
Tevfik Kosar
State University of New York at Buffalo (SUNY), USA

Data Intensive Distributed
Computing:
Challenges and Solutions
for Large-Scale Information
Management

Data intensive distributed computing: challenges and solutions for large-scale information management / Tevfik Kosar,
editor.
 p. cm.
 Includes bibliographical references and index.
 Summary: “This book focuses on the challenges of distributed systems imposed by the data intensive applications, and on
the different state-of-the-art solutions proposed to overcome these challenges”--Provided by publisher.
 ISBN 978-1-61520-971-2 -- ISBN 978-1-61520-972-9 (ebk.) 1. Expert systems (Computer science) 2. Computer
systems. I. Kosar, Tevfik, 1974-
 QA76.76.E95D378 2012
 006.3--dc22
 2010006730

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

Managing Director: Lindsay Johnston
Senior Editorial Director: Heather Probst
Book Production Manager: Sean Woznicki
Development Manager: Joel Gamon
Development Editor: Hannah Abelbeck
Acquisitions Editor: Erika Gallagher
Typesetters: Milan Vracarich, Jr.
Cover Design: Nick Newcomer, Greg Snader

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2012 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

 Library of Congress Cataloging-in-Publication Data

156

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7

Suraj Pandey
The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia

Rajkumar Buyya
The University of Melbourne, Australia

A Survey of Scheduling and
Management Techniques

for Data-Intensive
Application Workflows

ABSTRACT

This chapter presents a comprehensive survey of algorithms, techniques, and frameworks used for sched-
uling and management of data-intensive application workflows. Many complex scientific experiments
are expressed in the form of workflows for structured, repeatable, controlled, scalable, and automated
executions. This chapter focuses on the type of workflows that have tasks processing huge amount of
data, usually in the range from hundreds of mega-bytes to petabytes. Scientists are already using Grid
systems that schedule these workflows onto globally distributed resources for optimizing various objec-
tives: minimize total makespan of the workflow, minimize cost and usage of network bandwidth, minimize
cost of computation and storage, meet the deadline of the application, and so forth. This chapter lists
and describes techniques used in each of these systems for processing huge amount of data. A survey of
workflow management techniques is useful for understanding the working of the Grid systems providing
insights on performance optimization of scientific applications dealing with data-intensive workloads.

DOI: 10.4018/978-1-61520-971-2.ch007

157

A Survey of Scheduling and Management Techniques for Data-Intensive Application Workflows

INTRODUCTION

Scientists and researchers around the world have
been conducting simulations and experiments as a
part of medium to ultra large-scale studies in high-
energy physics, biomedicine, climate modeling,
astronomy and so forth. They are always seeking
cutting-edge technologies to transfer, store and
process the data in a more systematic and con-
trolled manner as the data requirements of these
applications range from megabytes to petabytes.
Thus, to help them manage the complexity of
execution, transfer and storage of results of these
large-scale applications, the use of a Workflow
Management Systems (WfMS) is in wide practice
(Yu & Buyya, 2005).

Scheduling and managing computational tasks
of a workflow were the main focus of WfMS in the
past. With the emergence of globally distributed
computing resources and increasing output data
from scientific experiments, scientists began to re-
alize the necessity of handling data in conjunction
with computational tasks. Scientific workflows
were then modeled taking into account the flow of
data. However, even with a plethora of techniques
and systems, many challenges remain in the area
of data management related to workflow creation,
execution, and result management (Deelman &
Chervenak, 2008; Gil et al., 2007).

Some challenges for managing data-intensive
application workflows are:

• High throughput data transfer mechanisms
• Massive, cheap, green and low latency

storage solutions and their interfaces
• Composition of scientific applications as

workflows
• Multi-core technology and workflow man-

agement systems
• Standards for Interoperability between

workflow systems
• Globally distributed data and computation

resources

In this chapter, we classify and survey tech-
niques that have been used for managing and
scheduling data-intensive application workflows
to meet the challenges listed above. The classifica-
tion is based on techniques that take into account
data, storage, platform and application character-
istics. We sub-divide each general heading into
more specific techniques. We then list and describe
several work under each sub-heading. Most sys-
tems use a combination of existing techniques to
achieve the objectives of an application workflow.

The rest of the chapter is organized as follows.
In next section, we present previous studies that
focused more on systems side of Grid workflows
and Data Grids along with their taxonomy. We
then describe the terms and definitions used in
this chapter followed by an abstract model of a
WfMS and its component responsible for data
and computation management. In the rest of the
chapter, we present the survey. We finally conclude
identifying some future trends in management of
data-intensive application workflows.

RELATED WORK

Over the last few years, we can find much work
being done on data-intensive environments and
workflow management systems. We list tax-
onomies for Data Grid Systems and Workflow
management Systems that present the grounds
for our survey.

Venugopal, Buyya, & Ramamohanarao (2006)
proposed a comprehensive taxonomy of data Grids
for distributed data sharing, management and pro-
cessing. They characterize, classify and describe
various aspects of architecture, data transporta-
tion, data replication and resource allocation, and
scheduling for Data Grids systems. They list the
similarities and differences between Data Grids
and other distributed data-intensive paradigms
such as content delivery networks, peer-to-peer
networks, and distributed databases.

158

A Survey of Scheduling and Management Techniques for Data-Intensive Application Workflows

Yu & Buyya (2005) proposed taxonomy of
workflow management systems for Grid com-
puting. They characterize and classify different
approaches for building and executing workflows
on Grids. They present a survey of representative
Grid workflow systems highlighting their features
and pointing out the differences. Their taxonomy
focuses on workflow design, workflow schedul-
ing, fault management and data movement.

Bahsi, Ceyhan & Kosar (2007) presented a
survey and analysis on conditional workflow
management. They studied workflow management
systems and their support for conditional structures
such as if, switch and while. With case studies
on existing WfMS, they listed the differences in
implementation of common conditional structures.
They show that the same structure is implemented
in completely different ways by different WfMS.
A system or a user can define explicit conditions
in the structure of a workflow to manage the data
flow across resources and between tasks for data-
intensive application workflows.

Yu, Buyya, & Ramamohanarao (2008) listed
and described several existing workflow sched-
uling algorithms developed and deployed in
various Grid environments. They categorized the
scheduling algorithms as either best effort based
or Quality of Service (QoS) constraint based
scheduling. Under best-effort scheduling, they
presented several heuristics and meta-heuristics
based algorithms, which intend to optimize work-
flow execution times on community Grids. Under
QoS constraint based scheduling algorithms,
they examined algorithms, which intend to solve
performance optimization problems based on two
QoS constraints, deadline and budged. They also
list some of the techniques we have explicitly
described for data-intensive workflows in this
chapter.

Kwok & Ahmad (1999) surveyed different
static scheduling techniques for scheduling ap-
plication Directed Acyclic Graphs (DAGs) onto
homogeneous platforms. In their model, tasks are
scheduled onto multiprocessor systems. The model

also assumes that communication is achieved
solely by message passing between processing
elements. They proposed taxonomy that clas-
sified the scheduling algorithms based on their
functionality. Their survey also provides examples
for each algorithm along with the overview of
the software tools for scheduling and mapping.

TERMS AND DEFINITIONS

In this section, we define the terms data-intensive,
scientific workflow and workflow scheduling as
applicable for scientists working on distributed,
heterogeneous, large-scale platforms such as
Grids and Clouds.

Data-Intensive

A data-intensive computing environment consists
of applications that produce, manipulate, or ana-
lyze data in the range of hundreds of megabytes
(MB) to petabytes (PB) and beyond (Moore,
Prince, & Ellisman, 1998). A data-intensive ap-
plication workflow has higher data workloads
to manage than its computational parts. In other
words, the requirements of resource interconnec-
tion bandwidth for transferring data outweigh
the computational requirements for processing
tasks. This, as a consequence, demands more
time to transfer and store data as compared to
task execution of a workflow. It is common to
characterize the distinction between data-intensive
and compute-intensive by defining a threshold for
the Computation to Communication Ratio (CCR).
Applications with lower values of this ratio are
distinctly data-intensive in nature.

