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Abstract
With the acceleration of the Internet in Web 2.0, Cloud computing is a new paradigm to 
offer dynamic, reliable and elastic computing services. Efficient scheduling of resources 
or optimal allocation of requests is one of the prominent issues in emerging Cloud com-
puting. Considering the growing complexity of Cloud computing, future Cloud systems 
will require more effective resource management methods. In some complex scenarios 
with difficulties in directly evaluating the performance of scheduling solutions, classic 
algorithms (such as heuristics and meta-heuristics) will fail to obtain an effective scheme. 
Deep reinforcement learning (DRL) is a novel method to solve scheduling problems. Due 
to the combination of deep learning and reinforcement learning (RL), DRL has achieved 
considerable performance in current studies. To focus on this direction and analyze the 
application prospect of DRL in Cloud scheduling, we provide a comprehensive review for 
DRL-based methods in resource scheduling of Cloud computing. Through the theoretical 
formulation of scheduling and analysis of RL frameworks, we discuss the advantages of 
DRL-based methods in Cloud scheduling. We also highlight different challenges and dis-
cuss the future directions existing in the DRL-based Cloud scheduling.

Keywords Cloud computing · Resource scheduling · Review · Deep reinforcement learning

1 Introduction

Cloud computing is generally accepted as a type of distributed system linked by a high-
speed network. It includes the applications delivered as services over the Internet, the hard-
ware and systems software that can dynamically provide services to users (Armbrust et al. 
2010; Adhikari et al. 2019). As a paradigm that provides services to users in a pay-as-you-
go (Zhang et  al. 2020) manner or pay-per-use (Zhou et  al. 2019), Cloud computing has 
four forms: Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a 
Service (SaaS) (Armbrust et al. 2010; Adhikari et al. 2019; Zhan et al. 2015; Midya et al. 
2018; Chase and Niyato 2017), and a new form of serverless computing (Rings et al. 2009; 
Adhikari et al. 2019).
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Cloud computing provisions computing resources on the basis of CPU (Central Process-
ing Unit) (Adhikari et al. 2019; Kardani-Moghaddam et al. 2021), RAM (Random Access 
Memory) (Rjoub et al. 2020; Monge et al. 2020), GPU (Graphics Processing Unit) (Shao 
et al. 2019; Tong et al. 2020), Disk Capacity (Adhikari et al. 2019; Kardani-Moghaddam 
et al. 2021) and Network Bandwidth (Rjoub et al. 2020; Mei et al. 2019). From another 
perspective, “time” and “space” are also two pivotal resources of Cloud computing. Time 
means the whole service life cycle of the Cloud platform, and space means the real physi-
cal place to emplace physical devices. Electrical components of Cloud computing devices 
are driven by electric energy and work at the time and space. They constitute the real 
resources assembled of Cloud computing. Therefore, real natural resources provided by 
Cloud computing are effective electric energy conversion per unit of space and per unit 
of time (frequency), regarding energy, time, and space as essential resources (Lin et  al. 
2023a). The limited resource utilization capacity of Cloud computing will raise the cost 
and energy consumption of Cloud system (Zhou et al. 2019; Wan et al. 2020). Moreover, 
long response time, long queuing time and high delay rate will direct the decrease in QoS 
(quality of service). Consequently, how to schedule components of Cloud computing in an 
efficient, energy-saving, balanced method, is a critical factor, influencing the orientation of 
Cloud computing in the future.

Cloud computing has some characteristics including the huge scale of devices, the 
complexity of scenarios, the unpredictability of user requests, the randomness of elec-
tronic components, and the uncertain temperature of various components presented in the 
running process. These characteristics pose challenges to efficient and effective resource 
scheduling of Cloud computing (Xie et al. 2019; Guo et al. 2019; Duc et al. 2019). Cur-
rently, multi-phase approach (Laili et al. 2020; Guo et al. 2019; Xu and Buyya 2019), vir-
tual machine migration (Kumar et al. 2019; Ren et al. 2020b; Zhang et al. 2019a), queuing 
model (Caron et al. 2009; Ding et al. 2020; Zhang et al. 2020; Duc et al. 2019), service 
migration (Tuli et al. 2022; Ren et al. 2020a; Zhan et al. 2015), workload migration (Fian-
drino et al. 2017), application migration (Zhan et al. 2015; Duc et al. 2019), task migration 
(Tian et al. 2018; Kumar et al. 2019; Miao et al. 2020) and scheduling algorithm of sched-
uler are current common strategies to resolve the resource management of Cloud comput-
ing. Among these, the core of the solution is still the design of the scheduler on the basis 
of the scheduling algorithm. Figure 1 shows a resource management and task allocation 
process with a scheduler as the core. The users operate the clients to submit task requests 
to the Cloud center through the high-speed networks; The Cloud center collects tasks, gen-
erates scheduling schemes leveraging scheduling algorithms, and allocates tasks to server 
nodes; The server nodes then provide corresponding services to users (Zhou et al. 2023a). 
Due to its impact on the effective operation of Cloud, scheduling algorithms of Cloud com-
puting have attracted researchers. The scheduling problem in distributed systems is usu-
ally an NP-complete problem or an NP-hard problem without a polynomial-time algorithm 
unless NP = P (Adhikari et al. 2019; Chen et al. 2019; Mei et al. 2019). Existing methods 
to resolve scheduling problems mainly contain six categories including Dynamic Program-
ming, Probability algorithm, Heuristic method, Meta-Heuristic algorithm, Hybrid algo-
rithm and Machine Learning (ML).

As classic methods (non-machine learning) are not experts in addressing the complex 
scheduling scenarios of Cloud computing, there are abundant discussions and research 
about the application of ML in Cloud scheduling such as work from Microsoft (Bianchini 
et al. 2020), CLOUDS Laboratory of The University of Melbourne (Ilager et al. 2021), and 
other institutes (Duc et al. 2019; Rodrigues et al. 2020; Demirci 2015). Deep reinforcement 
learning (DRL), belonging to ML, is a novel approach combined with the advantages of 
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the deep neural network (DNN) and reinforcement learning (RL). In recent years, DRL 
has been prevalent in solving Cloud scheduling and has been proven to occupy strong 
superiorities in many complex scenarios (Guo et al. 2021; Feng et al. 2020; Karthiban and 
Raj 2020; Wang et  al. 2021a; Dong et  al. 2020; Cao et  al. 2020; Chen et  al. 2022c; Xu 
et al. 2022). There are many surveys (Price 1982; Kumar et al. 2019; Adhikari et al. 2019; 
Duc et al. 2019; Rodrigues et al. 2020; Cong et al. 2020b; Zhan et al. 2015; Bera et al. 
2015; Xu et al. 2017a; Lin et al. 2021; Ren et al. 2020b; Xu and Buyya 2019; Welsh and 
Benkhelifa 2020; Cong et al. 2020a; Braiki and Youssef 2019; Jennings and Stadler 2015; 
Arunarani et al. 2019; Demirci 2015; Goodarzy et al. 2020; Singh et al. 2023; Khan et al. 
2022; Lin et al. 2023b) that have provided detail, comprehensive and valuable reviews of 
various fields in Cloud computing. Some examples related to Cloud resource optimization 
management are as follows. Adhikari et  al. (2019) reviewed the workflow scheduling in 
Cloud and analyzed the characteristics of its techniques by classifying them based on the 
objectives and execution mode. Lin et  al. (2023b) focused on the performance interfer-
ence of virtual machines and revisited interference-aware strategies for scheduling opti-
mization as well as co-optimization-based approaches. Arunarani et  al. (2019) provided 
a literature survey for task scheduling strategies (mainly including some meta-heuristic 
algorithms-based task scheduling) and discussed the various issues related to scheduling 
methodologies and the limitations to overcome. Xu et al. (2017a) reviewed load balancing 
algorithms for virtual machine placement in cloud computing, including some heuristic, 
meta-heuristic and hybrid algorithms related to the load balancing problems. Following 
different scheduling scenarios, Zhan et  al. (2015) presented a comprehensive survey of 
evolutionary approaches in Cloud resource scheduling, mainly including the genetic algo-
rithm (GA), ant colony optimization (ACO) and particle swarm optimization (PSO). Singh 
et  al. (2023) presented a review for a taxonomy of meta-heuristic scheduling techniques 
in Cloud and fog, from several categories including physics-based algorithms, evolution-
ary algorithms, biology-based algorithms, chemistry-based algorithms, etc. Some existing 
surveys have discussed the application of ML in Cloud scheduling (Goodarzy et al. 2020; 

Fig. 1  Resource management and task allocation process based on schedule center
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Duc et al. 2019; Rodrigues et al. 2020; Demirci 2015; Khan et al. 2022). For example, Duc 
et al. (2019) discussed some ML methods for resource provisioning in edge-Cloud applica-
tions, mainly including the applications of DNN, support vector machines (SVM), deci-
sion trees, Bayesian networks, splines, and exponential smoothing. Rodrigues et al. (2020) 
discussed the application of machine learning in computation and communication control 
in mobile edge computing, including fuzzy control model, tree-based naive Bayes, SVM, 
etc. Khan et al. (2022) presented a literature review for the application of ML methods in 
Cloud resource management, mainly including prediction or classification approaches such 
as SVM, k-nearest neighbors (KNN), DL, etc. However, there is no survey specifically dis-
cussing the application of DRL in Cloud scheduling, as it is a novel direction emerging and 
developing in recent years. Researchers are still exploring the application pattern of RL, 
especially DRL in Cloud scheduling (Feng et al. 2020; Lu et al. 2020; Xu et al. 2017b; Liu 
et  al. 2017; Kardani-Moghaddam et al. 2021; Guo et al. 2021; Karthiban and Raj 2020; 
Tong et al. 2020; Wang et al. 2021a; Cao et al. 2020; Nouri et al. 2019). Similarly, DRL 
(or RL) is also applied to solve scheduling problems in other field (Ni et al. 2020; Baccour 
et al. 2020).

Noting the potential application value of DRL in Cloud scheduling, we consider provid-
ing a comprehensive survey for existing research using DRL-based methods to solve Cloud 
scheduling. Based on the reviews and discussions, we finally target challenges and future 
directions using DRL to adapt to more realistic scenarios of Cloud scheduling.

The main contributions of this paper can be summarized as follows. 

