
A Deep Reinforcement Learning Approach to
Resource Management in Hybrid Clouds

Harnessing Renewable Energy and Task Scheduling
Jie Zhao, Maria A. Rodrı́guez and Rajkumar Buyya
Cloud Computing and Distributed Systems Laboratory

School of Computing and Information Systems
The University of Melbourne, Australia

Email: zhao.j4@student.unimelb.edu.au, {maria.read, rbuyya}@unimelb.edu.au

Abstract—The use of cloud computing for delivering appli-
cation services over the Internet has gained rapid traction.
Since the beginning of the COVID-19 global pandemic, the
work from home scheme and increased business presence online
have created more demand for computing resources. Many
enterprises and organizations are expanding their private data
centres and utilizing hybrid or multi-cloud environments for their
IT infrastructure. Because of the ever-increasing demand for
computing resources, energy consumption and carbon emission
have become a pressing issue. Renewable energy sources have
been recognized as clean and sustainable alternatives to fossil-
fuel based brown energy. However, due to the intermittent nature
of availability of renewable energy sources, it brings many
challenges to automatically and efficiently schedule tasks under
renewable energy constraints and deadlines. Task scheduling with
traditional heuristic algorithms are not able to adapt quickly
with changing energy availability and stochastic task arrival.
In this regard, this work aims at building a novel scheduling
policy with deep reinforcement learning, which automatically
applies scheduling techniques like workload shifting and cloud
-bursting in a geographically distributed hybrid multi-cloud
environment consists of multiple private and public clouds. Our
primary goals are maximizing renewable energy utilization and
avoiding deadline constraint violations. We also introduce user
configurable hyper-parameters to enable multi-objective schedul-
ing on cloud cost, makespan and utilization. Our experiment
results show that the proposed scheduling approach can achieve
the aforementioned objectives dynamically to varying renewable
energy availability.

I. INTRODUCTION

Cloud computing was predicted to be the 5th utility in
2009, and now the vision has been realized [1]. During the
past decade, cloud computing has seen massive adoption and
rapid expansion [2]. This trend has been growing even faster
after the COVID-19 global pandemic took hold, thanks to
the massive work-from-home scheme and increasing online
business presences. Many enterprises and organizations are
migrating workloads to public clouds while still utilizing their
existing on-premise private clouds, which is known as hybrid
clouds. According to the Flexera 2021 State of the Cloud
Report Survey [3], 99% of 750 participating enterprises have
adopted at least one public or private cloud; and 92% are using
multi-cloud and hybrid cloud.

With this ever-increasing demand, energy consumption and
carbon emission of Cloud Data Centres (CDC) emerged as
a pressing issue for the environment. According to Interna-
tional Energy Agency (IEA), global data centre electricity
consumption was around 200 Tera-Watt hours (TWh) in 2019
and is projected to grow to 270 TWh in 2022 [4]. If all
CDCs are combined as a virtual country, this projected figure
would be ranked at No. 16 and more than the national
energy consumption of Australia [5]. In addition, CDCs are
hugely contributing to the global emission, which has a larger
impact of environment. Hence, policymakers around the world
are setting targets to reduce energy consumption and carbon
emission. Many countries, such as the UK, France, Denmark
and New Zealand, have set target and legislation to reach
Net-Zero emission target by 2050; this means simultaneously
reducing and removing greenhouse gas emission to reach a
zero-sum total carbon emissions [6]. In this regard, the IT
industry and computing research community must play its role
to help to achieve this goal, therefore, sustainable computing
has become an important research trend in recent years. [7]

One essential way to realize the goal of sustainable cloud
is to utilize clean renewable energy sources like solar, wind or
hydroelectric energy. Naturally, renewable energy availability
is intermittent due to constantly changing weather conditions,
e.g. in the case of solar energy, production is significantly
lower on a cloudy day or nil at night-time. Thanks to recent
technological advancements and cost reduction in battery
storage like LG Solar [8], Tesla Powerwall [9], Samsung SDI
[10], etc., batteries can help to stabilize renewable energy
supply fluctuation. Also, since the cost of such a system
continues to decrease and help from government initiatives
is available across the globe, small to medium businesses are
increasingly interested in powering their on-premise comput-
ing infrastructure with solar energy and batteries. This brings
a unique opportunity for utilizing renewable energy for two
reasons: 1) These private clouds are usually small to medium
scale and can be powered entirely with renewable energy; 2)
With regard to workload, it is quite common in both industry
and academia to see computational tasks with flexible start
time but strict deadlines(e.g. accounting department is doing

last month’s reconciliation but only need the result by 15th of
this month.)

A recent study by Xu et al. [11] shows that an optimal
matching of energy demand with supply provides the best
ratio of renewable energy utilization. However, optimising
renewable energy usage while orchestrating the workload to
satisfy the various quality of service (QoS) metrics remains
an open research challenge. Task scheduling is an NP-Hard
combinatorial optimization problem, and adding requirements
like satisfying QoS and deadline while under renewable energy
constraints makes it even more challenging.

To create scheduling policies that are autonomously adap-
tive to the environment, recently, Reinforcement Learning
(RL) has caught a lot of attention in the research community.
By combining deep neural network (DNN) as a function
approximator, deep reinforcement learning (DRL) has been
proved to work well in the previously infeasible RL problem
[12]. Moreover, many works have recently explored applying
DRL for task scheduling [13]–[15], which has shown feasi-
bility of such solutions in real cloud environments. In this
regard, we set out to employ the DRL technique to tackle
the aforementioned scheduling problem and challenges with
a combination of one or more existing techniques mentioned
above in an autonomous and self-adaptive way. We propose
a model-free approach based on proximal policy optimization
(PPO) [16] to maximize renewable energy while still satisfying
hard deadline constraints. We use stochastic workload size and
arrival time. To evaluate our policy, we compare it to classical
heuristic, and deep Q-learning network(DQN) based policies.