Scientific Workflow

Standard application components of scientific,
data-intensive applications can be combined to
process the data in a structured way in contrast to
executing monolithic codes (Deelman et al., 2003).

159

A Survey of Scheduling and Management Techniques for Data-Intensive Application Workflows

The application is represented as a workflow
structure, which consists of tasks, data elements,
control sequences and their dependencies. Ac-
cording to Zhao et al. (2008), scientific workflow
management systems are engaged and applied to
the following aspects of scientific computations:
1) describing complex scientific procedures, 2)
automating data derivation processes, 3) high
performance computing (HPC) to improve
throughput and performance, and 4) provenance
management and query.

Workflow Scheduling

In simple terms, a process of mapping of tasks in
a workflow (or an entire workflow) to compute
resources for execution (preserving dependen-
cies between tasks) is termed as scheduling of
workflows. Once the workflow is instantiated in
the form of a DAG, middleware technologies,
such as Pegasus (Deelman et al., 2005), Gridbus
Workflow Management System (Yu & Buyya,
2004) and so forth, are used to schedule the
jobs described in the nodes of the DAG onto the
specified resources in their specified order. The
objectives of scheduling a workflow can vary from
application to application. Most often, a data-
intensive application workflow is scheduled to
optimize the data-transfer time/cost, storage space,
total execution time or a combination of these.

Resource Broker

A resource broker is an intermediate entity that
acts as a mediator between Grid resources and
end users. It performs resource allocation and/or
scheduling, and manages execution of applications
on behalf of one or multiple users. For instance,
the Grid Service Broker (Venugopal, Buyya, &
Winton, 2006) developed as part of the Gridbus
Project, mediates access to distributed resources
by discovering resources, scheduling tasks, moni-
toring and collating results.

ABSTRACT MODEL
OF A WORKFLOW
MANAGEMENT SYSTEM

Figure 1 shows the architecture of a Grid workflow
system based on the workflow reference model
(Hollingsworth, 1994) proposed by Workflow
Management Coalition (WfMC) (www.wfmc.
org) in 1994. We have extended it to include
components that manage data in addition to tasks.

Yu et al. (2005) have described the abstract
model in detail, but without the data-centric com-
ponents. The build time and run time borders
separate the functionality of the design to defining
and executing tasks, respectively. At the core of
the run time, we propose components to actively
process both data and tasks equally, different from
the model presented by Yu et al. (2005), where
data was not given as high priority as tasks.

The scheduler, that forms the core of the en-
gine, handles data flow schedules on top of task
schedules. For example, if a workflow is modeled
such that the data transfer tasks are separate from
computation tasks, the scheduler may apply a dif-
ferent scheduling policy to the data transfer tasks.
Similarly, when there is no distinction between
these tasks, the scheduler may prioritize data
transfers between certain tasks over computa-
tion depending on the structure of the workflow,
scheduling objectives, and so forth.

We propose to add a data provenance (also
referred to as lineage and pedigree) manager
component to the architecture. It keeps the re-
cord of data entities associated with the tasks in
a workflow. The scheduler may interact with this
component for determining specific data flow
paths between tasks and distributed resources. For
example, when a workflow is executed a number
of times, previously produced data may exist that
could be reused. In such cases, intermediate data
transfer may not be scheduled for some tasks.
Similarly, the scheduler may take reference of
provenance data to create/dissolve data transfer
and data cleanup tasks for storage aware sched-

160

A Survey of Scheduling and Management Techniques for Data-Intensive Application Workflows

uling. Simmhan, Plale, & Gannon (2005) have
surveyed and described systems using provenance
for data-intensive environments in greater detail.

We envision each component in the core
architecture to handle data as a first class citizen
as also proposed by Kosar & Livny (2004). Data
movement component, in particular, should be
smart enough to overlap data transfer tasks with
computation so that wait-times for data-avail-
ability is minimized. Data-transfer tasks could
be prioritized for different tasks. Similarly, fault
tolerance policies should be capable of handling

frequent failures of data transfer tasks. Schedul-
ing steps heavily depend on the capability of data
movement and fault tolerance components for
data-intensive applications as the repercussions
of failure of data transfer tasks can affect the
performance of the entire workflow. Different
from generic WfMS models, a higher and more
sophisticated coordination mechanism is required
between these components for handling data-
intensive application workflows.

New models for IT service delivery (e.g. Clouds
Computing) are emerging. Workflow systems

Figure 1. An abstract model of a workflow management system

161

A Survey of Scheduling and Management Techniques for Data-Intensive Application Workflows

should be capable of interacting with these types of
service oriented architectures so that it can better
utilize the storage and compute facilities provided
by them for optimized data delivery, storage and
distributed access. Access and security policies
may different than existing Grid infrastructures
when resources are from centralized data centers.

SURVEY

In this section, we characterize and classify key
concepts and techniques used for scheduling and
managing data-intensive application workflows.
As shown in Figure 2, we have classified the
techniques into seven major categories: (a) data
locality, (b) data transfer, (b) data-footprint, (c)
granularity, (d) model, (e) platform, (f) miscel-
laneous technologies. In this section, we describe
each of these categories and their branches in
detail.

Data Locality

In data-intensive computing environments, the
amount of data involved is huge. Transferring
data between computing nodes takes significant
amount of time depending on the size of data and
network capacity between participating nodes.
Hence, most scheduling techniques target on op-
timizing data transfers by exploiting the locality
of data. These techniques can be classified into:
(a) spatial clustering, (b) task clustering, and (c)
worker centric.

Spatial Clustering

Spatial clustering creates a task workflow based
on the spatial relationship of files in the input
data set. In spatial clustering, clusters of jobs are
created based on spatial proximity, each job then
assigned to a cluster, each cluster to a grid site
and during the execution of the workflow, all jobs
scheduled belonging to the cluster to the same site

(Meyer, Annis, Wilde, Mattoso, & Foster, 2006).
It improves data reuse and reduces total number
of file transfers by clustering together tasks with
high input-set overlap. These clustered tasks are
scheduled to the resource with the maximum
overlap of input data. This reduction benefits the
Grid as a whole by reducing traffic between the
sites. It also benefits the application by improving
its performance.

Meyer et al. (2006) presented a generalized
approach to planning spatial workflow schedules
for Grid execution based on the spatial proximity
of files and the spatial range of jobs. They pro-
posed SPCL (for “spatial clustering”) algorithm
that takes advantage of data locality through the
use of dynamic replication and schedule jobs in
a manner that reduces the number of replicas cre-
ated and the number of file transfers performed
when executing a workflow. They evaluated their
solution to the problem using the file access pat-
tern of an astronomy application that performs
coaddition of images from the Sloan Digital Sky
Survey (SDSS) (SDSS Project, 2000).

Brandic, Pllana & Benkner (2006) developed
QoS-aware Grid Workflow Language (QoWL),
by extending the Business Process Execution
Language (BPEL) that allows users to define
preferences regarding the execution location af-
finity for activities with specific security and legal
constraints. Using QoS parameters that directs
the WfMS to restrict the movement of sensitive
and proprietary data to only agreed domains is
very important for certain kinds of applications.
A set of QoS-aware service-oriented components
is provided for workflow planning to support
automatic constraint-based service negotiation
and workflow optimization.

Task Clustering

With task clustering, small tasks are grouped
together as one executable unit such that the over-
head of data movement can be eliminated. Task
clustering groups tasks so that the intermediate

162

A Survey of Scheduling and Management Techniques for Data-Intensive Application Workflows

files produced by each task in the group remains
in the same computing node the grouped task was
submitted to. Other tasks in the same group can
now access the file locally. This scheme reduces
the need to transfer the intermediate output files
in case the tasks in the group were scheduled
to different computing nodes. Clustering also
eliminates the overhead of running small tasks.