(1) A comprehensive review and discussions of existing scheduling algorithms for Cloud 
computing;

(2) An analysis for the frameworks of RL and DRL from the perspective of model struc-
tures;

(3) A structured review and discussion of existing research using DRL in Cloud schedul-
ing;

(4) Some identified challenges and potential future directions of DRL-based methods in 
Cloud scheduling.

The rest of the paper is organized as follows. According to the classification of classic 
methods and machine learning methods, Sect. 2 formulates the scheduling and reviews the 
existing scheduling algorithms utilized in Cloud computing. Sect. 3 presents the structure 
analysis of RL and DRL applied in Cloud scheduling to assist better understanding of DRL 
(RL) methods used in the existing research. Sect. 4 provides some structured presentations 
of existing research using DRL methods and discusses the current situation of DRL in 
Cloud scheduling. Then, Sect. 5 lists challenges and potential future directions of applying 
DRL in Cloud scheduling. Finally, Sect. 6 concludes this paper.

2  Scheduling and algorithms in cloud

2.1  Mathematical formulation of scheduling

For the sake of the presentation, we list some notations with descriptions in Table 1.
In distributed systems, scheduling problems are usually NP-hard (Adhikari et al. 2019; 

Ghalami and Grosu 2019; Xu et al. 2009). Some of the mainstreams in Cloud scheduling 
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focus on objectives including minimizing energy consumption (Gokuldhev et  al. 2020; 
Mishra and Manjula 2020; Lin et  al. 2023a), minimizing makespan (Sardaraz and Tahir 
2020; Natesan and Chokkalingam 2020; Dong et  al. 2020), minimizing delay time (or 
delayed services) (Pandiyan et al. 2020; Belgacem et al. 2020; Zhang et al. 2020), reduc-
ing response time (Tuli et al. 2022; Haytamy and Omara 2020), maximizing the degree of 
load balancing (Sardaraz and Tahir 2020; Ghasemi and Haghighat 2020; Adhikari et  al. 
2020), increasing reliability (Pandiyan et al. 2020; Tuli et al. 2022), increasing the utiliza-
tion of resources (Li et al. 2020a; Lu et al. 2020; Ding et al. 2020), maximizing the profit 
of providers (Sardaraz and Tahir 2020; Natesan and Chokkalingam 2020; Gabi et al. 2020), 
maximizing task completion ratio (Tuli et al. 2022; Priya et al. 2019; Wang et al. 2015), 
minimizing Service Level Agreement (SLA) Violation (Tuli et al. 2022; Li et al. 2020a; 
Nouri et al. 2019), maximizing throughput (Zhang et al. 2019b; Mishra and Manjula 2020; 
Devaraj et al. 2020), and multi-objectives (Natesan and Chokkalingam 2020; Gokuldhev 
et al. 2020; Mishra and Manjula 2020).

There are several different definitions of resource scheduling in some literature 
(Kumar et al. 2019; Adhikari et al. 2019; Zhan et al. 2015). From Kumar et al. (2019), 
resource scheduling can be done in two ways: first is on-demand scheduling in which 
the Cloud service provider provides the resources quickly to random workload, and sec-
ond is long-term reservation in which large numbers of virtual machines are in ideal 
condition due to which under-provisioning type of problem occurs. From Adhikari et al. 
(2019), task scheduling is to find an optimal order of the tasks that meet the scheduling 
objectives. Resource scheduling is defined by Zhan et al. (2015) as to find an “optimal" 
mapping “Tasks → Resources” to meet one or several given objectives. There are still 
other definitions, which focus on whether the scheduled object is a task, a workflow, or 
a resource. Additionally, there are also some definitions using resource scheduling as a 

Table 1  A list of notations with descriptions

Notations Descriptions

M Number of indivisible tasks
N Number of server nodes
D Number of dimensions for the resources in a server node
i The index of task
j The index of server node
k The index of dimension for the resources
vijk The capacity or space or time requirement for j-th dimensional resource 

when the i-th task is allocated to the j-th service node
Vi =

{
vijk

}
N×D

The parameter matrix of the i-th task
V = ⟨V1,V2,…VM⟩ The set of parameters matrices of tasks
ljk The load status of the k-th dimensional resource in the j-th server node
L =

{
ljk
}
N×D

The parameters matrix of server nodes

X =
{
xij
}
M×N

The matrix representing the allocation of mapping “Tasks → Resources”
si The start time of the i-th task
ei The end time of the i-th task
S =

{
si
}
M

The matrix with the start time of tasks
�(X, S,V ,L) The optimization objective of scheduling mapped from ⟨X, S,V ,L⟩
Al(V ,L,�) The scheme generated by algorithm Al according to the input of (V ,L,�)
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general term for resource management which may also contain task scheduling, work-
flow scheduling, resource scheduling, etc. In this paper, we unify these by “resource 
scheduling in Cloud computing” or “Cloud scheduling”. Then, a scheduling algorithm 
for Cloud can be defined as an algorithm with specific rules, strategies, or processes that 
can generate a scheduling scheme including which resources a task is assigned to (i.e., 
X), and when to start processing the task (i.e., S).

Referring to existing studies of Cloud scheduling and for the sake of comprehensive 
discussion, we can establish a universal formulation for scheduling problems. It can be 
assumed that the number of indivisible tasks is M, the number of server nodes is N, and 
each server node has D dimensional resources (such as CPU load, GPU load, RAM, band-
width, disk storage, etc.). Then, the i-th task can be represented by a parameter matrix 
Vi =

{
vijk

}
N×D

 where 1 ≤ i ≤ M , 1 ≤ j ≤ N , 1 ≤ k ≤ D , and vijk indicates the capac-
ity or space or time requirement for j-th dimensional resource when the i-th task is allo-
cated to the j-th service node. The set of parameters of tasks ⟨V1,V2,…VM⟩ is set as 
V =

{
vijk

}
M×N×D

 . The parameters of server nodes can be set as L =
{
ljk
}
N×D

 , where ljk 
means the load status of the k-th dimensional resource in the j-th server node. Using a 
matrix X =

{
xij
}
M×N

 to represent the allocation solution of mapping “Tasks → Resources” 
and a matrix S =

{
si
}
M

 to represent the start time of tasks, then a scheduling scheme can 
be expressed by the combination of X and S, marked as ⟨X, S⟩ . Wherein, xij ∈ {0, 1} and ∑N

j=1
xij = 1 , which means the indivisible task can be allocated to only one node. xij = 1 

means the i-th task is allocated to the j-th node. Limiting S can generate the execution 
order between tasks. For example, setting si1 ≥ ei2 (where ei is the end time of the i-th task) 
equals that the i1-th task must begin after the finish of the i2-th task. Thus, the matrix S is 
sufficient to include the execution order of the task.

A optimization result of scheduling is a mapping from the solution ⟨X, S⟩ , the param-
eters of tasks V and server nodes L. Thus, the optimization objective can be set as

where � is a function with respect to X, S, V and L. Multi-objectives can be represented by 
multiple functions of � as

For example, the objective of minimizing makespan can be expressed as Eq. (3) and that 
of minimizing total running time as Eq. (4) assuming each node is either idle or processing 
only one task (Zhou et al. 2023a).

where vPT
ij

 means the processing time of the i-th task when executed in the j-th nodes which 
belongs to one dimension of V as time can also be regarded as a dimension of resources. 

(1)min� = �(X, S,V , L)

(2)min� =

⎧
⎪
⎨
⎪⎩

�1(X, S,V , L)

�2(X, S,V , L)

…

(3)min�makespan =

(
max

j=1,2,…,N

(
M∑

i=1

xijv
PT
ij

))

(4)min�total_time =

(
N∑

j=1

M∑

i=1

xijv
PT
ij

)



Deep reinforcement learning‑based methods for resource…

1 3

Page 7 of 42   124 

The objective of load balancing can be expressed as Eq. (5) when using variance of load to 
measure the degree of balancing (Zhou et al. 2022).

where vDS
ij

 means of disk storage requirement when the i-th task is allocated to the j-th node 
which also belongs to one dimension of V.

Assuming the power of the j-th node at time t is related to the load status Lj(t) , 
marked as Pj(t) = Pj

(
Lj(t)

)
 , thus the objective of minimizing energy consumption of the 

whole system from time 0 to T can be written as Eq. (6) (Ding et al. 2020; Shan et al. 
2020; Lin et al. 2021).

From the above examples, most of the optimization objectives in Cloud scheduling can be 
expressed by the structure of �(X, S,V , L).

With the formulation of the scheduling problem, a scheduling algorithm is an inte-
gration of mappers from (V , L,�) to the scheduling scheme ⟨X, S⟩ . It can be set an algo-
rithm as Al and its solution can be expressed by

Thus, a process of using an algorithm to solve the optimization solutions can be shown 
as Fig.  2. From Fig.  2, two key factors for scheduling are production and evaluation of 
schemes. In solving scheduling schemes, the evaluation for the performance of an opti-
mized solution, i.e. the process of obtaining �(X, S,V , L) or its equivalent evaluation func-
tions, is crucial. Some simple optimization objectives in ideal scenarios can be directly 
calculated. However, for some complex optimization objectives, this function �(X, S,V , L) 
may not have explicit expressions. For example, for minimizing energy consumption in Eq. 
(6), Pj

(
Lj(t)

)
 cannot be represented by elementary functions generally so that the expres-

sion of �(X, S,V , L) is implicit. For some optimization objectives with explicit expressions 
in ideal scenarios, it may be also difficult to directly calculate the optimization results when 
in some highly stochastic system processes. For example, when the processing time vPT

ij
 

in Eq. (3) is random and satisfying different distributions, the makespan will also be ran-
dom. Thus, the selection of scheduling algorithms should be based on the characteristics of 

(5)min�variance =
1

N

N∑

j=1

(
M∑

i=1

xijv
DS
ij

)2

−
1

N2

(
N∑

j=1

(
M∑

i=1

xijv
DS
ij

))2

(6)min�energy_consumption =

N∑

j=1
∫

T

0

Pj

(
Lj(t)

)

(7)Al(V , L,�) = ⟨X, S⟩

Fig. 2  A diagram of scheduling algorithm to generate the scheme ⟨X, S⟩
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scenarios. The different mapping processes of Eq. (7) will correspond to different catego-
ries of algorithms.

