
jobs and dependencies it adds to the workflow. As 
the workflow engine has to spend considerable 
amount of time in managing job execution for 
every added job or dependency, the authors design 
the algorithm to reduce the number of cleanup tasks 
at the possible cost of workflow footprint. This is 
achieved by adding at most one cleanup node per 

computational workflow task in contrast to one 
cleanup job for every file required or produced 
by tasks mapped to the resource as done in the 
first algorithm. They reduce data footprint but 
as a consequence the workflow execution time 
increases as a result of the increased number of 
workflow levels.

Ramakrishnan et al. (2007) proposed an algo-
rithm for scheduling data-intensive application 
workflows onto storage-constrained resources. 
Their algorithm first takes into account disk 
space availability in resources and then priori-
tizes resources depending on performance. The 
algorithm starts by identifying all resources that 
can accommodate the data files needed for a task 
to be scheduled. If no resource is available that 
satisfies the space requirement of any ready task, 
the algorithm halts. It then tries to allocate the task 
to the resource, which can achieve the earliest fin-
ish time (data transfer time and execution time) 
for the task. Finally it cleans up any unnecessary 
data file remaining in the resource.

Restructuring of Workflows

The structure of the workflow defines the data 
footprint. Restructuring of workflows is a 
transformation of the workflow structure such 
that it influences the way input/output data is 
placed, deleted, transferred or replicated during 
the execution of the workflow. Task clustering, 
workflow partitioning are common ways to re-
structure workflows. Tasks can be clustered and 
dependencies re-defined in such a way that data 
transfer is minimized, data re-use is maximized, 
storage resources and compute resources have 
well-balanced load and so forth.

Singh et al. (2007) defined workflow re-
structuring as the ordering or sequencing of the 
execution of the tasks within the workflow. They 
restructure the workflow primarily to reduce the 
data footprint of the workflow. They introduce 
dependencies between stage-in tasks and the pre-
vious-level computational tasks. This prevented 
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multiple data transfers from occurring at the same 
time as soon as tasks become ready.

Pegasus (Deelman et al., 2005) has the capa-
bility to map and schedule only portions of the 
entire workflow at a given time, using partitioning 
techniques. Deelman et al. (2005) demonstrate 
the technique using level-based partitioning of 
the workflow. The levels refer to the depth of the 
tasks in the workflow. In their Just-in-time plan-
ning algorithm (Deelman et al., 2004), Pegasus 
waits (using DAGMan) to map the dependent 
workflow until the preceding workflow finishes its 
execution. Original dependencies are maintained 
even after partitioning. They also investigate 
partition-level failure recovery. When resources 
fail during execution, the entire task is retried and 
new partitions are not submitted to that resource.

Duan, Prodan, & Fahringer (2006) proposed an 
algorithm for partitioning a scheduled workflow 
for distributed coordination among several slave 
enactment engine services. They incorporated the 
algorithm in the ASKALON distributed workflow 
Enactment Engine (Duan et al., 2005). Their pur-
pose of workflow partitioning was to minimize the 
communication between the master and the slave 
engines that coordinates the individual partitions 
of the entire workflow. The partitioning algo-
rithm is based on a graph transformation theory. 
Partitioning reduced the number of workflow 
activities and, therefore, the job submission and 
management latencies and eliminated the data 
dependencies within partitions. However, the al-
gorithm was used for compute intensive scientific 
workflows with large numbers of small sized data 
dependencies. In contrast to Pegasus (Deelman et 
al., 2005), which partitions the workflow before 
the scheduling phase, they partition the workflow 
after scheduling. This results in reduced overheads 
for job submissions and aggregated file transfers.

Data Placement and Replication

Data placement techniques try to strategically 
manage placement of data before or during the 

execution of a workflow. Data placement sched-
ulers can either be coupled or decoupled from 
task schedulers. Replication of data onto dis-
tributed resources is a common way to increase 
the availability of data. Replication also occurs 
when scientists download and share the data for 
experimental purposes, in contrast to explicit 
replications done by workflow systems. In data-
intensive applications, replication may or may not 
be feasible. Schedulers make the decision of data 
placement and replication based on the objectives 
to be optimized. If data analysis workloads have 
locality of reference, then it is feasible to cache 
and replicate data at each individual compute 
node, as high initial data movement costs can 
be offset by many subsequent data operations 
performed on cached data (Raicu, Zhao, Foster, 
& Szalay, 2008).

Kosar et al. (2004) presented Stork, a scheduler 
for data placement activities in the Grid. They 
propose to make data placement activities a first 
class citizen in the Grid. In Stork, data placement 
is a full-fledged job and decoupled from compu-
tational jobs. Users describe the data placement 
job explicitly in the classads. DAGMan (DagMan, 
2002), a workflow scheduler for Condor, uses 
Stork for managing these data placement jobs. It 
manages the dependencies between Condor and 
Stork jobs as defined by the dependencies in a DAG 
(Couvares, Kosar, Roy, Weber, & Wenger, 2007). 
Under Stork, data placement jobs are categorized 
into three types. Transfer jobs are for transferring a 
complete or partial file from one physical location 
to another. Allocate jobs are used for allocating 
storage space at the destination site, allocating 
network bandwidth, or establishing a light-path 
on the route from source to destination. Release 
jobs are used for releasing the corresponding 
resource, which was allocated before.