Singh, Kesselman, & Deelman (2005) explored
approaches for restructuring of workflows so
that the dependencies in the workflow graph can

be reduced. They group independent jobs at the
same level into clusters. Their task clustering does
not imply that the tasks in a group is scheduled
to one processor or executed sequentially. They
show workflow performance using clustering with
centralized (single submit host) and distributed
(multiple submit hosts) job submission. In the
centralized submission, the whole workflow is
submitted and executed using a single submit host.
In order to increase the dispatch rate of jobs for
execution, their distributed job submission strat-

Figure 2. Classification of management techniques for data-intensive application workflows

163

A Survey of Scheduling and Management Techniques for Data-Intensive Application Workflows

egy has a central manager, multiple submit hosts
and worker nodes. The workflow is restructured
with multiple clusters at each level. The number
of clusters at each level is equal to the number of
submit hosts in the pool. The schedulers on the
submit hosts then try to find suitable nodes for
the submitted jobs.

Pandey et al. (2009) used task clustering to
schedule data-intensive tasks for a medical ap-
plication workflow. They clustered tasks based
on their execution time, data transfer and level. If
tasks were having high deviation and value of av-
erage execution time, they were executed without
clustering. Tasks with lower deviation and value
of execution time were clustered together. They
showed that clustering tasks for data-intensive
application workflows has better makespan than
scheduling the workflow without clustering,
mainly attributed to the decrease in file transfers
between tasks in the same cluster.

Worker Centric

Worker centric approaches exploit locality of in-
terest present in data-intensive environments. Ko,
Morales, & Gupta (2007) presented an algorithm
where one global scheduler, upon receiving a
request from a worker (computation node), cal-
culates the weight of each unscheduled task and
chooses the best task to assign to the requesting
worker. The weight calculation procedure takes
into account the set of files already present at the
worker’s site and additional files required by the
worker for the task. This scheme exploits locality
of file access, and thus minimizes both the number
of files that need to be transferred as well as prefers
workers that accessed the same files in the past.
They proposed both deterministic and random-
ized metrics that can be used with worker-centric
scheduling and found that metrics considering
the number of file transfers generally gave better
performance over metrics considering the overlap
between a task and a storage. They experiment
with traces of Coadd (SDSS Project, 2000).

Data Transfer

Researchers have proposed several mechanisms
for transferring data so that data transfer time is
minimized. These techniques are: (a) data paral-
lelism, (b) data streaming, and (c) data throttling.

Data Parallelism

Data Parallelism denotes that a service is able to
process several data fragments simultaneously
with a minimal performance loss. This capability
involves the processing of independent data on dif-
ferent computing resources. Glatard, Montagnat,
Lingrand, & Pennec (2008) designed and imple-
mented a workflow engine named MOTEUR. They
propose algorithms that combine well-defined data
composition strategies and fully parallel execution.
They adopted the Simple Concept Unified Flow
Language (SCUFL) as the workflow description
language for conveniently describing data flows.
In their system, tasks and data are scheduled such
that most data sets are processed by independent
computing resources, but by preserving the pre-
cedence constraints. They evaluated the system
using a medical imaging application run on the
EGEE (Enabling Grids for E-Science EU IST
project, http://www.eu-egee.org) grid.

Data Streaming

In data streaming, real-time data generated
through simulation or experiment is delivered in
an asynchronous, high-throughput, low-latency
and robust way to data analysis and storage
machines. Bhat et al. (2007) investigated data
streaming for executing scientific workflows on
the Grid. They proposed the design, implementa-
tion and experimental evaluation of an application
level self-managing data streaming service that
enables efficient data transport to support Grid-
based scientific workflows. The system provides
adaptive buffer management mechanisms and
proactive QoS management strategies based on

164

A Survey of Scheduling and Management Techniques for Data-Intensive Application Workflows

model-based online control and user-defined
policies. They showed that online data streaming
could have significant impact on the performance
and robustness of the data-intensive application
workflow applications in Grids. They used a fusion
simulation workflow consisting of long-running
coupled simulations to evaluate the data streaming
service and its self-managing behaviors.

Bhat, Parashar, & Klasky (2007) investigated
reactive management strategies for in-transit data
manipulation for data-intensive scientific and
engineering workflows. Their framework for
in-transit manipulation consists of processing
nodes in the data path between the source and the
destination. Each node is capable of processing,
buffering and forwarding the data. Each node
processes the data depending on its capabilities
and the amount of processing still remaining.
The data is dynamically buffered as it flows
through the node. Eventually the processed data
is forwarded until it reaches the sink. The choice
between forwarding and further processing is
dependent upon the network congestion. They
used application level online controllers for high
throughput data streaming.

Korkhov et al. (2007) & Afsarmanes et al.
(2002) proposed Grid-based Virtual Laboratory
AMsterdam (VLAM-G), a data-driven WfMS.
Their system uses Globus services (Globus Proj-
ect, 1996) to allow data streams to be established
efficiently and transparently between remote
processes composing a scientific workflow. The
execution engine initiates ‘point-to-point’ data
streams between workflow components allow-
ing intermediate data to flow along the workflow
pipeline, without requiring local storage. They
use unidirectional, typed streams to ensure that
proper connection can be established. Control and
monitoring communication is not transmitted on
such typed streams. They model the system such
that all the resources needed for data stream driven
distributed processing have to be made available
(e.g. by advance reservation) simultaneously in

contrast to the scenario where Grid resources join
and leave anytime.

Data Throttling

Data throttling is a process of describing and
controlling when and at what rate data is to be
transferred in contrast to moving data from one
location to another as early as possible. In sci-
entific workflows with data-intensive workload,
individual tasks may have to wait for large amounts
of data to be delivered or produced by other tasks.
Instead of transferring the data immediately to a
task, it can be delayed or transferred using lower
capacity links so that the resources can be dedi-
cated to serve other critical tasks.

Park & Humphrey (2008) identified the limita-
tion of current systems in that there is no control
available regarding the arrival time and rate of
data transfer between nodes. They designed and
implemented new capabilities for higher efficiency
and balance in Grid workflows by creating a
data-throttling framework that regulates the rate
of data transfers between the workflow tasks via
a specially created QoS-enabled GridFTP server.
Their workflow planner constructs a schedule that
both specify when/where individual tasks are to be
executed, as well as when and at what rate data is
to be transferred. The planner allows a workflow
programmer/engine to specify the requirements on
the data movement delay. This delay helps keep
a balance between execution time of workflow
branches by eliminating unnecessary bandwidth
usage, resulting in more efficient execution.

DAGMan (Directed Acyclic Graph MANager)
(DagMan, 2002) is a workflow engine under the
Pegasus (Deelman et al., 2005) WfMS. It supports
job and data throttling using parameters. Pegasus
uses DAGMan to run the executable workflow.
In DAGMan a “prescript” and a “postscript”
step, associated with each workflow job, are re-
sponsible for transferring input files and deleting
output files, respectively. It controls the number
of prescripts that can be concurrently (across all

165

A Survey of Scheduling and Management Techniques for Data-Intensive Application Workflows

jobs) started using the MAXPRE parameter. This
serves as a convenient workflow-wide throttle on
the data transfer load that the workflow manager
can impose on the Grid from the submit host.

Data Footprint

Workflow systems adopt several mechanisms to
track and utilize the data footprint of the applica-
tion. These mechanisms can be classified into: (a)
cleaning jobs, (b) restructuring of workflow, (c)
data placement & replication.

Cleaning Jobs

Cleaning jobs are introduced in the workflow to
remove the data from the resources once its no
longer needed. When applications require large
amount of data storage, tasks in the workflow can
only be scheduled to those compute resources that
can provide temporary storage large enough to hold
the input and output files the tasks need. Schedul-
ing decisions should take into consideration the
storage capability of the compute resource for all
tasks with data-intensive workloads.

