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A B S T R A C T

Edge/fog computing, as a distributed computing paradigm, satisfies the low-latency requirements of ever-
increasing number of IoT applications and has become the mainstream computing paradigm behind IoT
applications. However, because large number of IoT applications require execution on the edge/fog resources,
the servers may be overloaded. Hence, it may disrupt the edge/fog servers and also negatively affect IoT
applications’ response time. Moreover, many IoT applications are composed of dependent components incurring
extra constraints for their execution. Besides, edge/fog computing environments and IoT applications are
inherently dynamic and stochastic. Thus, efficient and adaptive scheduling of IoT applications in heterogeneous
edge/fog computing environments is of paramount importance. However, limited computational resources on
edge/fog servers imposes an extra burden for applying optimal but computationally demanding techniques.
To overcome these challenges, we propose a Deep Reinforcement Learning-based IoT application Scheduling
algorithm, called DRLIS to adaptively and efficiently optimize the response time of heterogeneous IoT
applications and balance the load of the edge/fog servers. We implemented DRLIS as a practical scheduler in
the FogBus2 function-as-a-service framework for creating an edge–fog–cloud integrated serverless computing
environment. Results obtained from extensive experiments show that DRLIS significantly reduces the execution
cost of IoT applications by up to 55%, 37%, and 50% in terms of load balancing, response time, and weighted
cost, respectively, compared with metaheuristic algorithms and other reinforcement learning techniques.
1. Introduction

The past few years have witnessed the rapid rise of the Internet
of Things (IoT) industry, enabling the connection of people to things
and things to things, and facilitating the digitization of the physical
world [1]. Meanwhile, with the explosive growth of IoT devices and
various applications, the expectation for stability and low latency is
higher than ever [2]. As the main enabler of IoT, cloud computing
stores and processes data and information generated by IoT devices.
Leveraging powerful computing capabilities and advanced storage tech-
nologies, cloud computing ensures the security and reliability of stored
information. However, servers in the cloud computing paradigm are
usually located at a long physical distance from IoT devices, and the
high latency caused by long distances cannot efficiently satisfy real-
time IoT applications. Prompted by these issues, edge and fog comput-
ing have emerged as popular computing paradigms in the IoT context.
Although some researchers use the terms edge computing and fog
computing interchangeably, we clearly define them in this paper. We
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consider the case that use ‘‘only’’ edge resources for real-time IoT ap-
plications as edge computing, and the case that use edge and whenever
necessary also utilizes cloud resources (along with edge resources in a
seamless manner) as fog computing. Edge computing as a decentralized
computing architecture brings processing, storage, and intelligent con-
trol to the vicinity of IoT devices [3]. This flexible architecture extends
cloud computing services to the edge of the network. In contrast, the
fog computing paradigm inherits the advantages of both cloud and
edge computing [4], which not only provides powerful computational
capabilities but also reduces the need to transfer data to the cloud for
processing, analysis, and storage, thus reducing the inter-network dis-
tance. In the real world, edge and fog computing provide strong support
for innovation and development in various fields. For example, in the
field of smart healthcare, deploying edge computing nodes on wearable
devices and medical devices can monitor patients’ physiological param-
eters in real time and transmit the data to the cloud for analysis and
diagnosis, realizing telemedicine and personalized medicine [5]; in the
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field of autonomous driving, deploying edge computing nodes on self-
driving vehicles can perform real-time sensing and decision processing,
enabling shorter response time and improving driving safety [6].

However, the massive growth in the number of IoT applications
and servers in fog computing environments also creates new chal-
lenges. Firstly, the execution time is expected to be minimized [7],
which means that the applications should be processed by the best
(i.e., the most powerful and physically closest) server. Besides, the load
should be ideally balanced and distributed to run on multiple operating
units. For example, by distributing requests across multiple servers in
a seamless manner (as in serverless computing environments), load
balancing can avoid overloading individual servers and ensure that
each server handles a moderate load. This improves response times,
overall system performance, and throughput, and also helps servers
run more consistently. Therefore, improving the load balancing level of
servers (i.e., lowering the variance of server resource utilization) while
reducing the response time becomes an important but challenging
problem for scheduling IoT applications on servers in edge/fog com-
puting environments. Since this is an NP-hard problem, metaheuristic
and rule-based solutions can be considered [8,9]. However, these ap-
proaches often rely on omniscient knowledge of global information and
require the solution proponent to have control over the changes. In the
fog computing environment, there is often no regularity in server per-
formance, utilization, and downtime. The number of IoT applications
and the corresponding resource requirements are even more nearly
random. Besides, in reality, Directed Acyclic Graphs (DAGs) are often
used to model IoT applications [10], where nodes represent tasks and
edges represent data communication between dependent tasks. The
dependency among tasks introduces higher complexity in scheduling
applications. Therefore, metaheuristic and rule-based solutions cannot
efficiently cope with the IoT application scheduling problem in fog
computing environments.

Deep Reinforcement Learning (DRL) is the product of combin-
ing deep learning with reinforcement learning, integrating the power-
ful understanding of deep learning on perceptual problems with the
decision-making capabilities of reinforcement learning. In deep rein-
forcement learning, the agent continuously interacts with the environ-
ment, recording a large number of empirical trajectories (i.e., sequences
of states, actions, and rewards), which are used in the training phase to
learn optimal policies. In contrast to metaheuristic algorithms, agents
in deep reinforcement learning are able to autonomously sense and re-
spond to changes in the environment, which allows deep reinforcement
learning to solve complex problems in realistic scenarios. However, due
to the limited computational resources of devices in fog computing
environments [11], the computational requirements of complex Deep
Neural Networks (DNNs) are often not supported [12]. Therefore,
how to balance implementation simplicity, sample complexity, and
solution performance becomes a key research problem in applying deep
reinforcement learning to fog computing environments to cope with
complex situations.

To address the above challenges, we propose a Deep Reinforce-
ment Learning-based IoT application Scheduling algorithm (DRLIS),
which employs Proximal Policy Optimization (PPO) [13] technique
for solving the IoT applications scheduling problem in fog computing
environments. DRLIS can effectively optimize the load balancing cost
of the servers, the response time cost of the IoT applications, and their
weighted cost. Besides, by using clipped surrogate objective to limit the
magnitude of policy updates in each iteration and being able to perform
multiple iterations of updates in the sampled data, the convergence
speed of the algorithm is improved. Moreover, considering the limited
computational resources and the optimization objective under study,
we design efficient reward functions. The main contributions of this
paper are:

• We propose a weighted cost model regarding DAG-based IoT
applications’ scheduling in fog computing environments to im-
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prove the load balancing level of the servers while minimizing
the response time of the application. In addition, we adapt this
weighted cost model to make it applicable to DRL algorithms.

• We propose a DRL-based algorithm (DRLIS) to solve the defined
weighted cost optimization problem in dynamic and stochastic
fog computing environments. When the computing environment
changes (e.g., requests from different IoT applications, server
computing resources, the number of servers), it can adaptively
update the scheduling policy with a fast convergence speed.

• Based on DRLIS, we implement a practical scheduler in the Fog-
Bus2 function-as-a-service framework1 [14] for handling schedul-
ing requests of IoT applications in heterogeneous fog and edge
computing environments. We also extend the functionality of the
FogBus2 framework to make different DRL techniques applicable
to it.

• We conduct practical experiments and use real IoT applications
with heterogeneous tasks and resource demands to evaluate the
performance of DRLIS in real system setup. By comparing with
common metaheuristics (Non-dominated Sorting Genetic Algo-
rithm 2 (NSGA2) [16], Non-dominated Sorting Genetic Algorithm
3 (NSGA3) [17]) and other reinforcement learning algorithms (Q-
Learning [18]), we demonstrate the superiority of DRLIS in terms
of convergence speed, optimization cost, and scheduling time.

The rest of the paper is organized as follows. Section 2 discusses
related work and Section 3 presents the system model and problem
formulation. The Deep Reinforcement Learning model for IoT applica-
tions in edge and fog computing environments is presented in Section 4.
DRLIS is discussed in Section 5. Section 6 evaluates the performance
of DRLIS and compares it with other counterparts. Finally, Section 7
concludes the paper and states future work.

2. Related work

In this section, we review the literature on scheduling IoT applica-
tions in edge and fog computing environments. The related works are
divided into metaheuristic and reinforcement learning categories.

2.1. Metaheuristic

In the dependent category, Liu et al. [19] adopted a Markov De-
cision Process (MDP) approach to achieving shorter average task ex-
ecution latency in edge computing environments. They proposed an
efficient one-dimensional search algorithm to find the optimal task
scheduling policy. However, this work cannot adapt to changes in the
computing environment and is difficult to extend to solve complex
weighted cost optimization problems in heterogeneous fog computing
environments. Wu et al. [20] modeled the task scheduling problem in
edge and fog computing environments as a DAG and used an estimation
of distribution algorithm (EDA) and a partitioning operator to partition
the graph in order to queue tasks and assign appropriate servers.
However, they did not practically implement and test their work. Sun
et al. [21] improved the NSGA2 algorithm and designed a resource
scheduling scheme among fog nodes in the same fog cluster, taking into
account the diversity of different devices. This work aims to reduce the
service latency and improve the stability of task execution. Although ca-
pable of handling weighted cost optimization problems, this work only
considers scheduling problems in the same computing environment.
Hoseiny et al. [22] proposed a Genetic Algorithm (GA)-based technique
for minimizing the total computation time and energy consumption of
task scheduling in a heterogeneous fog cloud computing environment.
By introducing features for tasks, the technique can find a more suitable
computing environment for each task. However, it does not consider
the dependencies of different tasks in the application, and due to the

1 Please refer to [14,15] for detailed description of the FogBus2 framework.
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use of metaheuristic algorithms, scheduling rules need to be manually
set, which cannot adapt to changing computing environments. Ali
et al. [23] proposed an NSGA2-based technique for minimizing the total
computation time and system cost of task scheduling in heterogeneous
fog cloud computing environments. Their work formulates the task
scheduling problem as an optimization problem in order to dynamically
allocate appropriate resources for predefined tasks. Similarly, due to
the limitations of metaheuristic algorithms, this work requires the
assumption that the technique has some knowledge of the submitted
tasks to develop the scheduling policy and thus cannot cope with
dynamic and complex scenarios.