Chervenak et al. (2007) studied the relationship 
between data placement services and workflow 
management systems for data-intensive applica-
tions. They propose an asynchronous mode of 
data placement in which data placement opera-
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tions are performed as data sets become avail-
able and according to the policies of the virtual 
organization and not according to the directives 
of the WfMS. The WfMS can however assist the 
placement services on placement of data based 
on information collected during task executions 
and data collection. Their approach is proactive 
as it examines current workflow needs to make 
data placement decisions rather than depending 
on the popularity of data in the past. They evalu-
ated the benefits of pre-staging data using the 
data replication service versus using the native 
data stage-in mechanisms of the Pegasus WfMS 
(Deelman et al., 2005). Using the Montage as-
tronomy example, they conclude that as the size 
of data sets increases, pre-staging data increases 
the performance of the overall analysis.

Shankar & DeWitt (2007) presented archi-
tecture for Condor in which the input, output 
and executable files of jobs are cached on the 
local disks of machines in a cluster. Caching 
can reduce the amount of pipeline and batch I/O 
that is transferred across the network. This in 
turn significantly reduces the response time for 
workflows with data-intensive workloads. With 
caching enabled, data-intensive applications 
can reuse the files and also be able to compare 
between old and new versions of the file. They 
presented a planning algorithm that takes into 
account the location of cached data together with 
data dependencies between jobs in a workflow. 
Their planning algorithm produces a schedule 
by comparing the time saved by running jobs in 
parallel with the time taken for transferring data 
when dependent jobs are scheduled on different 
machines. By executing the BLAST (http://blast.
ncbi.nlm.nih.gov.gov/) application workflow they 
showed that storing files on the disks of compute 
nodes significantly improves the performance of 
data-intensive application workflows.

Ranganathan & Foster (2001, 2002, 2003) con-
ducted extensive studies for identifying dynamic 
replication strategies, asynchronous data place-
ment and job and data scheduling algorithms for 

Data Grids. Their replication process at each site 
periodically generates new replicas for popular 
datasets. For dataset placement scheduler they 
define three algorithms: Data-DoNothing- no ac-
tive replication takes place, DataRandom- popular 
datasets are replicated to a random site on the Grid, 
DataLeastLoaded- popular datasets are replicated 
to a least loaded neighboring site. They proposed 
to decouple data movement from computation 
scheduling, also known as asynchronous data 
placement. This provides opportunity for optimiz-
ing both data placement and scheduling decisions, 
also simplifying the design and implementation 
of the Data Grid system. They concluded through 
simulations on independent jobs that scheduling 
jobs to locations that contain the data they need 
and asynchronously replicating popular data sets 
to remote sites achieves better performance than 
coupled systems.

Granularity

Workflow schedulers can make scheduling 
decisions based on either: (a) task level, or (b 
workflow level.

Task level schedulers map individual tasks 
to compute resources. The decision of resource 
selection and data movement is based on the char-
acteristics of individual task and its dependencies 
with other tasks.

Workflow level schedulers map the entire 
workflow rather than a set of available tasks to 
compute resources. A workflow’s compute and 
storage requirements guide the scheduler to make a 
decision on resource selection and data movement.

Blythe et al. (2005) compared several task-
based and workflow-based approaches to resource 
allocation for workflow applications. In their 
workflow-based approach, the entire workflow is 
mapped a priori to the resources to minimize the 
makespan of the whole workflow. The mapping 
is changed according to the changing environ-
ment, if necessary. The mapping of the jobs does 
not imply scheduling all the jobs ahead of time. 
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They use a local search algorithm for workflow 
allocation based on generalized GRASP proce-
dure (Greedy randomized adaptive search) (Feo 
& Resende, 1995). The final schedule is chosen 
after an iterative and greedy comparison between 
alternative schedules. On each iteration, task to 
resource is mapped based on the minimum margin 
of increase to the current makespan of the work-
flow if the task was to be allocated to that resource. 
This approach is based on the min-min (Braun 
et al., 2001) heuristic. They noticed that during 
large file transfers, resources spent significant 
time waiting for all the files to arrive before they 
could start executing the scheduled jobs. They 
proposed a weighted min-min heuristic that takes 
into account the idle times of all the resources if 
a job were to be scheduled to a resource. Based 
on the weighted sum of the idle times and esti-
mated completion time, a job is mapped to the 
resource that gives the minimum weighted sum. 
The step is repeated until all the jobs have been 
mapped. Due to the pre-mapping, the workflow-
based approach could pre-position the data to 
the known destination by transferring a large file 
immediately after it is created. In the task-based 
approach, transfers could not begin until the job 
is scheduled which happened only after its parent 
was scheduled. They also simulated the impact 
of inaccurate estimates of transfer times for data-
intensive application workflows. They show that 
the performance of task-based approach degrades 
rapidly with increasing uncertainty in comparison 
to workflow-based approach. Based on these facts, 
they conclude that workflow-based approaches 
perform better for data-intensive applications than 
task-based approaches.