When considering dynamic scheduling, a diagram of its process over time can be seen 
in Fig.   3. The scheduling scheme at a time t is responsible for meeting the scheduling 
requirements at the current time, but will also be related to the status of server nodes at 
subsequent times. It indicates that when making scheduling decisions at time t, it is nec-
essary to consider the subsequent changes in the system. This also puts forward require-
ments for evaluating the quality of scheduling schemes, which shows the significance of a 
predictor.

Generally, algorithms for Cloud scheduling contain six categories: Dynamic Program-
ming (DP), Probability algorithm (Randomization), Heuristic method, Meta-Heuristic 
algorithm, Hybrid algorithms and Machine Learning. From the properties of these algo-
rithms, except for ML, other algorithms do not have the ability to predict system states. In 
this paper, we regard dynamic programming, randomization, heuristic method, meta-heu-
ristic algorithm, and hybrid algorithm as classic approaches. In order to analyze the future 
direction of Cloud scheduling and discuss the potential application of DRL, we will review 
the current scheduling algorithms of Cloud.

2.2  Review for classic algorithms

For classic approaches, the most commonly utilized methods in surveyed literature are heu-
ristic, meta-heuristic and hybrid algorithms. Thus, we mainly review these three types of 
algorithms to assist the later review and discussion on the application of DRL in Cloud 
scheduling.

2.2.1  Heuristic algorithms

Heuristic is an algorithm to solve an optimization problem based on intuitionistic or empir-
ical construction. Due to their lower complexity, heuristic algorithms are prevalent in some 
scenarios with a clear evaluation function requiring rapidity but not requiring high optimi-
zation results. Additionally, the worst-case of heuristic algorithms is generally predictable 
hence with a lower risk of improper allocation.

Fig. 3  A diagram for continuous dynamic scheduling process over time t 
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In existing research, Guan and Melodia (2017) applied the Jacobi Best-response 
Algorithm (JBA) to minimize cost in Multi-Broker Mobile Cloud Computing Networks 
and proved theoretical results demonstrating the existence of disagreement points and 
convergence of Jacobi Best-response Algorithm of the brokers to disagreement points. 
Tian et al. (2016) proposed an adapting Johnson’s model-based algorithm with 2-com-
petitive to minimize the makespan of multiple MapReduce jobs and proved its perfor-
mance in theory. Lin et al. (2022) proposed Peak Efficiency Aware Scheduling (PEAS) 
to optimize the energy consumption and QoS in the on-line virtual machine allocation 
and reallocation of Cloud. Dynamic Bipartition-First-Fit (BFF), a (1 + g−2

k
−

g−1

k2
) com-

petitive algorithm based on First-Fit algorithm, was proposed and its performance was 
proved theoretically by Tian et  al. (2013). Hong et  al. (2019) proposed a QoS-Aware 
Distributed Algorithm based on first-come-first-improve (FCFI) and all-come-then-
improve (ACTI) algorithms to reduce computation time and energy consumption of 
Industrial IoT-Edge-Cloud Computing Environments. ECOTS (energy consumption 
optimization cloud task scheduling algorithm), with low time and space complexity, 
took into account multiple key factors such as task resource requirements, server power 
efficiency model and performance degradation in order to reduce energy consumption 
of Cloud (Lin et al. 2018). Longest Loaded Interval First algorithm (LLIF), a 2-approxi-
mation algorithm with theoretical proof of its performance, was proposed by Tian et al. 
(2018) to minimize the energy consumption of VM reservations in the Cloud.

Other common heuristic methods are Johnson’s model, FF (first fit), BF (best fit), RR 
(round-robin), FFD (first fit decreasing), BFD (best fit decreasing), Jacobi Best-response 
Algorithm (Guan and Melodia 2017) and their variants.

To give an overall observation, we collected the reviewed literature and gained 
Table 2. From Table 2, heuristic algorithms mainly focus on the single-objective optimi-
zation including minimizing makespan, minimizing energy consumption and load bal-
ancing. However, there are several defects of heuristics as follows. 

(1) For the scenarios using heuristic, some major objects (such as the time, energy or load) 
are often assumed to be given or easily calculated. For complex scenarios where the 

Table 2  A summary of heuristic algorithms

Heuristic Algorithm Scenario Sever Nature Objectives

JBA (2017) Dynamic scheduling Heterogeneous servers Cost
EWBS (2017) Dynamic scheduling Heterogeneous servers Reliability
FISTA (2017) Dynamic scheduling Heterogeneous servers Load Balancing
HScheduler (2016) Dynamic scheduling Homogeneous servers Makespan
LARAC (2018) Mobile Cloud Delay-tolerant tasks Energy consumption
PEAS (2022) Online scheduling Heterogeneous servers Energy, QoS
Bipartition-First-Fit (2013) Online scheduling Homogeneous servers Energy consumption
MSNWF (2019b) Dynamic scheduling Heterogeneous C-RAN Energy consumption
FCFI+ACTI (2019) Task offloading Heterogeneous servers Energy consumption
ECOTS (2018) Static scheduling Heterogeneous servers Energy consumption
LLIF (2018) Static scheduling Heterogeneous server Energy consumption
LPT (2019) Static scheduling Homogeneous servers Makespan
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optimization objective is implicit with respect to solutions, heuristic algorithms often 
fail to generate a feasible solution.

(2) A heuristic algorithm is often designed for one or few specific scenarios. When only 
one element in the scenario changes, the algorithm may need to be redesigned.

(3) Heuristics are usually only suitable for the single-objective problems.
(4) Moreover, the solution of heuristic algorithms can usually be further optimized.

2.2.2  Meta‑heuristic algorithms

In skeleton, meta-heuristic, the combination of heuristic and randomization (Kumar et al. 
2019), includes Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), 
Artificial Bee Colony (ABC), Genetic Algorithm (GA), Firefly Algorithm (FA), etc.

ACO imitates ant colony to search for food as a search route. Liu et  al. (2018) pro-
posed OEMACS combining OEM (order exchange and migration) local search techniques 
and ACO to resolve energy consumption of VMs deployment in Cloud computing, which 
significantly reduced the energy consumption and improved the effectiveness of different 
resources compared with conventional heuristic and other evolutionary-based approaches. 
A et al. (2019) proposed two ant colony-based optimization algorithms (TACO) to address 
VM scheduling and routing in multi-tenant Cloud data centers aiming at improving the 
utilization of energy in Cloud computing. Abualigah and Diabat (2020) proposed an alter-
native meta-heuristic technique based on the Ant Lion Optimizer Algorithm (MALO) to 
resolve multi-objective optimization of Cloud computing, which performed better in load 
balancing and makespan compared with GA, MSDE, PSO, WOA, MSA and ALO.

GA imitates the process of natural evolution as a search route of the algorithm. Pro-
posed by Deb et  al. (2002), NSGA-II occupies better convergence and optimal solution 
and has become one of the benchmarks using the fast non-dominated sorting algorithm, 
introducing elite strategy and using congestion-congestion comparison operator. Liu et al. 
(2016) improve the search strategy based on NSGA-II to reduce the energy consumption, 
response time, load imbalance and makespan in Cloud computing. NSGA-III utilizes ref-
erence points with preferable distribution as a novel search route to maintain the diver-
sity of the population to improve the optimization results of GA (Seada and Deb 2015; 
Miriam et al. 2021). Xu et al. (2019) applied NSGA-III to optimize the execution time and 
energy consumption of IoT-enabled Cloud-edge computing. MOGA (Jiang et al. 2016) and 
MOEAs (Laili et  al. 2020) improved the search route strategies based on NSGA-II and 
were utilized to settle Cloud scheduling.

The studies of Firefly algorithm include FA (Adhikari et  al. 2020) and FIMPSOA 
(Devaraj et al. 2020). That of PSO include MOPSO (Li et al. 2017), TSPSO (Jena 2015) 
and HAPSO (Midya et al. 2018). Other meta-heuristic algorithms include Multi-objective 
Whale Optimization Algorithm (MWOA) (Reddy and Kumar 2017), nature-inspired Cha-
otic Squirrel Search Algorithm (CSSA) (Sanaj and Prathap 2020), etc.

By collecting and sorting out the literature using meta-heuristic algorithms to solve 
resource scheduling problems, we gain Table  3 with their corresponding optimization 
objectives. Since the meta-heuristic algorithms are also applicable to the scenarios of 
dynamic scheduling and heterogeneous servers where the heuristic algorithms are appli-
cable, their application scenarios are not listed in Table 3. From Table 3, meta-heuristic 
algorithms with searchability for the solution can address more complex optimization 
problems not only for single-objective problems but also for multi-objective problems. 
They are applied to solve optimizing cost, energy consumption, makespan, running time 
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and resource utilization. Meta-heuristic algorithms are more applicable than heuristic algo-
rithms but at the expense of computational complexity and randomness. However, although 
these optimization objectives in meta-heuristics include some complex objects (such as 
energy, Qos and cost), their calculations have been simplified with some ideal assumptions 
far from reality (A et al. 2019; Ramezani et al. 2015; Xu et al. 2019).

Meta-heuristic and other search algorithms are based on the specific search route, whose 
diagram can be seen in Fig. 4. They use the search route to adjust the current solutions to 
generate new solutions, evaluate the performance (such as fitness) of newly generated solu-
tions according to the optimization objectives-based evaluation functions, and then deter-
mine whether to proceed to the next search based on the evaluation. The two key factors in 
Fig. 4 are the search route and evaluation of solutions. The search route needs to generate 
better solutions. However, there are several inevitable defects of meta-heuristic as follows. 

Table 3  A summary of meta-heuristic algorithms

Subcategories Algorithm Objectives

ACO MALO (2020) Makespan
HGA-ACO (2019) Makespan
DAAGA (2019) Running time, QoS
TACO (2019) Energy consumption
OEMACS (2018) Utilization
S-MOAL (2020) Energy consumption

GA NSGA-II (2018) Makespan, energy consumption
TS-NSGA-II (2016) Running time, utilization
MOGA (2019; 2015) Makespan, cost
NSGA-III (2019) Energy consumption
MOEA/D-based GA (2014; 2020) Qos: cost, queue time

PSO MOPSO (2017; 2013) SLA violations, energy consumption
TSPSO (2015) Running time, energy consumption, failed task
HAPSO (2018) Response time, energy consumption
PSO-based MOS (2018) Cost, makespan

FA FA (2020) Makespan, utilization
FIMPSOA (2020) Utilization, reliability, throughput

Others MWOA (2017) Cost, utilization, energy consumption
CSSA (2020) Cost, Time, energy consumption, utilization

Fig. 4  A diagram of search-based algorithms
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(1) For scenarios where the solution can be directly evaluated, the convergence of the meta-
heuristic cannot be guaranteed due to the presence of randomness. The randomness of 
the meta-heuristic increases redundant computations.

