
A Distributed Deep Reinforcement Learning
Technique for Application Placement in Edge

and Fog Computing Environments
Mohammad Goudarzi ,Member, IEEE, Marimuthu Palaniswami , Fellow, IEEE, and

Rajkumar Buyya , Fellow, IEEE

Abstract—Fog/Edge computing is a novel computing paradigm supporting resource-constrained Internet of Things (IoT) devices by

placement of their tasks on edge and/or cloud servers. Recently, several Deep Reinforcement Learning (DRL)-based placement

techniques have been proposed in fog/edge computing environments, which are only suitable for centralized setups. The training of

well-performed DRL agents requires manifold training data while obtaining training data is costly. Hence, these centralized DRL-based

techniques lack generalizability and quick adaptability, thus failing to efficiently tackle application placement problems. Moreover, many

IoTapplications are modeled as Directed Acyclic Graphs (DAGs) with diverse topologies. Satisfying dependencies of DAG-based IoT

applications incur additional constraints and increase the complexity of placement problem. To overcome these challenges, we propose

an actor-critic-based distributed application placement technique, working based on the IMPortance weighted Actor-Learner

Architectures (IMPALA). IMPALA is known for efficient distributed experience trajectory generation that significantly reduces

exploration costs of agents. Besides, it uses an adaptive off-policy correction method for faster convergence to optimal solutions.

Our technique uses recurrent layers to capture temporal behaviors of input data and a replay buffer to improve the sample efficiency.

The performance results, obtained from simulation and testbed experiments, demonstrate that our technique significantly improves

execution cost of IoTapplications up to 30% compared to its counterparts.

Index Terms—Fog computing, edge computing, deep reinforcement learning, application placement, Internet of Things (IoT)

Ç

1 INTRODUCTION

IN recent years, new computing and communication tech-
nologies have rapidly advanced, leading to the prolifera-

tion of smart Internet of Things (IoT) devices (e.g., sensors,
smartphones, cameras, vehicles) [1]. These advancements
empower IoT devices to run a multitude of resource-hungry
and latency-sensitive IoT applications. These emerging IoT
applications increasingly demand computing, storage, and
communication resources for the execution [2]. Also, the
execution of such resource-hungry applications requires a
significant amount of energy consumption. Hence, limited
computing, storage, and battery capacity of IoT devices,
directly affect the performance of IoT applications and user
experience [3].

The Cloud computing paradigm, as a centralized solu-
tion, is one of the main enablers of the IoT, providing unlim-
ited and elastic remote computing and storage resources for

the execution of computation-intensive IoT applications [4].
All/some computation-intensive constituent parts (e.g., ser-
vice, modules, tasks) of IoT applications can be placed (i.e.,
offloaded) on remote Cloud Servers (CSs) for execution and
storage in order to reduce the execution time of IoT applica-
tions and energy consumption of IoT devices [5], [6]. How-
ever, due to low bandwidth and high communication
latency between IoT devices and CSs, the requirements of
latency-sensitive IoT applications cannot be efficiently satis-
fied [7]. Besides, low bandwidth and high latency of CSs
may incur more energy consumption for IoT devices due to
higher active communication time with CSs. To improve
the high communication latency and low bandwidth of CSs,
fog computing paradigm, as a distributed solution, has
emerged. In fog computing, heterogeneous Fog Servers
(FSs) are distributed in the proximity of IoT devices,
through which IoT devices can access the computing and
storage resources with higher bandwidth and less commu-
nication latency, compared to CSs [8]. However, these FSs
usually have limited resources (e.g., CPU, RAM) in compar-
ison to CSs. In our view, edge computing harnesses only
distributed edge resources at the proximity of IoT devices
while fog computing harnesses both edge and cloud resour-
ces to address the requirements of both computation-inten-
sive and latency-sensitive IoT applications (although some
works use these terms interchangeably).

In real-world scenarios, many IoT applications (e.g., face
recognition [9], smart healthcare [10], and augmented real-
ity [11]) are modeled as a Directed Acyclic Graph (DAG), in

� Mohammad Goudarzi and Rajkumar Buyya are with the Cloud Comput-
ing and Distributed Systems (CLOUDS) Laboratory, School of Computing
and Information Systems, The University of Melbourne, Melbourne,
VIC 3010, Australia. E-mail: mgoudarzi@student.unimelb.edu.au,
rbuyya@unimelb.edu.au.

� Marimuthu Palaniswami is with the Department of Electrical and Elec-
tronic Engineering, The University of Melbourne, Melbourne, VIC 3010,
Australia. E-mail: palani@unimelb.edu.au.

Manuscript received 16 Mar. 2021; revised 18 Oct. 2021; accepted 22 Oct. 2021.
Date of publication 27 Oct. 2021; date of current version 4 Apr. 2023.
(Corresponding author: Mohammad Goudarzi.)
Digital Object Identifier no. 10.1109/TMC.2021.3123165

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 5, MAY 2023 2491

1536-1233 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on June 05,2023 at 08:16:28 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7178-3386
https://orcid.org/0000-0002-7178-3386
https://orcid.org/0000-0002-7178-3386
https://orcid.org/0000-0002-7178-3386
https://orcid.org/0000-0002-7178-3386
https://orcid.org/0000-0002-3635-4252
https://orcid.org/0000-0002-3635-4252
https://orcid.org/0000-0002-3635-4252
https://orcid.org/0000-0002-3635-4252
https://orcid.org/0000-0002-3635-4252
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
mailto:mgoudarzi@student.unimelb.edu.au
mailto:rbuyya@unimelb.edu.au
mailto:palani@unimelb.edu.au

which nodes and edges represent tasks and data communi-
cation among dependent tasks, respectively. These DAG-
based IoT applications incur higher complexity and con-
straints when making placement decisions for the execution
of IoT applications. Hence, placement/offloading of IoT
applications, comprised of dependent tasks, on/to suitable
servers with the minimum execution time and energy con-
sumption is an important and yet challenging problem in
fog computing. Many heuristics, approximation, and rule-
based solutions are proposed for this NP-hard problem [12],
[13], [14]. Although these techniques work well in general
cases, they heavily rely on comprehensive knowledge about
the IoT applications and resource providers (e.g., CSs or
FSs). The fog computing environment is stochastic in sev-
eral aspects, such as arrival rate of application placement
requests, dependency among tasks, number of tasks per IoT
application, resource requirements of applications, and
available remote resources, just to mention a few. Therefore,
heuristic-based techniques cannot efficiently adapt to con-
stant changes in the fog computing environments [15].

Deep Reinforcement Learning (DRL) provides a promis-
ing solution by combining Reinforcement Learning (RL)
with Deep Neural Network (DNN). Since DRL agents can
accurately learn the optimal policy and long-term rewards
without prior knowledge of the system [16], they help solve
complex problems in dynamic and stochastic environments
such as fog computing, especially when the state space is so
large [15], [17]. Although the effectiveness of DRL techni-
ques is shown in several works [18], [19], [20], [21], [22],
there are yet several challenges for practical realizations of
these techniques in fog computing environments. In DRL,
the agent interacts with the environment using trial and
error (i.e., exploration) and records the trajectories of experi-
ences (i.e., sequences of states, actions, and rewards) in large
quantities with high diversity. These experience trajectories
are used to learn the optimal policy in the training phase. In
complex environments, such as fog computing, DRL agents
require a large number of interactions with the environment
to obtain sufficient trajectories of experience to capture the
properties of the environment. Therefore, the exploration
cost of agents increases. Obviously, it negatively affects the
user experience in the fog computing environment, because
the training of the DRL agents in such complex environ-
ments is a time-consuming process. The centralized DRL
agents used in fog computing environments are not suitable
for the highly distributed and stochastic environments [23].
Hence, a key problem is how to adapt distributed DRL tech-
niques to efficiently perform in fog computing environ-
ments. Considering the distributed nature of fog computing
environments, the application placement engines can be
placed on different FSs, that work in parallel and efficiently
produce diverse experience trajectories with less explora-
tion costs. However, other challenges may arise such as
how these trajectories can be efficiently and practically used
to learn the optimal policy.

To address the aforementioned challenges, we propose
an EXperience-sharing Distributed Deep Reinforcement
Learning-based application placement technique, called
X-DDRL, to efficiently capture complex dynamics of DAG-
based IoT applications and FSs’ resources. The X-DDRL
uses IMPortance weighted Actor-Learner Architectures

(IMPALA), proposed by Espeholt et al. [24], which is a dis-
tributed DRL agent that uses an actor-learner framework to
learn the optimal policy. In IMPALA, several actors interact
with the environments in parallel and produce diverse
experience trajectories in a timely manner. Then, these expe-
rience trajectories are periodically forwarded to the learner
for the training and learning of the optimal policy. After
each policy update of the learner, actors reset their parame-
ters with the learner’s one and independently continue their
explorations. As a result of this distributed and collabora-
tive experience-sharing between actors and learners, the
exploration costs reduce significantly, and the experience
trajectories are efficiently reused. However, due to
decoupled acting and learning, a policy gap between actors
and learners arises, which can be corrected by V-trace off-
policy correction method [24]. Moreover, we use Recurrent
Neural Networks (RNN) to accurately identify the temporal
patterns across different features of the input. Finally, the
X-DDRL uses experience replay to break the strong correla-
tion between generated experience trajectories and improve
sample efficiency.

The main contributions of this paper are summarized as
follows:

� A weighted cost model for application placement of
DAG-based IoT applications is proposed to mini-
mize the execution time of IoT applications and
energy consumption of IoT devices. Then, this
weighted cost model is adapted to be used in DRL-
based techniques.

� A pre-scheduling technique is put forward to define
an execution order for dependent tasks within each
DAG-based IoT application.