Model

Workflow scheduling model depends on the way 
the tasks and data are composed and handled. 
They can be classified into two categories: (a) 
task-based, and (b) service-based.

Task Based

Task based approaches mention data dependencies 
explicitly. The workflows are generally complex 
in structure. Optimizations used by most systems 
are simple in nature. The WfMS has greater 
control over the data flow as it can define data 
placement, cleanup and transfer tasks separately 
from the workflow tasks. DAGMan (DagMan, 
2002), Pegasus (Deelman et al., 2005), GridAnt 
(Laszewski, Amin, Hategan, Hampton, & Rossi, 
2004), GrADS (Berman et al., 2005), and Grid-
Flow (Cao, Jarvis, Saini, & Nudd, 2003) are some 
of the workflow systems that support task based 
approaches. These have been described individu-
ally in preceding sections.

Service Based

Service based approaches, also referred to as meta 
computing, wrap application codes into standard 
interfaces. Such services are hidden from the users 
and only invocation interface is known. Various 
interfaces such as Web Services (Alonso, Casati, 
Kuno, & Machiraju, 2003) or gridRPC (Nakada et 
al., 2007) have been standardized (Glatard et al., 
2008). In this model, the application is described 
separately from the data. Data is declared as param-
eters to the service. In this approach, workflows 
are generally simple in structure. In contrast to task 
based approaches, workflow systems use complex 
optimizations. This model is useful when an ap-
plication workflow is to be repeatedly executed 
over a large number of varying data sets. Instead 
of replicating the task for each data set, service 
based model has the ability to define different 
data composition strategies over the input data of 
a service. Kepler system (Ludäscher et al., 2006), 
the Taverna workbench (Oinn et al., 2004) and the 
Triana workflow manager (Taylor, Wang, Shields, 
& Majithia, 2005), are some of the service based 
workflow systems.

The myGrid project (http://www.mygrid.org.
uk/) has developed a comprehensive loosely cou-
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pled suite of middleware components specifically 
to support data-intensive in-silico experiments rep-
resented as workflows, using distributed resources. 
The main tool is the Taverna workbench (Oinn et 
al., 2004). Taverna allows for the automation of 
experimental methods through the integration of 
varying services, including WSDL-based single 
operation web services, into workflows. It uses 
FreeFluo (FreeFluo, 2003) as a workflow enact-
ment engine that facilitates intermediate data 
transfers and service invocations. Workflows are 
represented using the Simple Conceptual Unified 
Flow Language (SCUFL). A workflow graph 
consists of processors, each of which transforms a 
set of data inputs into a set of data outputs. Using 
SCUFL, implicit iteration over incoming data sets 
can be carried out based on user specified strategy. 
Users can use the Thread property to specify the 
number of concurrent instances that can send 
parallel requests to the iteration processor for 
handling simultaneous processing. This can help 
reduce the service wait time as workflow engine 
can send data at the time when the service is still 
working on previously sent data.

Kepler (Ludäscher et al., 2006) provides sup-
port for web service-based workflows. Using an 
extension of PTOLEMY II (Buck, Ha, Lee, & 
Messerschmitt, 2002), it uses an actor-oriented 
design approach for composing and executing 
scientific application workflows. Computational 
components are termed as actors, which are linked 
together to form a workflow. A director represents 
the interaction between these components. It speci-
fies and mediates all inter-actor communication, 
separating workflow orchestration and schedul-
ing from individual actor execution. Two of the 
directors (namely, Synchronous Data Flow (SDF) 
and Process Networks (PN)) work primarily by 
controlling the sequencing of actors according 
to the data availability, to preserve the order of 
execution of the workflow. The WebService actor 
provides a simple plug-in mechanism to execute 
any WSDL defined web service. An instantiation 
of the actor acts as a proxy for the web service 

being executed and links to other actors through 
its ports. Using this component, any application 
that can be deployed as a remote service, can be 
used as a Kepler component (Jaeger et al., 2005).

Kalyanam, Zhao, Park, & Goasguen (2007) 
proposed a web service-enabled distributed data-
driven workflow system on top of the TeraGrid 
(http://www.teragrid.org) infrastructure. The 
workflow system is based on an existing data 
management architecture that provides easy ac-
cess to scientific data collections via the TeraGrid 
network. It leverages JOpera (Pautasso, 2005), 
an open-source workflow engine that integrates 
web services into a processing pipeline. Users can 
construct data-driven workflows using local or 
TeraGrid data and computation resources. Their 
system helps automate the operations such as data 
discovery, movement, filtering, computationally 
intensive data processing and so forth, by orga-
nizing them as a pipeline so that researchers can 
execute applications with minimal user interaction.

Brandic, Pllana & Benkner (2008) presented a 
service-oriented environment, named as Amadeus, 
for QoS-aware Grid workflows. For data-intensive 
application workflows QoS parameters may be 
defined for data-transfer time, reliability, storage 
requirements, cost and so forth. It allows users to 
specify QoS constraints at workflow composition, 
planning and execution stages. Various QoS-aware 
service components are provided for workflow 
planning to support automatic constraint-based 
service negotiation and workflow optimization.