(2) As the search space increases, the required search iterations must also increase accord-
ingly, subsequently producing more redundant solutions.

(3) When it is difficult to evaluate the quality of a solution, the search route will lose its 
direction, and the search algorithm will degenerate into pure randomization. When 
�(X, S,V , L) is implicit, the meta-heuristic and other search algorithms themselves do 
not provide a method for evaluating solutions.

(4) Meta-heuristic also does not provide a way to predict system status.

The first and second defects will limit the optimality of the meta-heuristic for its feasible 
scenarios. The third and fourth defects, which also appear in heuristic, will cause the algo-
rithm unable to be used in some real-world complex scenarios.

2.2.3  Hybrid algorithms

Some other classic algorithms used in Cloud scheduling mainly contain DP, Random algo-
rithms, and hybrid algorithms (combining two or more algorithms). Among them, hybrid 
algorithms are also widely used in solving complex scheduling problems in Cloud com-
puting. Hybrid algorithms can combine the advantages of multiple algorithms to produce 
better solutions. In terms of search algorithms, a single algorithm has an inherent local 
convergence solution and the solution of the hybrid algorithm needs to satisfy the con-
vergence conditions of multiple algorithms simultaneously (Zhou et al. 2023a). Therefore, 
the convergence solution of the hybrid algorithm is usually better than the corresponding 
single algorithm. PSO-ACS (M and T 2021), mingled with PSO and ACO, applied PSO 
to find the optimal solution of task scheduling and ACO to find the best migration path 
of VMs on PMs. FACO (Ragmani et  al. 2020), a hybrid fuzzy ant colony optimization 
algorithm, exploited a fuzzy module dedicated to pheromone evaluation to improve the 
performance of ACO by optimizing the search route of ACO. Hybrid Genetic-Gravita-
tional Search Algorithm (HG-GSA) (Chaudhary and Kumar 2019) based on gravitational 
search algorithm for searching the best position of the particle consequently optimizing the 
search route of GA. FMPSO (modified PSO + fuzzy theory) (Mansouri et al. 2019) used 
crossover and mutation operators surmounting the local optimum of PSO and applied a 
fuzzy inference system for fitness calculations. SFLA-GA algorithm (shuffled frog leaping 
algorithm + GA) (Kayalvili and Selvam 2019) took advantage of the two algorithms to 
transmit information among groups hence the optimal search route. GHW-NSGA II (Zhou 
et al. 2023b) leveraged heuristic-based search algorithm as an extra search route of NSGA 
II to optimize the utilization of multi-dimensional resources, which improved the conver-
gence speed and optimality on the basis of GA. SPSO-GA (Chen et al. 2022a) combined 
Self-adaptive Particle Swarm Optimization algorithm with Genetic Algorithm operators to 
reduce the energy consumption of the scenario offloading DNN layers Cloud-Edge envi-
ronment. On the basis of SPSO-GA, PSO-GA-G (Chen et al. 2022d) added a greedy algo-
rithm to optimize computation offloading. The combination of multiple meta-heuristics is 
beneficial for improving the overall convergence speed, hence improving search efficiency. 
LPT-One and BFD-One (Zhou et al. 2023a) used heuristic algorithms to act as the search 
routes and combined multiple heuristic-based search routes to improve the approximation 
of minimizing makespan.
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Other hybrid algorithms in Cloud scheduling, include ABC-SA integrating the function-
ality of simulated annealing (SA) into artificial bee colony (Muthulakshmi and Somasund-
aram 2019), SFGA (a hybrid Shuffled Frog Leaping Algorithm and Genetic Algorithm) 
(Ibrahim et al. 2020), TSDQ-hybrid meta-heuristic algorithms based on Dynamic dispatch 
Queues (Alla et al. 2018), etc. These algorithms demonstrated the flexibility, superiority, 
adaptability and mobility of hybrid algorithms and simultaneously manifested the unlim-
ited possibilities and significance of research hybrid structurally.

Similar to meta-heuristic algorithms, hybrid algorithms are also applicable to a vari-
ety of multi-objective problems. However, a hybrid algorithm, with multiple heuristics or 
meta-heuristics as elemental algorithms, cannot exceed the scenarios that the elemental 
algorithms are suitable for, which implies that it is also not suitable for the scenarios with 
implicit �(X, S,V , L).

2.2.4  Summary of classic algorithms

Although the classic algorithms have been applied to various objectives under various sce-
narios and achieved considerable performances, they still do not solve how to calculate 
or evaluate the various elements such as energy, time, load and utilization according to 
the properties of tasks and resources. Therefore, the models of Cloud computing in their 
applications are different from the realistic scenes, which causes them to only be applicable 
when the elements (such as time, cost, energy, and load) are given or easy to calculate. 
This also leads to the difference between the expected performance of these algorithms and 
the actual operational performance in reality. When the mapping of objective �(X, S,V , L) 
is implicit, classic algorithms are unable to guarantee optimality and are even unable to 
obtain feasible solutions. This is because classic algorithms do not provide a method to 
measure the performance of solutions. In addition, for a new optimization problem, classic 
algorithms, without memorability, need to resolve the optimization solution from scratch.

2.3  Machine learning

Before providing a detailed introduction to DRL-based algorithms in Cloud scheduling, 
we give a collection of ML methods used in Cloud scheduling by reviewing literature in 
Table 4. The ML methods used in scheduling problems mainly contain deep learning (DL), 
RL and DRL. In addition, other types of machine learning methods, such as KNN (Khan 
et al. 2022; Lin et al. 2023a) and imitation learning (Guo et al. 2021; Wang et al. 2021b), 
SVM (Lin et al. 2021; Rodrigues et al. 2020), had also been applied in cloud scheduling.

In practice, a Cloud system has several characteristics:

• large scale and complexity of systems that make it impossible to model accurately;
• timeliness of scheduling decisions that demands the high-speed scheduling algorithm;
• randomness of tasks (or requests) including randomness of task numbers, arrival time 

and sizes.

These characteristics are challenging for the research on Cloud scheduling. Most existing 
optimization methods are designed for specific applications (Lin et al. 2023a). When we 
constantly consider more factors in the process of modeling Cloud scheduling, the exist-
ing classic algorithms are no longer applicable. It is tough for one specific meta-heuristic, 
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heuristic and hybrid algorithms to fully adapt to the real dynamic Cloud computing sys-
tems or Edge-Cloud computing systems.

Considering the defects of classic algorithms, ML-related methods can utilize spe-
cific mapping methods to record the computational mode of optimization objectives. This 
addresses the dilemma of evaluating the quality of a solution when �(X, S,V , L) is implicit. 
E.g., the Q-table in Q-learning and various DNNs in DRL both embed the ability to evalu-
ate the quality of a solution with some memorability. While, there is no given target sched-
uling scheme as the label, which makes it impossible to solve the scheduling problem solely 
using DL. One effective approach is to apply DL in meta-heuristic to evaluate the quality 
of solutions using the realistic situation of the system to obtain optimization objectives and 
to train neural networks. This enables meta-heuristics to perform effective searches, such 

Table 4  Machine Learning Methods in Cloud Scheduling

Subcategories Algorithms References

DL NN-DNSGA-II algorithm Ismayilov and Topcuoglu (2020)
DLSC framework Haytamy and Omara (2020)

RL QEEC Ding et al. (2020)
RLVMrB Ghasemi and Haghighat (2020)
RL+Belief-Learning Li et al. (2020c)
Revised RL Sun et al. (2020)
URL Xu et al. (2012)
Q Learning Algorithm Peng et al. (2015)
Bare-Bones RL Kontarinis et al. (2016)
Adaptive RL Lolos et al. (2017a)
Rethinking RL Lolos et al. (2017b)
ML+RM Bianchini et al. (2020)
RL-based ADEC Nouri et al. (2019)

DRL DERP Bitsakos et al. (2018)
A3C RL algorithm Feng et al. (2020); Tuli et al. (2022); Chen et al. (2022c)
RL-based DPM framework Liu et al. (2017)
Deep Q Network (DQN) Li et al. (2020b); Dong et al. (2020); Li et al. (2023)
ADRL Kardani-Moghaddam et al. (2021)
DeepRM-Plus Guo et al. (2021)
PCRA van der Merwe et al. (2007)
Modified DRL algorithm Karthiban and Raj (2020)
DQTS Tong et al. (2020)
MRLCO Wang et al. (2021a)
Multiagent DRL Cao et al. (2020)
DL2 Peng et al. (2021)
DRL+FL Shan et al. (2020)
RLFTWS Dong et al. (2023)
AV-MPO Chen et al. (2023c)
HCDRL Chen et al. (2023a)
DT Wang et al. (2023)
CORA Huang et al. (2023)
DRAW Chen et al. (2023b)
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as NN-DNSGA-II algorithm (combining DL with GA) (Ismayilov and Topcuoglu 2020) 
and DLSC framework (combining DL with PSO) (Haytamy and Omara 2020).

A novel type of ML policy for Cloud scheduling is the combination of DNN and RL, 
called deep reinforcement learning. Different from the combination of DL and meta-heu-
ristic, DRL leverages DNN to act as the solution generator. Integrating the advantages of 
RL and DL, DRL has the following benefits.

• Ability of modeling: it can model complex systems and decision-making policies with 
DNN even when �(X, S,V , L) is implicit;

• Adaptability for optimization objectives: training progress based on gradient descent 
algorithm makes it possible to search the optimization solution for various objectives;

• Adaptability for the environment: DRL can adjust parameters to adapt to various envi-
ronments;

• Possibilities for further growth: DRL can grow over time to process large-scale tasks;
• Adaptability for state-space: DRL can process continuous states or multi-dimensional 

states;
• Memory of experience: DRL possesses the capacity to memory experience with experi-

ence replay.

For the sake of demonstrating the above benefits and further analyzing the challenges of 
DRL in scheduling, the next section will introduce and analyze the framework of RL and 
DRL as the foundation to support the follow-up review and discussion.