� We propose a dynamic and distributed DRL-based
application placement technique for complex and
stochastic fog computing environments, working
based on the IMPALA framework. Our technique
uses RNN to capture complex patterns across differ-
ent features of the input. Moreover, it uses an experi-
ence replay buffer which remarkably helps sampling
efficiency and breaks the strong correlation between
experience trajectories.

� We conduct simulation and testbed experiments
using a wide range of synthetic DAGs, derived from
the real-world IoT applications, to cover diverse
application dependency models, task numbers, and
execution costs. Also, the performance of our tech-
nique is compared with two state-of-the-art DRL
techniques, called Double Deep Q Learning (Double-
DQN), and Proximal Policy Optimization (PPO), and
a greedy-based heuristic.

The rest of the paper is organized as follows. Relevant
DRL-based application placement techniques in edge and
fog computing environments are discussed in Section 2. The
system model and problem formulations are presented in
Section 3. Section 4 describes the DRL-based model and its
main concepts. Section 5 presents our proposed distributed
DRL-based application placement framework. We evaluate
the performance of our technique and compare it with
state-of-the-art techniques in Section 6. Finally, Section 7
concludes the paper and draws future works.

2492 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 5, MAY 2023

Authorized licensed use limited to: University of Melbourne. Downloaded on June 05,2023 at 08:16:28 UTC from IEEE Xplore. Restrictions apply.

2 RELATED WORK

Considering the large number of works in application
placement techniques, in this section, related works for
DRL-based application placement techniques in fog/edge
computing environments are studied. However, detailed
related works for the non-learning-based application
placement techniques and frameworks are available in [3],
[25], [26].

DRL-based works are first divided into edge computing
and fog computing. Edge computing works only consider
the resources in the proximity of IoT users while fog com-
puting ones take advantage of both edge resources and
remote cloud resources. Hence, the heterogeneity of resour-
ces is higher in the fog computing works, which leads to
higher complexity for DRL-based application placement
techniques to identify the features of the environments.
Besides, works are further categorized into independent
and dependent categories based on the dependency model
of their IoT applications’ granularity (e.g., tasks, modules).
In IoT applications with dependent tasks (i.e., DAGs), each
task can be executed only when its parent tasks finish their
execution, while tasks of independent IoT applications do
not have such constraints for execution. Therefore, works in
the dependent category have more constraints, and hence
the DRL agent requires specific considerations compared to
works in the independent category to efficiently learn the
optimal policy.

2.1 Edge Computing

In the independent category, Huang et al. [27] proposed a
DRL-based offloading algorithm to minimize the system
cost, in which parallel computing is used to speed up the
computation of a single edge server. Min et al. [28] proposed
a fast deep Q-network (DQN) based offloading scheme,
combining the deep learning and hotbooting techniques to
improve the learning speed of Q-learning. Huang et al. [18]
proposed a quantized-based DRL method to optimize the
system energy consumption for faster processing of IoT
devices’ requests. Chen et al. [19] proposed a double DQN-
based algorithm to minimize the energy consumption and
execution time of independent tasks of IoT applications.
Huang et al. [20] also proposed a DRL-based offloading
framework based on DQN that jointly considers offloading
decisions and resource allocations. Chen et al. [29] proposed
a joint offloading framework with DRL to make an offload-
ing decision based on the information of applications’ tasks
and network conditions where the training data is gener-
ated from the searching process of the Monte Carlo tree
search algorithm. Lu et al. [21] proposed a Deep Determin-
istic Policy Gradients (DDPG)-based algorithm for compu-
tation offloading of multiple IoT users to a single edge
server to improve the quality of experience of users. To
improve the convergence of the DQN algorithm in an edge
computing environment, Xiong et al. [30] proposed a DQN-
based algorithm combined with multiple replay memories
to minimize the execution time of one IoT application. Qiu
et al. [31] studied the distributed DRL in an edge computing
environment with a single edge server to minimize the
energy cost of running IoT applications, consisted of inde-
pendent tasks. To obtain this goal, they combined deep

neuro-evolution and policy gradient to improve the conver-
gence results.

In the dependent category, Wang et al. [16] proposed a
meta reinforcement learning algorithm based on the Proxi-
mal Policy Optimization (PPO). The main goal of this work
is to minimize the execution time of dependent IoT applica-
tions, situated in the proximity of a single edge server.

2.2 Fog Computing

In the independent category, Gazori et al. [32] targeted task
scheduling of independent IoT applications tominimize long-
term service delay and system cost. To obtain this, they used a
double DQN-based scheduling algorithm combined with an
experience replay buffer. Tuli et al. [23] proposed Asynchro-
nous-Advantage-Actor-Critic (A3C) learning-based tech-
nique combined with Recurrent Neural Network (RNN) for
the scheduling of independent IoT applications to minimize
total system cost.

In the dependent category, Lu et al. [33] proposed a
DQN-based algorithm to minimize the overall system cost.
Although they consider dependencies among constituent
parts of each IoT application, they only consider the sequen-
tial dependency model among tasks of an IoT application,
where there are no tasks for parallel execution.

2.3 A Qualitative Comparison

Table 1 identifies and compares the main elements of
related works with ours in terms of their IoT application,
architectural, and application placement engine properties.
In the IoT application section, the dependency model of
each proposal is studied, which can be either independent
or dependent. Moreover, we study how each proposal mod-
els IoT applications in terms of the number of tasks and het-
erogeneity. This demonstrates whether IoT applications
consist of homogeneous or heterogeneous tasks in terms of
their computation and data flow. In the architectural prop-
erties, the attributes of IoT devices, fog/edge servers, and
cloud servers are studied. For IoT devices, the overall num-
ber of devices and their type of requests are identified. The
heterogeneous request type shows that each device has a
different number of requests with various requirements
compared to other IoT devices. For edge/fog servers, the
number of deployed servers between IoT devices and cloud
servers and the heterogeneity of their resources are studied.
Moreover, the multi-cloud shows either these works con-
sider different cloud service providers with heterogeneous
resources or not. In the application placement engine, the
main employed DRL methods are identified. Besides, it is
studied either these works consider any mechanism to pro-
vide priority for the execution of tasks or not. Finally, the
decision parameters of these DRL-based techniques are
identified.

Considering DRL-based application placement techni-
ques in edge and fog computing and their identified proper-
ties, the environment with multiple heterogeneous IoT
devices, heterogeneous FSs, and heterogeneous multi CSs
has the highest number of features. Moreover, DAG-based
IoT applications incur more constraints on DRL agents as
they need to consider the dependency among tasks within
each IoT application. The exploration cost of DRL agents

GOUDARZI ETAL.: DISTRIBUTED DEEP REINFORCEMENT LEARNING TECHNIQUE FOR APPLICATION PLACEMENT IN EDGE AND FOG... 2493

Authorized licensed use limited to: University of Melbourne. Downloaded on June 05,2023 at 08:16:28 UTC from IEEE Xplore. Restrictions apply.

increases as the number of features and complexity of the
environment increases. It negatively affects the training and
convergence time of DRL techniques, and accordingly
users’ experience. To address these issues, we propose a
distributed DRL technique based on the IMPALA architec-
ture, called X-DDRL, in which several actors indepen-
dently interact with fog computing environments and
create experience trajectories in parallel. Then, these dis-
tributed experience trajectories are forwarded to the
learner for training and policy updates. This significantly
reduces the exploration and training costs of centralized
DRL techniques. Furthermore, since the learner directly
uses the batches of experience trajectories of distributed
actors, rather than gradients with respect to the parame-
ters of the policy (similar to how the A3C algorithm
works), it can more efficiently learn and identify the fea-
tures of input data [24]. Also, the transmission of gradients
among actors and learners is more expensive in terms of
data exchange size and time (similar to how A3C works)
in comparison to sharing trajectories of experience. Hence,
experience-sharing DRL techniques such as IMPALA are
more practical and data-efficient in highly distributed and
stochastic environments [24], such as fog computing. Since
the policy used to generate the trajectories of experiences
in distributed actors can lag behind the policy of the
learner in the time of gradient calculations, a V-trace off-
policy actor-critic algorithm is used to correct this discrep-
ancy. Besides, to capture the temporal behavior of input
data, we embed RNN layers in the network of actors and
learners. Moreover, X-DDRL uses a replay buffer to
improve the sample efficiency for training.

3 SYSTEM MODEL AND PROBLEM FORMULATION

Fig. 1 represents an overview of our system model in fog
computing. IoT devices send their application placement
requests to brokers, situated at the edge of the network to
be accessed with less latency and higher bandwidth [3],

[34]. For each arriving application request, the broker makes
a placement decision based on the corresponding DAG of
the IoT application, its constraints, and the system status.
Accordingly, each task of an IoT application may be
assigned to the IoT device for the local execution or one of
heterogeneous FSs or CSs for the execution.

3.1 IoT Application

Each IoT applications is modeled as a DAG G ¼ ðV; EÞ of its
tasks, where V ¼ fvij1 � i � jVjg; jVj ¼ L depicts vertex set
of one application, in which vi denotes the ith task. More-
over, E ¼ fei;jjvi; vj 2 V; i 6¼ jg represents edge set, in which
ei;j denotes there is a data flow between vi (i.e., parent), vj
(i.e., child) and hence, vj cannot be executed before vi.
Accordingly, for each task vj, a predecessor task set PðvjÞ is
defined, containing all tasks that should be executed before
vj. Moreover, for each DAG G, exit tasks are referred to
tasks without any children.

TABLE 1
A Qualitative Comparison of Related Works With Ours

Fig. 1. An overview of our system model.

2494 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 5, MAY 2023

Authorized licensed use limited to: University of Melbourne. Downloaded on June 05,2023 at 08:16:28 UTC from IEEE Xplore. Restrictions apply.

The amount of CPU cycles, required for the processing of
each task, is represented as vwj , while the required amount
of RAM for processing of each task is vramj . Moreover, the
weight on each edge ewi;j illustrates the amount of data that
task vi sends as its output to task vj as its input.

