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Abstract Multi-cloud storage offers better Quality of Service(QoS) such as availability, durabil-
ity, and users perceived latency. The exploitation of price differences across cloud-based storage
services is a motivate example of storing data in different Geo-graphically data stores, where data
migration is also a choice to achieve more cost optimization. However, this requires to migrate
data in tolerable time from the perspective of users. This paper first proposes a comprehensive
review on different classes of data stores inspiring data migration within and across data stores.
Then, it presents the design of a system prototype spanned across storage services of Amazon
Web Services (AWS) and Microsoft Azure employing their RESTful APIs to store, retrieve,
delete, and migrate data. Finally, the experimental results show that the data migration can be
conducted in a few seconds for data with a magnitude of Megabytes.

Keywords Cloud Storage, Amazon Web Services (AWS), Microsoft Azure Storage, Latency,
Data Migration

1 Introduction

Cloud computing has gained significant attention form the academic and industry communities
in recent years. It provides the vision that encompasses the movement of computing elements,
storage and software delivery away from personal computer and local servers into the next gener-
ation computing infrastructure hosted by large companies such as Amazon Web Service (AWS),
Microsoft Azure, and Google. Cloud computing has three distinct characteristics that differenti-
ate it from its traditional counterparts: pay-as-you-go model, on-demand provisioning of infinite
resources, and elasticity [1].

Cloud computing offers three types of resources delivery models to users [2]: (i) Infrastructure
as a Service (IaaS) which offers computing, network, and storage resources, (ii) Platform as a
Service (PaaS) which provides users tools that facilitate the deployment of cloud applications,
and (iii) Software as a Service (SaaS) which enables users to run the provider’s software on the
cloud infrastructure.

One of the main components of IaaS offering by cloud computing is Storage as Services
(StaaS). StaaS provides an elastic, scalable, highly available, and pay-as-you-go model, which
renders it attractive for data outsourcing, both for the users to manipulate data independent of
the location and time and for firms to avoid expensive upfront investments of infrastructures. The
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well-known Cloud Storage Providers (CSPs)–AWS, Microsoft Azure, and Google– offer StaaS
for several storage classes which differ in price and performance metrics such as availability,
durability, the latency required to retrieve the first byte of data, the minimum time needed to
store data in the storage, etc.

The data generated by online social networks, e-commerce, and other data sources is doubling
every two years and is expected to augment to a 10-fold increase between 2013 and 2020-from
4.4 ZB to 44 ZB.1 The network traffic, generated from these data, from data centers (DCs) to
users and between DCs was 0.7 ZB in 2013 and is predicated to reach 3.48 ZB by 2020.2 The
management of such data in the size of several exabytes or zettabytes requires capital-intensive
investment; the deployment of cloud-based data stores (data stores for short) is a promising
solution.

Moving the data generated by data-intensive applications into the data stores guarantees
users the required performance Service Level Agreement (SLA) to some extent, but it causes
concern for monetary cost spent in the storage services. Several factors contribute substantially
to the monetary cost. First, the monetary cost depends on the size of the data volume that
is stored, retrieved, updated, and potentially migrated from one storage class to another one
in the same/different data stores. Second, it is subject to the required performance SLA (e.g.,
availability,3 durability, the latency needed to retrieve the first byte of data) as the main distin-
guishing feature of storage classes. As the performance guarantee is higher, the price of storage
classes is more. Third, the monetary cost can be affected by the need of data stores to be in a
specific geographical location in order to deliver data to users within their specified latency. To
alleviate this concern (i.e., monetary cost spending on storage services) from the perspective of
application providers/users, it is required to replicate data in an appropriate selection of storage
classes offered by different CSPs during the lifetime of the object regarding to the satisfaction of
latency for Put (write), Get(read), and data migration from the users perspective.

The use of multiple CSPs offering several storage classes with different prices and performance
metrics brings a substantial benefit to users who seek the reduction of monetary cost in storage
services, while respecting their Quality of Service (QoS) in terms of availability and network
latency [3]. In this direction, we designed algorithms that take advantage of price differences
across CSPs with several storage classes to reduce monetary cost on storage services for time-
varying workloads [4] [5]. This mandates data migration across data stores. As a concern for
users, it is important to migrate data in tolerable time. This paper shed a light on this gap
through the following contribution:

– We provide a taxonomy of the cloud-based data stores offered by the well-known cloud
providers to bring the attention of researchers for future research directions.

– We provide modules using RESTful API of AWS and Microsoft Azure to store, retrieve,
delete, and migrate data for AWS’ and Microsoft Azure’ data stores.