Platform

Data-intensive application workflows could be 
executed in different resource configuration and 
environments (e.g. Cluster, Data Grids, Clouds 
etc.) depending on the requirements of the ap-
plication.

Clusters are generally composed of homoge-
neous processors and are under a single domain. 
For data-intensive applications, clusters provide 
a viable platform for low cost and enhanced per-



170

A Survey of Scheduling and Management Techniques for Data-Intensive Application Workflows

formance. When the data produced and stored 
are local and not globally shared, cluster based 
platforms is more feasible than Grids or Clouds.

Data Grids are globally distributed resources 
for volunteering computing designed for data in-
tensive computing. Data is generated and/or used 
in research labs distributed globally, giving rise 
to sharing and re-use. Data grids are feasible for 
large-scale experiments that are a result of world-
wide collaboration of resources and scientists.

Clouds are emerging model for centralized 
but highly available and powerful infrastructure. 
Large-scale storage and computation is provided 
by data-centers. Computing power is achieved by 
using virtualization technology. Data-intensive ap-
plications can highly benefit from using services 
provided by Clouds as compared to Data Grids 
and Clusters when factors such as scalability, 
cost, performance and reliability are important.

In the past, scientific workflows were gener-
ally executed on a shared infrastructure such as 
TeraGrid (http://www.teragrid.org), Open Sci-
ence Grid (http://www.opensciencegrid.org), and 
dedicated clusters. In such systems, file system is 
usually shared for easy data movement. However, 
this can be a bottleneck for data-intensive opera-
tions (Zhao, Raicu, & Foster, 2008).

Deelman, Singh, Livny, Berriman, & Good 
(2008) presented a simulation-based study of costs 
involved when executing scientific application 
workflows using Cloud services. They studied the 
cost performance tradeoff of different execution 
and resource provisioning plans, and storage and 
communication fees of Amazon S3 in the con-
text of an astronomy application Montage. They 
showed that for a data-intensive application with a 
small computational granularity, the storage costs 
were insignificant as compared to the CPU costs. 
They concluded that cloud computing is cost-
effective solution for data-intensive applications.

Broberg, Buyya, & Tari (2008) introduced 
MetaCDN, which uses ‘Storage Cloud’ resources 
to deliver content to content creators at low cost 
but with high performance (in terms of throughput 

and response time). Data could be delivered to 
tasks in a workflow using tools provided by CDN.

In our work with data-intensive application 
workflows, we studied the performance charac-
teristics of a brain Image Registration workflow 
(IR) (Pandey et al., 2009). We executed the 
application on an experimental Grid platform, 
Grid’5000 (Cappello & Bal, 2007), and profiled 
each task’s execution and data flow. We were 
able to decrease the makespan of the workflow 
significantly by using Grid resources. We also 
used partial data retrieval technique to retrieve 
data from distributed storage resources while 
scheduling data-intensive application workflows 
(Pandey & Buyya, 2011). We proposed static 
and dynamic heuristics that incorporated the re-
trieval techniques. We experimented with two 
synthetic and one real data-intensive application 
workflow (IR workflow). Executions were done 
using Virtual Machines (VM) connected through 
a simulated network environment. Experimental 
results showed that retrieving data from multiple 
sources significantly improves the time taken to 
download data to the execution sites. Cumulative 
effect thus decreased the total makespan of all 
the workflows.

Ramakrishnan & Reed (2008) studied the im-
pact of varying resource availability on application 
performance. They applied performability analysis 
(i.e., a measure of the system’s performance in the 
event of failures) at two levels - computational 
resources and the network, to obtain the applica-
tion workflow’s overall execution time, given the 
failure level of resources. They used these values 
to estimate task completion times during each 
iteration of the workflow-scheduling algorithm. 
Their HYBRID approach, which takes resource 
failure and repair into account, performs better 
than the approach that does not take failures into 
account, when the failure-to-repair rates increase. 
Through simulation results, they concluded that 
the joint analysis of performance and reliability 
should improve dynamic workflow scheduling 
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and fault tolerance strategies required for Grid 
and cloud environments.

Miscellaneous

In this Section, we list some technologies that 
have been used for enhancing the performance 
of data-intensive application workflows.

Semantic Technology

The myGrid project (http://www.mygrid.org.
uk/) exploits semantic web technology to sup-
port data-intensive bioinformatics experiments 
in a grid environment. The semantic description 
of services in RDF and OWL is used for service 
discovery and matchmaking. Kepler (Ludäscher 
et al., 2006) is a data-driven workflow system (as 
described under the sub heading “Service Based” 
workflows), which allows semantic annotations 
of data and actors, and can support semantic 
transformation of data.

Database Technology

GridDB (Liu & Franklin, 2004) is a grid middle-
ware based on a data centric model for represent-
ing workflows and their data. It uses database to 
store memo and process tables that store the inputs 
and outputs of a program that has completed, and 
process state of executing programs, respectively. 
It provides functional data modeling language 
(FDM) for expressing the relationship between 
programs and their inputs and outputs.

Shankar, Kini, DeWitt, & Naughton (2005) 
have pointed out the advantages of tightly 
coupling workflow management systems with 
data-manipulation for data-intensive scientific 
programs. They also presented a language for 
modeling workflows that is tightly integrated with 
SQL. Data products from workflows are defined 
in relational format. They use SQL for invocation 
and querying of programs.