2.2. Reinforcement learning

In the dependent category, Shahidani et al. [24] proposed a Q-
learning-based algorithm to reduce task execution latency and balance
the load in a fog cloud computing environment. However, this work
does not consider the inter-task dependencies and the heterogeneity
of fog and cloud computing environments. Baek et al. [25] adapted
the Q-learning algorithm and proposed an approach that aims at im-
proving load balancing in fog computing environments. This work
considers the heterogeneity of nodes in fog computing environments
but still assumes that the tasks within the application are independent
of each other. Jie et al. [26] proposed a Deep Q-Network (DQN)-
based approach to minimize the total latency of task processing in
edge computing environments. This work formulates task scheduling
as a Markov Decision Process while considering the heterogeneity of
IoT applications. However, this work only considers the scheduling
problem in edge computing environments and investigates only one
optimization objective. Xiong et al. [27] adapted the DQN algorithm
and proposed a resource allocation strategy for IoT edge computing
systems. This work aims at minimizing the average job completion time
but does not take into account more complex functions with multiple
optimization objectives. Wang et al. [28] focus on edge computing en-
vironments and propose a deep reinforcement learning-based resource
allocation (DRLRA) scheme based on DQN. This work targets to reduce
the average service time and balance the resource usage within the
edge computing environment. However, the work does not consider
the resources in fog computing environment, and the technique is
not practically implemented and tested. Huang et al. [29] adopted a
DQN-based approach to address the resource allocation problem in the
edge computing environment. This work investigated minimizing the
weighted cost, including the total energy consumption and the latency
to complete the task. However, it does not consider the heterogeneity
of servers in fog computing environments and assumes that the tasks
are independent. Chen et al. [30] proposed an approach based on
double DQN to balance task execution time and energy consumption in
edge computing environments. Similarly, this work is only applicable
to the edge environment and does not consider the dependencies
between tasks. Zheng et al. [31] proposed a Soft Actor–Critic (SAC)-
based algorithm to minimize the task completion time in an edge
computing environment. This work focuses on the latency problem
and the experiments are simulation-based. Zhao et al. [32] proposed
a Twin Delayed DDPG (TD3)-based DRL algorithm. The goal of this
work is to minimize the latency and energy consumption, but inter-task
dependencies are not considered and the results are also simulation-
based. Liao et al. [33] used Deep Deterministic Policy Gradient (DDPG)
and Double Deep Q-Network (DQN) algorithms to model computation
in an edge environment. This work aims to reduce energy consumption
and latency but does not consider the fog environment and the hetero-
geneity of devices. Sethi et al. [34] proposed a DQN-based algorithm
to optimize energy consumption and load balancing of fog servers.
Similarly, this work is simulation-based and does not consider the
dependencies between tasks.

Table 1 presents the comparison of the related work with our
proposed algorithm, in terms of application properties, architecture
57
Fig. 1. A view of the IoT system in fog computing.

properties, algorithm properties, and evaluation. In the application
properties section, the number of tasks included in the IoT application,
and the dependencies between tasks are studied. In the architectural
properties section, three aspects are studied including the IoT device
layer, the edge/fog layer, and the multi-cloud layer. For the IoT device
layer, the application type and request type are identified. The real
application section indicates that the work either deploys actual IoT
applications, adopts simulated applications, or uses random data. The
heterogeneous request type represents work considering that different
IoT devices have different numbers of requests and different require-
ments. For the edge/fog layer, the computing environment and the
heterogeneity of deployed servers are investigated. Besides, the multi-
cloud layer studies whether the work considers the scenario of different
cloud service providers with heterogeneity. In the algorithm properties
section, we investigate the main technique on which each work is
based and the corresponding optimization objectives. The evaluation
section identifies whether the work is based on simulation or practi-
cal experiments. Recent works that we reviewed (e.g., [31–37]) have
often used reinforcement learning approaches to deal with workload
scheduling problems. This is because reinforcement learning can learn
by interacting with the environment and continuously optimizing the
policy through feedback signals (e.g., reward or penalty). This learning
ability gives reinforcement learning an advantage when facing com-
plex, dynamic environments [38], whereas metaheuristic techniques
require manual adaptation and guidance.

3. System model and problem formulation

In this section, we first introduce the topology of the IoT systems in
the edge and fog computing environment. Then, we discuss the problem
formulation. The key notations are listed in Table 2.

3.1. System model

Fig. 1 represents a layered view of the IoT Systems in the fog
computing environment. Consider 𝑆 = {𝑆𝑙|1 ≤ 𝑙 ≤ |𝑆|} as a collection
of |𝑆| applications, where each application contains one or more tasks,
denoted as 𝑆𝑙 = {𝑆𝑙𝑖 |1 ≤ 𝑖 ≤ |𝑆𝑙|}. The DAG 𝐺 = (𝑉 ,𝐸) is used
to model an IoT application, as depicted in Fig. 2. A vertex 𝑣𝑖 = 𝑆𝑙𝑖
denotes a certain task of the application, and an edge 𝑒𝑖,𝑗 denotes the
data flow between tasks 𝑣𝑖 and 𝑣𝑗 , so some tasks must be executed after
predecessor tasks are completed. 𝐶𝑃 (𝑆𝑙) represents the critical path
(i.e., the path with the highest cost) of the DAG, marked in red in the
figure.

A set containing |𝑁| servers is used to process application set 𝑆,
denoted as 𝑁 = {𝑛𝑘|1 ≤ 𝑘 ≤ |𝑁|}. To reflect the heterogeneity of the
servers, for each server 𝑛𝑘, 𝑛

𝑐𝑝𝑢_𝑢𝑡
𝑘 represents its CPU utilization (%),

𝑛𝑓𝑟𝑒𝑞 represents its CPU frequency (MHz), 𝑛𝑟𝑎𝑚_𝑢𝑡 represents its RAM
𝑘 𝑘
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Table 1
A qualitative comparison of related works with ours.

Works Application properties Architectural properties Algorithm properties Evaluation

Task number Dependency IoT device layer Edge/Fog layer Multi-Cloud
layer

Main technique Optimization objectives

Real
applications

Request type Computing
environments

Heterogeneity Time Load
balancing

Weighted

[19] Single

Independent

# Homogeneous Edge Homogeneous ×

Metaheuristic
Algorithms

MDP ✓ × × Simulation
[21] Multiple G# Homogeneous Edge and Fog Heterogeneous × NSGA2 ✓ × ✓ Simulation
[22] Single # Homogeneous Edge and Fog Heterogeneous × GA ✓ × × Simulation
[23] Single # Homogeneous Edge and Fog Heterogeneous × NSGA2 ✓ × ✓ Simulation

[20] Multiple Dependent G# Homogeneous Edge and Fog Heterogeneous × EDA ✓ × ✓ Simulation

[25] Single

Independent

# Homogeneous Edge and Fog Heterogeneous ×

Reinforcement
Learning
Techniques

Q-Learning × ✓ × Simulation
[24] Single # Homogeneous Edge and Fog Homogeneous × Q-Learning ✓ ✓ ✓ Simulation
[26] Single G# Homogeneous Edge Homogeneous × DQN ✓ × × Simulation
[27] Multiple G# Homogeneous Edge Homogeneous × DQN ✓ × × Simulation
[29] Multiple G# Heterogeneous Edge Homogeneous × DQN ✓ × ✓ Simulation
[28] Single G# Homogeneous Edge Homogeneous × DQN ✓ ✓ ✓ Simulation
[30] Single G# Heterogeneous Edge Homogeneous × Double DQN ✓ × ✓ Simulation
[31] Single G# Homogeneous Edge Homogeneous × SAC ✓ × × Simulation
[32] Single G# Homogeneous Edge and Fog Homogeneous × TD3 ✓ × ✓ Simulation
[35] Single # Homogeneous Edge Homogeneous × DQN × ✓ × Simulation
[33] Single G# Homogeneous Edge Homogeneous × DDPG and

DQN
✓ × ✓ Simulation

[36] Single # Homogeneous Edge Homogeneous × DDPG ✓ × ✓ Simulation
[34] Single G# Homogeneous Edge and Fog Homogeneous × DQN × ✓ ✓ Simulation

[37] Multiple Dependent G# Heterogeneous Edge Heterogeneous × GA and
DQN

✓ × × Simulation

DRLIS Multiple  Heterogeneous Edge and Fog Heterogeneous ✓ PPO ✓ ✓ ✓ Practical
 : Real IoT Application and Deployment, G#: Simulated IoT Application, #: Random.
Table 2
List of key notations.

Variable Description Variable Description

𝑆 The application set 𝜓 𝑟𝑎𝑚
𝑥𝑆𝑙𝑖

The variance of RAM utilization of the server set after the
scheduling configuration 𝑥𝑆𝑙𝑖

𝑆𝑙 One application (one task set) 𝛹 (𝜒𝑙) The load balancing model after the scheduling configuration
𝜒𝑙

𝑆𝑙𝑖 One task 𝛹 (𝜒) The load balancing model after the scheduling configuration
𝜒

𝑁 The server set 𝜔𝑥𝑆𝑙𝑖
The total execution time (ms) for task 𝑆𝑙𝑖 based on the
scheduling configuration 𝑥𝑆𝑙𝑖

𝑥𝑆𝑙𝑖 The scheduling configuration of task 𝑆𝑙𝑖 𝜔𝑡𝑟𝑡𝑥𝑆𝑙𝑖
The ready time (ms) for task 𝑆𝑙𝑖 based on the scheduling
configuration 𝑥𝑆𝑙𝑖

𝜒𝑙 The scheduling configuration of application 𝑆𝑙 𝜔𝑡𝑟𝑡𝑛𝑗 ,𝑛𝑘 The time (ms) consumed for required data by task 𝑆𝑙𝑖 to be
sent from server 𝑛𝑗 to server 𝑛𝑘

𝜒 The scheduling configuration of applications 𝑆 𝑃 (𝑆𝑙𝑖 ) The parent tasks set of task 𝑥𝑆𝑙𝑖
𝑛𝑐𝑝𝑢_𝑢𝑡𝑘 The CPU utilization (%) of server 𝑛𝑘 𝑃𝑆(𝑆𝑙𝑖 ) The server set to which the dependency tasks of task 𝑥𝑆𝑙𝑖 are

assigned

𝑛𝑓𝑟𝑒𝑞𝑘 The CPU frequency (MHz) of server 𝑛𝑘 𝜔𝑡𝑟𝑎𝑛𝑠𝑛𝑗 ,𝑛𝑘
The transmission time (ms) between server 𝑛𝑗 and server 𝑛𝑘

𝑛𝑟𝑎𝑚_𝑢𝑡
𝑘 The RAM utilization (%) of server 𝑛𝑘 𝜔𝑝𝑟𝑜𝑝𝑛𝑗 ,𝑛𝑘 The propagation time (ms) between server 𝑛𝑗 and server 𝑛𝑘
𝑛𝑟𝑎𝑚_𝑠𝑖𝑧𝑒
𝑘 The RAM size (GB) of server 𝑛𝑘 𝑝𝑛𝑗 ,𝑛𝑘 The packet size (MB) from server 𝑛𝑗 to server 𝑛𝑘 for task 𝑆𝑙𝑖
𝑁 𝑐𝑝𝑢_𝑢𝑡𝑖 The CPU utilization (%) of each server in server set 𝑁 ,

denoted as a set
𝑏𝑛𝑗 ,𝑛𝑘 The data rate (bit/s) between server 𝑛𝑗 and server 𝑛𝑘

𝑁 𝑟𝑎𝑚_𝑢𝑡𝑖 The RAM utilization (%) of each server in server set 𝑁 ,
denoted as a set

𝐶𝑃 (𝑆𝑙𝑖 ) Equals to 1 if 𝑆𝑙𝑖 is on the critical path of application 𝑆𝑙,
otherwise 0

𝑆𝑟𝑎𝑚𝑙𝑖
The minimum RAM required for executing task 𝑆𝑙𝑖 𝜔𝑝𝑟𝑜𝑐𝑥𝑆𝑙𝑖

The processing time (ms) for task 𝑆𝑙𝑖 based on the
scheduling configuration 𝑥𝑆𝑙𝑖

𝜓𝑥𝑆𝑙𝑖
The load balancing model after the scheduling configuration
𝑥𝑆𝑙𝑖

𝛺(𝜒𝑙) The total execution time (ms) for application 𝑆𝑙 based on the
scheduling configuration 𝜒𝑙

𝜓 𝑐𝑝𝑢
𝑥𝑆𝑙𝑖

The variance of CPU utilization of the server set after the
scheduling configuration 𝑥𝑆𝑙𝑖

𝛺(𝜒) The total execution time (ms) for the application set 𝑆 based
on the scheduling configuration 𝜒
u
c

utilization (%), and 𝑛𝑟𝑎𝑚_𝑠𝑖𝑧𝑒
𝑘 represents its RAM size (GB). Moreover,

𝑃𝑆(𝑆𝑙𝑖 ) represents the server set to which the parent tasks of task 𝑆𝑙𝑖
are assigned, and 𝜔𝑡𝑟𝑎𝑛𝑠𝑛𝑗 ,𝑛𝑘

, 𝜔𝑝𝑟𝑜𝑝𝑛𝑗 ,𝑛𝑘 , 𝑝𝑛𝑗 ,𝑛𝑘 , and 𝑏𝑛𝑗 ,𝑛𝑘 denote the transmission
ime (ms), the propagation time (ms), the packet size (MB), and the
ata rate (bit/s) between server 𝑛𝑗 and server 𝑛𝑘, respectively.