The main contributions of the paper are as follows:
• We propose a model-free PPO-based task scheduling

algorithm in a geographically distributed heterogeneous
hybrid cloud environment to harness renewable energy
while still satisfying deadline constraints.

• We propose DRL approach to match demand with renew-
able energy supply through automatic workload shifting,
and use cloud-bursting when resource is insufficient.

• We study a combination of neural network architecture
and DRL algorithms in the mentioned scheduling and
decision-making problem and compared their perfor-
mance in terms of convergence and various metrics;

• We experiment with real-world solar energy data and
workload with stochastic characteristics in a controlled
simulation environment.

The remainder of the paper is structured as follows. In Sec-
tion III-B, we present an overview of the studied problem and
describe the proposed system architecture. After that, related
studies are summarized in Section II. Section III presents the
problem formulation of the scheduling and control problem in
this paper. It is then followed by experimental setup, evaluation
results, observations and discussions in Section V. Section VI
concludes the work and discusses future research directions.

II. RELATED WORK

In this section, we explain the related works relevant to the
background of our research problem. Figure 1 illustrates solar

Fig. 1. An Example of Solar Energy Utilization Inefficiency

generation and consumption pattern during a 24-hour period.
The centre area is electricity generated by a solar system,
and the other area is power consumption by a small scale
private cloud. This example shows a utilization inefficiency
when renewable energy is at its peak, and the system is
still consuming brown energy when renewable energy is not
available. Assuming task start time are flexible, an optimal
solution is to shift tasks into time slots when more renewable
energy is available.

The research community has a long history of proposing
new approaches for building green data centres and energy-
aware scheduling algorithms to solve this problem (See Table
I. In their 2009 paper, Steward and Shen [28] briefly em-
phasized the importance of coordinated research of resource
management and renewable energy utilization. Goiri et al.
proposed GreenSlot in 2011 and implemented a renewable
energy-aware scheduler as an extension of SLURM. [29] They
further evolved their idea and developed a small scale micro
green data centre named Parasol [17], which utilized solar
energy to process MapReduce jobs. However, their studies
did not consider geographically distributed data centres. By
shifting the workload to geographically distributed data cen-
tres, renewable energy utilization can be maximized while
still guaranteeing acceptable QoS levels. More recent works
employed various techniques like VM consolidation [?], [19],
online VM migration and dynamic placement [20], [30], fuzzy
logic [22], optimal workload distribution [31], distributed
DVFS [23], Brownout [24], Powercapping [32] etc. Xu et. al
[11] formulated the scheduling problem as a Markov Decision
Process(MDP) and solved it with value iteration. Most of
the previous works are either use heuristics or mathematical
analysis to produce scheduling policies, however, heuristics are
generally hand-crafted by experts and does not adapt well in
environments such as Cloud workloads and renewable energy
availability.

Recently, using DRL as a resource management and task
scheduling technique was sparked by Mao et al. in their paper
titled DeepRM [13], they formulated task packing problem
into a learning problem and used the policy gradient method
to achieve good performance. Since the climate change issue
gained many traction lately, many works have proposed DRL
based techniques to utilize renewable energies or improve
energy efficiency, e.g, DRL-Cloud [25], RLScheduler [33],

TABLE I
COMPARISON OF RELATED WORK

Work Approach Geo Distributed Renewable Energy Cloud Cost Deadline Techniques Workload Type Decision Level
[17] MILP with Gurobi Solver 7 3 7 7 Energy Prediction, Solver MapReduce, Mixed Single
[18] Greedy Algorithm 7 3 7 3 Energy Prediction, Greedy Algorithm Scientific Workflow Single
[19] Heuristic 7 7 7 3 VM Consolidation PlanetLab Single

[20], [21] Heuristic 3 3 7 3 VM Migration and Dynamic Placement Lublin-Feitelson Single
[22] Fuzzy Logic 3 3 7 7 Load Balancing Google Trace Single
[23] DRL(Q-Learning) 3 3 7 7 Distributed DVFS Google Trace Single
[24] Approximate MDP 7 3 7 7 Brownout PlanetLab Single
[11] Heuristic 7 3 7 3 VM Consolidation, Scaling, Brownout, Shift Mixed Multiple
[25] DRL(DQN) 7 7 7 3 Energy Efficient Scheduling Google Trace Multiple
[26] DRL(DDQN) 7 7 7 3 Energy Efficient Scheduling MiBench Single
[27] DRL(A3C) 3 7 3 3 Energy Efficient Scheduling Bitbrain Single

This Work DRL(PPO) 3 3 3 3 DVFS, Workload Shift, Cloud Bursting Stochastic Single

DRL

Scheduler

TasksTasks

TasksTasks

TasksTasks

Servers

Servers

Servers
Host Controller

Host Controller

Host Controller

Fig. 2. System Architecture

DQL-EES [26], A3C-R2N2 [27]. These aforementioned works
all try to minimize SLA violation instead of considering it as
a hard constraint. However, many workloads in both industry
and academia have a flexible start time but strict deadline. Our
trained policy automatically uses cloudbursting at the right
time to guarantee deadline constraints are met in case that
renewable energy or computational resources are insufficient
in local data centres.