FUTURE DIRECTIONS

Most workflow systems in the past focused on 
performance of tasks rather than data management. 
The reason might have been due to cluster manage-
ment systems and shared storage space. But with 
globally distributed resources, it is a must these 
systems take into account the data flow manage-
ment along with computational tasks. Composi-
tion of workflows that is scalable thus remains a 
challenge. Distributed coordinated execution of 
globally distributed scientific workflows can then 
be possible without much hurdle.

Requirements of data-intensive applications 
can be specified using QoS parameters at all 
levels of a WfMS. To meet QoS requirements of 
e-Research application workflows, we need tech-
nologies that support (a) QoS-based scheduling of 
e-Research application workflows on distributed 
resources, (b) mechanisms for formulating, nego-
tiating and establishing service level agreements 
(SLA) with resource providers and (c) SLA-based 
allocation and management of resources. Specifi-
cally, we need to:

• Define an architectural framework and 
principles for the development of QoS-
based workflow management and SLA-
based resource allocation systems,

• Develop QoS-based algorithms for sched-
uling e-Research workflow applications,

• Develop SLA-based negotiation protocols 
and resource allocation algorithms.

With the advent of virtualization technologies, 
Cloud storage systems, content delivery networks 
(CDN) and so forth, it is likely that big scientific 
projects will start using services provided by third 
parties for storing and processing application data. 
As companies such as Amazon, IBM, and Google 
are innovating the use of their huge data centers for 
commercial use as Cloud services, data-intensive 
applications may leverage their utilities and not 
depend on conventional, error-prone, costly and 
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unreliable solutions (Buyya, Yeo and Venugopal, 
2008). However, due to higher usage and access 
costs of these commercial services, small-scale 
scientific projects may still need to rethink of 
deploying their application on Clouds.

CONCLUSION

In this chapter, we classified and surveyed tech-
niques for managing and scheduling data-intensive 
application workflows. Under each classification, 
there were several specific techniques that work-
flow systems used for executing data-intensive 
application workflows on globally distributed 
resources. We listed and described each such work 
in detail. We found that most systems focused on 
minimizing data transfers and optimally structur-
ing model of execution to subdue the effect of 
large data requirements of most scientific data-
intensive applications. We also found that many 
systems used a combination of techniques we 
listed to achieve higher scalability, fault tolerance, 
lower costs and increase performance. A single 
technique alone would not suffice to minimize 
the effect of increasing data processing require-
ments of scientific applications. Due to the lack 
of standardization and interoperability, many of 
the systems were developed in isolation. As a 
result, techniques for managing data for data-
intensive workflows were mixed and duplicated. 
Nevertheless, scientific community has been able 
to successfully achieve the goals of all scientific 
projects with promising results, where PetaByes of 
data play a major role. This was only possible due 
to the seamless effort put on for the development 
of workflow management systems that manages 
data and tasks for most scientific applications.

ACKNOWLEDGMENT

This work is partially supported through Australian 
Research Council (ARC) Discovery Project grant. 
We also thank Ivona Brandic from University 
of Vienna, Austria; Marcos Assunção, Srikumar 
Venugopal, Rajiv Ranjan and Marco A.S. Netto 
from The University of Melbourne, Australia for 
their valuable comments.

REFERENCES

Afsarmanesh, H., Belleman, R. G., Belloum, A. S. 
Z., Benabdelkader, A., Brand, J. F. J., & van den 
Eijkel, G. B. (2002). Vlam-g: A grid-based virtual 
laboratory. Science Progress, 10(2), 173–181.

Alonso, G., Casati, F., Kuno, H., & Machiraju, 
V. (2003). Web services - Concepts, architectures 
and applications. Springer.

Bahsi, E. M., Ceyhan, E., & Kosar, T. (2007). 
Conditional workflow management: A survey 
and analysis. Science Progress, 15(4), 283–297.

Berman, F., Casanova, H., Chien, A., Cooper, K., 
Dail, H., & Dasgupta, A. (2005). New grid schedul-
ing and rescheduling methods in the grads project. 
International Journal of Parallel Programming, 
33(2), 209–229. doi:10.1007/s10766-005-3584-4

Bhat, V., Parashar, M., & Klasky, S. (2007). Experi-
ments with in-transit processing for data intensive 
grid workflows. In GRID (pp. 193-200). IEEE.

Bhat, V., Parashar, M., Liu, H., Kandasamy, N., 
Khandekar, M., & Klasky, S. (2007). A self-
managing wide-area data streaming service. 
Cluster Computing, 10(4), 365–383. doi:10.1007/
s10586-007-0023-x



173

A Survey of Scheduling and Management Techniques for Data-Intensive Application Workflows

Blythe, J., Jain, S., Deelman, E., Gil, Y., Vahi, K., 
Mandal, A., et al. (2005). Task scheduling strate-
gies for workflow-based applications in grids. 
In CCGRID ’05: Proceedings of the Fifth IEEE 
International Symposium on Cluster Comput-
ing and the Grid (CCGrid’05) - Volume 2 (pp. 
759–767). Washington, DC: IEEE.