.2. Problem formulation

Since an application contains one/multiple tasks, it may be exe-
uted on different servers. With a set of servers 𝑁 , the scheduling
58

𝜒

configuration 𝑥𝑆𝑙𝑖 of a task 𝑆𝑙𝑖 is defined as:

𝑥𝑆𝑙𝑖 = {𝑛𝑘}, (1)

where 𝑘 shows the server’s index. Accordingly, the scheduling config-
ration 𝜒𝑙 of an application 𝑆𝑙 is equal to the set of the scheduling
onfiguration of the tasks it contains, defined as:

= {𝑥 |𝑆 ∈ 𝑆 , 1 ≤ 𝑖 ≤ |𝑆 |}. (2)
𝑙 𝑆𝑙𝑖 𝑙𝑖 𝑙 𝑙
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Fig. 2. Sample IoT application with the critical path in red color.

The scheduling configuration 𝜒 of the application set 𝑆 is equal to the
set of scheduling configuration per application:

𝜒 = {𝜒𝑙|1 ≤ 𝑙 ≤ |𝑆|}. (3)

In addition, we consider that for a given application, the execution
model of tasks can be hybrid (i.e., sequential and/or parallel). That is,
children tasks have some dependencies on the parent tasks that need
to be executed after their completion, and we use 𝑃 (𝑆𝑙𝑖 ) to represent
the parent task set of task 𝑆𝑙𝑖 [39]. While tasks that do not depend on
each other can be executed in parallel, and we use 𝐶𝑃 (𝑆𝑙𝑖 ) to indicate
that if a task 𝑆𝑙𝑖 is located on a critical path of application 𝑆𝑙.

3.2.1. Load balancing model
The load balancing model is used to measure the resource balancing

level of the server set 𝑁 during the processing of the application set 𝑆.
Regarding the server resource, both CPU and RAM are considered. For
task 𝑆𝑙𝑖 , the load balancing model 𝜓𝑥𝑆𝑙𝑖

is defined as:

𝜓𝑥𝑆𝑙𝑖
= 𝑎1𝜓

𝑐𝑝𝑢
𝑥𝑆𝑙𝑖

+ 𝑎2𝜓𝑟𝑎𝑚𝑥𝑆𝑙𝑖
, (4)

where 𝜓𝑐𝑝𝑢𝑥𝑆𝑙𝑖
and 𝜓𝑟𝑎𝑚𝑥𝑆𝑙𝑖

represent the CPU and RAM models, and 𝑎1 and
𝑎2 are the control parameters by which the weighted load balancing
model can be tuned. They satisfy:

𝑎1 + 𝑎2 = 1, 0 ≤ 𝑎1, 𝑎2 ≤ 1. (5)

CPU model 𝜓𝑐𝑝𝑢𝑥𝑆𝑙𝑖
and RAM model 𝜓𝑟𝑎𝑚𝑥𝑆𝑙𝑖

are defined as the variance
of CPU and RAM utilization of the server set 𝑁 after the scheduling
configuration 𝑥𝑆𝑙𝑖 :

𝜓𝑐𝑝𝑢𝑥𝑆𝑙𝑖
= Var[𝑁𝑐𝑝𝑢_𝑢𝑡𝑖], (6)

𝜓𝑟𝑎𝑚𝑥𝑆𝑙𝑖
= Var[𝑁𝑟𝑎𝑚_𝑢𝑡𝑖], (7)

where

𝑥𝑆𝑙𝑖 = {𝑛𝑘}. (1)

Correspondingly, for application 𝑆𝑙, the load balancing model 𝛹 (𝜒𝑙)
is defined as the sum of the load balancing models for each task
processed by server set 𝑁 :

𝛹 (𝜒𝑙) =
|𝑆𝑙 |
∑

𝑖=1
𝜓𝑥𝑆𝑙𝑖

. (8)

Our main goal is to find the best-possible scheduling configuration
for the application set 𝑆 such that the variance of the overall CPU
and RAM utilization of the server set 𝑁 during the processing of the
59
application set 𝑆 can be minimized. Therefore, for the application set
𝑆, the load balancing model 𝛹 (𝜒) is defined as:

𝛹 (𝜒) =
|𝑆|
∑

𝑙=1
𝛹 (𝜒𝑙) =

|𝑆|
∑

𝑙=1

|𝑆𝑙 |
∑

𝑖=1
𝜓𝑥𝑆𝑙𝑖

. (9)

3.2.2. Response time model
We consider the response time model 𝜔𝑥𝑆𝑙𝑖

for the task 𝑆𝑙𝑖 consisting
of two components, the task ready time model 𝜔𝑡𝑟𝑡𝑥𝑆𝑙𝑖

and the processing
model 𝜔𝑝𝑟𝑜𝑐𝑥𝑆𝑙𝑖

:

𝜔𝑥𝑆𝑙𝑖
= 𝜔𝑡𝑟𝑡𝑥𝑆𝑙𝑖

+ 𝜔𝑝𝑟𝑜𝑐𝑥𝑆𝑙𝑖
. (10)

The task ready time model 𝜔𝑡𝑟𝑡𝑥𝑆𝑙𝑖
represents the maximum time for the

data required by the task 𝑆𝑙𝑖 to arrive at the server to which it is
assigned, defined as:

𝜔𝑡𝑟𝑡𝑥𝑆𝑙𝑖
= 𝑚𝑎𝑥 𝜔𝑡𝑟𝑡𝑛𝑗 ,𝑛𝑘 , ∀𝑛𝑗 ∈ 𝑃𝑆(𝑆𝑙𝑖 ), (11)

where 𝜔𝑡𝑟𝑡𝑛𝑗 ,𝑛𝑘 denotes the time consumed for required data by task 𝑆𝑙𝑖
sent from server 𝑛𝑗 to server 𝑛𝑘, and 𝑛𝑘 is the server where the task 𝑆𝑙𝑖
will be executed based on scheduling configuration 𝑥𝑆𝑙𝑖 , and 𝑛𝑗 repre-
sents the server where the parent task of task 𝑆𝑙𝑖 is executed. Therefore,
𝜔𝑡𝑟𝑡𝑛𝑗 ,𝑛𝑘 depends on the transmission time 𝜔𝑡𝑟𝑎𝑛𝑠𝑛𝑗 ,𝑛𝑘

and the propagation time
𝜔𝑝𝑟𝑜𝑝𝑛𝑗 ,𝑛𝑘 for task 𝑆𝑙𝑖 between server 𝑛𝑗 and server 𝑛𝑘:

𝜔𝑡𝑟𝑡𝑛𝑗 ,𝑛𝑘 =

{

𝜔𝑡𝑟𝑎𝑛𝑠𝑛𝑗 ,𝑛𝑘
+ 𝜔𝑝𝑟𝑜𝑝𝑛𝑗 ,𝑛𝑘 𝑛𝑗 ≠ 𝑛𝑘,

0 𝑛𝑗 = 𝑛𝑘.
(12)

And the transmission time 𝜔𝑡𝑟𝑎𝑛𝑠𝑛𝑗 ,𝑛𝑘
can be calculated as:

𝜔𝑡𝑟𝑎𝑛𝑠𝑛𝑗 ,𝑛𝑘
=
𝑝𝑛𝑗 ,𝑛𝑘
𝑏𝑛𝑗 ,𝑛𝑘

, (13)

where 𝑝𝑛𝑗 ,𝑛𝑘 represents the packet size from server 𝑛𝑗 to server 𝑛𝑘 for
task 𝑆𝑙𝑖 , and 𝑏𝑛𝑗 ,𝑛𝑘 represents the current bandwidth between server 𝑛𝑗
and server 𝑛𝑘 when the data for task 𝑆𝑙𝑖 is transmitted.

The processing model 𝜔𝑝𝑟𝑜𝑐𝑥𝑆𝑙𝑖
is defined as the time it takes for

assigned server 𝑛𝑘 to process the task 𝑆𝑙𝑖 based on scheduling configu-
ration 𝑥𝑆𝑙𝑖 , and can be calculated as:

𝜔𝑝𝑟𝑜𝑐𝑥𝑆𝑙𝑖
=
𝑆𝑠𝑖𝑧𝑒𝑙𝑖

𝑛𝑓𝑟𝑒𝑞𝑘

, (14)

where 𝑆𝑠𝑖𝑧𝑒𝑙𝑖
represents the required CPU cycles for task 𝑆𝑙𝑖 and 𝑛𝑓𝑟𝑒𝑞𝑘

represents the CPU frequency of server 𝑛𝑘 (for multi-core CPUs, the
average frequency is considered).

Accordingly, the response time model 𝛺(𝜒𝑙) for application 𝑆𝑙 is
defined as:

𝛺(𝜒𝑙) =
|𝑆𝑙 |
∑

𝑖=1
(𝜔𝑥𝑆𝑙𝑖

× 𝐶𝑃 (𝑆𝑙𝑖 )), (15)

where 𝐶𝑃 (𝑆𝑙𝑖 ) equals to 1 if task 𝑆𝑙𝑖 is on the critical path of application
𝑆𝑙, otherwise 0.