– We profile data migration time between a pair of data stores within and across regions.
We also show that this time is reasonable for transferring users’ data, which reaches to a
magnitude of Megabytes (MBs).

The reminder of this paper is organized as follows. Section 2 discusses the background of
the well-known and commercial cloud-based data stores and compares them in the key QoS
criteria such as availability, durability etc. Section 3 presents the benefit of spreading data across
data stores and the concerns in this respect. In Section 4, we discuss the system design and the
modules which are implemented for AWS and Microsoft Azure storage services. Finally, Section
5 presents the evaluation of our system and Section 6 concludes this paper.

1 International Data Corporation (IDC). https://www.emc.com/leadership/digital-universe/2014iview/

index.htm.
2 The Zettabyte Era—Trends and analysis. http://www.cisco.com/c/en/us/solutions/collateral/

service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html.
3 Availability and durability are described in terms of nines.
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2 Background

Well-known cloud providers such as AWS, Azure, and Google offer resources as Infrastructure
as a Service (IaaS), where Storage as a Service (StaaS) is one of its main components. StaaS
supports several classes of storage, which are differentiated in price and performance metrics.4

These metrics are (i) durability, (ii) availability SLA, (iii) minimum object size: an object smaller
than s kilobytes in size is charged for s kilobytes of storage, (iv) minimum storage duration: an
object deleted less than d days after storing in storage incurs a minimum d−day charge, (v)
retrieval first byte latency: the time taken to retrieve the first byte of an object. The storage
classes supported by AWS, Azure, and Google are as follows.

AWS provides four classes of storage5: (i) Simple Storage Service (S3) is a highly reliable,
available, and secure storage service for data frequently accessed; (ii) Reduced Redundancy
Storage (RRS) offers users storage resources with lower cost at the expense of lower levels of
redundancy as compared to S3. RSS is suitable for data which require less durability as compared
to those stored in S3; (iii) Standard-Infrequent Access (S-IA) is optimized for data accessed less
frequently, but needs a low retrieval time (e.g., backup data); (iv) Glacier storage is the cheapest
AWS storage which is suited to data with very low access rates and without the need for rapid
access.

Microsoft Azure supports four classes of storage services,6 which are mainly distinguished
based on the number of replicas of an object that are stored in a single or multiple DCs. These
classes are: (i) Locally Redundant Storage (LRS) stores 3 synchronous replicas within a single DC;
(ii) Zone Redundant Storage (ZRS) stores 3 asynchronous replicas across multiple DCs within
or across regions; (iii) Geographical Redundant Storage (GRS) is the same as LRS, in addition
to storing 3 asynchronous replicas in a secondary DC that is far away from the primary DC; (iv)
Read-access GRS (RA-GRS) is the same as GRS with the added functionality of allowing users to
access data in the secondary DC. All classes of Azure storage support five types of storage: Blob,
Table, Queue, File, and Disk. Each type of storage is used for a specific purpose. Blob storage
is specialized for unstructured object data, Table storage for structured data, Queue storage
for reliable messaging between different components of cloud services, File storage for sharing
data across the components of an application, and Disk (premium) storage for supporting data-
intensive workload running on Azure virtual machines (VMs). Besides these classes and types of
storage, Azure also provides Blob storage with two access tiers. These are hot and cold access
tiers which are supported in three classes of storage: LRS, GRS, and RA-GRS. Hot (resp. cold)
access tier is used for data that are frequently (resp. rarely) accessed. Hot tier access is more
expensive than the cold one, and this allows users to save cost when they switch between these
access tiers based on a change in the usage pattern of the object. This switch incurs additional
charges, and thus users are required to select each access tier in the appropriate time during the
lifetime of the object.

Google supports five storage classes7: (i) Multi-regional storage is appropriate for frequently
accessed data. This class is Geo-redundant storage service that maintains an object in at least
two regions; (ii) Regional storage enables users to store data within a single region. This class is
suitable for Google Compute Engine (GCE) instances; (iii) Durable Reduced Availability (DRA)
has a lower availability SLA with the same cost (apart from the cost of operations) compared to
Regional storage; (iv) Nearline storage is suitable for data that are accessed on average once a
month or less. Thus, this class is a good choice for data backup, archival storage, and disaster
recovery; (v) Coldline storage is the cheapest Google storage, and it is a suitable option for data
accessed at most once a year.