Singh et al. (2007) presented two algorithms
for reducing the data footprint of workflow type
applications. The first algorithm adds a cleanup
job for a data file when that file is no longer re-
quired by other tasks in the workflow or when it
has already been transferred to permanent storage.
Given the possibility of data being replicated on
multiple resources, the cleanup jobs are made on a
per resource basis. The algorithm is applied after
the executable workflow has been created, but
before it is executed. The second algorithm is an
improvement in terms of the number of cleanup
jobs and dependencies it adds to the workflow. As
the workflow engine has to spend considerable
amount of time in managing job execution for
every added job or dependency, the authors design
the algorithm to reduce the number of cleanup tasks
at the possible cost of workflow footprint. This is
achieved by adding at most one cleanup node per

computational workflow task in contrast to one
cleanup job for every file required or produced
by tasks mapped to the resource as done in the
first algorithm. They reduce data footprint but
as a consequence the workflow execution time
increases as a result of the increased number of
workflow levels.

Ramakrishnan et al. (2007) proposed an algo-
rithm for scheduling data-intensive application
workflows onto storage-constrained resources.
Their algorithm first takes into account disk
space availability in resources and then priori-
tizes resources depending on performance. The
algorithm starts by identifying all resources that
can accommodate the data files needed for a task
to be scheduled. If no resource is available that
satisfies the space requirement of any ready task,
the algorithm halts. It then tries to allocate the task
to the resource, which can achieve the earliest fin-
ish time (data transfer time and execution time)
for the task. Finally it cleans up any unnecessary
data file remaining in the resource.

Restructuring of Workflows

The structure of the workflow defines the data
footprint. Restructuring of workflows is a
transformation of the workflow structure such
that it influences the way input/output data is
placed, deleted, transferred or replicated during
the execution of the workflow. Task clustering,
workflow partitioning are common ways to re-
structure workflows. Tasks can be clustered and
dependencies re-defined in such a way that data
transfer is minimized, data re-use is maximized,
storage resources and compute resources have
well-balanced load and so forth.

Singh et al. (2007) defined workflow re-
structuring as the ordering or sequencing of the
execution of the tasks within the workflow. They
restructure the workflow primarily to reduce the
data footprint of the workflow. They introduce
dependencies between stage-in tasks and the pre-
vious-level computational tasks. This prevented

166

A Survey of Scheduling and Management Techniques for Data-Intensive Application Workflows

multiple data transfers from occurring at the same
time as soon as tasks become ready.

Pegasus (Deelman et al., 2005) has the capa-
bility to map and schedule only portions of the
entire workflow at a given time, using partitioning
techniques. Deelman et al. (2005) demonstrate
the technique using level-based partitioning of
the workflow. The levels refer to the depth of the
tasks in the workflow. In their Just-in-time plan-
ning algorithm (Deelman et al., 2004), Pegasus
waits (using DAGMan) to map the dependent
workflow until the preceding workflow finishes its
execution. Original dependencies are maintained
even after partitioning. They also investigate
partition-level failure recovery. When resources
fail during execution, the entire task is retried and
new partitions are not submitted to that resource.

Duan, Prodan, & Fahringer (2006) proposed an
algorithm for partitioning a scheduled workflow
for distributed coordination among several slave
enactment engine services. They incorporated the
algorithm in the ASKALON distributed workflow
Enactment Engine (Duan et al., 2005). Their pur-
pose of workflow partitioning was to minimize the
communication between the master and the slave
engines that coordinates the individual partitions
of the entire workflow. The partitioning algo-
rithm is based on a graph transformation theory.
Partitioning reduced the number of workflow
activities and, therefore, the job submission and
management latencies and eliminated the data
dependencies within partitions. However, the al-
gorithm was used for compute intensive scientific
workflows with large numbers of small sized data
dependencies. In contrast to Pegasus (Deelman et
al., 2005), which partitions the workflow before
the scheduling phase, they partition the workflow
after scheduling. This results in reduced overheads
for job submissions and aggregated file transfers.

Data Placement and Replication

Data placement techniques try to strategically
manage placement of data before or during the

execution of a workflow. Data placement sched-
ulers can either be coupled or decoupled from
task schedulers. Replication of data onto dis-
tributed resources is a common way to increase
the availability of data. Replication also occurs
when scientists download and share the data for
experimental purposes, in contrast to explicit
replications done by workflow systems. In data-
intensive applications, replication may or may not
be feasible. Schedulers make the decision of data
placement and replication based on the objectives
to be optimized. If data analysis workloads have
locality of reference, then it is feasible to cache
and replicate data at each individual compute
node, as high initial data movement costs can
be offset by many subsequent data operations
performed on cached data (Raicu, Zhao, Foster,
& Szalay, 2008).

Kosar et al. (2004) presented Stork, a scheduler
for data placement activities in the Grid. They
propose to make data placement activities a first
class citizen in the Grid. In Stork, data placement
is a full-fledged job and decoupled from compu-
tational jobs. Users describe the data placement
job explicitly in the classads. DAGMan (DagMan,
2002), a workflow scheduler for Condor, uses
Stork for managing these data placement jobs. It
manages the dependencies between Condor and
Stork jobs as defined by the dependencies in a DAG
(Couvares, Kosar, Roy, Weber, & Wenger, 2007).
Under Stork, data placement jobs are categorized
into three types. Transfer jobs are for transferring a
complete or partial file from one physical location
to another. Allocate jobs are used for allocating
storage space at the destination site, allocating
network bandwidth, or establishing a light-path
on the route from source to destination. Release
jobs are used for releasing the corresponding
resource, which was allocated before.

Chervenak et al. (2007) studied the relationship
between data placement services and workflow
management systems for data-intensive applica-
tions. They propose an asynchronous mode of
data placement in which data placement opera-

167

A Survey of Scheduling and Management Techniques for Data-Intensive Application Workflows

tions are performed as data sets become avail-
able and according to the policies of the virtual
organization and not according to the directives
of the WfMS. The WfMS can however assist the
placement services on placement of data based
on information collected during task executions
and data collection. Their approach is proactive
as it examines current workflow needs to make
data placement decisions rather than depending
on the popularity of data in the past. They evalu-
ated the benefits of pre-staging data using the
data replication service versus using the native
data stage-in mechanisms of the Pegasus WfMS
(Deelman et al., 2005). Using the Montage as-
tronomy example, they conclude that as the size
of data sets increases, pre-staging data increases
the performance of the overall analysis.

Shankar & DeWitt (2007) presented archi-
tecture for Condor in which the input, output
and executable files of jobs are cached on the
local disks of machines in a cluster. Caching
can reduce the amount of pipeline and batch I/O
that is transferred across the network. This in
turn significantly reduces the response time for
workflows with data-intensive workloads. With
caching enabled, data-intensive applications
can reuse the files and also be able to compare
between old and new versions of the file. They
presented a planning algorithm that takes into
account the location of cached data together with
data dependencies between jobs in a workflow.
Their planning algorithm produces a schedule
by comparing the time saved by running jobs in
parallel with the time taken for transferring data
when dependent jobs are scheduled on different
machines. By executing the BLAST (http://blast.
ncbi.nlm.nih.gov.gov/) application workflow they
showed that storing files on the disks of compute
nodes significantly improves the performance of
data-intensive application workflows.

Ranganathan & Foster (2001, 2002, 2003) con-
ducted extensive studies for identifying dynamic
replication strategies, asynchronous data place-
ment and job and data scheduling algorithms for

Data Grids. Their replication process at each site
periodically generates new replicas for popular
datasets. For dataset placement scheduler they
define three algorithms: Data-DoNothing- no ac-
tive replication takes place, DataRandom- popular
datasets are replicated to a random site on the Grid,
DataLeastLoaded- popular datasets are replicated
to a least loaded neighboring site. They proposed
to decouple data movement from computation
scheduling, also known as asynchronous data
placement. This provides opportunity for optimiz-
ing both data placement and scheduling decisions,
also simplifying the design and implementation
of the Data Grid system. They concluded through
simulations on independent jobs that scheduling
jobs to locations that contain the data they need
and asynchronously replicating popular data sets
to remote sites achieves better performance than
coupled systems.

Granularity

Workflow schedulers can make scheduling
decisions based on either: (a) task level, or (b
workflow level.