The main goal for the response time model 𝛺(𝜒) is to find the best-
possible scheduling configuration for the application set 𝑆 such that
the total time for the server set 𝑁 processing them can be minimized.
Therefore, for the application set 𝑆, the response time model 𝛺(𝜒) is
defined as:

𝛺(𝜒) =
|𝑆|
∑

𝑙=1
𝛺(𝜒𝑙) =

|𝑆|
∑

𝑙=1

|𝑆𝑙 |
∑

𝑖=1
(𝜔𝑥𝑆𝑙𝑖

× 𝐶𝑃 (𝑆𝑙𝑖 )). (16)

3.2.3. Weighted cost model
The weighted cost model is defined as the weighted sum of the

normalized load balancing and normalized response time models. For
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task 𝑆𝑙𝑖 :

𝜙𝑥𝑆𝑙𝑖
= 𝑤1

𝜓𝑥𝑆𝑙𝑖
− 𝜓𝑚𝑖𝑛

𝜓𝑚𝑎𝑥 − 𝜓𝑚𝑖𝑛
+𝑤2

𝜔𝑥𝑆𝑙𝑖
− 𝜔𝑚𝑖𝑛

𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛
, (17)

here 𝜓𝑥𝑆𝑙𝑖
and 𝜔𝑥𝑆𝑙𝑖

are the load balancing model and response
ime model of task 𝑆𝑙𝑖 , and 𝜓𝑚𝑖𝑛, 𝜓𝑚𝑎𝑥, 𝜔𝑚𝑖𝑛, and 𝜔𝑚𝑎𝑥 represent the

minimum and the maximum value of the load balancing model and
response time model, respectively. Moreover, 𝑤1 and 𝑤2 are the control
parameters by which the weighted cost model can be tuned. The reason
we use the normalized models instead of the original models is that the
values of the two models may be in different ranges. For example, the
load balancing model may have a value from 0 to 1, while the response
time model may have a value from 0 to 100. We need to normalize them
so that the model values are in the same range.

Accordingly, the weighted cost model for application 𝑆𝑙 is defined
as:

𝛷(𝜒𝑙) = 𝑤1 ×𝑁𝑜𝑟𝑚(𝛹 (𝜒𝑙)) +𝑤2 ×𝑁𝑜𝑟𝑚(𝛺(𝜒𝑙)), (18)

where 𝛹 (𝜒𝑙) and 𝛺(𝜒𝑙) are obtained from Eqs. (8) and (15), and
𝑁𝑜𝑟𝑚 represents the normalization. The weighted cost model for the
application set 𝑆 is defined as:

𝛷(𝜒) = 𝑤1 ×𝑁𝑜𝑟𝑚(𝛹 (𝜒)) +𝑤2 ×𝑁𝑜𝑟𝑚(𝛺(𝜒)), (19)

where 𝛹 (𝜒) and 𝛺(𝜒) are obtained from Eqs. (9) and (16).
Therefore, the weighted cost optimization problem of IoT applica-

tions can be formulated as:

𝑚𝑖𝑛 𝛷(𝜒) (20)

s.t. 𝐶1 ∶ 𝑆𝑖𝑧𝑒(𝑥𝑆𝑙𝑖 ) = 1, ∀𝑥𝑆𝑙𝑖 ∈ 𝜒𝑙 (21)

𝐶2 ∶ 0 ≤ 𝑛𝑟𝑎𝑚_𝑢𝑡
𝑘 , 𝑛𝑐𝑝𝑢_𝑢𝑡𝑘 ≤ 1, ∀𝑛𝑘 ∈ 𝑁 (22)

𝐶3 ∶ 𝑛𝑓𝑟𝑒𝑞𝑘 , 𝑛𝑟𝑎𝑚_𝑠𝑖𝑧𝑒
𝑘 ≥ 0, ∀𝑛𝑘 ∈ 𝑁 (23)

𝐶4 ∶ 𝑆𝑟𝑎𝑚𝑙𝑖
< 𝑛𝑟𝑎𝑚_𝑠𝑖𝑧𝑒

𝑘 , ∀𝑆𝑙𝑖 ∈ 𝑆𝑙 , ∀𝑛𝑘 ∈ 𝑁 (24)

𝐶5 ∶ 𝛷(𝑥𝑆𝑙𝑗 ) ≤ 𝛷(𝑥𝑆𝑙𝑗 + 𝑥𝑆𝑙𝑖 ),∀𝑆𝑙𝑗 ∈ 𝑃 (𝑆𝑙𝑖 ) (25)

𝐶6 ∶ 𝑤1 +𝑤2 = 1, 0 ≤ 𝑤1, 𝑤2 ≤ 1 (26)

here 𝐶1 states that any task can only be assigned to one server
or processing. 𝐶2 states that for any server, the CPU utilization and
AM utilization are between 0 and 1. Besides, 𝐶3 states that the CPU

requency and the RAM size of any server are larger than 0. Moreover,
4 denotes that any server should have sufficient RAM resources to
rocess any task. Also, 𝐶5 denotes that any task can only be processed
fter its parent tasks have been processed, and thus the cumulative cost
s always larger than or equal to the parent task. In addition, 𝐶6 denotes
hat the control parameters of the weighted cost model can only take
alue from 0 to 1, and the sum of them should be equal to 1.

The problem being formulated is presented to be a non-convex
ptimization problem, because there may be an infinite number of local
ptima in the set of feasible domains, and usually, the complexity of the
lgorithm to find the global optimum is exponential (NP-hard) [40].
o cope with such non-convex optimization problems, most work de-
omposes them into several convex sub-problems and then solves these
ub-problems iteratively until the algorithm converges [41]. This type
f approach reduces the complexity of the original problem at the
xpense of accuracy [42]. In addition, such approaches are highly de-
endent on the current environment and cannot be applied in dynamic
nvironments with complex and continuously changeable parameters
nd computational resources [42]. To deal with this problem, we pro-
ose DRLIS to efficiently handle uncertainties in dynamic environments
y learning from interaction with the environment.
60
. Deep reinforcement learning model

In reinforcement learning, the autonomous agent first interacts with
he surrounding environment through action. Under the action and the
nvironment, the agent generates a new state, while the environment
ives an immediate reward. In this cycle, the agent interacts with
he environment continuously and thus generates sufficient data. The
einforcement learning algorithm uses the generated data to modify its
wn action policy, then interacts with the environment to generate new
ata, and uses the new data to further improve its behavior. Formally,
e use Markov Decision Process (MDP) to model the reinforcement

earning problem. Specifically, the learning problem can be described
y the tuple ⟨S,A,P,R, 𝛾⟩, where S denotes a finite set of states; A

denotes a finite set of actions; P denotes the state transition probability;
denotes the reward function; 𝛾 ∈ [0, 1] is the discount factor, used to

ompute the cumulative rewards.
We assume that the time T of the learning process is divided into

ultiple time steps 𝑡 and the agent will interact with the environment
t each time step and have multiple states 𝑆𝑡. At a particular time step
, the agent possesses the environment state 𝑆𝑡 = 𝑠, where 𝑠 ∈ S.
he agent chooses an action 𝐴𝑡 = 𝑎 according to the policy 𝜋(𝑎|𝑠),
here 𝑎 ∈ A, and 𝜋(𝑎|𝑠) = 𝑃𝑟[𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠] is the policy function,
hich denotes the probability of choosing the action 𝑎 in state 𝑠. After

hoosing action 𝑎, the agent receives a reward 𝑟 = R[𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]
rom the environment based on the reward function R, and it moves
o the next state 𝑆𝑡+1 = 𝑠′ based on the state transition function
𝑎
𝑠𝑠′ = P[𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]. The goal of the reinforcement

earning agent is to learn a policy 𝜋 that maximizes the expectation
f cumulative discounted reward E𝜋 [

∑

𝑡∈𝑇 𝛾𝑡𝑟𝑡].
Based on the weighted cost optimization problem of IoT applica-

ions in edge and fog computing environments, the state space S, action
pace A, and reward function R for the MDP are defined as follows:

• State space S: Since the optimization problem is related to tasks
and servers, the state of the problem consists of the feature space
of the task currently being processed and the state space of the
current server set 𝑁 . Based on the discussion in Section 3, at the
time step 𝑡, the feature space of the task 𝑆𝑙𝑖 includes the task ID,
the tasks’ predecessors and successors, the application ID to which
the task belongs, the number of tasks in the current application,
the estimate of the occupied CPU resources for the execution of
the task, the task’s RAM requirements, the estimate of the task’s
response time, etc. Formally, the feature space F for task 𝑆𝑙𝑖 at
the time step 𝑡 is defined as follows:

F𝑡(𝑆𝑙𝑖 ) = {𝑓 𝑦𝑡 (𝑆𝑙𝑖 )|𝑆𝑙𝑖 ∈ 𝑆𝑙 , 0 ≤ 𝑦 ≤ |F|}, (27)

where 𝑦 represents the index of the feature in the task feature
space F, and |F| represents the number of features. Moreover,
at the time step 𝑡, the state space of the current server set 𝑁
includes the number of servers, each server’s CPU utilization, CPU
frequency, RAM utilization, and RAM size, and the propagation
time and bandwidth between different servers, etc. Formally, the
state space G for the server set 𝑁 at the time step 𝑡 is defined as:

G𝑡(𝑁) = {|𝑁|, 𝑔𝑧𝑡 (𝑛𝑘), ℎ
𝑞
𝑡 (𝑛𝑗 , 𝑛𝑘)|𝑛𝑗 , 𝑛𝑘 ∈ 𝑁,

0 ≤ 𝑧 ≤ |𝑔|, 0 ≤ 𝑞 ≤ |ℎ|},
(28)

where 𝑔 represents the state type that is related to only one server
(i.e., CPU utilization), 𝑧 represents its index, and |𝑔| represents the
length of this type of state; besides, ℎ denotes the state type that
is related to two servers (i.e., propagation time), and similarly, 𝑞
represents its index and |ℎ| represents the length of this type of
state. Therefore, the state space S is defined as:
S = {𝑆𝑡 = (F𝑡(𝑆𝑙𝑖 ),G𝑡(𝑁))|𝑆𝑙𝑖 ∈ 𝑆𝑙 , 𝑡 ∈ T}. (29)
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• Action space A: The goal is to find the best-possible scheduling
configuration for the application set 𝑆 to minimize the objective
function Eq. (20). Therefore, at the time step 𝑡, the action can be
defined as the assignment of the server to the task 𝑆𝑙𝑖 :

𝐴𝑡 = 𝑥𝑆𝑙𝑖 = 𝑛𝑘. (30)

Accordingly, the action space A can be defined as the server set
𝑁 :

A = 𝑁. (31)

• Reward function R: Since this is a weighted cost optimization
problem, we need to define the reward function for each sub-
problem. First, as the 𝑝𝑒𝑛𝑎𝑙𝑡𝑦, a very large negative value is
introduced if the task cannot be processed on the assigned server
for any reason. Also, for the load balancing problem, based on the
discussion in Section 3.2.1, the reward function 𝑟𝑙𝑏𝑡 is defined as:

𝑟𝑙𝑏𝑡 =

⎧

⎪

⎨

⎪

⎩

𝜓𝑥𝑆𝑙𝑖−1
− 𝜓𝑥𝑆𝑙𝑖

𝑠𝑢𝑐𝑐𝑒𝑒𝑑

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑓𝑎𝑖𝑙,
(32)

where 𝜓𝑥𝑆𝑙𝑖
is obtained from Eq. (4). The value output by reward

function 𝑟𝑙𝑏𝑡 is the difference between the load balancing models
of the server set after scheduling the current task and the previous
one. If the value of the load balancing model of the server set is
reduced after scheduling the current task, the output reward is
positive, otherwise it is negative. Beside, for the response time
problem, based on the discussion in Section 3.2.2, the reward
function 𝑟𝑟𝑡𝑡 is defined as:

𝑟𝑟𝑡𝑡 =

⎧

⎪

⎨

⎪

⎩

𝜔𝑚𝑒𝑎𝑛𝑥𝑆𝑙𝑖
− 𝜔𝑥𝑆𝑙𝑖

𝑠𝑢𝑐𝑐𝑒𝑒𝑑

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑓𝑎𝑖𝑙,
(33)

where 𝜔𝑥𝑆𝑙𝑖
is obtained from Eq. (10), and 𝜔𝑚𝑒𝑎𝑛𝑥𝑆𝑙𝑖

represents the
average response time for task 𝑆𝑙𝑖 . The value output by reward
function 𝑟𝑟𝑡𝑡 is the difference between the average response time
(the current response time is also considered) and the current
response time for task 𝑆𝑙𝑖 . If the current response time is lower
than the average one, the output reward is positive, otherwise
it is negative. The reward function 𝑟𝑡 for the weighted cost
optimization problem is defined as:

𝑟𝑡 =

{

𝑤1 ×𝑁𝑜𝑟𝑚(𝑟𝑙𝑏𝑡 ) +𝑤2 ×𝑁𝑜𝑟𝑚(𝑟𝑟𝑡𝑡 ) 𝑠𝑢𝑐𝑐𝑒𝑒𝑑
𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑓𝑎𝑖𝑙,

(34)

where 𝑤1 and 𝑤2 are the control parameters, and 𝑁𝑜𝑟𝑚 repre-
sents the normalization process.