Brandic, I., Pllana, S., & Benkner, S. (2006). 
An approach for the high-level specification of 
qos-aware grid workflows considering location 
affinity. Science Progress, 14(3/4), 231–250.

Brandic, I., Pllana, S., & Benkner, S. (2008). Speci-
fication, planning, and execution of qos-aware 
grid workflows within the Amadeus environment. 
Concurrent Computing: Practice and Experience, 
20(4), 331–345. doi:10.1002/cpe.1215

Braun, T. D., Siegel, H. J., Beck, N., Boloni, L. 
L., Maheswaran, M., & Reuther, A. I. (2001). A 
comparison of eleven static heuristics for mapping 
a class of independent tasks onto heterogeneous 
distributed computing systems. Journal of Paral-
lel and Distributed Computing, 61(6), 810–837. 
doi:10.1006/jpdc.2000.1714

Broberg, J., Buyya, R., & Tari, Z. (2008, August). 
MetaCDN: Harnessing ‘storage clouds’ for high 
performance content delivery (Tech. Rep. No. 
GRIDS-TR-2008-11). GRIDS Lab: The Univer-
sity of Melbourne.

Buck, J., Ha, S., Lee, E. A., & Messerschmitt, D. G. 
(2002). Ptolemy: A framework for simulating and 
prototyping heterogeneous systems (pp. 527–543). 
Norwell, MA: Kluwer Academic Publishers.

Buyya, R., Yeo, C. S., & Venugopal, S. (2008). 
Market-oriented cloud computing: Vision, hype, 
and reality for delivering it services as computing 
utilities. In HPCC ‘08: Proceedings of the 2008 
10th IEEE International Conference on High 
Performance Computing and Communications, 
(pp. 5-13). Washington, DC: IEEE.

Cao, J., Jarvis, S. A., Saini, S., & Nudd, G. R. 
(2003). Gridflow: Workflow management for 
grid computing. In CCGRID ’03: Proceedings 
of the 3st International Symposium on Cluster 
Computing and the Grid (pp. 198–205). Wash-
ington, DC, USA.

Cappello, F., & Bal, H. (2007). Toward an interna-
tional “computer science grid”. In CCGRID ’07: 
Proceedings of the Seventh IEEE International 
Symposium on Cluster Computing and the Grid 
(pp. 3–12). Washington, DC: IEEE.

Chervenak, A., Deelman, E., Livny, M., Su, M.-H., 
Schuler, R., Bharathi, S., et al. (2007, Septem-
ber). Data placement for scientific applications 
in distributed environments. In Proceedings of 
the 8th IEEE/ACM International Conference on 
Grid Computing (Grid 2007). Austin, TX: IEEE.

Couvares, P., Kosar, T., Roy, A., Weber, J., 
& Wenger, K. (2007, January). Workflow 
management in condor. In Workflows for e-
Science (pp. 357–375). London, UK: Springer. 
doi:10.1007/978-1-84628-757-2_22

DagMan. (2002). Online. Retrieved from http://
www.cs.wisc.edu/condor/dagman/

Deelman, E., Blythe, J., Gil, Y., Kesselman, 
C., Mehta, G., Patil, S., et al. (2004). Pegasus: 
Mapping scientific workflows onto the grid. In 
European Across Grids Conference (vol. 3165, 
pp. 11–20). Springer.

Deelman, E., Blythe, J., Gil, Y., Kesselman, 
C., Mehta, G., & Vahi, K. (2003). Mapping 
abstract complex workflows onto grid environ-
ments. Journal of Grid Computing, 1(1), 25–39. 
doi:10.1023/A:1024000426962



174

A Survey of Scheduling and Management Techniques for Data-Intensive Application Workflows

Deelman, E., & Chervenak, A. (2008). Data man-
agement challenges of data-intensive scientific 
workflows. In CCGRID ’08: Proceedings of the 
2008 Eighth IEEE International Symposium on 
Cluster Computing and the Grid (CCGRID) (pp. 
687–692). Washington, DC: IEEE Computer 
Society.

Deelman, E., Singh, G., Livny, M., Berriman, 
B., & Good, J. (2008). The cost of doing science 
on the cloud: The montage example. In SC ’08: 
Proceedings of the 2008 ACM/IEEE Conference 
on Supercomputing (pp. 1–12). Piscataway, NJ: 
IEEE.

Deelman, E., Singh, G., Su, M.-H., Blythe, J., Gil, 
Y., & Kesselman, C. (2005). Pegasus: A frame-
work for mapping complex scientific workflows 
onto distributed systems. Science Progress, 13(3), 
219–237.

Duan, R., Fahringer, T., Prodan, R., Qin, J., Vil-
lazon, A., & Wieczorek, M. (2005, February). 
Real world workflow applications in the Askalon 
grid environment. In European Grid Conference 
(EGC 2005). Springer Verlag.

Duan, R., Prodan, R., & Fahringer, T. (2006). Run-
time optimisation of grid workflow applications. 
In GRID (pp. 33-40). IEEE.