3  Analysis of RL and DRL frameworks in scheduling

Machine learning is the discipline of teaching the computer to predict outcomes or clas-
sify objects without explicit programming (Rodrigues et al. 2020). ML is also an artificial 
intelligence discipline of studying how computers simulate or implement human learning 
behavior so that computers can gain new knowledge and skills. Based on learning meth-
ods, ML can be divided into supervised learning, unsupervised learning and semi-super-
vised learning (Rodrigues et al. 2020). RL is one of the unsupervised learning (Nouri et al. 
2019). Based on learning strategy, ML contains Symbol learning, Artificial Neural Net-
works learning, Statistical ML, Bionic ML, etc. DL on the basis of deep artificial neu-
ral networks and RL are two subsets with the intersection of ML, where the intersection 
between DL and RL is DRL. DRL combined with the perception of DL and with the deci-
sion-making ability of RL, has been applied in robot control, computer vision, natural lan-
guage processing and some Go sports (Luong et al. 2019; Wang et al. 2020).

From the scheduling formulation and classic algorithms in Sect.  2, the two key fac-
tors of scheduling are the production and evaluation of solutions. The classic algorithms, 
including heuristics and meta-heuristics, don’t possess the ability to evaluate solutions or 
to predict the status of the system when �(X, S,V , L) is implicit. Therefore, they suffered 
in some realistic scenarios. Due to the combination of DL and RL, DRL has the flexibility 
of adopting DNN to complete any process in solving the scheduling schemes. Meanwhile, 
the RL mechanism in DRL maintains the well-performed solution, as it ensures statisti-
cal advantages of performance through training. RL in DRL, based on the theory of the 
Markov process, is also suitable for dynamic scheduling (Dong et  al. 2023; Chen et  al. 
2023c, a).
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The application of DRL to resolve the scheduling problems in Cloud computing 
emerged in recent years, which is an effective intersection of two emerging technologies. 
DRL has shown superior performance in the current research on the application in Cloud 
scheduling. To support subsequent review of existing research and discussion of challenges 
and future directions, we introduce and analyze the evolution of RL and DRL frameworks 
in this section, which can provide a comprehensive insight into understanding the opera-
tion process of DRL.

3.1  RL framework

Firstly, we introduce and analyze the framework of RL. RL is based on the interaction 
model between the agent and the environment. It instructs the agent to learn the optimal 
action strategy by the feedback from the environment corresponding to the agent’s action. 
The RL model can update the action strategy according to timely feedback and long-term 
feedback. The agent will choose the action on the basis of the action strategy. State-space, 
action-space, environment, feedback (reward), and strategy are five basic elements of RL. 
Figure 5 shows a fundamental structure of RL with these basic elements.

In some of the reviewed literature related to RL (Dong et al. 2020; Kardani-Moghaddam 
et al. 2021; Liu et al. 2017), the feedback is described as a reward. In this paper, we regard 
it as feedback considering that both positive feedback and negative feedback will affect 
the learning progress of the agent’s action strategy (Tong et al. 2020; Guo et al. 2021; Lu 
et  al. 2020). The concept “feedback” originated from cybernetics (Glushkov and Kranc 
1966). Based on the perspective of feedback in RL, RL requires feedback from the envi-
ronment outside of the solver, while meta-heuristics and other search algorithms typically 
rely on evaluation functions; the role of feedback in RL is to update the solver (i.e., affect-
ing how to solve a scheme) (Kaelbling et al. 1996; Gronauer and Diepold 2022; Yan et al. 
2009; Shishira et al. 2016; Zhan et al. 2015), while evaluation functions in meta-heuristics 
or other search algorithms are responsible for update the solution (directly changing the 
scheme). The fundamental framework of RL in Fig. 5 provides a simplified overall struc-
ture, but it is not sufficient to directly solve scheduling problems. Especially, this architec-
ture does not solve the difficulties that we need to face when solving the scheduling prob-
lems mentioned above. Therefore, we need to further evolve the architecture of RL based 
on this foundation framework.

Fig. 5  A fundamental framework of RL
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In another standpoint to comprehend the fundamental structure of RL, the agent learns 
the strategy by trailing error. And trailing error requires the agent to maintain the balance 
between exploration and exploitation. The greedy method, random method and meta-
heuristic method will be used to simulate the decision progress between exploration and 
exploitation. Markov decision process (MDP) is a common model to express the action 
choice process and Bellman Equation, a dynamic programming equation, is a common 
function to update the action strategy. Hence, a framework of RL containing action selec-
tion and strategy update can be shown as Fig. 6.

The framework of RL with action selection and strategy update in Fig. 6 can already be 
used to solve some optimization problems, but has no enough consideration to the tempo-
ral changes in the system state and agent state. Thus, it is not sufficient to solve the time-
related scheduling problem.

In complex scenarios, state and agent vary with time. In addition, the decision should be 
made according to the state and agent in real-time and the feedback from the environment 
will affect strategy directly. Hence, an agent-state-based structure of RL can be shown in 
Fig. 7.

In most realistic scenes, a system is often not completely independent and will alter with 
extrinsic stimulus. The environment in Fig. 7 is actually the internal environment of the 
system which cannot express the overall interferences from other systems to this internal 
system. Hence, the system of RL in Fig. 7 should be regarded as an autonomous system 
because the agent and environment evolve on the autonomous rules. A computer game, 
a Go sport and a language processing problem that covers a large enough amount of data 
may be regarded as an autonomous system because their regulation is quite stable without 
external modification of regulation. The movement of vehicles and antagonistic sports are 
usually affected by external incentives. Then, a Cloud computing system, with time-var-
ying constructive demands, optimization objectives and users’ requests, is not an autono-
mous system. Moreover, the update function of the internal environment for the agent-state 
and the decision-making function is also time-varying such as the revenue ratio of Cloud 
computing is variable in different periods of the same day. Regarding the decision-making 

Fig. 6  A framework of RL with action selection and strategy update
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process as an ensemble, a framework of RL with a time-varying extrinsic stimulus can be 
shown in Fig. 8.

The above frameworks in Fig.  5 → Fig.  6 → Fig.  7 → Fig.  8 constitute the evolution 
process of RL structure from simple to complex. The complicated framework can address 
a lot of problems in decision-making when the input data is discretized. With increasing 
complex input data and the increasing dimensions of agent-state, RL frameworks with-
out leveraging DNN are not applicable, because the decision-makers, such as Q-table, are 
unable to make use of the information of state and feedback without sufficient perception 

Fig. 7  A complex framework of RL based on varying agent-state

Fig. 8  A framework of RL with extrinsic stimulus
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ability, hence the training may not converge. Therefore, it is significant to integrate some 
neural networks to enhance information perception ability, so as to improve the quality of 
optimized solutions.

3.2   DRL framework

Before further analyzing the DRL frameworks, we discuss the framework in Fig. 8 again 
on the sight of mapping of mathematics. In Fig. 8, the decision-maker, which is a complex 
mapping from agent-state to action, is integrated as an ensemble. Some patterns of RL 
focus on the expression of this mapping relationship such as Q-table, Advantage Function, 
Policy Gradient, and Hidden Markov Chain. However, as the sizes and dimensions of state 
space and action space increase, the computational complexity and storage space of these 
patterns will grow exponentially. Furthermore, when the state space is non-discrete which 
appears in the scheduling problem usually, it is difficult to express the mapping relation-
ship in the general methods of RL. Nonhomogeneous Markov process-based RL, one of 
the methods to express the process of time-varying continuous time-space and continuous 
state space, requires solving differential equations with variable coefficients, however. It 
astricts the application of the nonhomogeneous Markov process in RL to solve the problem 
with time-varying continuous time-space and continuous state space. Hence for various 
reasons, a DNN with excellent performance in the establishment of mapping relationship is 
a considerable choice to be a mapper of strategy between state-agent and action. Then, we 
can improve Fig. 8 to a framework using a DNN to express the decision process, shown in 
Fig. 9.

The framework in Fig. 9 is actually DRL, which can deal with more complex scenar-
ios than Fig. 8 by using DNNs to participate in decision-making. Regarding the decision 
process as a mapping process, Fig. 9 enlightens us to reconstruct the structure of Fig. 8 
according to the mapping relation. Then, we can construct the framework in Fig. 8 as five 
mappers including the mapper of time-varying, mapper of stimulus evolution, mapper of 
decision, environment and mapper of feedback as Fig. 10.

The details of each mapper in Fig. 10 are as follows:

Fig. 9  A framework of RL with DNN-based decision-maker (belonging to DRL)



 G. Zhou et al.

1 3

  124  Page 20 of 42

• Mapper of time-varying refers to the relationship between agent-state and time with 
stimulus from extrinsic or internal space. In it, time and update are the input, as well 
as stimulus force is the output.

• Mapper of stimulus evolution refers to the stimulus evolution in agent and state as 
agent and state are usually variable with stimulus where stimulus force is the input 
and the set of agent-state at real-time is output.

• Mapper of decision is responsible for calculating the next action according to the 
current state of the agent where the set of agent-state at this time is input and action 
at next time is output.

• Environment receives actions that the result of the mapper of decision provides, 
evolves according to the action of the agent and then outputs the environment’s state 
at the next time. The output of the environment enters the mapper of feedback as its 
input and enters the mapper of time-varying as the internal stimulus for the agent.

• Mapper of feedback receives the environment’s state, then stores it as replay storage 
in preparation for long-term feedback in the future and takes it as timely feedback 

Fig. 10  A framework of RL with multiple segments of system represented by multiple mappers
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simultaneously. Long-term feedback and real-time feedback will update the param-
eters of the decision-maker.

The framework in Fig. 10 is a generalized RL based on the integration of mappers. In some 
of the experiments, the mapper of time-varying, mapper of stimulus evolution and environ-
ment are usually simulated by the program or observed in real scenes. Mapper of deci-
sion and mapper of feedback can be constructed with DNNs. As the mapper of feedback 
is aimed at updating the parameters of the decision-maker, the mapper of feedback can be 
designed as a neural network to calculate the loss function of the DNN in the mapper of 
decision, hence Nature DQN or Double DQN (Li et al. 2020b; Karthiban and Raj 2020; 
Dong et al. 2020; Cheng et al. 2018) where the neural network of feedback is called as tar-
get network with the same structure of decision’s network. While inherently, the five map-
pers in Fig. 10 can all be represented by neural networks respectively. In some scenes, it 
is difficult to simulate or observe the realistic process of a complex system, and the neural 
network can be used as an end-to-end alternative. An extreme example is that five map-
pers are all expressed with DNNs, shown as Fig.  11. However, existing research, using 
DRL to resolve the scheduling problems in Cloud computing surveyed in this paper, is car-
ried out by replacing one or several of the five mappers with neural networks and has per-
formed well in experiments according to their results, which will be reviewed next section 

Fig. 11  A framework of DRL with multiple DL segments of system
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to support the discussion and analysis of the current situation, challenges and future direc-
tion of DRL in Cloud scheduling.