Currently, many advanced deep reinforcement learning algorithms
(e.g., PPO, TD3, SAC) have been proposed by different researchers.
They show excellent performance in different fields. PPO improves
convergence and sampling efficiency by adopting importance sampling
and proportional clipping [13]. TD3 (Twin Delayed DDPG) introduces
a dual Q network and delayed update strategy to effectively solve
the overestimation problem in the continuous action space [43]. SAC
(Soft Actor–Critic) combines policy optimization and learning of Q-
value functions, providing more robust and exploratory policy learn-
ing through maximum entropy theory [44]. These algorithms have
achieved remarkable results in different tasks and environments. In
our research problem, the agent’s action and state space is discrete,
which hinders the application of TD3, because it is designed for con-
tinuous control [45]. In addition, the original SAC only considers the
problem of continuous space [44], although there are some works
discussing how to apply SAC to discrete space, they usually need to
61

adopt some special tricks and extensions, such as using soft-max or t
ample-prune techniques to accommodate discrete actions [46]. Be-
ides, Wang et al. [47] shows that SAC requires more computation time
nd convergence time than PPO. Whereas our study focuses on edge
nd fog computing environments, where handling latency sensitivity
nd variation are important considerations for choosing the appropriate
RL algorithm. We choose PPO as the basis of DRLIS, because PPO

s designed to be more easily adaptable to discrete action spaces [48]
nd we aim for the algorithm to converge quickly and perform well in
iverse environments.

. DRL-based optimization algorithm

Based on the above-mentioned MDP model, we propose DRLIS
o achieve weighted cost optimization of IoT applications in edge
nd fog computing environments. In this section, we introduce the
athematical principle of the PPO algorithm and discuss the proposed
RLIS.

.1. Preliminaries

The PPO algorithm belongs to the Policy Gradient (PG) algorithm
hich considers the impact of actions on rewards and adjusts the
robability of actions [49]. We use the same notations as in Section 3 to
escribe the algorithm. We consider the time horizon T is divided into
ultiple time steps 𝑡, and the agent has a policy 𝜋𝜃 for determining

ts actions and interactions with the environment. The objective can
e expressed as adjusting the parameter 𝜃 to maximize the expected
umulative discounted rewards E𝜋𝜃 [

∑

𝑡∈𝑇 𝛾𝑡𝑟𝑡] [13], expressed by the
ormula:

(𝜃) = E𝜋𝜃 [
∑

𝑡∈𝑇
𝛾𝑡𝑟𝑡]. (35)

ince this is a maximization problem, the gradient ascent algorithm can
e used to find the maximum value:
′ = 𝜃 + 𝛼∇𝜃𝐽 (𝜃). (36)

he key is to obtain the gradient of the reward function 𝐽 (𝜃) with re-
pect to 𝜃, which is called the policy gradient. The algorithm for solving
einforcement problems by optimizing the policy gradient is called the
olicy gradient algorithm. The policy gradient can be presented as,

𝜃𝐽 (𝜃) = E𝜋𝜃 [∇𝜃𝑙𝑜𝑔𝜋𝜃(𝑎𝑡|𝑠𝑡)𝐴𝜃(𝑎𝑡|𝑠𝑡)], (37)

here 𝐴𝜃(𝑎𝑡|𝑠𝑡) is the advantage function at time step t, used to evaluate
he action 𝑎𝑡 at the state 𝑠𝑡. Here, the policy gradient indicates the
xpectation of ∇𝜃𝑙𝑜𝑔𝜋𝜃(𝑎𝑡|𝑠𝑡)𝐴𝜃(𝑎𝑡|𝑠𝑡), which can be estimated using the

empirical average obtained by sampling. However, the PG algorithm
is very sensitive to the update step size, and choosing a suitable step
size is challenging [50]. Moreover, practice shows that the difference
between old and new policies in training is usually large [13].

To address this problem, Trust Region Policy Optimization (TRPO)
[51] is proposed. This algorithm introduces importance sampling to
evaluate the difference between the old and new policies and restricts
the new policy if the importance sampling ratio grows large. Impor-
tance sampling refers to replacing the original sampling distribution
with a new one to make sampling easier or more efficient. Specifically,
TRPO maintains two policies, the first policy 𝜋𝜃𝑜𝑙𝑑 is the current policy
to be refined, and the second policy 𝜋𝜃 is used to collect the samples.
The optimization problem is defined as follows:

maximize
𝜃

E𝑡[
𝜋𝜃(𝑎𝑡|𝑠𝑡)
𝜋𝜃𝑜𝑙𝑑 (𝑎𝑡|𝑠𝑡)

𝐴𝑡] (38)

ubject to E𝑡[𝐾𝐿[𝜋𝜃𝑜𝑙𝑑 (⋅|𝑠𝑡), 𝜋𝜃(⋅|𝑠𝑡)]] ≤ 𝛿, (39)

here 𝐾𝐿 represents Kullback–Leibler Divergence, used to quantify the
ifference between two probability distributions [52], and 𝛿 represents
he restriction of the update between old policy 𝜋 and new policy
𝜃𝑜𝑙𝑑
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i

𝐿

o

𝜃

𝜋𝜃 . After linear approximation of the objective and quadratic approxi-
mation of the constraints, the problem can be efficiently approximated
using the conjugate gradient algorithm. However, the computation of
conjugate gradient makes the implementation of TRPO more complex
and inflexible in practice [53,54].

To make this algorithm well applied in practice, the KL-PPO al-
gorithm [13] is proposed. Rather than using the constraint function
E𝑡[𝐾𝐿[𝜋𝜃𝑜𝑙𝑑 (⋅|𝑠𝑡), 𝜋𝜃(⋅|𝑠𝑡)]] ≤ 𝛿, the 𝐾𝐿 divergence is added as a penalty
n the objective function:
𝐾𝐿𝑃𝐸𝑁 (𝜃) = E𝑡[𝑟𝑡(𝜃)𝐴𝑡 − 𝛽𝐾𝐿[𝜋𝜃𝑜𝑙𝑑 (⋅|𝑠𝑡), 𝜋𝜃(⋅|𝑠𝑡)]], (40)

where 𝑟𝑡(𝜃) =
𝜋𝜃 (𝑎𝑡|𝑠𝑡)
𝜋𝜃𝑜𝑙𝑑 (𝑎𝑡|𝑠𝑡)

is the ratio of the new policy and the old policy,

btained in Eq. (38), and the parameter 𝛽 can be dynamically adjusted
during the iterative process according to the 𝐾𝐿 divergence. If the
current 𝐾𝐿 divergence is larger than the predefined maximum value,
indicating that the penalty is not strong enough and the parameter
𝛽 needs to be increased. Conversely, if the current 𝐾𝐿 divergence is
smaller than the predefined minimum value, the parameter 𝛽 needs to
be reduced.

Moreover, another idea to restrict the difference between old policy
𝜋𝜃𝑜𝑙𝑑 and new policy 𝜋𝜃 is to use clipped surrogate function 𝑐𝑙𝑖𝑝. The
PPO algorithm using the clip function (CLIP-PPO) removes the KL
penalty and the need for adaptive updates to simplify the algorithm.
Practice shows CLIP-PPO usually performs better than KL-PPO [13].
Formally, the objective function of CLIP-PPO is defined as follows:

𝐿𝐶𝐿𝐼𝑃 (𝜃) = E𝑡[𝑚𝑖𝑛(𝑟𝑡(𝜃)𝐴𝑡, 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴𝑡)]. (41)

And 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1−𝜖, 1+𝜖) restrict the ratio 𝑟𝑡(𝜃) into (1−𝜖, 1+𝜖), defined
as:

𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖) =

⎧

⎪

⎨

⎪

⎩

1 − 𝜖 𝑟𝑡(𝜃) < 1 − 𝜖
𝑟𝑡(𝜃) 1 − 𝜖 ≤ 𝑟𝑡(𝜃) ≤ 1 + 𝜖
1 + 𝜖 𝑟𝑡(𝜃) > 1 + 𝜖.

(42)

By removing the constraint function as discussed in TRPO, both
PPO algorithms significantly reduce the computational complexity,
while ensuring that the updated policy deviates not too large from the
previous one.

5.2. DRLIS: DRL-based IoT application scheduling

Since CLIP-PPO usually outperforms KL-PPO in practice, we choose
it as the basis for the optimization algorithm. DRLIS is based on
the actor–critic framework, which is a reinforcement learning method
combining Policy Gradient and Temporal Differential (TD) learning.
As the name implies, this framework consists of two parts, the actor
and the critic, and in implementation, they are usually presented as
Deep Neural Networks (DNNs). The actor network is used to learn a
policy function 𝜋𝜃(𝑎|𝑠) to maximize the expected cumulative discounted
reward E𝜋 [

∑

𝑡∈𝑇 𝛾𝑡𝑟𝑡], while the critic network is used to evaluate the
current policy and to guide the next stage of the actor’s action. In the
learning process, at the time step 𝑡, the reinforcement learning agent
inputs the current state 𝑠𝑡 into the actor network, and the actor network
outputs the action 𝑎𝑡 to be performed by the agent in the MDP. The
agent performs the action 𝑎𝑡, receives the reward 𝑟𝑡 from the environ-
ment, and moves to the next state 𝑠𝑡+1. The critic network receives the
states 𝑠𝑡 and 𝑠𝑡+1 as input and estimates their value functions 𝑉𝜋𝜃 (𝑠𝑡) and
𝑉𝜋𝜃 (𝑠𝑡+1). The agent then computes the TD error 𝛿𝑡 for the time step t:

𝛿𝑡 = 𝑟𝑡 + 𝛾𝑉𝜋𝜃 (𝑠𝑡+1) − 𝑉𝜋𝜃 (𝑠𝑡), (43)

where 𝛾 denotes the discount factor, as discussed in Section 3, and the
actor network and critic network update their parameters using the
TD error 𝛿𝑡. DRLIS continues this process after multiple steps, as an
estimate �̂�𝑡 of the advantage function 𝐴𝑡, which can be written as:

̂ 𝑇−𝑡+1 𝑇−𝑡
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𝐴𝑡 = −𝑉𝜋𝜃 (𝑠𝑡) + 𝑟𝑡 + 𝛾𝑟𝑡+1 +⋯ + 𝛾 𝑟𝑇−1 + 𝛾 𝑉𝜋𝜃 (𝑠𝑇 ). (44)
DRLIS maintains three networks, one critical network, and two actor
networks (i.e., the old actor and the new actor), representing the old
policy function 𝜋𝜃𝑜𝑙𝑑 and the new policy function 𝜋𝜃 , as discussed
in Section 5.1. Algorithm 1 describes DRLIS for the weighted cost
optimization problem in edge and fog computing environments.