3.2 Problem Formulation

Each task of an IoT application can either be executed
locally on the IoT device or on one of the FSs or CSs. We
define the set of all available servers as M where jMj ¼ M.
Each server is represented as my;z 2 M where y shows the
type of server (IoT device (y ¼ 0), FSs (y ¼ 1), CSs (y ¼ 2))
and z denotes the server index. Therefore, the placement
configuration of task vj, belonging to an IoT application, can
be defined as:

xvj ¼ my;z (1)

and accordingly, the placement configuration of an IoT
application X is defined as the set of placement configura-
tions for all of its tasks:

X ¼ fxvj jvj 2 V; 1 � j � jVjg: (2)

We consider that tasks of an IoT application are sorted in
a sequence so that all parent tasks are scheduled for the exe-
cution before their children. Hence, the dependencies
among tasks are satisfied. Besides, among tasks that can be
executed in parallel (i.e., tasks that all of their dependencies
are satisfied), the CP ðviÞ is an indicator function to demon-
strate whether the task is on the critical path of the IoT
application or not [35] (i.e., a path containing vertices and
edges that incurs the highest execution cost).

3.2.1 Execution Time Model

The execution time of each task vj depends on the availabil-
ity time of required input data for that task cinput

xvj
and its

processing time on the assigned server cproc
xvj

:

cxvj
¼ cproc

xvj
þ cinput

xvj
(3)

where cproc
xvj

depends on the required CPU cycles for that
task vwj and the processing speed of the corresponding
assigned server fs

xvj
, calculated as follows:

cproc
xvj

¼ vwj
fs
xvj

(4)

The cinput
xvj

is calculated as the maximum time that the
required input data for the execution of task vj become
available on the corresponding assigned server (i.e., xvj)
from its parent tasks:

cinput
xvj

¼ max
ewi;j

bxvi ;xvj
þ lxvi ;xvj

 !
� SSðxvi ; xvjÞ

 !
;

8vi 2 PðvjÞ
(5)

where bxvi ;xvj shows the current bandwidth (i.e., data rate)
between the servers to which vi and vj are assigned, respec-
tively. Moreover, lxvi ;xvj demonstrates the communication
latency between two servers. The SSðxvi ; xvjÞ is equal to 0 if

xvi ¼ xvj (i.e., same assigned servers) or 1, otherwise. Since
fog computing environments are heterogeneous and sto-
chastic, the fsxvj

, bxvi ;xvj , and lxvi ;xvj may be different among
IoT devices, FSs, and CSs.

The main goal of the execution time model is to find the
best-possible placement configuration for the IoT applica-
tion so that its execution time becomes minimized. Assum-
ing an IoT application consists of L tasks, the execution time
model is defined as:

CðXÞ ¼ min
XL
j¼1

CP ðvjÞ � cxvj

 !
(6)

where CP ðvjÞ is 1 if task vj is on the critical path and 0
otherwise. Due to the parallel execution of some tasks,
only the execution time of tasks on the critical path is
considered, which incurs the highest execution time and
involves the execution time of other parallel tasks as
well.

3.2.2 Energy Consumption Model

We only consider the energy consumption of IoT devices in
this work since FSs and CSs are usually connected to con-
stant power supplies [7]. From the IoT devices’ perspective,
the energy consumption that execution of each task vj incurs
depends on the amount of energy the IoT device consumes
until the required input data for that task vinput

xvj
becomes

ready plus the required energy for the processing of that
task vproc

xvj
:

vxvj
¼ vproc

xvj
þ vinput

xvj
(7)

where vproc
xvj

depends whether the task is assigned to the IoT
device for local execution or not. Hence, we define an IoT
Server identifier ISðxvjÞ to show whether the xvj refers to an
IoT device (ISðxvjÞ ¼ 1) or other servers (ISðxvjÞ ¼ 0).
Accordingly, the vproc

xvj
is calculated as what follows:

vproc
xvj

¼
cproc

xvj
� Pcpu; ISðxvjÞ ¼ 1

cproc
xvj

� Pidle; ISðxvjÞ ¼ 0

(
(8)

If the task is assigned to the IoT device (i.e., ISðxvjÞ ¼ 1),
the energy consumption of the IoT device is equal to
the amount of time that it processes the task multiplied
by the CPU power of IoT device Pcpu. However, if the
task is assigned to the other servers for processing (i.e.,
ISðxvjÞ ¼ 0), the energy consumption of the IoT device
depends on its idle time and corresponding idle power
Pidle.

The vinput
xvj

depends on the assigned servers to current
task (i.e., xvj) and its predecessors, and is calculated as what
follows:

vinput
xvj

¼

cinput
xvj

� Ptra; ISðxvjÞ ¼ 1

maxðISðxviÞ �
�

ew
i;j

bxvi ;xvj
þ lxvi ;xvj

�
ISðxvjÞ ¼ 0

�SSðxvi ; xvjÞÞ � Ptra þ ðcidle � PidleÞ;
8vi 2 PðvjÞ;

8>>>>>><>>>>>>:
(9)

GOUDARZI ETAL.: DISTRIBUTED DEEP REINFORCEMENT LEARNING TECHNIQUE FOR APPLICATION PLACEMENT IN EDGE AND FOG... 2495

Authorized licensed use limited to: University of Melbourne. Downloaded on June 05,2023 at 08:16:28 UTC from IEEE Xplore. Restrictions apply.

where ISðxvjÞ and ISðxviÞ demonstrates whether the current
task vj and/or its parent task vi 2 PðvjÞ in each edge are
assigned to the IoT device or not, respectively. It is impor-
tant to note that the transmission energy consumption for
each edge in DAG is only considered when one of the tasks
is placed on the IoT device. Hence, if the current task is
assigned to the IoT device (i.e., ISðxvjÞ ¼ 1), the vinput

xvj
depends on the cinput

xvj
. However, if the current task is not

assigned to the IoT device (i.e., ISðxvjÞ ¼ 0), it is possible
that the predecessor tasks of the current task (i.e.,
8vi 2 PðvjÞ) are previously assigned to the IoT device, and
hence the IoT device should forward the data to the server
on which the current task is assigned (which incurs energy
consumption). If none of the tasks are assigned to the IoT
device for local execution, the IoT device is in its idle state.
Besides, Ptra, cidle represent the transmission power of the
IoT device and its idle time, respectively. Similar to [7], [36],
[37], we used constant values for Ptra, cidle, however, these
parameters also can be dynamically configured.

The main goal of the energy consumption model is to
find the best-possible placement configuration for the IoT
application so that its energy consumption becomes mini-
mized. Assuming an IoT application consists of L tasks, the
energy consumption model is defined as:

VðXÞ ¼ min
XL
j¼1

CP ðvjÞ � vxvj

 !
(10)

3.2.3 Weighted Cost Model

The weighted execution cost of task vj is defined based on
its assigned server xvj :

fxvj
¼ ðw1 � cxvj

Þ þ ðw2 � vxvj
Þ (11)

where cxvj
and vxvj

refer to the execution time and energy
consumption for the execution of task vj. Moreover, the w1

and w2 are control parameters to represent the importance
of decision parameters in weighted execution cost of each
task. Also, the weighted cost of each task can be changed to
execution time or energy consumption cost of each task by
assigning w1 ¼ 1; w2 ¼ 0 or w1 ¼ 0; w2 ¼ 1, respectively.

Finally, the goal of weighted cost model is to find the best
placement configuration for tasks of an IoT application
while minimizing the weighted cost of parameters. In this
work, we consider execution time of IoT applications and
energy consumption of IoT devices as decision parameters,
however, this weighted cost can be extended using other
decision parameters. The weighted cost model is defined as:

minFðXÞ ¼ minw1 �CðXÞ þ w2 �VðXÞ (12)

s:t:

C1 : SizeðxvjÞ ¼ 1; 8xvj 2 X (13)

C2 : FðviÞ � Fðvi þ vjÞ; 8vi 2 PðvjÞ (14)

C3 : vramj � RAMðxvjÞ; 8vj 2 V (15)

C4 : w1 þ w2 ¼ 1 (16)

where CðXÞ, VðXÞ are obtained from Eqs. (6) and (10),
respectively. Besides, w1 and w2 are control parameters for
execution time and energy consumption, by which the
weighted cost model can be tuned. C1 denotes that each
task can only be assigned to one server at a time for process-
ing. Moreover, C2 states that the task vj can only be exe-
cuted after the execution of its predecessors, and hence the
cumulative execution cost of vj is always larger or equal to
execution cost of its predecessors’ tasks [7]. Besides, C3
states that the assigned server to the task vj should have suf-
ficient amount of available RAM RAMðxvjÞ for the process-
ing. Also, C4 defines a constraint on the values of control
parameters. These constraints are also valid for execution
time and energy consumption models. Moreover, the
weighted cost model can be changed to execution time or
energy consumption model by assigning w1 ¼ 1; w2 ¼ 0 or
w1 ¼ 0; w2 ¼ 1, respectively.

Since the application placement problem in heterogeneous
environments is an NP-hard problem [31], the problem’s com-
plexity grows exponentially as the number of heterogeneous
servers and/or the number of tasks within an IoT application
increases. Thus, the optimal policy of the application place-
ment problem cannot be obtained in polynomial time by itera-
tive approaches. The existing application placement
techniques are mostly based on heuristics, rule-based policies,
and approximation algorithms [16], [23]. Such techniques
workwell in general cases, however, they cannot fully adapt to
dynamic computing environments where the effective param-
eters of workloads and computational resources continuously
change [16], [38]. To address these issues, DRL-based schedul-
ing/placement algorithms are promising avenues for dynamic
optimizations of the system [15], [23].