III. SYSTEM ARCHITECTURE AND MODEL

A. System Architecture and Challenges

In this section, we present the proposed system architecture
and then describe problem formulation. Figure 2 depicts the
system architecture considered in our study. We consider a
hybrid cloud model comprised of m geographically distributed
private data centres (DC) DCL = {DCL

1 , DC
L
2 , . . . , DC

L
m}

and a public cloud denoted as DCP . Each DC consists of
n DVFS-enabled hosts Hm,n = {H11, H12, . . . ,Hmn} and
equipped with renewable energy source with backup source
such as battery or grid. In private DCs, heterogeneous servers
are modelled, where some servers have lower CPU frequency
but higher energy efficiency, while others are much faster but
resource-hungry and anywhere in between. We use container
orchestration platforms provided by CSPs such AWS Elastic

Container Services (ECS) or Microsoft Azure Containers in
the public cloud. These allow a user to dynamically provision
and scale down to zero with no associated cost.

The goal of our work is to automatically shift workload
to maximize renewable energy utilization and control pub-
lic cloud cost while still meeting strict QoS requirement
(deadline). We propose reaching this objective by intelligently
scheduling tasks to different servers based on energy avail-
ability and deadline constraints. To achieve the QoS objective
while there is no adequate renewable energy or computing
capacity, we propose using a public cloud service provider
in a dynamically on-demand provisioned manner. Usually,
performance, energy and cloud cost are conflicting objectives,
and there is always a trade-off to be made in a multi-objective
optimization problem. We use configurable hyper-parameters
to allow configuration of preference, which will be discussed
further in Section IV.

To achieve an optimal scheduling policy, a few challenges
need to be addressed:

1) Workload Shifting: The system needs to decide when to
start tasks based on their resource requirement, deadline
constraint and available renewable energy so that they
are executed efficiently without exceedingly using brown
energy.

2) Task Assignment: In a heterogeneous environment, for
example, ARM64 based servers run slowly but are more
energy efficient (performance per watt) than their X86
counterpart; multi-core performing CPU consume more
energy but completes tasks much faster, which server
to place a task is also a hard problem due to deadline
constraints;

3) Cloud Provisioning: In case of insufficient local resource
availability, the right timing to provision more resources
in a public cloud is also a non-trivial task. Provisioning
of public cloud resources too early may incur unneces-
sary cost because local resources may become available
before the deadline; in contrast, provisioning too late
may cause deadline violation.

4) Cloud Scaling: Related to the challenge above, what type
of computing resource to provision is also challenging.
Higher performance VM cost more but may result in a
resource wastage, while lower ones may be too slow to
complete the assigned tasks on time.

5) Stochastic Environment: Aforementioned challenges be-

Fig. 3. Concept Diagram of DRL

come even more difficult when considering an envi-
ronment with stochastic job arrival. For example, the
scheduler decides to delay the current task based on the
current situation, but another demanding task arrives;
QoS violation is inevitable in this situation; however,
DRL can be used to minimize regret similar to a multi-
armed bandit problem.

B. Background of DRL

Due to the aforementioned challenges, explicitly program-
ming the scheduler is a non-trivial task. Hence, we sought
a DRL-based approach to automatically learn an adaptive
optimal policy for scheduling problems. DRL agents can
sample from an environment or a simulator therefore the
agents need only to be guided by a reward function.

The basic conceptual diagram of DRL is shown on Figure
3. In a typical DRL system, the main components are the
environment and the agent. [34] The agent has its own view
of the environment called observations or states. Depending
on the current state, the agent takes action steps based on its
DNN output and receives a reward from the environment. The
learning process is for the agent to take a series of actions
to maximize its cumulative reward over a period of time and
update its DNN to make better decisions.

In our system, the agent is the DRL scheduler making
scheduling and control decisions, and the environment in-
cludes the private and public cloud data centre, renewable en-
ergy generator, and tasks to be scheduled. The DRL scheduler
observes the system state and takes series of steps to achieve
the design objectives. It receives tasks from users and decides
either to shift the workload by holding it in the scheduler’s
queue, sending it to a server in a private DC, or providing
a resource in a public cloud. After taking action, the agent
receives a reward from the environment in the training process
and tries to maximize the reward it receives in a certain time
period. At each DC level, the servers can be controlled by
rule-based host controllers, sending the server to sleep mode
or power off idle servers. On task arrival, the host controller
sends commands to wake up or power up the destination server
through IPMI or PDM commands.

TABLE II
MODEL PARAMETERS.

Symbol Definition
DCL

m, DC
P
m mth private/local (L) or public (P) Data Centre

PDC
m Total Power Consumption of mth Data Centre
Pm,i Power Consumption of ith host in mth Data Centre
Hm,i ith host in mth Data Centre
C Per second cost of energy and cloud Cgreen, Cbrown, Ccloud

REDC
m Total Available Renewable Energy at mth Data Centre

Task Parameters
λn Arrival rate of task n
Sn Task Size n
Rn Resource Requirements for Task n, RCPU

n , RMem
n , RStorage

n

CTn Completion Time for Task n
Dn Deadline constraint of task n

Hyper Parameters
TS Scheduling Time Slot

100 200 300 400
Power(W)

0.0

0.2

0.4

0.6

0.8

1.0

Op
s p

er
 se

co
nd

(1
e7

)

1e7 Power and Ops Correlation
HP DL380 G10
Dell R740
Dell R6525

0 20 40 60 80 100
Utilization(%)

100

200

300

400

Po
we

r(W
)

Power and Utilization Correlation
HP DL380 G10
Dell R740
Dell R6525

Fig. 4. Utilization, Power and Ops Correlation

C. System Model

In this Section, we describe the system model. The notations
used in this paper can be found in Table II.

a) Assumptions: We assume that once tasks are received
by servers in a private CDC, it will complete them. We do
not consider task migration or task failure mitigation in this
study. We assume each private data centre has battery or grid
to power through the nighttime when all servers are idle, in
sleep mode or powered off.

b) Energy Consumption Model: We adopt the host power
model from real-world server measurement results published
according to SPECPower and choose three recent models with
CPU from Intel and AMD [35]. Many studies show that
although physical server power consumption is determined by
various components, they have a linear correlation with CPU
load. [19], [21]. However, as shown on Figure 4 based on real
measurement, we argue that the lower 10% utilization is non-
linear. For example, at idle, HP DL380 consumes 49.3W but
the figure jumps more than double to 118W at 10%. Hence,
to improve accuracy, we assume a linear relationship within
each 10% interval.