Algorithm 1: DRLIS for weighted cost optimization
Input : new actor network 𝛱𝜃 with parameter 𝜃; old actor

network 𝛱𝜃𝑜𝑙𝑑 with parameter 𝜃𝑜𝑙𝑑 , where 𝜃𝑜𝑙𝑑 = 𝜃;
critic network 𝑉𝜇 with parameter 𝜇; max time step 𝑇 ;
update epoch 𝐾; policy objective function coefficient
𝑎𝑐 ; value function loss function coefficient 𝑎𝑣; entropy
bonus coefficient 𝑎𝑒; clipping ratio 𝜖

1 while True do
2 𝑠𝑒𝑟𝑣𝑒𝑟𝑠 ← 𝐺𝑒𝑡𝑆𝑒𝑟𝑣𝑒𝑟𝑠();
3 𝑡𝑎𝑠𝑘 ← 𝐺𝑒𝑡𝑇 𝑎𝑠𝑘();
4 if 𝑠𝑒𝑟𝑣𝑒𝑟𝑠 ≠ 𝑠𝑒𝑟𝑣𝑒𝑟𝑠𝑜𝑙𝑑 then
5 𝑎𝑔𝑒𝑛𝑡 ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝐴𝑔𝑒𝑛𝑡(𝑠𝑒𝑟𝑣𝑒𝑟𝑠);
6 𝑠𝑒𝑟𝑣𝑒𝑟𝑠𝑜𝑙𝑑 ← 𝑠𝑒𝑟𝑣𝑒𝑟𝑠;
7 end if
8 𝑠1 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑆𝑡𝑎𝑡𝑒(𝑠𝑒𝑟𝑣𝑒𝑟𝑠, 𝑡𝑎𝑠𝑘);
9  ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝐵𝑢𝑓𝑓𝑒𝑟();
10 for 𝑡← 1 to 𝑇 do
11 𝑎𝑡 ← 𝛱𝜃(𝑠𝑡);
12 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒(𝑡𝑎𝑠𝑘, 𝑎𝑡);
13 𝑟𝑡 ← 𝐺𝑒𝑡𝑅𝑒𝑤𝑎𝑟𝑑();
14 𝑠𝑒𝑟𝑣𝑒𝑟𝑠 ← 𝐺𝑒𝑡𝑆𝑒𝑟𝑣𝑒𝑟𝑠();
15 if 𝑠𝑒𝑟𝑣𝑒𝑟𝑠 ≠ 𝑠𝑒𝑟𝑣𝑒𝑟𝑠𝑜𝑙𝑑 then
16 𝑏𝑟𝑒𝑎𝑘;
17 end if
18 𝑡𝑎𝑠𝑘← 𝐺𝑒𝑡𝑇 𝑎𝑠𝑘();
19 𝑠𝑡+1 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑆𝑡𝑎𝑡𝑒(𝑠𝑒𝑟𝑣𝑒𝑟𝑠, 𝑡𝑎𝑠𝑘);
20 𝑢𝑡 = (𝑠𝑡, 𝑎𝑡, 𝑟𝑡);
21 .𝐴𝑝𝑝𝑒𝑛𝑑(𝑢𝑡);
22 end for
23 �̂�𝑡 ← −𝑉𝜇(𝑠𝑡) + 𝑟𝑡 + 𝛾𝑟𝑡+1 + ⋅ ⋅ ⋅ + 𝛾𝑇−𝑡+1𝑟𝑇−1 + 𝛾𝑇−𝑡𝑉𝜇(𝑠𝑇 );
24 for 𝑘← 1 to 𝐾 do
25 𝐿𝐶𝐿𝐼𝑃 (𝜃) =

∑𝑡
1 𝑚𝑖𝑛(

𝛱𝜃 (𝑎𝑡 |𝑠𝑡)
𝛱𝜃𝑜𝑙𝑑

(𝑎𝑡 |𝑠𝑡)
�̂�𝑡, 𝑐𝑙𝑖𝑝(

𝛱𝜃 (𝑎𝑡 |𝑠𝑡)
𝛱𝜃𝑜𝑙𝑑

(𝑎𝑡 |𝑠𝑡)
, 1 − 𝜖, 1 + 𝜖)�̂�𝑡;

26 𝐿𝑉 𝐹 (𝜇) =
∑𝑡

1(𝑉𝜇(𝑠𝑡) − �̂�𝑡)
2;

27 𝐿𝐸𝑇 (𝜃) =
∑𝑡

1 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝛱𝜃(𝑎𝑡|𝑠𝑡));
28 𝐿(𝜃, 𝜇) = −𝑎𝑐𝐿𝐶𝐿𝐼𝑃 (𝜃) + 𝑎𝑣𝐿𝑉 𝐹 (𝜇) − 𝑎𝑒𝐿𝐸𝑇 (𝜃);
29 update 𝜃 and 𝜇 with 𝐿(𝜃, 𝜇) by Adam optimizer;
30 end for
31 𝜃𝑜𝑙𝑑 ← 𝜃;
32 end while

We consider a scheduler that is implemented based on DRLIS. When
this scheduler receives a scheduling request from an IoT application,
it obtains information about the set of servers currently available and
initializes a DRL agent based on the information. This agent contains
three deep neural networks, a new actor network 𝛱𝜃 with parameter
, an old actor network 𝛱𝜃𝑜𝑙𝑑 with parameter 𝜃𝑜𝑙𝑑 , where 𝜃𝑜𝑙𝑑 = 𝜃, and

a critic network 𝑉𝜇 with parameter 𝜇. After that, the scheduler obtains
the information about the currently submitted task and generates the
current state 𝑠𝑡 based on the information regarding the task and servers.
Inputting the state 𝑠𝑡 to the new actor network 𝛱𝜃 will output an
action 𝑎𝑡, representing the target server to which the current task is
to be assigned. The scheduler then assigns the task to the target server
and receives the corresponding reward 𝑟𝑡, which is calculated based
on Eqs. (32), (33), (34). The reward 𝑟𝑡 is essential for indicating the
positive or negative impact of the agent’s current scheduling policy
on the optimization objectives (e.g., IoT application response time and
servers load balancing level). Also, a tuple 𝑢𝑡 with three values (𝑠𝑡, 𝑎𝑡, 𝑟𝑡)
will be stored in buffer . The scheduler repeats the process 𝑇 times
until sufficient information is collected to update the neural networks.
When updating the neural networks, the estimate of the advantage
function is first computed based on Eq. (44). Then the neural networks



Future Generation Computer Systems 152 (2024) 55–69Z. Wang et al.
Fig. 3. Updated sub-components for reinforcement learning in FogBus2 framework.

are optimized for K times. Both actor network and critic network use
Adam optimizer, and the loss function is computed as:

𝐿(𝜃, 𝜇) = −𝑎𝑐𝐿𝐶𝐿𝐼𝑃 (𝜃) + 𝑎𝑣𝐿𝑉 𝐹 (𝜇) − 𝑎𝑒𝐿𝐸𝑇 (𝜃), (45)

where 𝐿𝐶𝐿𝐼𝑃 (𝜃) is the policy objective function from Eq. (41), and
𝐿𝑉 𝐹 (𝜇) is loss function for the state value function:

𝐿𝑉 𝐹 (𝜇) =
𝑇
∑

𝑡=1
(𝑉𝜇(𝑠𝑡) − �̂�𝑡)2. (46)

And 𝐿𝐸𝑇 (𝜃) is the entropy bonus for the current policy:

𝐿𝐸𝑇 (𝜃) =
𝑇
∑

𝑡=1
𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝛱𝜃(𝑎𝑡|𝑠𝑡)). (47)

In addition, 𝑎𝑐 , 𝑎𝑣, and 𝑎𝑒 are the coefficients. After updating the neural
networks, the parameter 𝜃 of the new actor network 𝛱𝜃 will be copied
to the old actor network 𝛱𝜃𝑜𝑙𝑑 . Assuming that there are 𝑁 tasks, from
Algorithm 1, the agent will update the policy K times after scheduling
𝑇 tasks, so the complexity of the algorithm as 𝑂(𝑁 + 𝑁

𝑇 𝐾). In practical
applications, both 𝑇 and 𝐾 as hyperparameters can be customized
to suit different computational environments. Thus the computational
complexity of the algorithm actually depends on the number of tasks 𝑁
and can be written as 𝑂(𝑁). For the edge/fog environment with limited
computational resources, we consider this computational complexity to
be acceptable.

5.3. Practical implementation in the FogBus2 framework

We extend the scheduling module of the FogBus2 framework2 [14]
to design and develop the DRLIS in practice for processing placement
requests from different IoT applications in edge and fog computing
environments.

FogBus2 is a lightweight container-based distributed/serverless
framework (realized using Docker microservices software) for inte-
grating edge and fog/cloud computing environments. A scheduling
module is implemented to decide the deployment of heterogeneous IoT
applications, enabling the management of distributed resources in the
hybrid computing environment. There are five main components within
FogBus2 framework, namely Master, Actor, RemoteLogger, TaskExecutor,
and User. Fig. 3 shows the relationship between different components
in the FogBus2 framework, and the updated sub-components used to
implement the reinforcement learning function.

• Remote Logger : It is designed for collecting and storing logs from
other components, whether periodic or event-driven.

2 https://github.com/Cloudslab/FogBus2.
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Fig. 4. Reinforcement learning scheduling module in FogBus2 framework.

• Master : It contains the scheduling module of FogBus2, responsible
for the registration and scheduling of IoT applications. It can
also discover resources and self-scale based on the input load.
We implement a reinforcement learning scheduling module in
the Scheduler & Scaler sub-component. Besides, we extend the
functionality of the Profiler and the Message Handler components
to allow Master components to receive and handle information
from other components for reinforcement learning scheduling.

• Actor : It informs the Remote Logger and Master components of the
computing resources of the corresponding node to coordinate the
resource scheduling of the framework. Furthermore, it is respon-
sible for launching the appropriate Task Executor components
to process the submitted IoT application. We extend the func-
tionality of the Profiler and the Message Handler components to
allow system characteristics regarding servers to be passed to the
reinforcement learning scheduling module in Master components.