4 DEEP REINFORCEMENT LEARNING MODEL

The DRL is a general framework that incorporates deep
learning to solve decision-making problems with high-
dimensional inputs. Formally, learning problems in DRL
can be modeled as Markov Decision Processes (MDP),
which is extensively used in sequential stochastic decision
making problems. A learning problem can be defined by a
tuple < S;A;P;R; g>, in which S and A denote the state
and action spaces, respectively. P illustrates the state transi-
tion probability, and R is a reward function. Finally, g 2
½0; 1� is a discount factor, determining the importance of
future rewards. We suppose that the time horizon is sepa-
rated into multiple time periods, called time steps t 2 T.
The DRL agent interacts with the environment, and in each
time step t, it perceives the current state of the environment
st, and selects an action at based on its policy pðatjstÞ, map-
ping states to actions. Considering the selected action at, the
agent receives a reward rt from the environment, and it can
perceive the next state stþ1. The main goal of the agent is to
find a policy in order to maximize the expected total of
future discounted reward [24]:

VpðstÞ ¼ Ep

�X
t2T

gtrt

�
(17)

where rt ¼ Rðst; atÞ is the reward at time step t, and at �
pð:jstÞ is the generated action at time step t by following the

2496 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 5, MAY 2023

Authorized licensed use limited to: University of Melbourne. Downloaded on June 05,2023 at 08:16:28 UTC from IEEE Xplore. Restrictions apply.

policy p. Moreover, when DNN is used to approximate the
function, the parameters are denoted as u.

Considering the application placement in fog computing
environments, we define the main concept of the DRL for
our problem as what follows:

� State space S: In our application placement problem,
the state is the observations of the agent from the het-
erogeneous fog computing environment. Thus, the
state at time step t (st) consists of information about
all heterogeneous servers (such as processing speed
of CPU, number of CPU cores, CPU utilization,
access Bandwidth (i.e., data rate) of servers, access
latency of servers, and CPU, transmission, and idle
power consumption values of IoT device). For the
rest of the servers, their power consumption values
are ignored as we only consider energy consumption
from IoT devices’ perspective [7]. If for each server
we have n features to represent its information, the
feature vector of all M servers at time step t (FVM

t)
can be presented as:

FVM
t ¼ ffmy;z

i j8my;z 2 M; 1 � i � ng (18)

where fm
y;z

i shows the ith feature of the server my;z.
Moreover, st contains the information about the cur-
rent task to be processed within a DAG of an IoT
application (such as computation requirements of
the task, required RAM, amount of output data per
parent task, and current placement configuration of
all tasks). Since we consider that tasks are sorted and
their dependencies are satisfied before their execu-
tion, the current placement configuration of tasks
contains the information regarding assigned servers
to all previous tasks. The values of unprocessed
tasks are set to �1. If we assume that each task has b
features, the feature vector of task vj (FV

vj
t) can be

represented as:

FV
vj
t ¼ ffvj

i jvj 2 V; 8i 1 � i � bg (19)

where f
vj
i shows the ith feature of the task vj. Thus,

the system space can be defined as:

S ¼ fstjst ¼ ðFVM
t ; FV

vj
t Þ; 8t 2 Tg (20)

� Action space A: Actions are assignments of available
servers to tasks of an IoT application. Therefore, the
action at time step t (at) is equal to assigning a server
my;z to the current task vj. Considering the placement
configuration of each task xv;j in Section 3.2, at can be
defined as:

at ¼ xvj ¼ my;z (21)

Thus, the action space A can be defined as the set of
all available servers, presented as follows:

A ¼ M (22)

� Reward function R: The goal is to minimize the
weighted cost model, defined in Eq. (12). To obtain
this, we consider Eq. (11) as the weighted cost of

each task and define the R as the negative value of
Eq. (11) if the task can be executed (done ¼ 1). More-
over, we define a constant penalty value, which is
usually a very large negative number [31]. Further-
more, the penalty value can be dynamically set based
on the goal of the optimization problem and environ-
mental variables. If the selected action by the agent
(i.e., server assignment for the current task) cannot
be performed due to any reason (done ¼ 0), the
reward becomes equal to penalty. Accordingly, rt is
defined as:

rt ¼
�fxvj

done ¼ 1

penalty done ¼ 0

(
(23)

5 DISTRIBUTED DRL-BASED FRAMEWORK

To address the challenges of DAG-based application place-
ment in the heterogeneous fog computing environment, the
X-DDRL works based on an actor-critic framework, aiming
at taking advantage of both value-based and policy-based
techniques while minimizing their drawbacks [35].

Actor-Critic Framework. In an actor-critic framework, the
policy is directly parameterized, denoted as pðatjst; uÞ, and
the u is updated by calculating the gradient ascent on the
variance of the expected total future discounted reward (i.e,P1

k¼0 g
krtþk) and the learned state-value function under pol-

icy p (i.e., VpðstÞ) [35]. The actor interacts with the environ-
ment and receives state st, outputs the action at based on
pðatjst; uÞ, and receives the reward rt and next state stþ1.
The critic, on the other hand, uses rewards to evaluate the
current policy based on the Temporal Difference (TD) error
between current reward and the estimation of the value
function Vðst; uÞ. Both actor and critic use DNNs as their
function approximators, which are trained separately. To
improve the selection probability of better actions by the
actor, the parameters of the actor network are updated
using the feedback of the TD-error, while the network
parameters of the critic network are updated to achieve bet-
ter value estimation. While the actor-critic frameworks
work very well in long-term performance optimizations,
their learning speeds are slow and they incur huge explora-
tion costs, especially in problems with high dimensional-
state space [31]. The distributed learning techniques in
which diverse trajectories are generated in parallel can
greatly improve the exploration costs and learning speed of
actor-critic frameworks.

The X-DDRL works based on an actor-learner frame-
work, in which the process of generating experience trajec-
tories is separated from learning the parameters of p and
Vp. Fig. 2a demonstrates a high-level overview of learner
and actors. The distributed actors in fog computing environ-
ments, which can be multiple CPUs within a broker (i.e., FS)
or different brokers, interact with their fog computing envi-
ronments. Arriving application placement requests to each
broker are queued in the appsQ based on the First-In-First-
Out (FIFO) policy. As Fig. 2b depicts, brokers performs pre-
scheduling phase for each IoT application. Then, based on
features of available servers and current task of selected IoT
application, each broker pre-processes the current state and

GOUDARZI ETAL.: DISTRIBUTED DEEP REINFORCEMENT LEARNING TECHNIQUE FOR APPLICATION PLACEMENT IN EDGE AND FOG... 2497

Authorized licensed use limited to: University of Melbourne. Downloaded on June 05,2023 at 08:16:28 UTC from IEEE Xplore. Restrictions apply.

makes an application placement decision. Each broker peri-
odically sends its local experience trajectories to the learner.
Besides, the learner updates the target policy p based on col-
lection of received trajectories from different brokers and
past trajectories stored in the replay buffer. After each pol-
icy update of the learner, brokers update their local policy m

with the policy of the learner p.
The X-DDRL is divided into two phases: pre-scheduling

and application placement technique. In the pre-scheduling,
tasks of the received IoT application are ranked and sorted
in a sequence for the execution. Afterward, for each task of
an IoT application, X-DDRL makes a placement decision to
minimize the execution cost of the IoT application.

5.1 X-DDRL: Pre-Scheduling Phase

IoT applications are heterogeneous in terms of the number
of tasks per application, the dependency model, and corre-
sponding weights of vertices and edges. Considering the
dependency model of an IoT application, tasks should be
sorted for execution, so that task vj cannot be executed
before any task vi 2 PðvjÞ. Furthermore, there are several
tasks that can be executed in parallel, and the order of exe-
cution of such parallel tasks are also important and may
affect the execution cost of an IoT application. Fig. 3 shows

a sample IoT application, dependencies among tasks, and
parallel tasks with the same colors in each row.

Algorithm 1. The Role of Each Broker/Actor

Input : p: The learner policy
/* N: number of steps, m: the actor’s local pol-

icy, EBB: expeience batch buffer, appsQ: Queue

of all received IoT applications, G: current

IoT application */

1: flag-init=True
2: for t ¼ 0 to1 do
3: m=UpdateLocalPolicy(m, p)
4: for i ¼ t to N þ t� 1 do
5: if flag-init=True then
6: G=appsQ.dequeue()
7: sortedG = Pre-scheduling (G) % based on Eq. (24)
8: si=ReceiveInitialState(G,M, sortedG)
9: flag-init=False
10: else
11: si=ReceiveCurrentState()
12: end
13: si=Pre-processor(si)
14: ai=PlacementEngine(si, m) % calculates the action

%The environment then executes this action
15: ri=TaskCostCalculator(si, ai) % baed on Eq. (23)
16: siþ1 = BuildNextState(si, ai)
17: EBB.update(si, ai, ri, siþ1)
18: if Finish(G) then
19: CalculateTotalCost(G) % based on Eq. (12)
20: flag-init=True
21: end
22: end
23: if size(EBB)==N then
24: SendExpeienceToLearner(EBB)
25: end
26: end

Whenever a broker receives a DAG-based IoT applica-
tion request from a user, it creates a sequence of tasks for
the execution while considering above-mentioned chal-
lenges. Tasks within the IoT application are ranked based

Fig. 2. An overview ofX-DDRL framework.

Fig. 3. A sample IoTapplication (parallel tasks have same colors in each
row).

2498 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 5, MAY 2023

Authorized licensed use limited to: University of Melbourne. Downloaded on June 05,2023 at 08:16:28 UTC from IEEE Xplore. Restrictions apply.

on the non-increasing order of their rank value. The rank
value of a task is defined as:

RankðvjÞ ¼
gfxvj

þmaxðgfxvi
Þ if vn;j 6¼ exit

8vi 2 PðvjÞ;gfxvj
; if vn;j ¼ exit

8><>: (24)

where gfxvj
shows the average weighted execution cost of

task vn;j on considering different servers. The rank is calcu-
lated recursively by traversing the DAG of the application,
starting from the exit module. Using the rank function, the
tasks on the critical path of DAG (i.e., CP) can also be identi-
fied. Hence, not only does the rank function satisfy the
dependency among tasks, but it also defines an execution
order for tasks that can be executed in parallel. To achieve
this, it gives higher priority to tasks that incur higher total
execution costs among parallel tasks.