Based on the offered storage classes, we classify them into five tiers. (i) Very hot tier provides
the highest levels of redundancy across multiple regions and allows users to access the data in
the secondary DC as the primary DC faces faults. (ii) Hot tier stores data in multiple regions,
but the redundancy level is lower than the first tier. (iii) Warm tier is the same as hot tier in

4 Key features of storage classes. https://aws.amazon.com/s3/storage-classes/.
5 AWS storage classes. https://aws.amazon.com/s3/storage-classes/
6 Microsoft Azure storage classes. https://azure.microsoft.com/en-us/pricing/details/storage/blobs/
7 Google storage classes. https://cloud.google.com/storage/
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redundancy level, but less durable. (iv) Cold tier provides lower availability and durability as
compared to the first three tiers and imposes restriction on metrics like minimum object size
and minimum storage duration. (v) Very cold tier has the same durability and availability levels
compared to the cold tier, but it has more minimum storage duration. The last two tiers impose
retrieval cost and they are more expensive than the first three tiers (i.e., very hot, hot, and warm)
in operations cost. Table 1 summarizes the characteristics of the storage tiers offered storage
services by AWS, Azure, and Google based on the discussed tiers.

Although these tiers are the same in functionality, their performance is directly proportional
to price. For example, AWS offers S3 (belongs to hot tier) and RRS (belongs to warm tier) as
online storage services, but RRS compromises redundancy for lower cost. Moreover, the price of
storage resources across cloud providers is different. Thus, given these differences, many cost-
based decisions can be made. These decisions will become complicated especially for applications
with time-varying workloads and different QoS requirements such as availability, durability, re-
sponse time, and consistency level. To make satisfactory decisions for application providers, a
joint optimization problem of resources cost and the required QoS should be characterized. Re-
sources cost consists of: (i) storage cost calculated based on the duration and size of storage the
application provider uses, (ii) network cost computed according to the size of data the application
provider transfers out (reads) and in (writes) to data stores (typically data transfer into data
stores is free), and (iii) computing cost calculated according to duration of renting a VM by the
application provider. The first two costs relate to the cost of data storage management.

In respect to the above discussion, we can define many optimization problems in conjunction
with QoS such as availability, latency, and consistency. One of these is monetary cost reduction
by exploiting price differences among CSPs, which mandates data migration across data stores.
Although data migration may reduce the monetary cost of data management across data stores,
this is a concern about the migration time of data between data stores within and across across
regions. We measure this time and show the feasibility of data transfer required a reasonable time.
It is worth to mention that this time is only measured between a pair of data stores without
relaying to datacenter(s) as a mediator. This is because that we do not make any optimization
on the time of data migration across data stores.
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3 Related Works and Motivation

Migrating data into a single data store facilitates users performance SLA/QoS to some extent, but
faces them with several limitations. Data store unavailability can confront users with inaccessible
data if the data is stored in a single data store. This is counted as one of the top ten obstacles for
cloud adoption [6]. Reliance on a single data store makes it difficult to migrate data from a data
store to another in the face of price increment by the cloud provider, the emergence of a new
data store with lower price, the mobility of users, and changes in workload that demands data
migration. This is recognized as data lock-in and is listed as another main obstacle in regard to
cloud services. Storing data in a single data store faces the fact that the read (Get) and write
(Put8) requests are not served with adequate responsiveness. This is because the requests are
issued by users who are located worldwide and, consequently users experience more network
latency to retrieve/store data from/into a data store. Furthermore, the use of a single data store
deprives users from the opportunity to exploit the pricing differences across CSPs. Therefore,
storing data within a single data store can be inefficient in both performance SLA and monetary
cost.

These factors make inevitable the use of multiple CPSs which improve availability, durability,
and data mobility. The deployment of multiple CSPs also brings another benefits to users. (i) If
the outage of a data store happens then the requests issued by users are directed to another data
store. (ii) Users can have a wider selection of data stores, which results in reducing user-perceived
latency as experimentally confirmed [7]. (iii) This deployment also allows application providers
to select storage classes across CSPs based on the workload on data and the QoS specified by
users to reduce monetary cost of storage and network resources.

The workload on data can be a determining factor for the selection of a storage class. Some
data-intensive applications generate a time-varying workload in which as the time passes the rate
of read and write requests on the data changes. In fact, there is a strong correlation between the
age of data stored in a data store and data workload. For example, in Online Social Network
(OSN) data initially receive many read and write requests and gradually these requests reduce
[8]. Based on this change of requests rate, we define two statuses for data: hot-spot and cold-spot.
Hot-spot data receive many read and write requests, while cold-spot data receive a few.

This demands for a suitable selection of storage classes throughout the lifetime of an object.
Each storage class provided by the well-known CSPs can be suited for data with specific require-
ments. For instance, one class may be suitable for data that is frequently accessed. Another class
may be designed to host data that is rarely accessed and required for a lower availability and
durability.