3.3  Summary

The Cloud environment is a complex and random system with large-scale user requests and 
a complex physical environment, and these user requests and extrinsic physical environ-
ment can be regarded as a time-varying stimulus. In addition, the actual running processes 
of electronic components and software programs are hard to express using simulation. Cru-
cially, the high dimensionality and the continuity of state-space make the mapper of deci-
sion and mapper of feedback difficult to model with conventional methods. In summary, 
the five mappers may have demand to be modeled with implicit expression functions, while 
the DNN is a practical method currently to deliver implicit relation based on sufficient data 
and sufficient training time.

Moreover, the literature adjusts the structure of the neural network (CNN, LSTM, 
full connection, Transformer, etc.), increases the strategy of initialization of neural net-
work parameters, the training strategy of the neural network, prediction or simulation of 
the internal and external environment, and assist with other meta-heuristic algorithms as 
appropriate. With the analysis of the RL framework in this section, we can review and ana-
lyze existing DRL-based methods in Cloud scheduling following this perspective.

4  Overview of DRL‑based scheduling in cloud

Based on the location of the neural network, we review frameworks in surveyed papers. 
In RL, the central component is the mapper of decisions that can conduct the scheduler of 
Cloud computing. In Cloud scheduling using RL, the mapper of decision is usually rep-
resented by a DNN or Q-table. In order to deeply analyze and macroscopically summa-
rize the application of DRL in Cloud scheduling, we organize the information of literature 
structurally. In addition to the information of the literature, we also reorganize the possible 
future work of some literature to provide another probability through the analysis of the 
reviewed literature.

4.1  Literature review

QEEC (Ding et al. 2020) is a Q-learning-based task scheduling framework for energy-effi-
cient Cloud computing using a Q-value table to express the decision-maker of action.

PCRA (Chen et  al. 2022b) is a Prediction-enabled feedback Control with RL-based 
resource Allocation using a feedback control Q-value prediction model to predict the val-
ues of management operations at different system states.

The DeepRM_Plus (Guo et al. 2021) uses a neural network that has a convolution neu-
ral network (CNN) of six layers to describe the mapper of the decision based on the great 
success of DNN in image processing. The center cluster, waiting for queues, and backlog 
queue compose the state of the environment which is represented by an image.

AGH+QL (Sun et al. 2020), a novel revised Q-learning-based model, takes hash codes 
as input states with reduced size of state space.

DQST (Tong et al. 2020), deep Q-learning task scheduling, uses the fully connected net-
work to calculate the Q-values which can express the mapper of action decision.



Deep reinforcement learning‑based methods for resource…

1 3

Page 23 of 42   124 

DERP (Bitsakos et al. 2018) uses three different approaches of a DRL agent to handle 
the multi-dimensional state and to provide elastic VM resources.

Modified DRL (Karthiban and Raj 2020), RLTS (Dong et al. 2020), DRL-Cloud (Cheng 
et al. 2018), and ADRL (Kardani-Moghaddam et al. 2021) also use the structure of action-
value Q network (or called evaluate Q-network (Dong et al. 2020)) and target-Q network. 
Then, their similarities and differences are as follows.

IDRQN (Lu et al. 2020) is a fine-grained task offloading scheme based on DRL with 
Q-network and Target net where the LSTM network layer is used in Q-network and the 
candidate network is used to update Target Net. DPM framework (Liu et al. 2017) based on 
RL, adopts the long short-term memory (LSTM) network to capture the prediction results 
and uses DRL to train the strategy of resource allocation aimed at reducing energy con-
sumption in the Cloud environment. The LSTM network used to predict the state of the 
environment can be regarded as a mapper of time-varying in Fig. 10.

DDQN (Dueling Deep Q-Network) (Li et al. 2020b) contains a set of convolutional neu-
ral networks and a fully connected layer to achieve higher efficiency of data processing, 
lower network cost, and better security of data interaction.

MRLCO (Wang et al. 2021a), a Meta Reinforcement Learning-based method, contains a 
seq2seq neural network to represent the policy.

MADRL (Cao et al. 2020), a novel multi-agent DRL, contains actor-network and critic-
network to generate Q value. The actor-network with the two-layer fully connected net-
work is a mapper from state to action, and the critic-network with two fully connected 
network hidden layers and an output layer with one node is a mapper from state and action 
to Q-value.

DRL+FL (Shan et al. 2020), based on DDQN, uses Federal Learning to accelerate the 
training of DRL agents.

MDP_DT (Lolos et al. 2017a), a novel full-model-based RL for elastic resource man-
agement, employs adaptive state space partitioning.

RLFTWS (Dong et al. 2023) designed a heuristic algorithm for the task allocation and 
execution according to the selected fault-tolerant strategy, as well as developed a DDQN 
to select the fault-tolerant strategy adaptively for each task under the current environment 
state, which is not only prediction but also learning in the process of interacting with the 
environment.

AV-MPO (Chen et al. 2023c), on-policy maximum a posteriori policy optimization with 
gated transformer-XL, used an attention-based DRL algorithm to a Cloud-edge collabora-
tion manufacturing task scheduling.

Other DRL-based scheduling algorithms include HCDRL (Chen et  al. 2023a), DT 
(decision transformer) using GPT (Wang et al. 2023), CORA (Huang et al. 2023), DRAW 
(Chen et al. 2023b), PRLCC (Zade et al. 2022), ReCARL (Xu et al. 2022), etc. These algo-
rithms still belong to the DRL architecture of Fig. 10 analyzed in Sect. 3.

Based on the review and collection of literature, Table 5 provides a summary of multi-
aspects including category and objectives of RL-based algorithms, Table 6 provides a sum-
mary of the mappers, Table 7 provides the summary of scenario and task/server nature, as 
well as Table 8 provides the summary of experimental data and compared baselines.

From Table 5, the DRL method mainly using QL and DQN can address a variety of 
optimization objectives almost covering the existing optimization objectives. Based on 
the analysis for the evolution of the DRL framework in Sect. 3, we can generalize these 
algorithms from the perspective of mappers. In Table 6, DNNs are mainly used to be the 
decision-makers of DRL in scheduling. In DDQN, a target network is used as the mapper 
of feedback. This is consistent with our analysis in Sects. 2 and 3 that the two key factors 
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Table 5  Summary of RL-based algorithms in terms of category and objectives

Algorithm Category Objectives

QEEC (2020) QL Response time, CPU utilization
PCRA (2022b) QL Cost, Qos
MDP_DT (2017a) QL Cost
AGH+QL (2020) QL Energy consumption, QoS
MRLCO (2021a) MRL Network traffic, service latency
DeepRM_Plus (2021) DRL Turnaround time, cycling time
DERP (2018) DRL Automatic elasticity
DPM (2017) DRL Task latency, energy consumption
DQST (2020) DQL Makespan, load balancing
MDRL (2020) DDQN Energy consumption, response time
RLTS (2020) DDQN Makespan
DRL-Cloud (2018) DDQN Energy consumption, cost
ADRL (2021) DDQN Resource utilization, response time
IDRQN (2020) DDQN Energy consumption, service latency
MADRL (2020) DDQN Computation delay, channel utilization
DDQN (2020b) DDQN Service latency, system rewards
DRL+FL (2020) DDQN Energy consumption, load balancing
RLFTWS (2023) DDQN Makespan, resource utilization
AV-MPO (2023c) DDQN Customer satisfaction, load balancing

Table 6  Summary of RL-based algorithms in terms of the mappers of decision and other mappers

Algorithm Mappers of Decision Other Mappers

QEEC (2020) Q-value table –
PCRA (2022b) Q-value table –
MDP_DT (2017a) Q-value table –
AGH+QL (2020) Q-value table –
MRLCO (2021a) Seq2seq neural network –
DeepRM_Plus (2021) CNN of six layers –
DERP (2018) FC –
DPM (2017) FC LSTM to capture the prediction results
DQST (2020) FC -
MDRL (2020) Action-value Q network Using target-Q network as mapper of feedback
RLTS (2020) Action-value Q network Using target-Q network as mapper of feedback
DRL-Cloud (2018) Action-value Q network Using target-Q network as mapper of feedback
ADRL (2021) Action-value Q network Using target-Q network as mapper of feedback. 

Neural network to perceive the state of environ-
ment

IDRQN (2020) LSTM Using target-Q network as mapper of feedback
MADRL (2020) Actor-critic network Using target network as mapper of feedback
DDQN (2020b) A set of CNN and FC Using target-Q network as mapper of feedback
DRL+FL (2020) Two FC of DNNs Using target network as mapper of feedback
RLFTWS (2023) FC Using target-Q network as mapper of feedback
AV-MPO (2023c) Attention network Using target network as mapper of feedback
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for scheduling are production and evaluation of schemes. This also indicates that these two 
factors are the difficulties in scheduling problems. By incorporating different strategies and 
networks into the corresponding mapper in Fig. 10, we can obtain the corresponding RL-
based scheduling algorithms. On this basis, the additional strategies are mainly aimed at 
improving training speed, perception ability, accuracy of the evaluation for the solution and 
optimality. From Table 7, DRL methods are mainly used for dynamic or online schedul-
ing, and they are not only applicable to heterogeneous resources and independent tasks but 
also to dependent tasks and non-preemptive tasks, which demonstrates DRL methods have 
wider application scenarios. From Table 8, DRL methods outperform many existing sched-
uling algorithms. This re-verifies our analysis in Sect. 2 that before actually executing the 
tasks in server nodes, classic algorithms cannot accurately evaluate or predict the quality 
of optimization schemes in dynamic scheduling of complex scenarios. Using DNN, DRL 
can obtain the performance of a scheme and guide for further improvement of the solution.