P server
i =

P idle
i + (P 0.1

i − P idle
i)× ui ui ≤ 0.1

P 0.1
i + (Pmax

i − P 0.1
i)× ui 0.1 < ui ≤ 1

P off
i otherwise

(1)

where Pi denotes the power consumption of host i at CPU
utilization ui in the data centre; ui ∈ [0, 1] represents the CPU
utilization of host i. We adopt the server size Java operation
per second (SSJOPS) metric from SPECPower for our task and
server model for computing the server load. Since the numbers
are quite large for the latest servers, we used MSSJOPS in our
simulator, where 1 MSSJOPS = 106 × SSJOPS.

c) Non-IT Component Power Model: In addition to
server power consumption, other non-IT components like cool-
ing systems in data centres also consume significant energy.
To calculate non-IT power consumption, we use a simple
analytical model based on Power Usage Efficiency (PUE) in
our simulator. PUE is defined as

PUE =
P total∑n
i=1 Pi

(2)

where P total denotes the total power consumption of the
whole DC and power consumed by all servers. In our sim-
ulator, we set this variable to a constant accordingly to the
latest PUE figure published by Google: PUE = 1.11. [36]
Therefore, total energy consumption of mth data centre can
be calculated as P dc

m =
∑i

k=1 PUE × Pk.
d) Workload Model: We consider an immutable

container-based computational intensive workload. The
container workload may have simple tasks or complex
workflows inside its execution logic; however, the
containerized workload can be modelled after a simple
demand of computing resources from a modelling perspective.
Each host can run many containers at a certain time period up
to the limit of available CPU cores on each host. We assume
required resources are known and specified by users or the
users provide an estimate when submitting the tasks. For each
task, it has arrival time λn, size Sn, resource requirements
{RCPU

n , RMem
n , RStorage

n } and a deadline Dn.
e) Cost Model: We represent per-second cost as

Cgreen, Cbrown, CCloud
t for green renewable energy, brown

energy and cloud monetary resource cost. The cost of execut-
ing a task was calculated in the following two conditions:

1) Private: In case the scheduler sends a task to a server
in a private DC, and if that DC’s energy consumption
is below its available renewable energy, we consider
Cgreen as 0, since the renewable energy infrastructure
has already been invested and renewable energy is
available freely.

2) Public: If we need to send the task to a public cloud,
the total cost is computed based on provisioned cloud
VM type. Brown energy price is computed for the agent
to make a cost-effective decision on whether to send the
task to the public cloud or execute it locally using brown
energy.

f) Optimization Objectives: The major objectives of this
work are to maximize total renewable energy utilization; in
other words, control DC power consumption to minimize
renewable energy wastage across data centres; at the same

time, minimize public cloud cost when renewable energy is
not enough.

Minimize :

m∑
i=1

∫
(REDC

m(t) − P
DC
m(t))d(t) (3)

Minimize :

n∑
k=1

CCloud
k (4)

Subjectto : CTn <= Dn (5)

In addition, we introduce a few other metrics like makespan
and server utilization as hyper-parameters, further detail will
be explained in reward metrics in Section IV.

IV. DRL SCHEDULER DESIGN AND IMPLEMENTATION

In this section, we present the design and implementation
of our proposed DRL-based task scheduler. Due to the afore-
mentioned challenges, we use a model-free approach. The
DRL agent learns to perform optimally with the guidance
of a reward function and state observations. This model-free
approach differentiates itself from heuristic and meta-heuristic
based methods. DRL technique does not require any prior
knowledge, while (meta)heuristics need expert knowledge
to write program logic to achieve optimization objectives
explicitly. Firstly, we describe our renewable energy and
deadline constraint problem formulation as a series of decision
problems; afterwards, we detail the design and implementation
of our algorithm.

Environment: We implemented our scheduler using
Python 3.8, OpenAI Gym [37] and PyTorch [38]. In addition,
we utilized Stable Baseline 3 (SB3) [39], a commonly used,
open-source and well-tested DRL library, as our training
framework and base algorithms implementation. We adopted
the Proximal Policy Optimization (PPO) [16] algorithm in this
work.

Observation Space: We used a continuous state space in
our design, represented by a large vector of float numbers
normalized to a [−1, 1] space. This helps to stabilize the
training process and makes it a lot easier to debug. The
elements of the vector are described in sequence as below.

• Time of Day: As we harness renewable energy like solar,
time of day is an important metric. We normalized it
into a continuous space [−1, 1] where −1 means 00:01
at the current day and 1 means 00:00 at the next day.
The normalization is not a necessity but rather a design
choice. We found it is easier to compute various metrics
if we use a symmetrical normalization, since the highest
production of solar energy is usually around noon(value
0).

• Renewable Energy: A vector of predicted available re-
newable energy in the next time slot Td; the values
contained in the vector are normalized with the full solar
system capacity as a parameter.

• DC Power Consumption: A vector of power consumption
of each DC in the scheduling time slot; the values are also
normalized with the full system capacity.

• Incoming Job: A vector of incoming job attributes, also
normalized by a set of parameters of allowed maximums.

• Server Load: Load of all servers in private data centre
combined into a single large vector, computed based on
every server’s currently executing tasks and all tasks in
the queue.