Therefore, CSPs with a variety of storage classes with different prices and performance SLAs
and data-intensive applications with time-varying workloads give us an incentive to design novel
algorithms to optimize monetary cost [4] [5]. These algorithms work for any data to which
workload transits from hot-spot to cold-spot and vice versa, as observed in OSN applications [8].
Significant studies have been done in the area of cost optimization of OSN applications across
CPSs, as conducted in SPANStore [9] and Cosplay [10]. Neither leverage different storage classes
owned by different CSPs nor consider the object with hot- and cold-spot status, which result
in migration of data across different data stores or movement of data between storage classes
within a data store [14].

Fig. 1 illustrates a simple data placement across data stores (owned by different providers) to
clarify data placemen across data stores. Among all available data stores, application providers,
for example OSNs, select a subset of data stores to replicate data to serve their users. OSN users
are typically assigned to the closest DCs and have a set of friends and followers who make network
connections with them. These connections are between users who are assigned to the same DC
as represented by a graph in rectangles (see Fig. 1) or different DCs (e.g., user connections UC1
and UC2). In this model, for example, a user in user group UG1 puts data in AWS DC named
replica R1. To make this data available to his/her friends and followers, the data is also replicated
in Azure DC as replica R2. These replicas stay in DCs until they receive many read and write
requests. As time passes, one replica probably migrates to another DC or moves between storage

8 Read and Write are respectively interchangeable with Get and Put in this paper.
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Cloud Site 
S3 RRS 

R1 

R2 

Get (Read) 

Put (Write) 

Data migration 

User connection 

Data movement 

UG1 

UG2 

UC1 

UC2 

Fig. 1: A simple system model used in the paper

classes (e.g., Simple Service Storage (S3) and Reduced Redundancy Storage (RRS) in AWS)
within a DC as backup data. This data migration reduces the monetary cost though it arises a
concern about the of data migration for users. We demonstrate this is not of concern because
the data migrated between data stores locating within and across regions within several seconds
for a magnitude of Megabytes (MBs).

4 System Design

In this section, we introduce a modular architecture for object placement across cloud-based data
stores. It enables users/application providers to store, retrieve, delete, list, and migrate objects
across data stores based on the desired user’s QoS (i.e., latency), the specification of objects and
DCs. As shown in Fig. 2, the architecture contains several main components:

(1) Users/Application Provider: this component is the entry point to the system and allows
users to store, retrieve, delete, list, migrate objects across data stores.

(2) Object Information: this component includes objects’ metadata like object ID/name and
size.

(3) Datacenters (DC) information: this is available to the system and consists of DC re-
gion/ID, and the price of storage and bandwidth.

(4) Object Placement Decision: this component is the core of the system and is responsible
to find appropriate locations for objects based on the objective function (i.e., cost optimization)
and the users perceived latency (i.e, migration, read, and write latency). It consists of three
modules: (i) Cost Calculation acts based on the proposed algorithm in [14] and calculates the
management cost of objects based on the price of storage and bandwidth, and the size of objects.
(ii) Location Determination: this makes a decision based on the previous module to store objects
in the corresponding data store. (iii) Storing Objects’s Metadata: metadata can be stored in VMs
deployed across DCs or in Replica Placement Migration (RPM) Manager discussed in the next
section.

(5) Cloud Provider API: Amazon S3 and Microsoft Azure Storage provide REST (Represen-
tational State Transfer) APIs to Get(read), Put(write), delete, and monitor data in data stores
around the world. We use these APIs offering for Java programming to manage data across these
two cloud providers.
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(6) Cloud Resources: This includes two classes of AWS storage services (i.e., S3 and RSS)
and two Azure storage services ( LRS and ZRS). More details on these storage services discussed
in Section 2.

Users/Application Provider

Object 
Information

Object ID

Object Name

Object Size

Datacenter (DC) 
Information

Bandwidth price 

DC Region
DC ID

Storage price 

Object Placement 
Decision

Location Determination

Storing Object’s Metadata

Cost Calculation

Cloud Provider API

Datacenter Resources

Amazon S3 Microsoft Azure Storage

Fig. 2: Key architectural components of object placemnt across cloud-based data stores

4.1 Data Access Management Modules

To implement the architecture depicted in Fig. 2, we implemented two packages using Java
programming language:

(1) Data Placement: as depicted in Fig. 3, this is an extension of CloudSim [11] in which
we extended Datacenter and File classes according to the properties and methods required
for data placement across data stores. Moreover, we implemented MigrationObject class for
objects migrated within or across data stores.