Feo, T. A., & Resende, M. G. (1995, March). 
Greedy randomized adaptive search procedures. 
Journal of Global Optimization, 6(2), 109–133. 
doi:10.1007/BF01096763

FreeFluo. (2003). Online. Retrieved from http://
freefluo.sourceforge.net/

Gil, Y., Deelman, E., Ellisman, M., Fahringer, T., 
Fox, G., & Gannon, D. (2007). Examining the 
challenges of scientific workflows. Computer, 
40(12), 24–32. doi:10.1109/MC.2007.421

Glatard, T., Montagnat, J., Lingrand, D., & Pen-
nec, X. (2008). Flexible and efficient workflow 
deployment of data-intensive applications on 
grids with moteur. International Journal of High 
Performance Computing Applications, 22(3), 
347–360. doi:10.1177/1094342008096067

Globus Project. (1996). Online. Retrieved from 
http://www.globus.org/

Hollingsworth, D. (1994). The workflow reference 
model. (Tech. Rep. No. TCOO- 1003). Workflow 
Management Coalition.

Jaeger, E., Altintas, I., Zhang, J., Ludäscher, 
B., Pennington, D., & Michener, W. (2005). 
A scientific workflow approach to distributed 
geospatial data processing using web services. 
In SSDBM’2005: Proceedings of the 17th Inter-
national Conference on Scientific and Statistical 
Database Management (pp. 87–90). Berkeley, 
CA: Lawrence Berkeley Laboratory.

Kalyanam, R., Zhao, L., Park, T., & Goasguen, 
S. (2007). A web service-enabled distributed 
workflow system for scientific data process-
ing. In FTDCS ’07: Proceedings of the 11th 
IEEE International Workshop on Future Trends 
of Distributed Computing Systems (pp. 7–14). 
Washington, DC: IEEE.

Ko, S. Y., Morales, R., & Gupta, I. (2007). New 
worker-centric scheduling strategies for data-
intensive grid applications. In Cerqueira, R., & 
Campbell, R. H. (Eds.), Middleware (Vol. 4834, 
pp. 121–142). Springer. doi:10.1007/978-3-540-
76778-7_7

Korkhov, V., Vasyunin, D., Wibisono, A., Bel-
loum, A. S. Z., Inda, M. A., & Roos, M. (2007). 
Vlam-g: Interactive data driven workflow engine 
for grid-enabled resources. Science Progress, 
15(3), 173–188.



175

A Survey of Scheduling and Management Techniques for Data-Intensive Application Workflows

Kosar, T., & Livny, M. (2004). Stork: Making 
data placement a first class citizen in the grid. In 
ICDCS ’04: Proceedings of the 24th International 
Conference on Distributed Computing Systems 
(ICDCS’04) (pp. 342–349). Washington, DC: 
IEEE.

Kwok, Y. K., & Ahmad, I. (1999). Static scheduling 
algorithms for allocating directed task graphs to 
multiprocessors. ACM Computing Surveys, 31(4), 
406–471. doi:10.1145/344588.344618

Laszewski, G. V., Amin, K., Hategan, M., Hamp-
ton, N. J. Z. S., & Rossi, A. (2004, January). 
Gridant: A client-controllable grid workflow 
system. In 37th Hawaii International Conference 
on System Science (HICSS’04) (pp. 5–8). IEEE.

Liu, D. T., & Franklin, M. J. (2004). Griddb: A 
data-centric overlay for scientific grids. In VLDB 
’04: Proceedings of the Thirtieth International 
Conference on Very Large Data Bases (pp. 600– 
611). VLDB Endowment.

Ludäscher, B., Altintas, I., Berkley, C., Higgins, 
D., Jaeger, E., & Jones, M. (2006). Scientific 
workflow management and the kepler system: 
Research articles. Concurrency and Computation, 
18(10), 1039–1065.

Meyer, L., Annis, J., Wilde, M., Mattoso, M., & 
Foster, I. (2006). Planning spatial workflows to 
optimize grid performance. In SAC ’06: Proceed-
ings of the 2006 ACM Symposium on Applied 
Computing (pp. 786–790). New York, NY: ACM.

Moore, R., Prince, T. A., & Ellisman, M. (1998). 
Data-intensive computing and digital libraries. 
Communications of the ACM, 41(11), 56–62. 
doi:10.1145/287831.287840

Nakada, H., Matsuoka, S., Seymour, K., Dongarra, 
J., Lee, C., & Casanova. (2007, June). A GridRPC 
model and API for end-user applications. GridRPC 
Working Group of Global Grid Forum.

Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, 
M., & Greenwood, M. (2004, November). Tav-
erna: A tool for the composition and enactment 
of bioinformatics workflows. Bioinformatics (Ox-
ford, England), 20(17), 3045–3054. doi:10.1093/
bioinformatics/bth361

Pandey, S, & Buyya. R. (2011, in press). Schedul-
ing Workflow Applications based on Multi-Source 
Parallel Data Retrieval in Distributed Computing 
Networks, The Computer Journal.

Pandey. S, Voorsluys, W., Rahman, M., Buyya, 
R., Dobson, J., Chiu, K. (2009, November) A 
Grid Workflow Environment for Brain Imaging 
Analysis on Distributed Systems. Concurrency 
and Computation: Practice and Experience, 
21(16), 2118-2139.