Task level schedulers map individual tasks
to compute resources. The decision of resource
selection and data movement is based on the char-
acteristics of individual task and its dependencies
with other tasks.

Workflow level schedulers map the entire
workflow rather than a set of available tasks to
compute resources. A workflow’s compute and
storage requirements guide the scheduler to make a
decision on resource selection and data movement.

Blythe et al. (2005) compared several task-
based and workflow-based approaches to resource
allocation for workflow applications. In their
workflow-based approach, the entire workflow is
mapped a priori to the resources to minimize the
makespan of the whole workflow. The mapping
is changed according to the changing environ-
ment, if necessary. The mapping of the jobs does
not imply scheduling all the jobs ahead of time.

168

A Survey of Scheduling and Management Techniques for Data-Intensive Application Workflows

They use a local search algorithm for workflow
allocation based on generalized GRASP proce-
dure (Greedy randomized adaptive search) (Feo
& Resende, 1995). The final schedule is chosen
after an iterative and greedy comparison between
alternative schedules. On each iteration, task to
resource is mapped based on the minimum margin
of increase to the current makespan of the work-
flow if the task was to be allocated to that resource.
This approach is based on the min-min (Braun
et al., 2001) heuristic. They noticed that during
large file transfers, resources spent significant
time waiting for all the files to arrive before they
could start executing the scheduled jobs. They
proposed a weighted min-min heuristic that takes
into account the idle times of all the resources if
a job were to be scheduled to a resource. Based
on the weighted sum of the idle times and esti-
mated completion time, a job is mapped to the
resource that gives the minimum weighted sum.
The step is repeated until all the jobs have been
mapped. Due to the pre-mapping, the workflow-
based approach could pre-position the data to
the known destination by transferring a large file
immediately after it is created. In the task-based
approach, transfers could not begin until the job
is scheduled which happened only after its parent
was scheduled. They also simulated the impact
of inaccurate estimates of transfer times for data-
intensive application workflows. They show that
the performance of task-based approach degrades
rapidly with increasing uncertainty in comparison
to workflow-based approach. Based on these facts,
they conclude that workflow-based approaches
perform better for data-intensive applications than
task-based approaches.

Model

Workflow scheduling model depends on the way
the tasks and data are composed and handled.
They can be classified into two categories: (a)
task-based, and (b) service-based.

Task Based

Task based approaches mention data dependencies
explicitly. The workflows are generally complex
in structure. Optimizations used by most systems
are simple in nature. The WfMS has greater
control over the data flow as it can define data
placement, cleanup and transfer tasks separately
from the workflow tasks. DAGMan (DagMan,
2002), Pegasus (Deelman et al., 2005), GridAnt
(Laszewski, Amin, Hategan, Hampton, & Rossi,
2004), GrADS (Berman et al., 2005), and Grid-
Flow (Cao, Jarvis, Saini, & Nudd, 2003) are some
of the workflow systems that support task based
approaches. These have been described individu-
ally in preceding sections.

Service Based

Service based approaches, also referred to as meta
computing, wrap application codes into standard
interfaces. Such services are hidden from the users
and only invocation interface is known. Various
interfaces such as Web Services (Alonso, Casati,
Kuno, & Machiraju, 2003) or gridRPC (Nakada et
al., 2007) have been standardized (Glatard et al.,
2008). In this model, the application is described
separately from the data. Data is declared as param-
eters to the service. In this approach, workflows
are generally simple in structure. In contrast to task
based approaches, workflow systems use complex
optimizations. This model is useful when an ap-
plication workflow is to be repeatedly executed
over a large number of varying data sets. Instead
of replicating the task for each data set, service
based model has the ability to define different
data composition strategies over the input data of
a service. Kepler system (Ludäscher et al., 2006),
the Taverna workbench (Oinn et al., 2004) and the
Triana workflow manager (Taylor, Wang, Shields,
& Majithia, 2005), are some of the service based
workflow systems.

The myGrid project (http://www.mygrid.org.
uk/) has developed a comprehensive loosely cou-

169

A Survey of Scheduling and Management Techniques for Data-Intensive Application Workflows

pled suite of middleware components specifically
to support data-intensive in-silico experiments rep-
resented as workflows, using distributed resources.
The main tool is the Taverna workbench (Oinn et
al., 2004). Taverna allows for the automation of
experimental methods through the integration of
varying services, including WSDL-based single
operation web services, into workflows. It uses
FreeFluo (FreeFluo, 2003) as a workflow enact-
ment engine that facilitates intermediate data
transfers and service invocations. Workflows are
represented using the Simple Conceptual Unified
Flow Language (SCUFL). A workflow graph
consists of processors, each of which transforms a
set of data inputs into a set of data outputs. Using
SCUFL, implicit iteration over incoming data sets
can be carried out based on user specified strategy.
Users can use the Thread property to specify the
number of concurrent instances that can send
parallel requests to the iteration processor for
handling simultaneous processing. This can help
reduce the service wait time as workflow engine
can send data at the time when the service is still
working on previously sent data.

Kepler (Ludäscher et al., 2006) provides sup-
port for web service-based workflows. Using an
extension of PTOLEMY II (Buck, Ha, Lee, &
Messerschmitt, 2002), it uses an actor-oriented
design approach for composing and executing
scientific application workflows. Computational
components are termed as actors, which are linked
together to form a workflow. A director represents
the interaction between these components. It speci-
fies and mediates all inter-actor communication,
separating workflow orchestration and schedul-
ing from individual actor execution. Two of the
directors (namely, Synchronous Data Flow (SDF)
and Process Networks (PN)) work primarily by
controlling the sequencing of actors according
to the data availability, to preserve the order of
execution of the workflow. The WebService actor
provides a simple plug-in mechanism to execute
any WSDL defined web service. An instantiation
of the actor acts as a proxy for the web service

being executed and links to other actors through
its ports. Using this component, any application
that can be deployed as a remote service, can be
used as a Kepler component (Jaeger et al., 2005).

Kalyanam, Zhao, Park, & Goasguen (2007)
proposed a web service-enabled distributed data-
driven workflow system on top of the TeraGrid
(http://www.teragrid.org) infrastructure. The
workflow system is based on an existing data
management architecture that provides easy ac-
cess to scientific data collections via the TeraGrid
network. It leverages JOpera (Pautasso, 2005),
an open-source workflow engine that integrates
web services into a processing pipeline. Users can
construct data-driven workflows using local or
TeraGrid data and computation resources. Their
system helps automate the operations such as data
discovery, movement, filtering, computationally
intensive data processing and so forth, by orga-
nizing them as a pipeline so that researchers can
execute applications with minimal user interaction.

Brandic, Pllana & Benkner (2008) presented a
service-oriented environment, named as Amadeus,
for QoS-aware Grid workflows. For data-intensive
application workflows QoS parameters may be
defined for data-transfer time, reliability, storage
requirements, cost and so forth. It allows users to
specify QoS constraints at workflow composition,
planning and execution stages. Various QoS-aware
service components are provided for workflow
planning to support automatic constraint-based
service negotiation and workflow optimization.

Platform

Data-intensive application workflows could be
executed in different resource configuration and
environments (e.g. Cluster, Data Grids, Clouds
etc.) depending on the requirements of the ap-
plication.

Clusters are generally composed of homoge-
neous processors and are under a single domain.
For data-intensive applications, clusters provide
a viable platform for low cost and enhanced per-

170

A Survey of Scheduling and Management Techniques for Data-Intensive Application Workflows

formance. When the data produced and stored
are local and not globally shared, cluster based
platforms is more feasible than Grids or Clouds.

Data Grids are globally distributed resources
for volunteering computing designed for data in-
tensive computing. Data is generated and/or used
in research labs distributed globally, giving rise
to sharing and re-use. Data grids are feasible for
large-scale experiments that are a result of world-
wide collaboration of resources and scientists.