• Task Executor : It is responsible for executing the corresponding
tasks of the submitted application. The results are passed to the
Master component.

• User : It runs on IoT devices and is responsible for processing
raw data from sensors and users. It sends the processed data to
the Master component and submits the execution request. We
extend the functionality of the Actuator and the Message Handler
components to allow information related to IoT applications to be
passed to the reinforcement learning scheduling module in Master
components.

Fig. 4 shows our implementation of the reinforcement learning
scheduling module in the FogBus2 framework. The module can be
divided into four sub-modules: (1) Reinforcement Learning Models, (2)
Rewards Models, (3) Reinforcement Learning Agent, and (4) Model
Warehouse.

• Reinforcement Learning Models: This sub-module contains the rein-
forcement learning models. According to Algorithm 1, we imple-
ment a DRLIS-based model. In addition, to evaluate the perfor-
mance of DRLIS, we also implement DQN and Q-Learning-based
models.

• Rewards Models: This sub-module contains the models associated
with the reward functions. According to Sections 3.2 and 4, we
implemented Load Balancing Model, Response Time Model, and
Weighted Cost Model. This sub-module is responsible for calcu-
lating the reward values based on the information (e.g., CPU and
RAM utilization) and transferring them to the Agent sub-module.

• Reinforcement Learning Agent : This sub-module implements the
functions of the reinforcement learning agent. The Agent Initiator
calls the Reinforcement Learning Models sub-module and initializes

https://github.com/Cloudslab/FogBus2
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the corresponding models. The Action Selector is responsible for
outputting the target server index for the currently scheduled
task. The Model Optimizer optimizes the running reinforcement
learning scheduling policy based on the reward values returned
from the Reward Function Models sub-module. The State Converter
is responsible for converting the parameters of the server and
IoT application into state vectors that can be recognized by the
reinforcement learning scheduling model. The Scheduling Policy
Runner is the running program of the reinforcement learning
scheduling Agent and is responsible for receiving submitted tasks,
saving or loading the trained policies, and requesting and access-
ing parameters from other FogBus2 components (e.g., FogBus2
Actor, FogBus2 User) for the computation of reward functions.

• Model Warehouse: This sub-module can save the hyperparameters
of the trained scheduling policy to the database and loads the
hyperparameters to initialize a well-trained scheduling Agent.

Algorithm 2: Reinforcement learning scheduler in FogBus2
ramework based on the proposed weighted cost optimization
lgorithm
Input : master component 𝑀 ; registered actor component set

𝐴; user component 𝑈 ; tasks to be processed 𝑇
1 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑆𝑐ℎ𝑒𝑑𝑢𝑒𝑟(𝐷𝑅𝐿𝐼𝑆);
2 𝐴 ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝐴𝑐𝑡𝑜𝑟𝐵𝑢𝑓𝑓𝑒𝑟();
3 𝑈 ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑈𝑠𝑒𝑟𝐵𝑢𝑓𝑓𝑒𝑟();
4 while True do
5 𝑈.𝑆𝑢𝑏𝑚𝑖𝑡𝑇 𝑎𝑠𝑘𝑠(𝑇 );
6 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐴𝑐𝑡𝑜𝑟𝑠←𝑀.𝐶ℎ𝑒𝑐𝑘𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠(𝑇 );
7 if 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐴𝑐𝑡𝑜𝑟𝑠 is 𝑒𝑚𝑝𝑡𝑦 then
8 𝑀.𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑈, 𝐹𝑎𝑖𝑙);
9 𝑏𝑟𝑒𝑎𝑘;
10 end if
11 foreach 𝑡𝑖 ∈ 𝑇 do
12 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟.𝑇 𝑎𝑠𝑘𝑃 𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡(𝑡𝑖, 𝐴);
13 𝐴.𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑀, 𝐼𝐴);
14 𝐴.𝐴𝑝𝑝𝑒𝑛𝑑(𝐼𝐴);
15 𝑈.𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑀, 𝐼𝑈 );
16 𝑈 .𝐴𝑝𝑝𝑒𝑛𝑑(𝐼𝑈 );
17 if 𝑈𝑝𝑑𝑎𝑡𝑒𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟 is 𝑇 𝑟𝑢𝑒 then
18 𝑅𝑒𝑤𝑎𝑟𝑑𝑠← 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑅𝑒𝑤𝑎𝑟𝑑𝑠(𝐴,𝑈 );
19 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟.𝑈𝑝𝑑𝑎𝑡𝑒();
20 end if
21 end foreach
22 end while

Algorithm 2 summarizes the scheduling mechanism based on DRLIS.
he framework first initializes a scheduler, based on Algorithm 1. In
ddition, two buffers 𝐴 and 𝑈 for storing information from the 𝐴𝑐𝑡𝑜𝑟

component and the 𝑈𝑠𝑒𝑟 component are also initialized. After the 𝑈𝑠𝑒𝑟
omponent submits the IoT application to be processed, the 𝑀𝑎𝑠𝑡𝑒𝑟

component first checks whether the 𝐴𝑐𝑡𝑜𝑟 components that have been
registered to the framework have the corresponding resources to pro-
cess the application. If true, the IoT application which contains one
or multiple tasks will be scheduled; otherwise, the 𝑀𝑎𝑠𝑡𝑒𝑟 component
will inform the 𝑈𝑠𝑒𝑟 component that the current application cannot
be processed. For each task of an IoT application, the scheduler will
place it to the target 𝐴𝑐𝑡𝑜𝑟 component for execution based on Algorithm
1. After that, the 𝐴𝑐𝑡𝑜𝑟 component sends the relevant information
(i.e., CPU utilization, RAM utilization, etc.) to the 𝑀𝑎𝑠𝑡𝑒𝑟 component,
which is stored in the buffer 𝐴. The 𝑈𝑠𝑒𝑟 component also sends
relevant information (i.e., response time, the result of task execution,
etc.) to the 𝑀𝑎𝑠𝑡𝑒𝑟 component, which is stored in the buffer 𝑈 . When
the 𝑀𝑎𝑠𝑡𝑒𝑟 collects sufficient information, it will update the scheduler,
where the data in 𝐴 and 𝐸 are used to compute the reward for each
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step, as discussed in Algorithm 1 and Eqs. (32), (33), (34).
6. Performance evaluation

In this section, we first describe the experimental setup and sample
applications used in the evaluation. Then, we investigate the hyperpa-
rameters of DRLIS. Finally, we discuss the performance of DRLIS by
comparing it with its counterparts.

6.1. Experiment setup

We first give a short introduction about the experimental environ-
ment and describe the IoT applications used in the experiment. Next,
the baseline algorithms used to compare with DRLIS are presented.

6.1.1. Experiment environment
As discussed in Section 5.3, we implemented a scheduler based

on DRLIS in the FogBus2 framework, and we use this scheduler for
evaluation. We consider a heterogeneous experimental environment
consisting of IoT devices, resource-limited fog servers, and resource-
rich cloud servers. To simulate the heterogeneous multi-cloud comput-
ing environment, we used two instances of Nectar Cloud infrastructure
(Intel Xeon 2 cores @2.0 GHz, 9 GB RAM, and Intel Xeon 16 cores
@2.0 GHz, 64 GB RAM) and one instance of AWS Cloud (AMD EPYC 2
cores @2.2 GHz, 4GM RAM). In the fog computing environment, to
reflect the heterogeneity of the servers, we used a Raspberry Pi 3B
(Broadcom BCM2837 4 cores @1.2 GHz, 1 GB RAM), a MacBook Pro
(Apple M1 Pro 8 cores, 16 GB RAM), and a Linux virtual machine (Intel
Core i5 2 cores @3.1 GHz, 4 GB RAM). In addition, the IoT devices are
configured with 2 cores @3.2 GHz and 4 GB RAM. Furthermore, we
profiled the average bandwidth (i.e., data rate) and latency between
servers as follows: the latency between the IoT device and the cloud
server is around 15 ms, and the bandwidth is around 6 MB/s, while
the latency between the IoT device and the fog server is around 3 ms,
and the bandwidth is around 25 MB/s. Also, both 𝑤1 and 𝑤2 are set
to 0.5 in Eq. (19), meaning that the importance of load balancing and
response time are equal.

6.1.2. Sample IoT applications
We used four IoT applications for evaluating the performance of

the scheduler based on DRLIS. All applications implement both real-
time and non-real-time features. Real-time means that the application
can receive live streams and non-real-time means that the application
can receive pre-recorded video files. Specifically, applications follow
a sensor–actuator architecture, with each application operating as a
single data stream. Sensors (e.g., cameras) capture environmental in-
formation and process it into data patterns (e.g., image frames) that
will be forwarded to surrogate servers for processing, while actuators
receive the processed data and represent the final outcome to the user.
In addition, all applications provide a parameter called application label,
which can be used to set the frame size in the video. These applications
are described as follows:

• Face Detection [15]: Detects and captures human faces. The human
faces in the video are marked by squares. This application is
implemented based on OpenCV.3

• Color Tracking [15]: Tracks colors from video. The user can
dynamically configure the target colors through the GUI provided
by the application. This application is implemented based on
OpenCV.3

• Face And Eye Detection [15]: In addition to detecting and captur-
ing human faces, the application also detects and captures human
eyes. This application is implemented based on OpenCV.3

• Video OCR [14]: Recognizes and extracts text information from
the video and transmits it back to the user. The application
will automatically filter out keyframes. This application is imple-
mented based on Google’s Tesseract-OCR Engine.4

3 https://github.com/opencv/opencv.
4 https://github.com/tesseract-ocr/tesseract.

https://github.com/opencv/opencv
https://github.com/tesseract-ocr/tesseract
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Fig. 5. Hyperparameters tuning results.
6.1.3. Baseline algorithms
To evaluate the performance of DRLIS, three other schedulers based

on metaheuristic algorithms and reinforcement learning techniques are
implemented, as follows:

• DQN : It is one of the most adapted techniques in deep reinforce-
ment learning, which constructs an end-to-end architecture from
perception to decision. This algorithm has been used by many
works in the current literature such as [26–28], and [29]. To
compare with our proposed algorithm, we implement a DQN-
based scheduler and integrate it into the FogBus2 framework. This
scheduler can minimize the weighted load balancing and response
time cost.

• Q-Learning : This technique belongs to value-based reinforcement
learning techniques that combine the Monte Carlo method and
the TD method. Its ultimate goal is to learn a table (Q-Table).
Works including [25,55] adopt this technique. To integrate it into
the FogBus2 framework, we implemented a scheduling policy.
Furthermore, as a comparison, the scheduler can be used in the
weighted cost problem to minimize the weighted load balancing
and response time cost.

• NSGA2: It is a weighted cost genetic algorithm. It adopts the
strategy of fast non-dominated sorting and crowding distance
to reduce the complexity of the non-dominated sorting genetic
algorithm. The algorithm has high efficiency and fast convergence
rate [56]. This algorithm is implemented using Pymoo [57].