(2) Datacenter Connection: as shown in Fig. 4, this consists of two classes for each cloud
provider. One class is related to the securing information and makes secure connections to the
desired DC, and another class represents methods to manage data across and within data stores.
To provide these methods, we implemented a prototype system across Amazon Web Service
(AWS) and Microsoft Azure cloud providers. For this purpose, we use JAVA-based AWS S39

and Microsoft Azure10 storage REST APIs. With this prototype, an individual end-user can (i)
manage data across two well-known cloud providers, and (measure) the perceived latency for
operations conducted on the data.

Our prototype system provides a set of modules that facilities users to store, retrieve, delete,
migrate, list data across AWS and Microsoft Azure data stores. Tables 2 - 5 show the list of main
web services that is used in the prototype system for data access across AWS and Microsoft

9 Amazon S3 REST API http://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
10 Azure storage REST API https://docs.microsoft.com/en-us/rest/api/storageservices/fileservices/

azure-storage-services-rest-api-reference
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objectName : String
objectSize : Long
objectMigrationTime : Long

MigratedObject

getNameObject() : String
setNameObject(String nameObject)
getObjectSize() : Long
setObjectSize(long objectSize)
getObjectMigrationTime() : Long

fileSize : Integer
fileName : String

File

Operation
Operation

regionNumber : Integer
identification : Integer
Failure : Double
storageCost : Long
storageRCost : Long
bandwidthCost : Long
bandwidthRCost : Long
readCost : Long
writeCost : Long
DatacenterObjects : List<Newobject>

NewDatacenterCharacteristics

chartrs : NewDatacenterCharacteristics

NewDatacenter

Datacenter

0..* 0..*

idObject : int
mapDatacenter : NewDatacenter [1..*][1..*]

NewObject

setIdobject(int idObject)
getIdobject() : Int
setMapDatacenter(NewDatacente mapDatacenter)
getMapDatacenter() : NewDatacenter

Assigned  
objects

Assigned  
Datacenter

getObjectsId() : List<Integer>
getObjectsName() : List <String>

1

1
DatacenterCharacteristics

Data Placement

+

Fig. 3: Data Placement Package

Azure clouds. All these services are RESTful web services that utilize AWS S3 and Microsoft
Azure storage APIs in Java. They produce response in the JavaScript Object Notations (JSON)
format in successful cases and error message in the error cases. We use JSON format because it
is a lightweight data-interchange format and easy to understand. In the following we discuss the
provided web services in more details.

Table 2 shows the list of main modules that is provided by the prototype system for data
management in AWS data stores. These modules are as follows:

– amazonCreateS3Client: This module provides users to create a client with the type of
AmazonS3client for accessing the Amazon S3 web services. It also allows user to set a region
for the created AmazonS3 client account.

– createBucket: This module creates a bucket in the AmazonS3 client specified by users. It
also allows users to determine the Access Control List (ACL) in terms of private, publicRead,
and PublicReadWrite.

– amazonCreateFolder: This module creates a folder in a bucket and allows users to deter-
mine the storage class of objects stored in a folder.

– amazonUploadObject: This module facilitates users to store objects in the specified direc-
tory which has a scheme like /AmazonS3 client/bucket/folder/.

– amazonDownloadObject: This module allows users to retrieve objects from AWS data
stores in the specified directory with a scheme like /AamzonS3 client/bucket/folder/.

– amazonDeleteFolder/Objeject: As its name implies, it deletes folders or objects.
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AzureDeleteFolder(CloudBlobClient client, CloudBlobContainer containerName, String   
                   folderName)
AzureTransferStorageFolder(CloudBlobClient srcClient, CloudBlobClient desClient,
String srcContainerName, String desContainerName, String srcFolderName, String 
desFolderName)
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String storageClass): ArrayList<MigratedObject>
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AzureExistenceFolder(CloudBlobClient client, String containerName, String folderName): 
boolean
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Suffix : String
amKey : HashMap <String, AmazonKey>
azureConnec : AzureConnection

AmazonConnection

createS3ClientAccount() :HashMap<String, AmazonS3Client>

createBucket( AmazonS3 client, String bucketName)

AmazonCreateFolder(AmazonS3 client, String bucketName, String folderName, String 
storageClass)

AmazonUploadObjectFile(AmazonS3 client, String bucketName,String folderName,String 
objectName,String srcAddress,  String storageClass)

AmazonDownloadObject(AmazonS3 client, String bucketName,String folderName,String 
desAddress)

AmazonDeleteFolder( AmazonS3 client, String bucketName, String folderName)