5.2 X-DDRL: Application Placement Phase

If we assume that each broker makes placement decisions
for tasks of IoT applications, using their local policy m, for
N steps in the time horizon starting at time i ¼ t, Algorithm
1 shows how brokers perform application placement deci-
sions and generate experience trajectories. Each broker per-
forms the following steps: At the beginning of each
trajectory, the broker updates its policy m with the policy of
the learner (line 3). When broker starts making placement
decisions for tasks of a new IoT application G (i.e., when the
flag-init=True), it receives the current IoT application from
the appsQ (contains all received application requests to this
broker) (line 6). Then, the broker performs the pre-schedul-
ing to obtain the sorted list of application’ tasks based on
the Eq. (24) (line 7). Next, the system state is generated using
the initial state of the IoT application G and available serv-
ers M (line 8). Moreover, the broker changes the flag-init to
False, indicating that in the subsequent steps there is no
need to re-calculate the ranking and initial state of the G
(line 9), and the broker only requires to obtain the current
state of the environment based on Eq. (20) (line 11). The cur-
rent state of the broker’s environment si consists of feature
vectors of servers FVM

t and the current task of IoT applica-
tion FV

vj
t . The current task of each IoT application is obtained

from the ordered sequence of tasks sortedG. Then, the broker
pre-processes and normalizes values of the current state (line
13). Considering si and current policy m, an application
placement decision (i.e., the assignment of a server for the
processing of the current task) is made (line 14). The current
task is then forwarded to the assigned server (based on ai) for
processing. After the execution of the task, the broker
receives the reward of this action, which is the negative value
of the weighted execution cost of this task Eq. (23) (line 15).
The next state of the environment is then created using
the BuildNextState function (line 16). Then, the broker
creates an experience tuple (si; ai; ri; siþ1) and stores it in
its local experience batch buffer (line 17). When the bro-
ker finishes assignment of servers to all tasks of the cur-
rent IoT application G, meaning the application
placement is done for the current IoT application, the
total weighted execution cost of this IoT application is cal-
culated using Eq. (12) (line 19). Moreover, the broker sets

flag-init to False so that the next IoT application in the
queue of this broker appsQ can be served (line 20). After
N steps, each broker forwards its experience batch buffer
to the learner (lines 23-25). The learner periodically
updates its policy (i.e., p) on batches of experience trajec-
tories, collected from several brokers.

Since policies of brokers m are updated based on the
learner’s policy (trained on trajectories of different brokers),
each broker gets the benefit of trajectories generated by
other brokers. It significantly reduces the exploration cost of
each broker, and also provides brokers with a more accurate
local policy m. Furthermore, the X-DDRL uses an experi-
ence-sharing approach, which significantly reduces com-
munication overhead between brokers and learners, in
comparison to gradient-sharing techniques such as A3C
[24].

Due to the gap between the policy of broker m (when
generating new decisions) and the policy of the learner p

in the training time (when the learner estimates the gra-
dients), the learner in the X-DDRL uses the off-policy
correction method, called V-trace [24], to correct this
discrepancy.

Algorithm 2. The Role of Each Learner

Input : EBbroker: Experience batch of different brokers
/* listbrokers: list of brokers, p: the learner’s pol-

icy, MB: master buffer, MBS: master buffer

size, RB: replay buffer, RBS: replay buffer

size, TB: training batch, TBS: training batch

size */

1: while True do
2: flag-training=False
3: MB=;
4: while flag-training==False do
5: MB.update(EBbroker)
6: if TBS � MBS þRBS then
7: TB=BuildTrainBatch(MB, RB)
8: flag-training==True
9: end
10: end
11: OptimizeModel(TB) % based on Eq. (28), 29
12: UpdateBrokers(listbrokers, p)
13: end

� V-trace off-policy correction method: We assume that
each broker generates an experience trajectory for N
steps while following its local policy m as
ðst; at; rtÞiþN

t¼i . The value approximation of state si,
defined as N-step V-trace target for VðsiÞ, is as fol-
lows:

Vi ¼ VðsiÞ þ
XiþN�1

t¼i

gt�i
Yt�1

j¼i

cj

 !
dtV (25)

where dtV is a TD for V, defined as:

dtV ¼ rtðrt þ gVðstþ1Þ �VðstÞÞ (26)

where rt ¼ minðr; pðatjstÞ
mðatjstÞÞ and cj ¼ minðc; pðajjsjÞ

mðajjsjÞÞ are
truncated Importance Sampling (IS) weights, while

GOUDARZI ETAL.: DISTRIBUTED DEEP REINFORCEMENT LEARNING TECHNIQUE FOR APPLICATION PLACEMENT IN EDGE AND FOG... 2499

Authorized licensed use limited to: University of Melbourne. Downloaded on June 05,2023 at 08:16:28 UTC from IEEE Xplore. Restrictions apply.

c � r. The c and r play different roles in the V-trace.
The r has a direct effect on the value function Vp

toward which we converge, while c has a direct

effect on speed of the convergence. Considering r,

the target policy of the learner p can be defined as:

prðajsÞ ¼ minðrmðajsÞ;pðajsÞÞP
b2A minðrmðbjsÞ;pðbjsÞÞÞ (27)

We consider: (1) the brokers generate trajectories while
following policy m, (2) the parameterized state-value func-
tion under u as Vu, (3) the current policy of learner is pu,
and (4) the V-trace target Vi is defined based on Eq. (25).
The learner updates value parameters u, at time step i, in
the direction of:

ðVi �VuðsiÞÞruVuðsiÞ (28)

Moreover, the policy parameters u are updated in the direc-
tion of the policy gradient using Adam optimization algo-
rithm [39]:

rirulog ðpuðaijsiÞÞðri þ gViþ1 �VuðsiÞÞ (29)

Algorithm 2 summarizes the learners’ role in the
X-DDRL. The learner continuously receives and stores
experience batches of brokers EBbroker and updates the
master Buffer MB until the training batch TB becomes full
(line 4-10). Then, the learner optimizes the current target
policy p based on Eqs. (28) and (29) (line 11). After policy
update of the learner, brokers update their local policies m
with the latest policy of the learner p (i.e., brokers set their
policies to the new learner policy), and hence, new appli-
cation placement decisions are made using the updated
policy m in the brokers. The learner in the X-DDRL uses
the replay buffer RB, which remarkably improves sample
efficiency. The X-DDRL can easily scale as the number of
servers, IoT application requests, and brokers increases,
which is a principal factor in highly distributed environ-
ments such as fog computing. If a new broker joins the
environment, the broker updates its local policy with the
latest policy of the learner, and hence it takes advantage of
all trajectories that previously generated by other brokers.
Besides, it generates new sets of trajectories which help to
better diversify the trajectories of the learner. If the num-
ber of servers in the environment increases, distributed
brokers quickly generate new sets of trajectories, and
accordingly the learner can update its target policy
promptly. Such a collaborative distributed broker-learner
architecture not only significantly improves the explora-
tion costs, but also improves the convergence speed. The
other improvement in the X-DDRL is using RNN layers
since they can accurately identify highly non-linear pat-
terns among different input features, resulting in signifi-
cant speedup in the learner [23], [40].

5.3 Discussion on Resource Contention

In heterogeneous computing environments where multi-
ple applications are forwarded to heterogeneous servers,
resource contention for computing resources may occur.
Let’s assume, there are three IoT applications named A1,

A2, and A3 while there are two servers (either at the
edge or cloud) called S1 and S2. The type of applications
may be different from each other with different resource
requirements, and the number of servers or their com-
puting capability may differ so that resource contention
occurs among IoT applications. Moreover, for the DAG-
based IoT applications, consisting of several dependent
tasks, another type of resource contention may happen
among tasks of one IoT application.

One approach to solve the resource contention, either
among different IoT applications or tasks of one applica-
tion, is prioritization. In X-DDRL, the FIFO policy is used
to prioritize different IoT applications. These policies can
be changed according to the targeted problem. Besides, for
the tasks of one application, there are two important points
to consider. In DAG-oriented IoT application, each task
within the application can only be executed if its predeces-
sor tasks are completed. However, for tasks that can be
executed in parallel, a priority should be defined. In
X-DDRL, we use a rank function, Eq. (24), that prioritizes
tasks of one IoT application while considering the depen-
dency among tasks and the average execution cost of tasks.
Such prioritization between different IoT applications and
tasks of one IoT application help to solve the resource
contention.

Moreover, the DRL agent receives the sequence of tasks
based on the above-mentioned policies. So, these prioriti-
zation techniques are very important for the long-term
reward, especially for DAG-based IoT applications having
extra constraints. Without such prioritization, the DRL
agent may converge to a good solution but the conver-
gence time is significantly higher while in some scenarios
the DRL agent even cannot converge to good solution. The
DRL agent learns to assign the best server to each task
while considering the tasks’ dependency model of an IoT
application, resource requirements of each task, and avail-
able heterogeneous resources in the environment. That is,
the DRL agent is considering the resource contention
while assigning a server to each task, to minimize the exe-
cution cost of each task (based on short-term reward) and
accordingly each IoT application (based on long-term
reward).

6 PERFORMANCE EVALUATION

This section first describes the experimental setup, used to
evaluate our technique and baseline algorithms. Next, the
hyperparameters of our proposed technique X-DDR are
discussed. Finally, we study the performance of X-DDRL
and its counterparts in detail.

6.1 Experimental Setup

To evaluate the performance of the X-DDRL, we use both
simulation environment and testbed, which their specifica-
tion are provided in what follows.