• Public Cloud Cost: Cost of public cloud in the last time
slot Td; cloud cost observations are normalized by a
parameter of configurable daily maximum;

Server specification such as power consumption and speed
at idle and maximum load is static variables, and dynamic
power consumption can be calculated with server load. We
consider these static metrics as common knowledge between
the scheduling agent and the environment. It helps to reduce
observation space.

Action Space: In our model, we define a discrete action
space with n actions described below. The scheduler makes
a decision on job arrival, or when a job in its queue reaches
start time, then it takes the following actions:

1) Action 0: The scheduler does nothing; it pushes the
current incoming job by Td seconds back into its pro-
cessing queue and wait for already scheduled jobs to be
processed;

2) Action [1,m ∗ i] ∈ N : Flattened index of ith server in
mth private data centres, the scheduler sends task to ith
server and remove it from queue;

3) Action [m ∗ i+ 1, n]: The scheduler sends the task to a
type of public cloud VM decided by the action.

Reward Function: We define and normalize our reward
function as a float number in a [−1, 1] space since we find
it works well in our experiments. Since the agent is guided
by a single real value, reward shaping is necessary for the
algorithm to know how good or bad an action is. The agent
receives a positive reward when it performs well, e.g. having
energy consumption under a renewable budget, scheduling
to the right server at the right time, public cloud spending
is under budget, etc. On the contrary, it receives a negative
reward when it makes a bad decision as a penalty. The reward
function design is inspired by Tuli et al. [27]). In their work,
the authors defined several loss functions normalized to [0, 1]
space and as a convex combination and used a few parameters
to enable customization of scheduling goal. We adopted a
similar strategy but normalized to a symmetric space with
several objective weight sums to [−1, 1] space. Since we use
both positive reward and punishment, this design choice allows
easier distinguish between reward and penalty and stabilizes
the training process. The reward metrics we use in this study
are listed as below:

1) Renewable Energy Utilization (REU) is defined as the
difference between power consumption and available
renewable energy. If the agent uses more energy than
available renewable energy, the environment gives a
penalty, or otherwise 0. A positive reward is not given
since completing tasks is also given rewards; it is to
avoid double-rewarding.

2) Cloud Cost Reward (CCR) is defined as the normalized
value of cloud cost in the last scheduling time step in
relation to a user-defined maximum daily budget. When
the agent spends more on the public cloud, it receives a
larger penalty.

3) Deadline Violation (DV) is defined as a proportional
task that violated deadline constraint in relation to total
completed jobs. Since we consider deadline as a hard
constraint, we set the weight of this metric to a higher
value than all other rewards.

4) Makespan Reward (MR) is defined as total time used to
complete tasks in a trajectory. The weight of this reward
is set to a rather small value since our main objective is
REU, CCR and DV. During our experiments, we found if
a longer makespan is not penalized, at some stage, our
agent shows a procrastination syndrome which means
delay everything until the last minute.

5) Utilization Reward (UR) is defined as a balance of
utilization of servers, and we penalize imbalanced task
assignment if some servers are getting too many tasks.
This penalty is also introduced for a similar reason as
MR, if the penalty is not present and the deadline allows,
the agent tends to send many tasks to the most efficient
server for the highest reward while the others are sitting
idle.

6) Task Reward(TR) is defined as the reward an agent re-
ceived for completed a task. A higher reward is given for
completing a harder task. Since a harder task naturally
consume more energy or incur a higher cloud cost, the
agent needs to find the right balance between this reward
and other penalties, resulting in a better policy. Also,
with the discount factor γ, the agent will complete the
same task earlier to get a higher reward.

To allow user configurable settings for a multi-objective
optimization, we introduced hyper-parameters similar to [27].
Thus,

TotalReward = a×REU + b× CCR+ c×DV
+d×MR+ e× UR+ f × TR

a, b, c, d, e, f ≥ 0

a+ b+ c+ d+ e+ f = 1

(6)

Because each individual reward are normalized, the total
reward an agent can receive in each step is still bounded in a
symmetrical [−1, 1] space.

V. MODEL TRAINING AND PERFORMANCE EVALUATION

In this section, we describe our experiment settings, training
procedure and evaluation.

A. Dataset

For deep reinforcement learning-based research, it is com-
mon to run the algorithm training in a simulated environ-
ment, because training in a real setup is too slow and often
infeasible for large complex production environments [33].
Our experiment uses the Pareto distribution to generate job

0 20000 40000 60000 80000 100000
Job Arrival Time(s)

0

1000

2000

3000

4000

5000

6000

7000

8000
Jo

b
Si

ze
(M

SS
JO

PS
)

Example of Pareto Distribution(scale=100, shape=1.5)

Fig. 5. Pareto Job Size with Poison Arrival

size and the Poisson distribution to produce job arrival time.
It allows us to study our proposed policy’s performance
under different loads while mimicking real-world workload
characteristics such as stochastic but steady arrival rate, with
some occasional bursts. An illustration of generated tasks with
scale = 100, shape = 1.5 is shown in Figure 5. We trained
our policy with a few sets of generated tasks and validated
using a different seed.

B. Environment Setup

The infrastructure considered in our study is shown in
table III, we consider 3 DCs equipped with 2 servers of
each type in each DC. For public cloud, we use 4 types of
cloud instances in our model, m5.{x, xl, 2xl, 4xl}large which
costs $0.12/h, $0.24/h, $0.48/h, $0.96/h, respectively. The M5
type of general-purpose instance is equipped with Intel Xeon
Platinum 8175M. Since this CPU is specifically made for AWS
by Intel and provides no publicly available data, we assume
its performance is slightly slower than the Intel Xeon 8180
in the same generation. Hence, we use the 8180 measurement
data minus a 5% margin.