In the reviewed literature, strategies of queuing, accelerating training, partitioning 
state space of the agent, capturing resource state, keeping the stability of rewards, etc., 
are proposed to optimize the performance of algorithms. In order to more accurately 
analyze the advantages of the DRL methods (or RL) in this literature, we collect the 
advantages of each literature according to the description in the corresponding litera-
ture. Then, their details are listed in Table 9. Combined with the results and conclusion 
in the reviewed literature, future work of DRL-based algorithms (or RL) in reviewed 
literature are listed in Table 10. With the structural information listed in tables, we can 
deeply discuss existing DRL-based methods in Cloud scheduling.

Table 7  Summary of RL-based algorithms in terms of scenario and task/server nature

Algorithm Scenario Task/server nature

QEEC (2020) Online task scheduling Independent heterogeneous servers
PCRA (2022b) Dynamic resource scheduling Independent tasks
MDP_DT (2017a) Dynamic resource scheduling Dynamic tasks
AGH+QL (2020) Resource scheduling in C-RANs Traffic demand in wireless networks
MRLCO (2021a) Adaptive task offloading Multiple tasks with inner dependencies
DeepRM_Plus (2021) Online resources scheduling Independent tasks
DERP (2018) Dynamic resource scheduling Dynamic tasks
DPM (2017) Online resources scheduling Dynamic tasks
DQST (2020) Dynamic online task scheduling Non-preemptive task, heterogeneous 

server
MDRL (2020) Dynamic resource scheduling Depended tasks, heterogeneous servers
RLTS (2020) Dynamical tasks scheduling Depended tasks, heterogeneous servers
DRL-Cloud (2018) Resource provisioning Tasks with dependencies
ADRL (2021) On-time VMs scheduling Dynamic tasks
IDRQN (2020) Task offloading Depended Tasks; heterogeneous servers
MADRL (2020) Multichannel access and task offloading Joint multichannel access
DDQN (2020b) Online resource scheduling Delay-tolerant data computing tasks
DRL+FL (2020) Dynamic resource scheduling Dynamic tasks
RLFTWS (2023) Dynamic workflow scheduling Dynamic dependent tasks; heterogeneous 

server
AV-MPO (2023c) Dynamic task scheduling Dynamic dependent tasks
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4.2  Discussion

Based on the above review of RL-based Cloud scheduling especially based on the infor-
mation listed in Tables 9 and 10, we summarize the current situation and advantages of 
DRL (and RL) in Cloud scheduling as follows.

• DRL has strong adaptability for continuous or high dimensional state space; adapt-
ability for scheduling scenarios and various optimization objectives of Cloud com-
puting.

• DRL has the flexibility to adopt various DNNs as the mappers to predict some 
implicit information, so as to improve the optimality of scheduling.

• The main scenario closest to a realistic scene used RL to solve in reviewed litera-
ture is a dynamic online multi-resources scheduling problem in a Cloud computing 
environment or Edge-Cloud computing environment which can contain dependent or 
independent tasks, workflows, and homogeneous or heterogeneous servers.

• In the reviewed literature, experiment results showed DRL can achieve better perfor-
mance than various commonly compared algorithms such as Randomization, FCFS, 
Round-robin, Greedy, Q learning, MDP, QDT, FIFO, HEFT, FA, and SDR. And 
these algorithms together with Conventional DQN can be regarded as baselines to 
evaluate other algorithms in the future.

Table 8  Summary of RL-based algorithms in terms of experimental data and compared baselines

Algorithm Experimental data Compared baselines

QEEC (2020) Simulated data by CloudSim MMS-RANDOM, MMS-FAIR, MMS-
GREEDY, basic QL and improved 
QL

PCRA (2022b) Simulated data ML-based and rule-based methods
MDP_DT (2017a) Simulated and real data MDP, QDT, Q-learning
AGH+QL (2020) Simulated data Pure Q-learning, DRL
MRLCO (2021a) Simulated data Fine-tuning DRL, HEFT-based, Greedy
DeepRM_Plus (2021) Simulated data, Alibaba-Cluster-trace-

v2018
Random, FCFS, SJF, HRRN, Tetris, 

DeepRM
DERP (2018) Okeanos service’ data MDP, Q-learning, MDDPT, QDT
DPM (2017) Google cluster traces DRL, Round-robin
DQST (2020) Simulated data by WorkflowSim FCFS, MAXMIN, MCT, MINMIN, RR
MDRL (2020) Simulated data by CloudSim FIFO, Greedy algorithm
RLTS (2020) Simulated data HEFT, CPOP, Lookahead, PEFT
DRL-Cloud (2018) Google cluster-usage traces Greedy, FERPTS, Round-robin
ADRL (2021) Simulated data by CloudSim Over-utilized, Under-utilized, DRL
IDRQN (2020) Simulated data by iFogSim DQN, HERDQN, IDQN, DRQN
MADRL (2020) Simulated data by TensorFlow Actor-critic; DQN; Greedy
DDQN (2020b) Simulated data Conventional DQN, Greedy, Random
DRL+FL (2020) Simulated data Centralized DDQN, DRLRA, SDR, 

LOBO
RLFTWS (2023) Simulated data RPFTWS, RSFTWS, RI, NC
AV-MPO (2023c) Real data from CMfg PPO, SAC, DDQN
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• DDQN is the most commonly used model to solve the scheduling problem in 
Cloud computing as well as in some Edge-Cloud computing of reviewed literature 
(Karthiban and Raj 2020; Dong et al. 2020; Cheng et al. 2018; Lu et al. 2020; Xu 
et al. 2017b; Kardani-Moghaddam et al. 2021; Li et al. 2020b; Cao et al. 2020; Shan 
et al. 2020). Its common framework can be drawn as Fig. 12. The DDQN contains 
two networks, action-value Q network and target-Q network, with the same structure 
(Shan et al. 2020; Wang et al. 2020). The action-value Q network can generate the 
Q-value of the action corresponding to the current state. Additionally, the target-Q 
network can generate target value based on real-time feedback and long-term feed-
back to obtain the loss function to train the action-value Q network. Simultaneously, 

Table 9  Summary of RL-based algorithms in terms of strategies and advantages

Algorithm Strategies and advantages

QEEC (2020) M/M/S to reduce the average waiting time of task; dynamic task ordering strategy 
to promote the quality of Cloud services

PCRA (2022b) Multiple prediction learners for making accurate Q-value prediction, which make 
automatic decisions through interacting with the environment without prior 
knowledge

MDP_DT (2017a) Adaptively partitions the state space utilizing novel statistical criteria and strategies 
to perform accurate splits

AGH+QL (2020) Anchor graph hashing can accelerate training; hash codes can reduce size of state 
space

MRLCO (2021a) Seq2seq neural network to represent the offloading policy; new training method 
combining the first-order approximation

DeepRM_Plus (2021) Imitating learning to accelerate convergence and CNN to capture the state of 
resource

DERP (2018) DERP does not demand space Partitioning; DERP with three aspects manages to 
collect rewards

DPM (2017) Using LSTM Network to predict workload which can eliminate the vanishing gradi-
ent problem

DQST (2020) Entropy weight method to produce a high-quality solution of bi-objective optimiza-
tion

MDRL (2020) DRL can adapt to scalable state space; fair resource allocation helps reduce the 
underlying practical problems

RLTS (2020) Utilization of DQN to describe the relationship between state-agent and action
DRL-Cloud (2018) Experience replay, target networks as well as exploration and exploitation can 

accelerate converge speed
ADRL (2021) Using an anomaly detection model to identify performance problems and to 

increase awareness of the environment
IDRQN (2020) LSTM to estimated value; candidate networks to decouple the action selection and 

action value evaluation
MADRL (2020) Combination of actor-critic and DQN can improve performance of algorithm
DDQN (2020b) DDQN can keep stability of reward
DRL+FL (2020) Combination of DRL and FL can improve the performance in training
RLFTWS (2023) Two groups of neural networks with the same structure are designed to reflect the 

two different goals
AV-MPO (2023c) The transformer layers can better perceive scheduling status and evaluate the quality 

of optimized solutions
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the wide application of DDQN also shows that the DRL model has strong adaptabil-
ity and portability for various scheduling scenarios and optimization objectives.

• DRL can also be leveraged to address multi-objective scheduling problems, while the 
previous methods to solve multi-objective optimization problems are mainly meta-heu-
ristic algorithms.

• The major policies in reviewed literature using DRL (or RL) contain several aspects:

– Adjusting the structure of decision-mapper to DNN or Q-table;
– Strategies to accelerate training of (deep) RL such as the periodical update;
– Partition strategies for state-space;
– Federal learning to improve convergence and stability;
– Strategies to perceive current states or to predict subsequent states of the agent in 

RL;
– Policies to provide loss function to train main-net in DRL.

5  Challenges and future directions for DRL‑based scheduling

With the comprehensive review and analysis of the previous sections, we can discuss the 
challenges and future direction of DRL in Cloud scheduling.

Table 10  Future work of RL-based algorithms

Algorithm Future work

QEEC (2020) To investigate meta-heuristic to increase the performance; to establish various 
queuing model to satisfy realistic scenes

MDP_DT (2017a) To combine the strategies of MDP_DT with DQN to solve complex scenarios
AGH+QL (2020) To combine anchor graph hashing with DRL
MRLCO (2021a) To apply an adaptive client selection algorithm to automatically filter out stragglers
DeepRM_Plus (2021) To apply other policies such as Actor-Critic network and DDPG; to analyze the 

state recognition analytically
DERP (2018) To combine DERP with federate learning; to design intercommunicate framework 

of simple DRL, full DRL and DDRL
DPM (2017) To combine LSTM predictor and CNN to reduce energy
DQST (2020) To establish model of energy consumption or multi-objective
MDRL (2020) To consider dependent tasks and workflow
DRL-Cloud (2018) To utilize it in dynamic scheduling and static scheduling
ADRL (2021) To applied parameter initialization strategy and combination of DRL and semi-

supervised learning to accelerate training
IDRQN (2020) To apply transfer learning to heterogeneous MEC; to utilize federate learning to 

solve multi-objectives problems
MADRL (2020) To use gated recurrent units of the network to predict channel conditions
DDQN (2020b) To apply it in other issues such as energy efficiency
DRL+FL (2020) To utilize the combination of FL and DRL in other scenarios
RLFTWS (2023) More objective and the deadline constraints of workflows can be considered
AV-MPO (2023c) More attention is paid to the improvement of the training efficiency of existing 

algorithms. More attention-based RL algorithms will be applied to solve multi-
objective problems
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Although DRL-based scheduling algorithms have performed advantages in the 
reviewed literature. DRL, as a complex, non-analytic and time–costing algorithm (Luong 
et  al. 2019), has inevitable challenges to address the scheduling problems in real large-
scale Cloud computing systems. Based on the comprehensive review of the existing Cloud 
scheduling and the investigation of the actual operation process, we collect the main chal-
lenges and defects using DRL to solve scheduling problems in Cloud computing as follows: 

(1) DRL consumes large computing power and occupies prodigious complexity in the pro-
gress of training and computation especially for multi-clusters or large-scale systems. 
Thus, DRL requires a certain period of time before it can be put into use. For scenarios 
with single and computable objectives, using DRL is not cost-effective.