Clouds are emerging model for centralized
but highly available and powerful infrastructure.
Large-scale storage and computation is provided
by data-centers. Computing power is achieved by
using virtualization technology. Data-intensive ap-
plications can highly benefit from using services
provided by Clouds as compared to Data Grids
and Clusters when factors such as scalability,
cost, performance and reliability are important.

In the past, scientific workflows were gener-
ally executed on a shared infrastructure such as
TeraGrid (http://www.teragrid.org), Open Sci-
ence Grid (http://www.opensciencegrid.org), and
dedicated clusters. In such systems, file system is
usually shared for easy data movement. However,
this can be a bottleneck for data-intensive opera-
tions (Zhao, Raicu, & Foster, 2008).

Deelman, Singh, Livny, Berriman, & Good
(2008) presented a simulation-based study of costs
involved when executing scientific application
workflows using Cloud services. They studied the
cost performance tradeoff of different execution
and resource provisioning plans, and storage and
communication fees of Amazon S3 in the con-
text of an astronomy application Montage. They
showed that for a data-intensive application with a
small computational granularity, the storage costs
were insignificant as compared to the CPU costs.
They concluded that cloud computing is cost-
effective solution for data-intensive applications.

Broberg, Buyya, & Tari (2008) introduced
MetaCDN, which uses ‘Storage Cloud’ resources
to deliver content to content creators at low cost
but with high performance (in terms of throughput

and response time). Data could be delivered to
tasks in a workflow using tools provided by CDN.

In our work with data-intensive application
workflows, we studied the performance charac-
teristics of a brain Image Registration workflow
(IR) (Pandey et al., 2009). We executed the
application on an experimental Grid platform,
Grid’5000 (Cappello & Bal, 2007), and profiled
each task’s execution and data flow. We were
able to decrease the makespan of the workflow
significantly by using Grid resources. We also
used partial data retrieval technique to retrieve
data from distributed storage resources while
scheduling data-intensive application workflows
(Pandey & Buyya, 2011). We proposed static
and dynamic heuristics that incorporated the re-
trieval techniques. We experimented with two
synthetic and one real data-intensive application
workflow (IR workflow). Executions were done
using Virtual Machines (VM) connected through
a simulated network environment. Experimental
results showed that retrieving data from multiple
sources significantly improves the time taken to
download data to the execution sites. Cumulative
effect thus decreased the total makespan of all
the workflows.

Ramakrishnan & Reed (2008) studied the im-
pact of varying resource availability on application
performance. They applied performability analysis
(i.e., a measure of the system’s performance in the
event of failures) at two levels - computational
resources and the network, to obtain the applica-
tion workflow’s overall execution time, given the
failure level of resources. They used these values
to estimate task completion times during each
iteration of the workflow-scheduling algorithm.
Their HYBRID approach, which takes resource
failure and repair into account, performs better
than the approach that does not take failures into
account, when the failure-to-repair rates increase.
Through simulation results, they concluded that
the joint analysis of performance and reliability
should improve dynamic workflow scheduling

171

A Survey of Scheduling and Management Techniques for Data-Intensive Application Workflows

and fault tolerance strategies required for Grid
and cloud environments.

Miscellaneous

In this Section, we list some technologies that
have been used for enhancing the performance
of data-intensive application workflows.

Semantic Technology

The myGrid project (http://www.mygrid.org.
uk/) exploits semantic web technology to sup-
port data-intensive bioinformatics experiments
in a grid environment. The semantic description
of services in RDF and OWL is used for service
discovery and matchmaking. Kepler (Ludäscher
et al., 2006) is a data-driven workflow system (as
described under the sub heading “Service Based”
workflows), which allows semantic annotations
of data and actors, and can support semantic
transformation of data.

Database Technology

GridDB (Liu & Franklin, 2004) is a grid middle-
ware based on a data centric model for represent-
ing workflows and their data. It uses database to
store memo and process tables that store the inputs
and outputs of a program that has completed, and
process state of executing programs, respectively.
It provides functional data modeling language
(FDM) for expressing the relationship between
programs and their inputs and outputs.

Shankar, Kini, DeWitt, & Naughton (2005)
have pointed out the advantages of tightly
coupling workflow management systems with
data-manipulation for data-intensive scientific
programs. They also presented a language for
modeling workflows that is tightly integrated with
SQL. Data products from workflows are defined
in relational format. They use SQL for invocation
and querying of programs.

FUTURE DIRECTIONS

Most workflow systems in the past focused on
performance of tasks rather than data management.
The reason might have been due to cluster manage-
ment systems and shared storage space. But with
globally distributed resources, it is a must these
systems take into account the data flow manage-
ment along with computational tasks. Composi-
tion of workflows that is scalable thus remains a
challenge. Distributed coordinated execution of
globally distributed scientific workflows can then
be possible without much hurdle.

Requirements of data-intensive applications
can be specified using QoS parameters at all
levels of a WfMS. To meet QoS requirements of
e-Research application workflows, we need tech-
nologies that support (a) QoS-based scheduling of
e-Research application workflows on distributed
resources, (b) mechanisms for formulating, nego-
tiating and establishing service level agreements
(SLA) with resource providers and (c) SLA-based
allocation and management of resources. Specifi-
cally, we need to:

• Define an architectural framework and
principles for the development of QoS-
based workflow management and SLA-
based resource allocation systems,

• Develop QoS-based algorithms for sched-
uling e-Research workflow applications,

• Develop SLA-based negotiation protocols
and resource allocation algorithms.

With the advent of virtualization technologies,
Cloud storage systems, content delivery networks
(CDN) and so forth, it is likely that big scientific
projects will start using services provided by third
parties for storing and processing application data.
As companies such as Amazon, IBM, and Google
are innovating the use of their huge data centers for
commercial use as Cloud services, data-intensive
applications may leverage their utilities and not
depend on conventional, error-prone, costly and

172

A Survey of Scheduling and Management Techniques for Data-Intensive Application Workflows

unreliable solutions (Buyya, Yeo and Venugopal,
2008). However, due to higher usage and access
costs of these commercial services, small-scale
scientific projects may still need to rethink of
deploying their application on Clouds.

CONCLUSION

In this chapter, we classified and surveyed tech-
niques for managing and scheduling data-intensive
application workflows. Under each classification,
there were several specific techniques that work-
flow systems used for executing data-intensive
application workflows on globally distributed
resources. We listed and described each such work
in detail. We found that most systems focused on
minimizing data transfers and optimally structur-
ing model of execution to subdue the effect of
large data requirements of most scientific data-
intensive applications. We also found that many
systems used a combination of techniques we
listed to achieve higher scalability, fault tolerance,
lower costs and increase performance. A single
technique alone would not suffice to minimize
the effect of increasing data processing require-
ments of scientific applications. Due to the lack
of standardization and interoperability, many of
the systems were developed in isolation. As a
result, techniques for managing data for data-
intensive workflows were mixed and duplicated.
Nevertheless, scientific community has been able
to successfully achieve the goals of all scientific
projects with promising results, where PetaByes of
data play a major role. This was only possible due
to the seamless effort put on for the development
of workflow management systems that manages
data and tasks for most scientific applications.

ACKNOWLEDGMENT

This work is partially supported through Australian
Research Council (ARC) Discovery Project grant.
We also thank Ivona Brandic from University
of Vienna, Austria; Marcos Assunção, Srikumar
Venugopal, Rajiv Ranjan and Marco A.S. Netto
from The University of Melbourne, Australia for
their valuable comments.

REFERENCES

Afsarmanesh, H., Belleman, R. G., Belloum, A. S.
Z., Benabdelkader, A., Brand, J. F. J., & van den
Eijkel, G. B. (2002). Vlam-g: A grid-based virtual
laboratory. Science Progress, 10(2), 173–181.

Alonso, G., Casati, F., Kuno, H., & Machiraju,
V. (2003). Web services - Concepts, architectures
and applications. Springer.

Bahsi, E. M., Ceyhan, E., & Kosar, T. (2007).
Conditional workflow management: A survey
and analysis. Science Progress, 15(4), 283–297.