C. Training Process

We use Spartan HPC [40] equipped with Xeon E5-2650
v4(2.2 GHz) and multiple NVidia T100 GPUs for hyper-
parameters and neural network architecture search. First, we
use the HPC cluster to try a few combinations of hyperparam-
eters and neural network architectures and run the training
process for a limited epoch/time steps to see its metrics
and convergence behaviour. If the combination’s performance
looks promising, we further conduct a longer training on a
workstation machine with AMD Ryzen 5900X(3.7GHz boost
to 4.8 GHz), NVidia GTX 3070 (8G) graphic card and
64G RAM. The reason behind this choice is that we found
simulation of the DRL environment is CPU bound; using a
CPU with a higher base clock can significantly accelerate
the training process (about 2.5x in our case). Also, the new
TensorCore in NVidia’s Ampere architecture [41] improves
training speed significantly.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Traing Steps 1e7

3.25

3.00

2.75

2.50

2.25

2.00

1.75

1.50

1.25

Re
wa

rd

Fig. 6. Reward During Training

For our model training, the hyper-parameter that works
well are as follow: learning rate = 1e − 4, batch size =
64, layers = [256, 128, 64, 32], optimizer = Adam, γ =
0.95, nstep = 1024. Other hyper-parameters are using default
implementation in SB3 [39].

The baseline algorithms used in the comparison include
Round Robin (RR), Maximum Renewable Least Utilization
First (MR-LUF) and DQN. The advantages of heuristic al-
gorithms are their simplicity to understand and implement.
For example, RR chooses hosts in order regardless of their
utilization. In MR-LUF, we first find the data centre with the
maximum difference between renewable energy and schedule
the task to the server with the least load in that DC. We
also compared with a DQN based DRL algorithm which is
commonly used in many studies.

Figure 6 shows the reward function during training. The
agent receives maximum reward at around 3× 106 steps and
doesn’t improve much further with more time for training.
We are interested to see if the policy can be improved further,
hence, we continue the training until 2×107. The figure clearly
indicates the policy has converged and further training didn’t
improve the policy.

D. Results and Discussion

To evaluate the trained agent, we run an experiment with
2000 jobs based on the probability distribution described in
Section IV but with a different seed, hence, a new sequence of
workload size and arrival time is generated. Then, we compare
the performance with baseline algorithms in terms of energy
consumption and cloud cost in a 24-hour period.

Figure 7 shows the cumulative summary of energy con-
sumption for the experiment. Some jobs are pushed to the
next day by the DRL agents, and 1764 jobs are completed
at the end of the day. These delayed jobs are taken out of
the result for a fair comparison, and their energy consumption
records are also removed. RR, MRLUF, DQN and Proposed
algorithm consume 9307W, 10409W, 7430W, 6806W of en-
ergy, respectively. Hence, the proposed DRL policy reduce
energy consumption by 26.87%, 34.61%, 8.40% compared
to RR, MRLUF, and DQN, respectively. The result clearly
indicates both DRL based agents can help save energy by

TABLE III
CONFIGURATION OF HOSTS IN THE EXPERIMENT SET UP

Name Processor Cores RAM SPEC Power(W)/SSJOPS for different utilization
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Dell PowerEdge R6525 AMD EPYC 7702 2.0GHz 64C/128T 128GB 81.6 188 214 236 258 280 305 331 358 382 404
0 1117236 2228757 3348739 4463523 5577282 6688097 7809749 8917380 10044691 11115782

Dell R740 Intel Xeon Platinum 8280 2.7GHz 28C/56T 188GB 49.8 114 137 159 182 208 240 277 319 376 432
0 580574 1165221 1745535 2325614 2909373 3491467 4077942 4648443 5217814 5811114

HP DL380 Gen10 Intel Xeon Platinum 8180 2.50GHz 28C/56T 96GB 49.3 118 145 173 203 237 271 308 366 419 461
0 575883 1154607 1730201 2307605 2885565 3459701 4039806 4624500 5187730 5758036

0 500 1000 1500

0

2500

5000

7500

10000

No. of Jobs

E
ne

rg
y

C
um

su
m

(W
)

Proposed
DQN
RR
MRLUF

Fig. 7. Cumulative Summary of Job Energy

200 400 600 800

0

1000

2000

3000

4000

No. of Jobs

E
ne

rg
y(

W
)

1-RR
2-MRLUF
3-DQN
4-Proposed

Fig. 8. Energy Consumption after Different Number Job Completion

shifting tasks to when more renewable energy is available.
Figure 8 shows cumulative energy after n job completion. The
trend continues after 800 jobs; hence, the diagram is truncated
for clarity and conserving space. This diagram exhibits the
same energy-saving as Figure 8, when more and more jobs
come, the proposed DRL based workload shifting technique
will save more energy.

Figure 9 shows the public cloud cost of the experiment. Note
that we are not using cloudbursting in our baseline heuristic
algorithms because we focus on a model-free approach in this
work. Therefore, RR and MRLUF are not showing in the
diagram. We found DQN and the proposed algorithm perform
similarly in terms of overall performance because they are
both trained to convergence. PPO based agent saves a bit
more energy while sending more tasks to the public cloud.

0 500 1000 1500

0

1

2

3

4

No. of Jobs

C
os

t(
A

U
$)

Proposed
DQN

Fig. 9. Cumulative Summary of Job Cost

Also, it converges much faster than DQN in training therefore
saves energy. We consider energy a primary concern in this
work as long as the cloud costs are controlled under a certain
budget. Hence, we consider the proposed PPO based algorithm
superior to the DQN based one.