6.1.1 Simulation Setup

We developed an event-driven simulation environment in
Python using the OpenAI Gym [41] for the application
placement in heterogeneous fog computing environments,
similar to [16]. For each of the two learners, we set the

2500 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 5, MAY 2023

Authorized licensed use limited to: University of Melbourne. Downloaded on June 05,2023 at 08:16:28 UTC from IEEE Xplore. Restrictions apply.

number of brokers to 8, which have access to a set of servers,
and make application placement decisions accordingly.
Hence, we vectorized the fog computing environment,
generated using OpenAI Gym, so that distributed brokers
can interact with their fog computing environments and
make application placement decisions in parallel. Unlike
prior work [16], [31], [32], [33], we consider a heteroge-
neous fog computing environment consisting of IoT devi-
ces, resource-constrained FSs, and resource-rich CSs. In
fog computing environment, we used the following
server setup, unless it is stated in the experiments: two
Raspberrypi 3B (Broadcom BCM2837 4 cores @1.2GHz,
1GB RAM)1, one Raspberrypi 4B (ARM Cortex-A72 4
cores @1.5GHz, 4GB RAM),2 and one Jetson Nano (ARM
Cortex-A57 4 cores @1.43GHz, 4GB RAM, 128-core Max-
well GPU)3 as heterogeneous FSs. Besides, to simulate a
heterogeneous multi-cloud environment, we used specifi-
cations of six m3.large instances of Nectar Cloud infra-
structure (AMD 8 cores @2GHz, 16GB RAM)4 and two
instances of the University of Melbourne Horizon Cloud
(Intel Xeon 8 cores @2.4GHz, 24GB RAM, NVIDIA P40
3GB RAM GPU).5 For IoT devices, the server type is a sin-
gle core @1GHz device embedded with 512MB RAM [16].
Besides, the power consumption of each IoT device in
processing, idle, and transmission state is 0.5W, 0.002W,
and 0.2W, respectively [7]. The bandwidth (i.e., data rate)
and latency among different servers and IoT devices are
also obtained based on average profiled values from
testbed, similar to [23]. Hence, the latency of FSs and CSs
are considered as 1ms and 10ms respectively, similar to
[23]. The bandwidth between IoT devices and FSs is ran-
domly selected between 10-12MB/s, while the bandwidth
between IoT devices and FSs to the CSs is randomly
selected between 4-8 MB/s, similar to [37]. Although we
obtained these values based on testbed experiments, they
are referred to some similar works as well to show the
credibility of these values. Also, both w1 and w2 are set to
0.5, meaning that the importance of execution time and
the energy consumption is equal in the results. However,
these parameters can be adjusted based on the users’
requirements and network conditions.

Many real-world IoT applications can be modeled by
DAGs with a different number of tasks and dependency
models. Hence, we generated several synthetic DAG sets
with a different number of tasks and dependency models to
represent scenarios where IoT devices generate heteroge-
neous DAGs with different preferences, similar to [16], [42].
The dependency model of each DAG can be identified using
three parameters: number of tasks within an application L,
fat that controls the width and heights of a DAG, and
density that identifies the number of edges between differ-
ent levels of the DAG. Accordingly, we generated different
DAG datasets, where each dataset contains 100 DAGs with
a similar number of tasks, fat, and density while the weights
are randomly selected to represent heterogeneous task

requirements in IoT applications with the same DAG struc-
ture. To generate heterogeneous DAG datasets, we set task
numbers L 2 f10; 15; 20; 25; 30; 35; 40; 45; 50g, fat 2 f0:4; 0:5;
0:6; 0:7; 0:8g, and density 2 f0:4; 0:5; 0:6; 0:7; 0:8g. To illus-
trate, one dataset of DAGs is L ¼ 10, fat ¼ 0:4, and
density ¼ 0:4, containing 100 DAGs. Accordingly, for each
task number L, we have 25 different combinations of fat
and density, resulting in 25 different topologies and 2500
DAGs. Finally, the simulation experiments are all per-
formed on an instance of Horizon Cloud with the above-
mentioned specifications.

6.1.2 Testbed Setup

To evaluate the performance of X-DDRL in a real-world
scenario, we created a testbed, similar to [31]. The type of
servers are the same as simulation setup while the number
of servers of each type is as follows: two Raspberry pi 3B,
one Raspberry pi 4B, one Jetson Nano, one instance of Hori-
zon Cloud, and six m3.large instances of Nectar Cloud
infrastructure). As IoT devices, we created several single-
core VMs within a PC (HP Elitebook 840 G5 with Intel Core
i7-8550U 8 cores @2GHz and 16GB RAM). These VMs are
used to send application placement requests, using
described DAG datasets, to the brokers. Moreover, to esti-
mate the energy consumption of IoT devices, we used com-
puting power, transmission power, and idle power as
discussed in Section 6.1.1, similar to the approach in [31].
For the connectivity, we set up a virtual network using VPN
among IoT devices, FSs, and CSs, as described in [26]. Due
to the limited CPU and RAM of the IoT devices’ VMs, they
can send application placement requests, using a message-
passing protocol (implemented using HTTP requests), to
the broker that is the Jetson Nano in this testbed. The broker
runs a multi-threaded server application that receives appli-
cation placement requests from different IoT devices and
puts them in the queue based on the FIFO policy. The bro-
ker dequeues the requests and makes placement decisions
for the tasks according to its policy m. According to the
placement configuration for each IoT application, each
server that receives a task for processing assigns that task to
one of its threads for processing. The thread is kept busy
according to the weight of task and processing speed of the
server. After the execution of each task, the size of output
results that should be forwarded to the children tasks is
obtained based on the weights of the task’s outgoing edges
in each DAG. Since weights of edges in each DAG (i.e., data
to be transferred between tasks) are different, we generate
files with different sizes to represent the weights on edges.
Finally, the broker logs the execution cost of each IoT appli-
cation and all of its constituent tasks in terms of selected
evaluation metrics.

6.1.3 Baseline Algorithms

We evaluate the performance of the X-DDRL with a greedy
heuristic algorithm, and two DRL-based techniques from
the literature that proposed DRL-based solutions for DAG-
based IoT applications. In what follows, we briefly describe
how these techniques are implemented, while their detailed
specifications are provided in Section 2.

1. https://www.raspberrypi.org/products/raspberry-pi-3-model-b
2. https://www.raspberrypi.org/products/raspberry-pi-4-model-b
3. https://developer.nvidia.com/embedded/jetson-nano-devel-

oper-kit
4. https://nectar.org.au/
5. https://people.eng.unimelb.edu.au/lucasjb/horizon/

GOUDARZI ETAL.: DISTRIBUTED DEEP REINFORCEMENT LEARNING TECHNIQUE FOR APPLICATION PLACEMENT IN EDGE AND FOG... 2501

Authorized licensed use limited to: University of Melbourne. Downloaded on June 05,2023 at 08:16:28 UTC from IEEE Xplore. Restrictions apply.

� PPO-RNN: It is the extended and adapted version of
the technique proposed in [16].6 We extended this
technique so that it can be used in multi-objective
scenarios to minimize the weighted cost of execu-
tion. Besides, this technique is extended to be used
in heterogeneous fog computing environments
where several IoT devices, FSs, and CSs are avail-
able. This technique uses PPO as its DRL framework
while the networks of the agent are wrapped by the
RNN. Besides, we used the same hyperparameters
as [16].

� PPO-No-RNN: This technique is the same as PPO-
RNN, while the networks are not wrapped by the
RNNs.

� Double-DQN: Many works in the literature uses stan-
dard Deep Q-Learning (DQN) based RL approach
such as [18], [30], [32], [33]. We implemented the
optimized Double-DQN technique with an adaptive
exploration for application placement in heteroge-
neous fog computing environments.7 The hyper-
parameters of this technique are set based on [33],
which is a DQN-based application placement tech-
nique for DAG-based IoT applications.

� Greedy: In this technique, tasks are greedily
assigned to the servers if their execution cost is
less than the estimated local execution cost, similar
to [16].

6.2 X-DDRL Hyperparameters

In the implementation of X-DRRL, where the standard
implementation of IMPALA is used8, the DNN structure of
all agents is similar, consisting of two fully connected layers
followed by two LSTM layers as recurrent layers. Moreover,
we performed a grid search to tune hyperparameters.
According to tuning experiments, we set the learning rate lr
to 0.01, the discount factor g to 0.99. Besides, values of r and
c, controlling the performance of V-trace are set to 1 [24] to
obtain the best result. Table 2 summarizes the setting of
hyperparameters.

6.3 Performance Study

In this section, four experiments are conducted to evalu-
ate and compare the performance of X-DDRL with other
techniques in terms of weighted execution cost, execu-
tion time of IoT applications, and energy consumption of
IoT devices.

6.3.1 Execution Cost versus Policy Update Analysis

In this experiment, we study the performance of application
placement techniques in different iterations of the policy
updates. We consider two scenarios for datasets of IoT
applications to analyze how efficiently these techniques can
extract features of different datasets of IoT applications and
optimize their target policy. In the first scenario, we con-
sider the number of tasks within IoT applications L ¼ 30.
Hence, 25 datasets of IoT applications with the same task
number and different fat and density are used, among
which 20 datasets are used for the training and 5 datasets
are used for the evaluation. In the second scenario, for the
training L 2 f10; 15; 25; 30g while for the evaluation L ¼ 20.
Therefore, the training and evaluation are performed on
datasets with a different number of tasks. Fig. 4 shows the
obtained results of this study in terms of the average execu-
tion time of IoT applications, the energy consumption of IoT
devices, and weighted cost for the above-mentioned two
scenarios.