Berman, F., Casanova, H., Chien, A., Cooper, K.,
Dail, H., & Dasgupta, A. (2005). New grid schedul-
ing and rescheduling methods in the grads project.
International Journal of Parallel Programming,
33(2), 209–229. doi:10.1007/s10766-005-3584-4

Bhat, V., Parashar, M., & Klasky, S. (2007). Experi-
ments with in-transit processing for data intensive
grid workflows. In GRID (pp. 193-200). IEEE.

Bhat, V., Parashar, M., Liu, H., Kandasamy, N.,
Khandekar, M., & Klasky, S. (2007). A self-
managing wide-area data streaming service.
Cluster Computing, 10(4), 365–383. doi:10.1007/
s10586-007-0023-x

173

A Survey of Scheduling and Management Techniques for Data-Intensive Application Workflows

Blythe, J., Jain, S., Deelman, E., Gil, Y., Vahi, K.,
Mandal, A., et al. (2005). Task scheduling strate-
gies for workflow-based applications in grids.
In CCGRID ’05: Proceedings of the Fifth IEEE
International Symposium on Cluster Comput-
ing and the Grid (CCGrid’05) - Volume 2 (pp.
759–767). Washington, DC: IEEE.

Brandic, I., Pllana, S., & Benkner, S. (2006).
An approach for the high-level specification of
qos-aware grid workflows considering location
affinity. Science Progress, 14(3/4), 231–250.

Brandic, I., Pllana, S., & Benkner, S. (2008). Speci-
fication, planning, and execution of qos-aware
grid workflows within the Amadeus environment.
Concurrent Computing: Practice and Experience,
20(4), 331–345. doi:10.1002/cpe.1215

Braun, T. D., Siegel, H. J., Beck, N., Boloni, L.
L., Maheswaran, M., & Reuther, A. I. (2001). A
comparison of eleven static heuristics for mapping
a class of independent tasks onto heterogeneous
distributed computing systems. Journal of Paral-
lel and Distributed Computing, 61(6), 810–837.
doi:10.1006/jpdc.2000.1714

Broberg, J., Buyya, R., & Tari, Z. (2008, August).
MetaCDN: Harnessing ‘storage clouds’ for high
performance content delivery (Tech. Rep. No.
GRIDS-TR-2008-11). GRIDS Lab: The Univer-
sity of Melbourne.

Buck, J., Ha, S., Lee, E. A., & Messerschmitt, D. G.
(2002). Ptolemy: A framework for simulating and
prototyping heterogeneous systems (pp. 527–543).
Norwell, MA: Kluwer Academic Publishers.

Buyya, R., Yeo, C. S., & Venugopal, S. (2008).
Market-oriented cloud computing: Vision, hype,
and reality for delivering it services as computing
utilities. In HPCC ‘08: Proceedings of the 2008
10th IEEE International Conference on High
Performance Computing and Communications,
(pp. 5-13). Washington, DC: IEEE.

Cao, J., Jarvis, S. A., Saini, S., & Nudd, G. R.
(2003). Gridflow: Workflow management for
grid computing. In CCGRID ’03: Proceedings
of the 3st International Symposium on Cluster
Computing and the Grid (pp. 198–205). Wash-
ington, DC, USA.

Cappello, F., & Bal, H. (2007). Toward an interna-
tional “computer science grid”. In CCGRID ’07:
Proceedings of the Seventh IEEE International
Symposium on Cluster Computing and the Grid
(pp. 3–12). Washington, DC: IEEE.

Chervenak, A., Deelman, E., Livny, M., Su, M.-H.,
Schuler, R., Bharathi, S., et al. (2007, Septem-
ber). Data placement for scientific applications
in distributed environments. In Proceedings of
the 8th IEEE/ACM International Conference on
Grid Computing (Grid 2007). Austin, TX: IEEE.

Couvares, P., Kosar, T., Roy, A., Weber, J.,
& Wenger, K. (2007, January). Workflow
management in condor. In Workflows for e-
Science (pp. 357–375). London, UK: Springer.
doi:10.1007/978-1-84628-757-2_22

DagMan. (2002). Online. Retrieved from http://
www.cs.wisc.edu/condor/dagman/

Deelman, E., Blythe, J., Gil, Y., Kesselman,
C., Mehta, G., Patil, S., et al. (2004). Pegasus:
Mapping scientific workflows onto the grid. In
European Across Grids Conference (vol. 3165,
pp. 11–20). Springer.

Deelman, E., Blythe, J., Gil, Y., Kesselman,
C., Mehta, G., & Vahi, K. (2003). Mapping
abstract complex workflows onto grid environ-
ments. Journal of Grid Computing, 1(1), 25–39.
doi:10.1023/A:1024000426962

174

A Survey of Scheduling and Management Techniques for Data-Intensive Application Workflows

Deelman, E., & Chervenak, A. (2008). Data man-
agement challenges of data-intensive scientific
workflows. In CCGRID ’08: Proceedings of the
2008 Eighth IEEE International Symposium on
Cluster Computing and the Grid (CCGRID) (pp.
687–692). Washington, DC: IEEE Computer
Society.

Deelman, E., Singh, G., Livny, M., Berriman,
B., & Good, J. (2008). The cost of doing science
on the cloud: The montage example. In SC ’08:
Proceedings of the 2008 ACM/IEEE Conference
on Supercomputing (pp. 1–12). Piscataway, NJ:
IEEE.

Deelman, E., Singh, G., Su, M.-H., Blythe, J., Gil,
Y., & Kesselman, C. (2005). Pegasus: A frame-
work for mapping complex scientific workflows
onto distributed systems. Science Progress, 13(3),
219–237.

Duan, R., Fahringer, T., Prodan, R., Qin, J., Vil-
lazon, A., & Wieczorek, M. (2005, February).
Real world workflow applications in the Askalon
grid environment. In European Grid Conference
(EGC 2005). Springer Verlag.

Duan, R., Prodan, R., & Fahringer, T. (2006). Run-
time optimisation of grid workflow applications.
In GRID (pp. 33-40). IEEE.

Feo, T. A., & Resende, M. G. (1995, March).
Greedy randomized adaptive search procedures.
Journal of Global Optimization, 6(2), 109–133.
doi:10.1007/BF01096763

FreeFluo. (2003). Online. Retrieved from http://
freefluo.sourceforge.net/

Gil, Y., Deelman, E., Ellisman, M., Fahringer, T.,
Fox, G., & Gannon, D. (2007). Examining the
challenges of scientific workflows. Computer,
40(12), 24–32. doi:10.1109/MC.2007.421

Glatard, T., Montagnat, J., Lingrand, D., & Pen-
nec, X. (2008). Flexible and efficient workflow
deployment of data-intensive applications on
grids with moteur. International Journal of High
Performance Computing Applications, 22(3),
347–360. doi:10.1177/1094342008096067

Globus Project. (1996). Online. Retrieved from
http://www.globus.org/

Hollingsworth, D. (1994). The workflow reference
model. (Tech. Rep. No. TCOO- 1003). Workflow
Management Coalition.

Jaeger, E., Altintas, I., Zhang, J., Ludäscher,
B., Pennington, D., & Michener, W. (2005).
A scientific workflow approach to distributed
geospatial data processing using web services.
In SSDBM’2005: Proceedings of the 17th Inter-
national Conference on Scientific and Statistical
Database Management (pp. 87–90). Berkeley,
CA: Lawrence Berkeley Laboratory.

Kalyanam, R., Zhao, L., Park, T., & Goasguen,
S. (2007). A web service-enabled distributed
workflow system for scientific data process-
ing. In FTDCS ’07: Proceedings of the 11th
IEEE International Workshop on Future Trends
of Distributed Computing Systems (pp. 7–14).
Washington, DC: IEEE.