In comparison to the baseline algorithms, our work shows
DRL-based algorithms can learn a better scheduling policy
in complex environments without a model. However, the
approach still has its limitations. In practical application, if the
infrastructure changes, we will require model retraining. For
example, adding or removing a physical server or introducing
newer public cloud tiers will change the action space. Fur-
thermore, although we used stochastic workload and arrival
time in our experiment, the workload still satisfies certain
characteristics. In the real world, some unseen workload may
occur from time to time which may cause the policy to perform
poorly.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we proposed a PPO-based DRL approach to
optimize utilization of renewable energy in a hybrid multi-
cloud environment. The proposed approach comprises the
complex heterogeneous multi-cloud scheduling problem under
renewable and deadline constraint. Our experiments show
DRL is a promising technique for controlling complex system
and make sequential decisions in the cloud resource manage-
ment field. Model-free DRL can self-learn a better scheduling
policy without expert knowledge and explicit programming
like traditional heuristics and meta-heuristic based approaches.

Despite this, carefully designing the reward function and
developing simulators in DRL training still require much
expertise in the problem domain. Hence, as part of future work,

we will explore the possibility of using machine learning to
determine the reward function automatically. Although DRL-
based approach can adapt workload to some extent, changing
of observation and action space or neural network architecture
requires model retraining. To apply and test it in real-world
test-beds, this process need to be automated and the scalability
of proposed approach need to be further explored.

Acknowledgement: We thank Shashikant Ilager for proof-
reading and suggestions to improve the quality of this paper.

REFERENCES

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud
computing and emerging IT platforms: Vision, hype, and reality for
delivering computing as the 5th utility,” Future Generation Computer
Systems, vol. 25, no. 6, pp. 599–616, 2009.

[2] R. Buyya, S. N. Srirama, G. Casale, R. Calheiros, Y. Simmhan,
B. Varghese, E. Gelenbe, B. Javadi, L. M. Vaquero, M. A. S. Netto,
A. N. Toosi, M. A. Rodriguez, I. M. Llorente, S. D. C. D. Vimercati,
P. Samarati, D. Milojicic, C. Varela, R. Bahsoon, M. D. D. Assuncao,
O. Rana, W. Zhou, H. Jin, W. Gentzsch, A. Y. Zomaya, and H. Shen,
“A manifesto for future generation cloud computing: Research directions
for the next decade,” ACM Computing Surveys, vol. 51, no. 5, pp. 1–38,
2019.

[3] 2021 STATE OF THE CLOUD REPORT. [Online]. Available:
https://info.flexera.com/CM-REPORT-State-of-the-Cloud

[4] Data centres & networks - fuels & technologies. [Online]. Available:
https://www.iea.org/fuels-and-technologies/data-centres-networks

[5] List of countries by electricity consumption.
Page Version ID: 1009400219. [Online]. Avail-
able: https://en.wikipedia.org/w/index.php?title=List of countries by
electricity consumption&oldid=1009400219

[6] (2020) UK net zero target. [Online]. Available: https:
//www.instituteforgovernment.org.uk/explainers/net-zero-target

[7] S. S. Gill and R. Buyya, “A taxonomy and future directions for sus-
tainable cloud computing: 360 degree view,” ACM Computing Surveys
(CSUR), vol. 51, no. 5, pp. 1–33, 2018.

[8] Solar batteries and solar battery storage | LG solar energy australia.
[Online]. Available: https://www.lgenergy.com.au/products/battery

[9] Powerwall | tesla. [Online]. Available: https://www.tesla.com/powerwall
[10] Samsung SDI ESS(energy storage system) - index | samsung SDI.

[Online]. Available: https://www.samsungsdi.com/ess/index.html
[11] M. Xu, A. N. Toosi, and R. Buyya, “A self-adaptive approach for

managing applications and harnessing renewable energy for sustainable
cloud computing,” IEEE Transactions on Sustainable Computing, no. 01,
pp. 1–1, Aug 2020.

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[13] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource man-
agement with deep reinforcement learning,” in Proceedings of the 15th
ACM Workshop on Hot Topics in Networks - HotNets ’16. ACM Press,
2016, pp. 50–56.

[14] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Al-
izadeh, “Learning scheduling algorithms for data processing clusters,”
in Proceedings of the ACM Special Interest Group on Data Communi-
cation. ACM, 2019, pp. 270–288.

[15] H. Mao, S. B. Venkatakrishnan, M. Schwarzkopf, and M. Alizadeh,
“Variance reduction for reinforcement learning in input-driven environ-
ments,” arXiv preprint arXiv:1807.02264, 2018.

[16] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[17] Í. Goiri, W. Katsak, K. Le, T. D. Nguyen, and R. Bianchini, “Parasol
and greenswitch: Managing datacenters powered by renewable energy,”
ACM SIGPLAN Notices, vol. 48, no. 4, pp. 51–64, 2013.

[18] I. Goiri, R. Beauchea, K. Le, T. D. Nguyen, M. E. Haque, J. Guitart,
J. Torres, and R. Bianchini, “GreenSlot: Scheduling energy consumption
in green datacenters,” in SC ’11: Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2011, pp. 1–11, ISSN: 2167-4337.

[19] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient dynamic
consolidation of virtual machines in cloud data centers,” Concurrency
and Computation: Practice and Experience, vol. 24, no. 13, pp. 1397–
1420, 2012.

[20] A. Khosravi, S. K. Garg, and R. Buyya, “Energy and carbon-efficient
placement of virtual machines in distributed cloud data centers,” in
European Conference on Parallel Processing. Springer, 2013, pp. 317–
328.

[21] A. Khosravi, L. L. Andrew, and R. Buyya, “Dynamic vm placement
method for minimizing energy and carbon cost in geographically dis-
tributed cloud data centers,” IEEE Transactions on Sustainable Comput-
ing, vol. 2, no. 2, pp. 183–196, 2017.