(2) The scheduling results based on DRL are still unpredictable, so the performance of the 
worst case is hard to evaluate. Therefore, the probability of system collapse caused by 
extremely poor scheduling schemes is not 0.

(3) Real scheduling also depends on the prediction of dynamic tasks without preemp-
tive and prior knowledge. Since DRL is based on DNN to perceive system states and 
generate solutions, its performance is highly dependent on the accuracy of DNNs. 
The training dataset of DRL is limited to cover scenarios in the real system. Thus, it is 
necessary to retrain the DRL model for a new scenario.

(4) Gradient descent algorithm used in DRL or Bellman Equation used in QL have inher-
ent restrictions which will lead to local optimization rather than global optimization. 

Fig. 12  A framework of DDQN of DRL for scheduling
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Additionally, the training labels of DRL in scheduling are usually not the global optimal 
solutions. There is currently a lack of public reliable datasets for its training. These 
will result in a significant gap between the DRL solution and the theoretically optimal 
solution.

(5) Unexplainability of training process challenges for the theoretical derivation based 
on mathematics techniques. Modeling and theoretical derivation of high dimensional 
continuous state space demand the development of mathematics.

(6) Antagonism network, federal learning, mathematical logic, Nonhomogeneous Markov 
process, hidden Markov process and other policies can be utilized in DRL or RL while 
existing DRLs are mainly based on homogeneous Markov process. For Nonhomogene-
ous Markov processes, the results involve the solution of matrix differential equations 
with variable coefficients, which is difficult currently.

The solution to these challenges requires more pursuit of theoretical research based on the 
improvement of mathematical theory such as Markov Decision Processes (Luong et  al. 
2019; Sun et  al. 2020), Gradient Descent Theory (Wang et  al. 2020; Guo et  al. 2021), 
Matrix theory (Sun et  al. 2020) and Discrete Mathematics, as well as requires more 
research of real objects in realistic scenarios such as thermal conversion process, calcula-
tion process, driving process by electric signal and voltage switching process over the time 
of components. Nevertheless, research on DRL utilizing in Cloud scheduling still has con-
siderable potential, which can advance modeling for complex scenes, theoretical modeling 
for ML, reduction of computational complexity, the flexibility of scheduling algorithms 
and theoretical research on existing algorithms in principle.

According to the previous review and analysis, some of the future directions utilizing 
RL especially DRL in Cloud scheduling can be summarized as follows.

(1) DRL can combine other policies or approaches to meet complex scenes and multi-
objectives, which has been verified in experiments of reviewed literature. Therefore, its 
application mode in a realistic engineering environment to reduce the risk of excessive 
computational complexity is a noteworthy direction.

(2) As the RL is one category of non-supervised learning, one of the crucial issues is how 
to train the main network of the decision-mapper in DRL. The main net in DRL can be 
represented by CNN, LSTM, Transformers, etc. Setting various training strategies can 
accelerate the convergence speed of DRL, enabling it to participate in generating sched-
uling schemes more quickly. Some policies to improve the convergence performance 
of DRL contain leverages of meta-heuristic method and imitating learning (Guo et al. 
2021). Queue model is also a crucial aspect to increase the performance of schedulers 
such as M/M/S queuing model (Ding et al. 2020) and M/G/1 queuing model (Li 2009).

(3) Application pattern of DRL to assist other analyzable scheduling algorithms such as 
FCFS, Hungarian algorithm, LPT algorithm, Johnson’s algorithm and more.

(4) It a potential direction to adjust and improve the mappers based on the existing archi-
tecture of Fig. 10, so as to widen the adapted scenarios and improve the optimality of 
DRL. E.g., combining with the reviewed literature and our research, we integrate and 
gain a framework of modified DDQN combined various approaches and networks to 
solve scheduling problems of Cloud computing, especially for realistic scenarios as 
Fig. 13.

(5) The exploration of more novel roles of DRL is also a practical research direction, e.g., 
DRL can perform as a system strategist to boost the process of selecting methods, as 
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specific approaches are able to adapt specific scenarios (Zhou et al. 2022). To illustrate 
its possible novel role, a Deep Q-learning-based framework of the scheduler is pre-
sented in Fig. 14 used to schedule various scheduling algorithms for different scenarios, 
which can be called a scheduler of scheduling algorithm aiming to give full play to the 
superiorities of all scheduling algorithms and considering that all the algorithms are 
part of anthroposophy. In this framework, the scheduling algorithms are regarded as 
resources that can be automatically selected and DRL-based algorithms are not only 
components of resource scheduling algorithms but also strategies to guide the selection 
of specific scheduling algorithms. DRL-based algorithm selector is one such attempt, 
whose framework can be seen in Fig. 15 (Zhou et al. 2022). From Zhou et al. (2022), 
it is not recommended to use a single algorithm for all scenarios.

(6) Additional bases for the application of DRL in scheduling problems are baselines and 
benchmarks. We summarize the characteristics of baselines and benchmarks as follows.

A baseline should possess the following properties.

(a) The baseline is easy to construct and implement;
(b) It has reproducibility and performance stability;
(c) It can adapt to multiple scenes, objectives and experiments with variable scales;
(d) It should include various types of algorithms;
(e) Its performance can be proved theoretically or has recognized conclusion;
(f) It should have been optimized to a certain extent and should contain; some state-

of-the-art representing the characteristics of their types;

Fig. 13  Framework of modified DDQN combined various approaches and networks of references
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(g) The compared experiments should reduce the influence of parameter adjustment 
as much as possible and reserve the inherent performance of the algorithm.

A benchmark should possess the following properties.
(a) It should be easy to reproduce and calculate;
(b) It should contain data from multiple scenarios and be as close as possible to real 

scenarios;

Fig. 14  Two phases Q learning-based scheduler used to schedule various scheduling algorithms

Fig. 15  A framework of DRL-based selector with various strategies (Zhou et al. 2022)
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(c) It can be applied to the experimental verification of a variety of optimization 
objectives;

(d) It should have a dynamic scale rather than a single scale which can avoid the 
performance optimization caused by adjusting parameters;

(e) If there is a random experiment, a benchmark should have enough sampling times;
(f) It should have certain control variables to verify the advantage of local strategy;
(g) It should contain enough extreme scenarios, especially on some parameter bound-

aries;
(h) The comparison is relatively fair, such as comparing the solutions generated under 

the same computational cost;
(i) It can test the algorithm running under a variety of devices and components.

(7) Other potential directions used DRL to solve scheduling problems in Cloud computing 
still demand further research, which can be listed as follows. 

(a) How to construct a novel well-performed framework of RL or DRL and how to 
construct a novel well-performed DNN in DRL?

(b) How to accelerate the training or reduce the calculation complexity of (deep) RL 
to enhance its transferability?

(c) How to ensure the stability of the results under the application of DRL to resolve 
scheduling problems in large-scale Cloud computing to avoid the risk caused by 
extremely poor schemes?

(d) How to construct the deducible optimization theory?
(e) How to build a flexible scheduling system combining various scheduling algo-

rithms to cope with time-varying objectives?
(f) How to capture agent-state of DRL accurately?
(g) How to improve other categories of methods to address pervasive scheduling 

problems not only in Cloud computing but also in other distributed systems?

6  Conclusions

In this paper, we provide a universal formulation of scheduling and review various types of 
scheduling algorithms in Cloud. Two key factors of scheduling are the production and eval-
uation of solutions. By analyzing the formulation and algorithms of scheduling, we dis-
cuss the defects of classic algorithms, which also demonstrate the necessity of DRL-based 
methods for scheduling. To assist the acquaintance of DRL in Cloud scheduling, we pro-
vide the analysis for the evolution of RL frameworks (including DRL) from the perspective 
of mappers. On the basis of analysis for RL frameworks, we provide a survey of existing 
DRL-based methods in Cloud scheduling. Then, we analyze and discuss the advantages, 
challenges and future direction of DRL-based Cloud scheduling.

From this surveyed work, we can see that the application of DRL in resource sched-
uling of Cloud computing is an effective and non-substitutable technique. Simultane-
ously based on the reviewed literature, some of the main advantages of DRL used in 
resource scheduling are adaptability and portability to scenarios and optimization objec-
tives because the use of DNN enables DRL to describe the higher dimensional and or 
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continuous agent’s state space when the objective is implicit or hard to calculate, which 
allows DRL-based methods to achieve better performance in many complex scenarios 
such as the dynamic resource scheduling of large-scale Cloud computing for dependent 
tasks and heterogeneous servers. Due to the combination of DL and RL, DRL-based 
scheduling algorithms can solve some scheduling problems that the classic algorithms 
are unable to solve.

With the reviews of existing works, we discuss the challenges of DRL in Cloud sched-
uling. The main challenges of using DRL in Cloud scheduling are complexity, unexplain-
ability and local convergence of the training process, as well as the unpredictability of 
scheduling results. Then, we provide several potential directions for future research of DRL 
in Cloud scheduling based on these challenges. In future directions, in addition to com-
bining other policies to reduce the complexity and improving structures of DRL, we also 
propose a point of view of using DRL as an algorithm selector for scheduling. Moreover, 
we also list the properties required for the baseline and benchmark of DRL-based Cloud 
scheduling.

Based on the above work in this paper, we can see that DRL has significant potential 
in Cloud scheduling deriving abundant research directions. Regarding all algorithms as 
resources, how to combine DRL with other types of algorithms to solve more difficult 
scheduling problems (i.e., scheduling algorithm selectors) is still worthy of continuous 
exploration and research.
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