AmazonTransferStorageFolder(AmazonS3 srcClient, AmazonS3 desClient, String srcBN,String 
desBN, String srcFN ): List <migratedObject>

AmazonToAzureStorageFolder(AmazonS3Client srcClient, String srcBucketName, String 
srcFolderName, CloudBlobClient desClient, String desContainer, String desFolderName)

AmazonGetURI(AmazonS3Client client, S3ObjectSummary objectSumary): URI

AmazonChangeClassStorageFolder( AmazonS3 client,String bucketName, String folderName, 
String storageClass)

AmazonListObjects(AmazonS3 client, String bucketName, String folderName)

AmazonExistenceBucket(AmazonS3 client, String bucketName): boolean

AmazonExistenceFolder(AmazonS3 client, String bucketName, String folderName): boolean
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Fig. 4: Datacenter Conection package for connecting to AWS and Azure datacenters

– amazonListObjects: This module lists folders in a bucket as well as the objects stored in
a folder.

– amazonChangeClassStorageFolder: This module changes the storage class for objects
stored in a folder.

– amazonTransferFolder: This module allows users to transfer objects (stored in a folder)
from an AWS data store to another one.

– amazonToAzureTransferFolder: This module facilitates users to migrate objects from
an AWS data store to Azure data store.

Table 3 summarizes the type and description of the main input parameters used in the above
modules. It is worth nothing that the storageClass parameter can be one of the four con-
stant values: STANDARD, REDUCED REDUNDANCY, STANDARD IA (IA for infrequent access), and
GLACIER. In our prototype, we use the first two storage classes as discussed in Section 2. Some
input parameters used in the above modules are the same in the type and description while
they are different in the name. We excluded these parameters in Table 3 and give their de-
tails here. All (src/des)Client, (src/des)BucketName, and (src/des)FolderNmae
parameters are respectively the same with the client, bucketName, and folderName param-
eters in the type and descriptions. The srcClient, srcBucketName, and srcFolderNmae
parameters represent that from which client, bucket and folder data are transferred. The de-
sClient, desBucketName, and desFolderNmae parameters indicate the location to that
data are transferred.
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Table 2: The modules used for data access management in AWS.

Module Name Input Parameters Output

amazonCreateS3Client accesskey,secretkey AmazonS3Client
createBucket client,bucketName Bucket
amazonCreateFolder client,bucketName,folderName,storageClass Folder
amazonUploadObject client,bucketName,folderName,objectname, path,storageClass put Object
amazonDownloadObject client,bucketName,folderName,desPath Get object(s)
amazonDeleteFolder/Objects client,bucketName,folderName Delete folder/objects
amazonListObjects client,bucketName,folderName Objects list
amazonChangeClassStorageFolder client,bucketName,folderName,storageClass Change storage class

amazonTransferFlder
srcClient,srcBucketName,srcFoldername,desClient,

desBucketName
Transfer objects

amazonToAzureTransferFolder
srcClient,bucketName,srcFolderName,desClient,

containerName,desFolderName
Transfer objects

Table 3: The input parameters used in Modules of AWS.

Input Parameter Type Description

accessKey String This key is uniquely assigned to the owner of AWS S3 account.
secretKey String This key is the password for the owner of AWS S3 account.
client AmazonS3Client This parameter allows users to invoke the service methods on AWS S3.
bucketName String This refers to the name of the bucket that contains folders.
folderName String This refers to the name of the folder containing objects.
storageClass String This specifies constants that include four storage classes of AWS S3.
objectName String This parameter specifies the name of object generated by users.
srcPath String This represents the path from which the data can be transferred.
desPath String This indicates the path to which the data can be transferred.

Similarly, we provide a set of modules to manage data across Microsoft Azure data stores.
As listed in Table 5, these modules are mostly similar to the discussed ones in the functionality.
They are summarized as follow:

– azureCreateCloudBlobClient: This module creates an Azure cloud storage account in
a region to access Azure cloud storage web services.

– createContainer: It creates a container in the the Azure storage account specified by
users. This module can determine the type of ACL in the forms of Container, Blob, and OFF
(i.e., no blob neither container). It is worth noting that container in Azure data stores and
bucket in AWS data stores are the same in the concept.

– azureTransferFolder: It facilitates users to transfer objects (stored in a folder) from an
Azure data store to another one.

– azureToAmazonTrasnferFolder: This allows users to transfer object from Azure data
stores to Amazon data stores.

– azureCreateFolder, azureUploadObject, azureDownloadObject, azureDelete-
Folder/Objeject, azureListObjects modules respectively allow users to create folder,
store objects, download object, and list objects in Azure data stores.