• NSGA3: The framework of NSGA3 is basically the same as NSGA2,
using fast non-dominated sorting to classify population individu-
als into different non-dominated fronts, and the difference mainly
lies in the change of selection mechanism. Compared with NSGA2
using crowding distance to select individuals of the same non-
dominated level, NSGA3 introduces well-distributed reference
points to maintain population diversity under high-dimensional
goals [58]. This algorithm is implemented using Pymoo [57].
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6.2. Hyperparameter tuning

The scheduler based on DRLIS is implemented via PyTorch. Con-
sidering the limited computational resources of some devices in the
fog computing environment, both actor network and critic network
consist of an input layer, a hidden layer, and an output layer. Hen-
derson et al. [59] investigate the effect of hyperparameter settings
on the performance of reinforcement learning models. They survey
the literature on different reinforcement learning techniques, list the
hyperparameter settings used in the literature, and compare the actual
performance of the models under different hyperparameter settings.
They compare the performance of the PPO algorithm under different
network architectures and the result shows that the model performs
best under the network architecture where the hidden layer contains 64
hidden units and the hyperbolic tangent (TanH) function is used as the
activation function. Therefore, we used the same network architecture
for our experiments. In addition, we performed a grid search to tune
the four main hyperparameters (i.e., clipping range, discount factor,
learning rate for actor network, and learning rate for critic network),
and the results are shown in Fig. 5 The load balancing model control
parameters 𝑎1 and 𝑎2 are both set to 0.5 to show the equal importance
of CPU and RAM, however, these values can be tuned by users based
on the objectives.

All the experiments regarding hyperparameters tuning are con-
ducted in order to solve the weighted cost problem, as discussed in
Section 3.2.3. We describe the process of hyperparameters tuning of
our reinforcement learning model. For tuning the clipping range 𝜖, we
followed Schulman et al. [13], who proposed PPO and described that
the model performs best with settings of clipping range 𝜖 among 0.1,
0.2, and 0.3. Fig. 5(a) shows that our model performs best when the
clipping range 𝜖 is set to 0.3. For the discount factor 𝛾, we reviewed
related work on DRL in order to understand the common range for
𝛾. According to [13,60], the best setting for 𝛾 sits somewhere among
{0.9–0.999}. Accordingly, to keep the search area for tuning 𝛾 in a
viable range, we used the nominated values in these works and found
that our model converges faster when 𝛾 is set to 0.9. Fig. 5(b) shows
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Table 3
The hyperparameters setting for DRLIS.

DRLIS hyperparameter Value

Neural network layers 3
Hidden layer units 64
Optimization method Adam
Activation function TanH
Clipping range 𝜖 0.3
Discount factor 𝛾 0.9
Actor learning rate 𝑙𝑟𝑎 0.0003
Critic learning rate 𝑙𝑟𝑐 0.001
Policy objective function coefficient 𝑎𝑐 1
Value function loss function coefficient 𝑎𝑣 0.5
Entropy bonus coefficient 𝑎𝑒 0.01
Load balancing model CPU control parameter 𝑎1 0.5
Load balancing model RAM control parameter 𝑎2 0.5

Table 4
The hyperparameters setting for baseline techniques.

DQN hyperparameter Value

Neural network layers 3
Hidden layer units 64
Optimization method Adam
Activation function ReLU
Discount factor 0.99
Learning rate 0.0001
Exploration rate 1
Exploration decay 0.9
Minimum exploration 0.05

Q-Learning hyperparameter Value

Discount factor 0.9
Learning rate 0.1

NSGA2 and NSGA3 hyperparameter Value

Population size 200
Generation numbers 100

the tuning process of 𝛾. Based on the similar approach for tuning
and 𝛾, for tuning the actor network learning rate 𝑙𝑟𝑎, we referred

o [13,59,61] for designing our tuning range. Accordingly, we used
.003, 0.0003, and 0.00003 to tune 𝑙𝑟𝑎. Fig. 5(c) shows that our model
erforms best when the 𝑙𝑟𝑎 is set to 0.0003. Considering the same
pproach for tuning, we followed [62–64] and set our tuning range
mong {0.01, 0.001, 0.0001} and found that our model works best
hen 𝑙𝑟𝑐 is 0.001. Fig. 5(d) shows the performance of our model
nder different settings for 𝑙𝑟𝑐 . Overall, the deep neural network and
raining hyperparameters setting is presented in Table 3. Besides, we
lso tune the hyperparameters for baseline techniques to fairly study
heir performance. The corresponding results are shown in Table 4.

.3. Performance study

We performed two experiments to evaluate DRLIS compared to its
ounterparts, regarding the load balancing of the servers, the response
ime of the IoT applications, and the weighted cost.

.3.1. Cost vs. policy update analysis
In this experiment, we investigate the algorithm performance in

ifferent iterations when the policy is updated. We used the four
pplications mentioned in Section 6.1.2 for training with the resolution
arameter set to 480, and the maximum number of iterations is set
o 100. The training results of algorithms with the three optimization
bjectives are shown in Fig. 6.

As shown in Fig. 6(a), when optimizing the load-balancing problem
f the servers, the average computational resource variance of the
ervers is lower for the Q-Learning-based, DQN-based, and DRLIS-based
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N

chedulers than for the NSGA2-based and NSGA3-based schedulers.
oreover, only the reinforcement learning-based scheduler can achieve
stable convergence state. However, the Q-Learning-based scheduler

equires more than 60 iterations before reaching a converged state, and
he DQN-based scheduler requires more than 80 iterations, while the
RLIS-based scheduler only requires about 20 updates to converge to a

imilar stable state. The NSGA2-based and NSGA3-based schedulers are
nable to reach the convergence state. As shown in Fig. 6(b), when opti-
izing the response time problem of the application, unlike the former
roblem, all schedulers can converge. However, the average response
ime of Q-Learning-based, DQN-based, and DRLIS-based schedulers is
till lower than that of NSGA2-based and NSGA3-based schedulers. In
ddition, the DRLIS-based scheduler still outperforms the Q-Learning-
ased and the DQN-based schedulers in terms of convergence speed.
inally, as Fig. 6(c) shows, when optimizing the weighted cost problem,
imilar to the load balancing problem, the average cost is lower for the
-Learning-based, DQN-based, and DRLIS-based schedulers than for the
SGA2 and NSGA3-based schedulers, and only the first three can reach
stable convergence state. Moreover, although the Q-Learning-based,
QN-based, and DRLIS-based schedulers have similar final conver-
ence levels, the DRLIS-based scheduler converges much faster than
he Q-Learning-based and DQN-based schedulers. This proves that the
RLIS-based scheduler outperforms the other techniques in terms of
verage cost, convergence, and convergence speed during the training
hase.

In the evaluation phase, we set the resolution to 240, which will
ake the demand for computational resources and response time of

he IoT application different from the training phase. The evaluation
hase results of the different algorithms regarding the three optimiza-
ion objectives are shown in Fig. 7. It can be observed that when
he optimization objective is server load balancing, IoT application
esponse time, and weighted cost, respectively, the schedulers based on
ifferent algorithms have similar performances as the training phase.
pecifically, only the cost of the Q-Learning-based, DQN-based, and
RLIS-based schedulers converges, and the cost of the NSGA2-based
nd NSGA3-based schedulers fluctuates up and down in a higher range.
oreover, the average and final costs of the Q-Learning-based, DQN-

ased, and DRLIS-based schedulers are significantly lower than those of
he NSGA2-based and NSGA3-based schedulers during the evaluation
hase. In addition, in the weighted cost scenario, the DRLIS-based
cheduler can converge the cost to a stable level after about 30 policy
pdates, while the Q-Learning-based scheduler usually takes about 60
pdates to converge to a slightly higher level, and the DQN-based
cheduler needs more than 80 updates to converge to the same level.
verall, compared with the Q-Learning-based scheduler, which can
onverge stably and with the fastest convergence speed in the baseline
lgorithms, the average performance of the DRLIS-based scheduler
mproves by 55%, 37%, and 50%, in terms of servers load balancing,
oT application response time, and weighted cost, respectively.

.3.2. Scheduling overhead analysis
In this section, we investigate the scheduling overhead of different

echniques-based schedulers when handling IoT applications. The en-
ironment settings are the same as Section 6.1.1, and the resolution
f the IoT applications is set to 480. For each scheduler, we repeat
he experiment for 100 rounds, feeding four IoT applications to the
cheduler in each round. Besides, we define the average scheduling
verhead as 𝑇𝑎𝑣𝑒 =

𝑇𝑡𝑜𝑡𝑎𝑙
100 , where 𝑇𝑡𝑜𝑡𝑎𝑙 represents the total overhead spent

by the scheduler to handle the applications in 100 rounds.
Fig. 8 depicts the average scheduling overhead 𝑇𝑎𝑣𝑒 with a 95%

onfidence Interval (CNFI) of schedulers based on different technolo-
ies when handling IoT applications. It is obvious that the scheduling
verheads of reinforcement learning techniques (i.e., DRLIS, DQN,
-Learning) are usually lower than metaheuristics techniques (i.e.,
SGA2, NSGA3). In addition, the 95% CNFI of the scheduling overhead
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Fig. 6. Cost vs. policy update analysis — train phase.
Fig. 7. Cost vs. policy update analysis — evaluation phase.
Fig. 8. Average scheduling overhead with a 95% CNFI.

of reinforcement learning techniques is also much shorter than meta-
heuristic techniques. Specifically, the scheduling overhead of DRLIS
is more than 50% lower than NSGA2 and NSGA3, and more than
33% lower than DQN, but it is about 2 ms more than Q-Learning.
However, considering that the convergence speed of DRLIS is much
faster than that of Q-Learning, as discussed in Section 6.3.1, the in-
creased overhead cost of DRLIS over Q-Learning can be negligible.
Therefore, in the heterogeneous edge and fog computing environment,
our proposed DRLIS-based algorithm can handle the weighted cost
optimization problem of IoT applications more efficiently than other
techniques.

7. Conclusions and future work

In this paper, we proposed DRLIS, a DRL-based algorithm to solve
the weighted cost optimization problem for IoT applications scheduling
in heterogeneous edge and fog computing environments. First, we
proposed corresponding cost models for optimizing load balancing
67
and response time in heterogeneous edge and fog computing envi-
ronments and formulate a weighted cost model based on both of
them. In addition, we implemented a practical scheduler in the Fog-
Bus2 function-as-a-service framework for scheduling IoT applications.
Compared to existing work, DRLIS has significant advantages in con-
vergence speed, optimization cost, and scheduling overhead. Through
extensive experiments and comparisons with other works in the liter-
ature, DRLIS achieves performance improvements of up to 49%, 60%,
and 55% in terms of load balancing, response time, and weighted cost,
respectively.

For future work, considering the limited resources and the distribu-
tion of the devices in edge computing, we plan to explore distributed
deep reinforcement learning to further improve the scheduler’s perfor-
mance. Also, we plan to consider more models to extend our proposed
weighted cost model, including economic aspects and energy consump-
tion aspects in large-scale serverless computing environments. In ad-
dition, to optimize the performance of IoT applications involving GPU
tasks (e.g., image processing oriented applications), we will extend Fog-
Bus2 framework to consider resource usage when scheduling such ap-
plications on Application-Specific Integrated Circuit (ASIC)/GPU-based
edge and cloud servers for more efficient performance.
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