Ko, S. Y., Morales, R., & Gupta, I. (2007). New
worker-centric scheduling strategies for data-
intensive grid applications. In Cerqueira, R., &
Campbell, R. H. (Eds.), Middleware (Vol. 4834,
pp. 121–142). Springer. doi:10.1007/978-3-540-
76778-7_7

Korkhov, V., Vasyunin, D., Wibisono, A., Bel-
loum, A. S. Z., Inda, M. A., & Roos, M. (2007).
Vlam-g: Interactive data driven workflow engine
for grid-enabled resources. Science Progress,
15(3), 173–188.

175

A Survey of Scheduling and Management Techniques for Data-Intensive Application Workflows

Kosar, T., & Livny, M. (2004). Stork: Making
data placement a first class citizen in the grid. In
ICDCS ’04: Proceedings of the 24th International
Conference on Distributed Computing Systems
(ICDCS’04) (pp. 342–349). Washington, DC:
IEEE.

Kwok, Y. K., & Ahmad, I. (1999). Static scheduling
algorithms for allocating directed task graphs to
multiprocessors. ACM Computing Surveys, 31(4),
406–471. doi:10.1145/344588.344618

Laszewski, G. V., Amin, K., Hategan, M., Hamp-
ton, N. J. Z. S., & Rossi, A. (2004, January).
Gridant: A client-controllable grid workflow
system. In 37th Hawaii International Conference
on System Science (HICSS’04) (pp. 5–8). IEEE.

Liu, D. T., & Franklin, M. J. (2004). Griddb: A
data-centric overlay for scientific grids. In VLDB
’04: Proceedings of the Thirtieth International
Conference on Very Large Data Bases (pp. 600–
611). VLDB Endowment.

Ludäscher, B., Altintas, I., Berkley, C., Higgins,
D., Jaeger, E., & Jones, M. (2006). Scientific
workflow management and the kepler system:
Research articles. Concurrency and Computation,
18(10), 1039–1065.

Meyer, L., Annis, J., Wilde, M., Mattoso, M., &
Foster, I. (2006). Planning spatial workflows to
optimize grid performance. In SAC ’06: Proceed-
ings of the 2006 ACM Symposium on Applied
Computing (pp. 786–790). New York, NY: ACM.

Moore, R., Prince, T. A., & Ellisman, M. (1998).
Data-intensive computing and digital libraries.
Communications of the ACM, 41(11), 56–62.
doi:10.1145/287831.287840

Nakada, H., Matsuoka, S., Seymour, K., Dongarra,
J., Lee, C., & Casanova. (2007, June). A GridRPC
model and API for end-user applications. GridRPC
Working Group of Global Grid Forum.

Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger,
M., & Greenwood, M. (2004, November). Tav-
erna: A tool for the composition and enactment
of bioinformatics workflows. Bioinformatics (Ox-
ford, England), 20(17), 3045–3054. doi:10.1093/
bioinformatics/bth361

Pandey, S, & Buyya. R. (2011, in press). Schedul-
ing Workflow Applications based on Multi-Source
Parallel Data Retrieval in Distributed Computing
Networks, The Computer Journal.

Pandey. S, Voorsluys, W., Rahman, M., Buyya,
R., Dobson, J., Chiu, K. (2009, November) A
Grid Workflow Environment for Brain Imaging
Analysis on Distributed Systems. Concurrency
and Computation: Practice and Experience,
21(16), 2118-2139.

Pautasso, C. (2005). Jopera: An agile environment
for Web service composition with visual unit test-
ing and refactoring. In VLHCC ’05: Proceedings
of the 2005 IEEE Symposium on Visual Languages
and Human-Centric Computing (pp. 311–313).
Washington, DC: IEEE Computer Society.

Raicu, I., Zhao, Y., Foster, I. T., & Szalay, A.
(2008). Accelerating large-scale data exploration
through data diffusion. In DADC ’08: Proceedings
of the 2008 International Workshop on Data-
Aware Distributed Computing (pp. 9–18). New
York, NY: ACM.

Ramakrishnan, A., Singh, G., Zhao, H., Deel-
man, E., Sakellariou, R., Vahi, K., et al. (2007).
Scheduling data-intensive workflows onto stor-
age-constrained distributed resources. In CCGrid
’09: Proceedings of the 7th IEEE Symposium on
Cluster Computing and The Grid (pp. 14–17).
Brazil: IEEE.

176

A Survey of Scheduling and Management Techniques for Data-Intensive Application Workflows

Ramakrishnan, L., & Reed, D. A. (2008). Perform-
ability modeling for scheduling and fault tolerance
strategies for scientific workflows. In HPDC ’08:
Proceedings of the 17th International Symposium
on High Performance Distributed Computing (pp.
23–34). New York, NY: ACM.

Ranganathan, K., & Foster, I. (2002). Decoupling
computation and data scheduling in distributed
data-intensive applications. In Proceedings of
the 11th IEEE International Symposium on High
Performance Distributed Computing. USA: IEEE.

Ranganathan, K., & Foster, I. (2003, March). Sim-
ulation studies of computation and data scheduling
algorithms for data grids. Journal of Grid Comput-
ing, 1(1), 53–62. doi:10.1023/A:1024035627870

Ranganathan, K., & Foster, I. T. (2001). Identifying
dynamic replication strategies for a high- perfor-
mance data grid. In Proceedings of the Second
International Workshop on Grid Computing. UK:
Springer-Verlag.

SDSS Project. (2000). Online. Retrieved from
https://www.darkenergysurvey.org

Shankar, S., & DeWitt, D. J. (2007). Data driven
workflow planning in cluster management sys-
tems. In HPDC ’07: Proceedings of the 16th
International Symposium on High Performance
Distributed Computing (pp. 127–136). New York,
NY: ACM.

Shankar, S., Kini, A., DeWitt, D. J., & Naugh-
ton, J. (2005). Integrating databases and work-
flow systems. SIGMOD Record, 34(3), 5–11.
doi:10.1145/1084805.1084808

Simmhan, Y. L., Plale, B., & Gannon, D. (2005,
September). A survey of data provenance in
e-science. SIGMOD Record, 34(3), 31–36.
doi:10.1145/1084805.1084812

Singh, G., Kesselman, C., & Deelman, E. (2005,
September). Optimizing grid-based workflow
execution. Journal of Grid Computing, 3(3-4),
201–219. doi:10.1007/s10723-005-9011-7

Singh, G., Vahi, K., Ramakrishnan, A., Mehta,
G., Deelman, E., & Zhao, H. (2007). Optimiz-
ing workflow data footprint. Science Progress,
15(4), 249–268.

Taylor, I., Wang, I., Shields, M., & Majithia, S.
(2005). Distributed computing with triana on the
grid: Research articles. Concurrency and Com-
putation, 17(9), 1197–1214. doi:10.1002/cpe.901

Venugopal, S., Buyya, R., & Ramamohanarao,
K. (2006). A taxonomy of data grids for
distributed data sharing, management, and
processing. ACM Computing Surveys, 38(1).
doi:10.1145/1132952.1132955

Venugopal, S., Buyya, R., & Winton, L. (2006).
A grid service broker for scheduling e-science ap-
plications on global data grids: Research articles.
Concurrency and Computation, 18(6), 685–699.
doi:10.1002/cpe.974

Yu, J., & Buyya, R. (2004). A novel architecture
for realizing grid workflow using tuple spaces.
Proceedings of the Fifth IEEE/ACM International
Workshop on Grid Computing.

Yu, J., & Buyya, R. (2005). A taxonomy of
scientific workflow systems for grid com-
puting. SIGMOD Record, 34(3), 44–49.
doi:10.1145/1084805.1084814

Yu, J., Buyya, R., & Ramamohanarao, K.
(2008). Workflow scheduling algorithms for grid
computing. In Metaheuristics for Scheduling
in Distributed Computing Environments (Vol.
146, pp. 173–214). Berlin, Germany: Springer.
doi:10.1007/978-3-540-69277-5_7

Zhao, Y., Raicu, I., & Foster, I. (2008). Scientific
workflow systems for 21st century, new bottle
or new wine? In SERVICES ’08: Proceedings of
the 2008 IEEE Congress on Services - Part I (pp.
467–471). Washington, DC: IEEE.