[22] A. N. Toosi and R. Buyya, “A fuzzy logic-based controller for cost
and energy efficient load balancing in geo-distributed data centers,” in
2015 IEEE/ACM 8th International Conference on Utility and Cloud
Computing (UCC). IEEE, 2015, pp. 186–194.

[23] C. Xu, K. Wang, P. Li, R. Xia, S. Guo, and M. Guo, “Renewable
energy-aware big data analytics in geo-distributed data centers with
reinforcement learning,” IEEE Transactions on Network Science and
Engineering, vol. 7, no. 1, pp. 205–215, 2018.

[24] M. Xu and R. Buyya, “Energy efficient scheduling of application
components via brownout and approximate markov decision process,”
in International Conference on Service-Oriented Computing. Springer,
2017, pp. 206–220.

[25] M. Cheng, J. Li, and S. Nazarian, “Drl-cloud: Deep reinforcement
learning-based resource provisioning and task scheduling for cloud ser-
vice providers,” in 2018 23rd Asia and South Pacific Design Automation
Conference (ASP-DAC). IEEE, 2018, pp. 129–134.

[26] Q. Zhang, M. Lin, L. T. Yang, Z. Chen, and P. Li, “Energy-efficient
scheduling for real-time systems based on deep q-learning model,” IEEE
transactions on sustainable computing, vol. 4, no. 1, pp. 132–141, 2017.

[27] S. Tuli, S. Ilager, K. Ramamohanarao, and R. Buyya, “Dynamic schedul-
ing for stochastic edge-cloud computing environments using a3c learning
and residual recurrent neural networks,” IEEE Transactions on Mobile
Computing, 2020.

[28] C. Stewart and K. Shen, “Some joules are more precious than others:
Managing renewable energy in the datacenter,” in Proceedings of the
workshop on power aware computing and systems. IEEE, 2009, pp.
15–19.

[29] Í. Goiri, K. Le, M. E. Haque, R. Beauchea, T. D. Nguyen, J. Guitart,
J. Torres, and R. Bianchini, “Greenslot: scheduling energy consumption
in green datacenters,” in Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis,
2011, pp. 1–11.

[30] A. Khosravi, L. L. Andrew, and R. Buyya, “Dynamic vm placement
method for minimizing energy and carbon cost in geographically dis-
tributed cloud data centers,” IEEE Transactions on Sustainable Comput-
ing, vol. 2, no. 2, pp. 183–196, 2017.

[31] C. Qu, R. N. Calheiros, and R. Buyya, “Mitigating impact of short-term
overload on multi-cloud web applications through geographical load
balancing,” Concurrency and Computation: Practice and Experience,
vol. 29, no. 12, p. e4126, 2017.

[32] Faqiang Sun, Huawei Li, Yinhe Han, Guihai Yan, and Jun Ma, “Pow-
erCap: Leverage performance-equivalent resource configurations for
power capping,” in 2016 Seventh International Green and Sustainable
Computing Conference (IGSC), 2016, pp. 1–8.

[33] D. Zhang, D. Dai, Y. He, F. S. Bao, and B. Xie, “Rlscheduler:
an automated hpc batch job scheduler using reinforcement learning,”
in SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 2020, pp. 1–15.

[34] Part 1: Key concepts in RL — spinning up documentation.
[Online]. Available: https://spinningup.openai.com/en/latest/spinningup/
rl intro.html

[35] K.-D. Lange, M. G. Tricker, J. A. Arnold, H. Block, and
S. Sharma, “SPECpower ssj2008: driving server energy efficiency,”
in Proceedings of the 3rd ACM/SPEC International Conference
on Performance Engineering, ser. ICPE ’12. Association for
Computing Machinery, 2012, pp. 253–254. [Online]. Available:
https://doi.org/10.1145/2188286.2188329

[36] Efficiency – data centers – google. [Online]. Available: https:
//www.google.com/about/datacenters/efficiency/

[37] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “OpenAI gym,” 2016.

https://info.flexera.com/CM-REPORT-State-of-the-Cloud
https://www.iea.org/fuels-and-technologies/data-centres-networks
https://en.wikipedia.org/w/index.php?title=List_of_countries_by_electricity_consumption&oldid=1009400219
https://en.wikipedia.org/w/index.php?title=List_of_countries_by_electricity_consumption&oldid=1009400219
https://www.instituteforgovernment.org.uk/explainers/net-zero-target
https://www.instituteforgovernment.org.uk/explainers/net-zero-target
https://www.lgenergy.com.au/products/battery
https://www.tesla.com/powerwall
https://www.samsungsdi.com/ess/index.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro.html
https://doi.org/10.1145/2188286.2188329
https://www.google.com/about/datacenters/efficiency/
https://www.google.com/about/datacenters/efficiency/

[38] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc.,
2019, pp. 8024–8035.

[39] (2021) Stable baselines 3. [Online]. Available: https://github.com/
DLR-RM/stable-baselines3

[40] L. Lafayette, G. Sauter, L. Vu, and B. Meade, “Spartan performance
and flexibility: An hpc-cloud chimera,” OpenStack Summit, Barcelona,
vol. 27, 2016.

[41] NVIDIA ampere architecture: The heart of the modern data
center. [Online]. Available: https://www.nvidia.com/en-au/data-center/
ampere-architecture/

https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3
https://www.nvidia.com/en-au/data-center/ampere-architecture/
https://www.nvidia.com/en-au/data-center/ampere-architecture/

	Introduction
	Related Work
	System Architecture and Model
	System Architecture and Challenges
	Background of DRL
	System Model

	DRL Scheduler Design and Implementation
	Model Training And Performance Evaluation
	Dataset
	Environment Setup
	Training Process
	Results and Discussion

	Conclusions and Future Work
	References