Pautasso, C. (2005). Jopera: An agile environment 
for Web service composition with visual unit test-
ing and refactoring. In VLHCC ’05: Proceedings 
of the 2005 IEEE Symposium on Visual Languages 
and Human-Centric Computing (pp. 311–313). 
Washington, DC: IEEE Computer Society.

Raicu, I., Zhao, Y., Foster, I. T., & Szalay, A. 
(2008). Accelerating large-scale data exploration 
through data diffusion. In DADC ’08: Proceedings 
of the 2008 International Workshop on Data-
Aware Distributed Computing (pp. 9–18). New 
York, NY: ACM.

Ramakrishnan, A., Singh, G., Zhao, H., Deel-
man, E., Sakellariou, R., Vahi, K., et al. (2007). 
Scheduling data-intensive workflows onto stor-
age-constrained distributed resources. In CCGrid 
’09: Proceedings of the 7th IEEE Symposium on 
Cluster Computing and The Grid (pp. 14–17). 
Brazil: IEEE.



176

A Survey of Scheduling and Management Techniques for Data-Intensive Application Workflows

Ramakrishnan, L., & Reed, D. A. (2008). Perform-
ability modeling for scheduling and fault tolerance 
strategies for scientific workflows. In HPDC ’08: 
Proceedings of the 17th International Symposium 
on High Performance Distributed Computing (pp. 
23–34). New York, NY: ACM.

Ranganathan, K., & Foster, I. (2002). Decoupling 
computation and data scheduling in distributed 
data-intensive applications. In Proceedings of 
the 11th IEEE International Symposium on High 
Performance Distributed Computing. USA: IEEE.

Ranganathan, K., & Foster, I. (2003, March). Sim-
ulation studies of computation and data scheduling 
algorithms for data grids. Journal of Grid Comput-
ing, 1(1), 53–62. doi:10.1023/A:1024035627870

Ranganathan, K., & Foster, I. T. (2001). Identifying 
dynamic replication strategies for a high- perfor-
mance data grid. In Proceedings of the Second 
International Workshop on Grid Computing. UK: 
Springer-Verlag.

SDSS Project. (2000). Online. Retrieved from 
https://www.darkenergysurvey.org

Shankar, S., & DeWitt, D. J. (2007). Data driven 
workflow planning in cluster management sys-
tems. In HPDC ’07: Proceedings of the 16th 
International Symposium on High Performance 
Distributed Computing (pp. 127–136). New York, 
NY: ACM.

Shankar, S., Kini, A., DeWitt, D. J., & Naugh-
ton, J. (2005). Integrating databases and work-
flow systems. SIGMOD Record, 34(3), 5–11. 
doi:10.1145/1084805.1084808

Simmhan, Y. L., Plale, B., & Gannon, D. (2005, 
September). A survey of data provenance in 
e-science. SIGMOD Record, 34(3), 31–36. 
doi:10.1145/1084805.1084812

Singh, G., Kesselman, C., & Deelman, E. (2005, 
September). Optimizing grid-based workflow 
execution. Journal of Grid Computing, 3(3-4), 
201–219. doi:10.1007/s10723-005-9011-7

Singh, G., Vahi, K., Ramakrishnan, A., Mehta, 
G., Deelman, E., & Zhao, H. (2007). Optimiz-
ing workflow data footprint. Science Progress, 
15(4), 249–268.

Taylor, I., Wang, I., Shields, M., & Majithia, S. 
(2005). Distributed computing with triana on the 
grid: Research articles. Concurrency and Com-
putation, 17(9), 1197–1214. doi:10.1002/cpe.901

Venugopal, S., Buyya, R., & Ramamohanarao, 
K. (2006). A taxonomy of data grids for 
distributed data sharing, management, and 
processing. ACM Computing Surveys, 38(1). 
doi:10.1145/1132952.1132955

Venugopal, S., Buyya, R., & Winton, L. (2006). 
A grid service broker for scheduling e-science ap-
plications on global data grids: Research articles. 
Concurrency and Computation, 18(6), 685–699. 
doi:10.1002/cpe.974

Yu, J., & Buyya, R. (2004). A novel architecture 
for realizing grid workflow using tuple spaces. 
Proceedings of the Fifth IEEE/ACM International 
Workshop on Grid Computing.

Yu, J., & Buyya, R. (2005). A taxonomy of 
scientific workflow systems for grid com-
puting. SIGMOD Record, 34(3), 44–49. 
doi:10.1145/1084805.1084814

Yu, J., Buyya, R., & Ramamohanarao, K. 
(2008). Workflow scheduling algorithms for grid 
computing. In Metaheuristics for Scheduling 
in Distributed Computing Environments (Vol. 
146, pp. 173–214). Berlin, Germany: Springer. 
doi:10.1007/978-3-540-69277-5_7

Zhao, Y., Raicu, I., & Foster, I. (2008). Scientific 
workflow systems for 21st century, new bottle 
or new wine? In SERVICES ’08: Proceedings of 
the 2008 IEEE Congress on Services - Part I (pp. 
467–471). Washington, DC: IEEE.