As Fig. 4 shows, the average execution cost of all tech-
niques, except the greedy, decreases in different scenarios
as the iteration number increases. However, the X-DDRL
converges faster and to better placement solutions in com-
parison to other techniques. This is mainly because the V-
trace function embedded in the X-DDRL uses n-step
state-value approximation rather than 1-step state-value
approximation [24], improving convergence speed of
X-DDRL to better solutions. Moreover, trajectories gener-
ated by distributed brokers are diverse, leading to a more
efficient learning process. The execution cost of the greedy
technique is fixed and does not change with different iter-
ation numbers, but it can be used as a baseline technique
to compare the performance of DRL-based techniques.
The convergence speed of PPO-RNN and PPO-NO-RNN
techniques is slower than the Double-DQN technique
however, they finally converge to better placement solu-
tions. In addition, the obtained results of the second sce-
nario (Figs. 4d, 4e, and 4f) shows that all DRL-based
techniques has lower convergence speed in comparison to
the obtained results of first scenario (Figs. 4a, 4b, and
4c). However, still X-DDRL outperforms other techniques
in terms of execution time, energy consumption, and
weighted cost. This proves that the X-DDRL can more
efficiently adapt itself with different DAG structures (i.e.,
task numbers, and dependency model), and hence it
makes better application placement decisions in unfore-
seen scenarios.

6.3.2 System Size Analysis

In this experiment, the effect of different numbers of servers
on application placement techniques is studied. The num-
ber of candidate servers has a direct effect on the complexity
of application placement problems because the larger num-
ber of servers leads to a bigger search space. Hence, to ana-
lyze the performance of X-DDRL, the default number of
servers in this experiment is multiplied by two and four; i.e,
we have 24 and 48 servers respectively. Moreover, in this
experiment, the training and evaluation datasets are speci-
fied as the same as the first scenario in Section 6.3.1; i.e., a
total of 25 datasets where L ¼ 30 and different fat and

TABLE 2
The DNN and Training Hyperparameters

Parameter Value Parameter Value

Fully Connected layers 2 Learning Rate lr 0.01
LSTM Layers 2 Discount Factor g 0.99
Optimization Method Adam V-trace r 1
Activation Function Tanh V-trace c 1

6. https://github.com/linkpark/metarl-offloading
7. https://docs.ray.io/en/master/
8. https://docs.ray.io/en/master/

2502 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 5, MAY 2023

Authorized licensed use limited to: University of Melbourne. Downloaded on June 05,2023 at 08:16:28 UTC from IEEE Xplore. Restrictions apply.

density values. Due to the space limit and the fact that pat-
terns for execution time, energy consumption, and weighted
cost were roughly the same, only the obtained results from
the weighted cost are provided in this experiment.

Fig. 5 shows the weighted cost of different techniques,
where brokers in the system have access to 24 and 48 candi-
date servers when making application placement decisions.
It is crystal clear that the weighted cost of the greedy tech-
nique is steady for 24 and 48 servers as the number of itera-
tions increases. All DRL-based techniques perform better
than greedy technique either when the number of servers is
24 or 48. Also, it can be seen that the weighted execution
costs of techniques are higher when the number of servers
is 48 than weighted costs when the servers’ number is 24.
As the number of iterations increases, the DRL-based tech-
niques can more accurately make placement decisions, lead-
ing to less weighted execution cost. However, the X-DDRL
always outperforms other techniques and converges faster

to better solutions. It shows that the X-DDRL has better
scalability when the system size grows. This helps X-DDRL
to make better application placement decisions in a fewer
number of iterations. Among other DRL-based techniques,
PPO-RNN performs better than PPO-No-RNN and Double-
DQN and makes better placement decisions as the iteration
numbers increases.

6.3.3 Speedup and Placement Time Overhead

Analysis

In this section, we study the speedup and placement time
overhead of different DRL-based techniques. We follow
the same experimental setup as the first scenario in Sec-
tion 6.3.1. We define the average Placement Time Over-
head (PTO) as the average required amount of time for
each technique to make an application placement decision
divided by the average local execution time of IoT appli-
cations on IoT devices. To obtain the local execution time

Fig. 4. Execution cost versus policy update analysis: In scenario 1, the training and evaluations are performed on datasets where L ¼ 30. In scenario
2, the training is performed on datasets where L 2 f10; 15; 25; 30g and the evaluation is performed on datasets where L ¼ 20.

Fig. 5. System size analysis. Fig. 6. Placement time overhead and speedup analysis.

GOUDARZI ETAL.: DISTRIBUTED DEEP REINFORCEMENT LEARNING TECHNIQUE FOR APPLICATION PLACEMENT IN EDGE AND FOG... 2503

Authorized licensed use limited to: University of Melbourne. Downloaded on June 05,2023 at 08:16:28 UTC from IEEE Xplore. Restrictions apply.

of IoT applications on IoT devices, we assume that tasks
within an IoT application are executed sequentially, simi-
lar to [7]. Besides, we define the time taken by the
X-DDRL technique with one broker to reach the value 1.1
from the weighted execution cost as TimeR. The reason
why 1.1 is considered as the reference weighted execution
cost is that this value is the minimum weighted execution
cost that all DRL-based techniques can obtain. Moreover,
the time taken by each technique to reach the reference
weighted execution cost is defined as TimeT . Accordingly,
similar to [23], the Speedup value of each technique (SP)
is defined as SP ¼ TimeR

TimeT
.

Fig. 6 shows results of PTO and SP for all DRL-based
techniques. The placement time overhead of techniques
using RNN (i.e., X-DDRL and PPO-RNN) is usually higher
than techniques that do not use RNN (i.e., Double-DQN,
and PPO-No-RNN). The PTO of the X-DDRL is higher than
other DRL-based techniques by less than 1% in the worst-
case scenario, which is not significantly large. However, the
obtained results of SP show that X-DDRL performs 8 to 16
times faster than other techniques. Hence, considering the
speedup performance and execution cost results of the
X-DDRL, its placement time overhead is negligible, and
X-DDRL can more efficiently perform application place-
ment decisions compared to other techniques for heteroge-
neous fog computing environments.

6.3.4 Evaluation on Testbed

To evaluate the performance of X-DDRL in real-world sce-
narios, we conducted experiments on the testbed whose
configuration is discussed earlier in Section 6.1.2. In this
experiment, for the training L 2 f30; 35; 45; 50gwhile for the
evaluation L ¼ 40.

Fig. 7 shows the execution cost of different techniques in
terms of execution time, energy consumption, and weighted
cost by 95% confidence interval. It can be observed that,
similar to the simulation results, X-DDRL can outperform
other techniques in terms of execution time, energy con-
sumption, and weighted cost. Moreover, even after 100 iter-
ations, where all techniques converged, there are no
techniques that obtain better results in comparison to
X-DDRL. It demonstrates that not only does X-DDRL con-
verge faster, and its training time is significantly less than
other techniques, but it also provides better results. As the
results depict, the optimized Double-DQN technique con-
verges faster than PPO-RNN and PPO-No-RNN, but it

cannot obtain results as well as them. Overall, compared to
converged results of other DRL-techniques, achieved results
of X-DDRL show an average performance gain up to 30%,
11%, and 24% in terms of execution time, energy consump-
tion, and weighted cost, respectively.

7 CONCLUSIONS AND FUTURE WORK

This paper proposes a distributed DRL-based technique,
called X-DDRL, to efficiently solve the application place-
ment problem of DAG-based IoT applications in heteroge-
neous fog computing environments, where edge and cloud
servers are collaboratively used. First, a weighted cost
model for optimizing the execution time and energy con-
sumption of IoT devices with DAG-based applications in
heterogeneous fog computing environments is proposed.
Besides, a pre-scheduling phase is used in the X-DDRL, by
which dependent tasks of each IoT application are priori-
tized for execution based on the dependency model of the
DAG and their estimated execution cost. Moreover, we pro-
posed an application placement phase, working based on
the IMPALA framework for the training of distributed
brokers, to efficiently make application placement decisions
in a timely manner. Distinguished from existing works, the
X-DDRL can rapidly converge well-suited solutions in het-
erogeneous fog computing environments with a large num-
ber of servers and users. The effectiveness of X-DDRL is
analyzed through extensive simulation and testbed experi-
ments while comparing with the state-of-the-art techniques
in the literature. The obtained results indicate that X-DDRL
performs 8 to 16 times faster than other DRL-based techni-
ques. Besides, compared to other DRL-based techniques, it
achieves a performance gain up to 30%, 11%, and 24% in
terms of execution time, energy consumption, and weighted
cost, respectively.

As part of future work, we plan to extend our proposed
weighted cost model to consider other aspects such as mon-
etary cost, dynamic changes of transmission power, and
total system cost. Moreover, we plan to apply mobility mod-
els in this scenario and adapt our proposed application
placement technique accordingly.

ACKNOWLEDGMENTS

The authors would like to thank Shashikant Ilager, Amanda
Jayanetti, and Samodha Pallewatta for their comments on
improving this paper.

Fig. 7. Evaluation on testbed.

2504 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 5, MAY 2023

Authorized licensed use limited to: University of Melbourne. Downloaded on June 05,2023 at 08:16:28 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] P. Hu, S. Dhelim, H. Ning, and T. Qiu, “Survey on fog computing:
Architecture, key technologies, applications and open issues,” J.
Netw. Comput. Appl., vol. 98, pp. 27–42, 2017.

[2] J. Wang, K. Liu, B. Li, T. Liu, R. Li, and Z. Han, “Delay-sensitive
multi-period computation offloading with reliability guarantees
in fog networks,” IEEE Trans. Mobile Comput., vol. 19, no. 9, pp.
2062–2075, Sep. 2020.

[3] M. Goudarzi, H. Wu, M. S. Palaniswami, and R. Buyya, “An appli-
cation placement technique for concurrent IoT applications in
edge and fog computing environments,” IEEE Trans. Mobile Com-
put., vol. 20, no. 4, pp. 1298–1311, Apr. 2021.