The modules of Microsoft Azure require input parameters which are similar to those of AWS
data stores to the large extent. Table 4 gives a list of those that are only used in Microsoft Azure
Modules. The accessKey parameter is a 512-bit storage access key which is generated when
users create their storage accounts. The client parameter allows users to create containers
in different Azure regions. The containerName parameter is an instance of the “CloudBlob-
Container” class and its name is a string value used in Microsoft Azure modules. Note that
the desClient parameter in the amazonToAzureTransferFolder module is an instance of
the “cloudBlobClient” class; likewise this parameter in the azureToAmazonTransferFolder
module is a reference variable of the “AmazonS3Client” class.

5 Performance Evaluation

We design a simple prototype as shown in Fig. 5. The way in which the deployed virtual machines
(VMs) should serve Puts and Gets for each object is dictated by a central replica placement
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Table 4: The input parameters used in Modules of Microsoft Azure.

Input Parameters Type Description

accessKey String This key is used to authenticate when the storage account is accessed.
client cloudBlobClient This parameter allows users to invoke the service methods on blob storage.
containerName String This refers to the name of the container that contains the folders.

Table 5: The modules used for data access management in Microsoft Azure.

Module Name Input Parameter(s) Output

azureCreateCloudBlobClient accessKey CloudBlobClient
createContainer client,containerName Container
azureCreateFolder client,containerName,folderName Folder
azureUploadObject client,containerName,folderName,objectname, path put Object
azureDownloadObject client,containerName,folderName,desPath Get object(s)
azureDeleteFolder/Objects client,containerName,folderName Delete folder/objects
azureListObjects client,containerName Objects list

azureTransferFlder
srcClient,srcContainerName,srcFolderName,desClient,

desContainerName, desFolderName
Transfer object(s)

azureToAmazonTransferFolder
srcClient,srcContainerName,srcFolderName,desClient,

BucketName,desFolderName
Transfer object(s)
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Cloud Site 3

Storage 
Service 

Replica Placement and 
Migration (RPM) Manager 

Storage 
Service 

Storage 
Service 

Replication and Migration policy 

Get/ Put Requests

Data migration

Web services 

EC2 VM 

Fig. 5: An overview of prototype

and migration (RPM) manager. The RPM manager makes decision on replica placement and
migration across data stores based on the proposed heuristic solution [14]. The RPM issues
Http requests (REST call) to the VMs deployed in cloud sites and receives Http responses
(JSON objects). The VMs process the received requests via the deployed web services that are
implemented based on Spring Model-View-Controller (MVC) framework [13] as illustrated in
Fig. 6.

We measured the latency for Gets across 18 data stores spanned around the world. The object
size is between 1 KB and 10 KB for 100 users (in the Twitter traces) [4] who tweeted on their
Feed. As shown in Tables 6 and 7, a subset of data stores are appropriate to store users’ data
according to the required QoS, i.e., latency.

To measure the time spent on data migration across DCs, we utilized the federation of cloud
sites from Microsoft Azure and Amazon in our prototype. We spanned our prototype across 3
Microsoft Azure cloud sites in Japan West, North Europe, and South Central US regions
and 3 Amazon cloud sites in US East (North Virginia), US West(Oregon), and US
West (North California) regions. In each Azure cloud site, we created a Container and
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Fig. 6: Web services components used in the prototype

Table 6: Latency (in milliseconds) between Amazon’ and Azure’s data stores to Azure’ data stores (Abbreviations: AZ: azure, AM: Amazon,
SUS: South USA, CUS: Central USA, EA: East Asia, JW:Japan West, AUE: Australia East )

Datacenter Name AZ-SUS AZ-CU AZ-Sao Paulo AZ-Dublin AZ-Amsterdam AZ-EA AZ-JW AZ-Singapore AZ-AUE
AZ-SUS 1 25 146 115 127 176 135 210 190
AZ-CUS 25 1 156 105 117 185 135 212 210
AZ-Sao Paulo 146 156 1 196 195 322 280 341 313
AZ-Dublin 115 105 196 1 24 292 241 313 305
AZ-Amsterdam 127 117 195 24 1 290 250 302 281
AZ-EA 176 185 322 290 292 1 60 38 118
AZ-JW 135 135 280 241 250 60 1 85 13
AZ-Singapore 210 212 341 313 302 38 85 1 150
AZ-AUE 190 210 313 305 281 118 113 150 1
AM-Oregon 56 48 209 146 158 187 184 185 177
AM-Virginia 38 40 130 87 86 231 237 253 214
AM-California 37 42 176 153 156 179 182 178 152
AM-Sao Paulo 146 155 5 218 216 394 368 384 408
AM-Dublin 123 106 207 3 24 259 252 254 305
AM-Frankfurt 121 123 213 29 10 262 254 243 299
AM-Tokyo 159 169 270 268 256 54 11 70 173
AM-Singapore 216 212 348 337 316 38 140 3 130
AM-Sydney 169 189 317 330 325 149 158 159 5