[4] S. Deng et al., “Optimal application deployment in resource con-
strained distributed edges,” IEEE Trans. Mobile Comput., vol. 20,
no. 5, pp. 1907–1923, May 2021.

[5] S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, and X. S. Shen,
“Delay-aware microservice coordination in mobile edge comput-
ing: A reinforcement learning approach,” IEEE Trans. Mobile Com-
put., vol. 20, no. 4, pp. 939–951, Mar. 2021.

[6] M. Goudarzi, M. Zamani, and A. T. Haghighat, “A fast hybrid
multi-site computation offloading for mobile cloud computing,” J.
Netw. Comput. Appl., vol. 80, pp. 219–231, 2017.

[7] X. Xu et al., “A computation offloading method over big data for
IoT-enabled cloud-edge computing,” Future Gener. Comput. Syst.,
vol. 95, pp. 522–533, 2019.

[8] M. Goudarzi, M. Palaniswami, and R. Buyya, “A fog-driven
dynamic resource allocation technique in ultra dense femtocell
networks,” J. Netw. Comput. Appl., vol. 145, 2019, Art. no. 102407.

[9] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R.
Govindan, “Odessa: Enabling interactive perception applications
on mobile devices,” in Proc. 9th Int. Conf. Mobile Syst.s, Appl., Serv.,
2011, pp. 43–56.

[10] T. N. Gia, M. Jiang, A.-M. Rahmani, T. Westerlund, P. Liljeberg,
and H. Tenhunen, “Fog computing in healthcare Internet of
Things: A case study on ECG feature extraction,” in Proc. IEEE
Int. Conf. Comput. Inf. Technol.; Ubiquitous Comput. Commun.;
Dependable, Autonomic Secure Comput.; Pervasive Intell. Comput.,
2015, pp. 356–363.

[11] A. Al-Shuwaili and O. Simeone, “Energy-efficient resource alloca-
tion for mobile edge computing-based augmented reality
applications,” IEEE Wirel. Commun. Lett., vol. 6, no. 3, pp. 398–401,
Jun. 2017.

[12] A. Brogi and S. Forti, “QoS-aware deployment of IoT applications
through the fog,” IEEE Internet Things J., vol. 4, no. 5, pp. 1185–
1192, Oct. 2017.

[13] L. F. Bittencourt, J. Diaz-Montes , R. Buyya, O. F. Rana, andM. Par-
ashar, “Mobility-aware application scheduling in fog computing,”
IEEE Cloud Comput., vol. 4, no. 2, pp. 26–35,Mar./Apr. 2017.

[14] M. Goudarzi, Z. Movahedi, and M. Nazari, “Mobile cloud com-
puting: A multisite computation offloading,” in Proc. 8th Int.
Symp. Telecommun., 2016, pp. 660–665.

[15] D. Jeff, “ML for system, system for ML, keynote talk in workshop
on ML for systems, NIPS,” 2018. [Online]. Available: http://
mlforsystems.org/

[16] J. Wang, J. Hu, G. Min, A. Y. Zomaya, and N. Georgalas, “Fast
adaptive task offloading in edge computing based on meta rein-
forcement learning,” IEEE Trans. Parallel Distrib. Syst., vol. 32,
no. 1, pp. 242–253, Jan. 2021.

[17] Q. Mao, F. Hu, and Q. Hao, “Deep learning for intelligent wireless
networks: A comprehensive survey,” IEEE Commun. Surv. Tut.,
vol. 20, no. 4, pp. 2595–2621, Fourth Quarter 2018.

[18] L. Huang, S. Bi, and Y.-J. A. Zhang, “Deep reinforcement learning
for online computation offloading in wireless powered mobile-
edge computing networks,” IEEE Trans. Mobile Comput., vol. 19,
no. 11, pp. 2581–2593, Nov. 2020.

[19] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis,
“Optimized computation offloading performance in virtual edge
computing systems via deep reinforcement learning,” IEEE Inter-
net Things J., vol. 6, no. 3, pp. 4005–4018, Jun. 2019.

[20] L. Huang, X. Feng, C. Zhang, L. Qian, and Y. Wu, “Deep reinforce-
ment learning-based joint task offloading and bandwidth alloca-
tion for multi-user mobile edge computing,” Digit. Commun.
Netw., vol. 5, no. 1, pp. 10–17, 2019.

[21] H. Lu, X. He, M. Du, X. Ruan, Y. Sun, and K. Wang, “Edge QoE:
Computation offloading with deep reinforcement learning for
Internet of Things,” IEEE Internet Things J., vol. 7, no. 10, pp. 9255–
9265, Oct. 2020.

[22] Y. Sun, M. Peng, Y. Zhou, Y. Huang, and S. Mao, “Application of
machine learning in wireless networks: Key techniques and open
issues,” IEEE Commun. Surv. Tut., vol. 21, no. 4, pp. 3072–3108,
Fourthquarter 2019.

[23] S. Tuli, S. Ilager, K. Ramamohanarao, and R. Buyya, “Dynamic
scheduling for stochastic edge-cloud computing environments
using A3C learning and residual recurrent neural networks,”
IEEE Trans. Mobile Comput., 2020.

[24] L. Espeholt et al., “IMPALA: Scalable distributed deep-RL with
importance weighted actor-learner architectures,” in Proc. Int.
Conf. Mach. Learn., 2018, pp. 1407–1416.

[25] M. Goudarzi, M. Palaniswami, and R. Buyya, “A distributed
application placement and migration management techniques for
edge and fog computing environments,” 2021, arXiv:2108.02328.

[26] Q. Deng, M. Goudarzi, and R. Buyya, “FogBus2: A lightweight
and distributed container-based framework for integration of IoT-
enabled systems with edge and cloud computing,” in Proc. Int.
Workshop Big Data Emergent Distrib. Environ., 2021, pp. 1–8.

[27] L. Huang, X. Feng, A. Feng, Y. Huang, and L. P. Qian,
“Distributed deep learning-based offloading for mobile edge com-
puting networks,”Mobile Netw. Appl., pp. 1–8, 2018.

[28] M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, and W. Zhuang,
“Learning-based computation offloading for IoT devices with
energy harvesting,” IEEE Trans. Veh. Technol., vol. 68, no. 2,
pp. 1930–1941, Feb. 2019.

[29] J. Chen, S. Chen, Q. Wang, B. Cao, G. Feng, and J. Hu, “iRAF: A
deep reinforcement learning approach for collaborative mobile
edge computing IoT networks,” IEEE Internet Things J., vol. 6,
no. 4, pp. 7011–7024, Aug. 2019.

[30] X. Xiong, K. Zheng, L. Lei, and L. Hou, “Resource allocation based
on deep reinforcement learning in IoT edge computing,” IEEE
J. Sel. Areas Commun., vol. 38, no. 6, pp. 1133–1146, Jun. 2020.

[31] X. Qiu, W. Zhang, W. Chen, and Z. Zheng, “Distributed and col-
lective deep reinforcement learning for computation offloading: A
practical perspective,” IEEE Trans. Parallel Distrib. Syst., vol. 32,
no. 5, pp. 1085–1101, May 2021.

[32] P. Gazori, D. Rahbari, and M. Nickray, “Saving time and cost on
the scheduling of fog-based IoT applications using deep reinforce-
ment learning approach,” Future Gener. Comput. Syst., vol. 110, pp.
1098–1115, 2020.

[33] H. Lu, C. Gu, F. Luo, W. Ding, and X. Liu, “Optimization of light-
weight task offloading strategy for mobile edge computing based
on deep reinforcement learning,” Future Gener. Comput. Syst., vol.
102, pp. 847–861, 2020.

[34] R. Mahmud, R. Kotagiri, and R. Buyya, “Fog computing: A
taxonomy, survey and future directions,” in Internet of
Everything. Berlin, Germany: Springer, 2018, pp. 103–130.

[35] Q. Qi et al., “Knowledge-driven service offloading decision
for vehicular edge computing: A deep reinforcement learning
approach,” IEEE Trans. Veh. Technol., vol. 68, no. 5, pp. 4192–4203,
May 2019.

[36] S. E. Mahmoodi, R. Uma, and K. Subbalakshmi, “Optimal joint
scheduling and cloud offloading for mobile applications,” IEEE
Trans. Cloud Comput., vol. 7, no. 2, pp. 301–313, 2016.

[37] H. Wu, W. Knottenbelt, and K. Wolter, “An efficient application
partitioning algorithm in mobile environments,” IEEE Trans. Par-
allel Distrib. Syst., vol. 30, no. 7, pp. 1464–1480, Jan. 2019.

[38] G. Fox, J. A. Glazier, J. Kadupitiya, V. Jadhao, M. Kim, J. Qiu, J. P.
Sluka, E. Somogyi, M. Marathe, A. Adiga et al., “Learning every-
where: Pervasive machine learning for effective high-performance
computation,” in Proc. IEEE Int. Parallel Distrib. Process. Symp.
Workshops, 2019, pp. 422–429.

[39] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in Proc. Int. Conf. Learn. Representations, 2015,
pp. 1–15.

[40] J. Appleyard, T. Kociskỳ, and P. Blunsom, “Optimizing perfor-
mance of recurrent neural networks on GPUs. corr abs/
1604.01946 (2016),” 2016, arXiv:1604.01946.

[41] G. Brockman et al., “OpenAI Gym,” 2016, arXiv:1606.01540.
[42] H. Arabnejad and J. G. Barbosa, “List scheduling algorithm for

heterogeneous systems by an optimistic cost table,” IEEE Trans.
Parallel Distrib. Syst., vol. 25, no. 3, pp. 682–694, Mar. 2014.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

GOUDARZI ETAL.: DISTRIBUTED DEEP REINFORCEMENT LEARNING TECHNIQUE FOR APPLICATION PLACEMENT IN EDGE AND FOG... 2505

Authorized licensed use limited to: University of Melbourne. Downloaded on June 05,2023 at 08:16:28 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