Table 7: Latency between different Amazon’s data stores

Datacenter Name AM-Oregon AM-Virginia AM-California AM-Sao AM-Dublin AM-Frankfurt AM-Tokyo AM-Singapore AM-Syd
AM-Oregon 1 72.4 21.2 181.2 133.6 146.2 90.7 162.3 177
AM-Virginia 73.6 1 80.4 120.9 76.3 88.9 157.2 231.4 238.2
AM-California 21.3 74.8 1 194.6 153.2 169.2 107.2 177 159.5
AM-Sao Paulo 181.2 120.6 194.6 1 192.4 199.6 275.9 349.6 313.6
AM-Dublin 144.7 76.4 150.1 192.5 1 20 226.4 267.4 312.4
AM-Frankfurt 146.3 88.9 169.2 199.6 19.9 1 240.2 250.7 325.5
AM-Tokyo 91.5 160.6 107.7 281.7 215.8 242.2 1 76.6 106
AM-Singapore 170.7 229.4 177 349.7 267.1 250.7 76.6 1 177.1
AM-Sydney 177 235.4 156.4 313.5 333.1 325.5 106 177 1

deploy a DS3 V2 Standard VM instance. In each Amazon cloud site, we created a Bucket
and deployed a t2.medium VM instance. All VM instances used in the prototype run Ubuntu
16.04 LTS as operating system.

After the set-up, we run the heuristic algorithm [14] for 100 users (in the Twitter traces) who
are assigned to the aforementioned cloud sites. The data of each user in data stores is integrated
in a folder (analogous to bucket in Spanner [12]) for each user. Based on the heuristic algorithm,
data migration happens when the cost of storing data in the source data store is more than the
summation of (i) the cost of storing data in the destination data store, and (ii) the migration
cost between the source and the destination data stores. In the occurrence of data migration, we
recorded the time of data transfer from source cloud site to the destination cloud site.

Fig. ?? shows the CDFs of data migration time observed for 100 buckets (each user is asso-
ciated to a bucket), each of which with the size of about 47.35 MB in average. Fig. ?? depicts
that data migration can be transmitted in several seconds across regions. About 60% of buckets
are transmitted in 2.5 seconds from Azure DC in Japan west (AZ-JAW) to Amazon DC in US
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Fig. 7: CDF of data migration time (a) from Azure DC in Japan west to Amazon DC US west and from Azure
DC in Europe north to Amazon US east, and (b) Amazon DC in US west (California) to Amazon DC in US west
and Azure DC in US Center south to Amazon US east.

west (AWS-USW) as well as from Azure DC in Europe north (AZ-EUN) to Amazon DC in US
east (AWS-USE). Also, all buckets are transmitted in 3.5 seconds from Asia region to US region
and likewise 4.5 seconds from Europe region to US region. Fig. ?? illustrates the data migration
time within US region. About 80% of buckets are migrated from Azure DC in US center south
(AZ-USCS) to Amazon US east (AWS-USE) below 2 seconds. In contrast, bucket migration time
between Amazon DC in US west (North California) (AWS-USW(C)) to another DC in US
west (Oregon) (AWS-USW) is between 40-48 seconds for about 80% of buckets. From the results,
we conclude that the duration of buckets migration is considerably low. In the case of a large
number of buckets, we can transfer data in bulk across DCs with the help of services such as
AWS Snowball11 and Microsoft Migration Accelerator12.

6 Conclusions

This paper presented a comprehensive review of the well-known and commercial cloud-based
storage resources and compared them in the main QoS criteria such as availability, durability,
first byte latency, etc. Then, it discussed the motivation of using the cloud-based storage re-
sources owned by different cloud providers and indicated the latency for Get (read), Put (write),
and data migration as one of the main concerns from the users perspective in the respect of
replicating data across Geo-graphically distributed data stores. We presented the design of a
system prototype spanned across storage services of Amazon Web Services (AWS) and Microsoft
Azure. We deployed the RESTful APIs to store, retrieve, delete, migrate and list objects across
data stores. We also measured the latency of Get and data migration within and across regions,
which shows it is tolerable to migrate a data bucket (the integration of objects belonging to the
specific user) as its size is a magnitude of Megabytes (MBs).
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