
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 2, FEBRUARY 2025 293

UMPIPE: Unequal Microbatches-Based Pipeline
Parallelism for Deep Neural Network Training

Guangyao Zhou , Wenhong Tian , Member, IEEE, Rajkumar Buyya , Fellow, IEEE,
and Kui Wu , Member, IEEE

Abstract—The increasing need for large-scale deep neural net-
works (DNN) has made parallel training an area of intensive fo-
cus. One effective method, microbatch-based pipeline parallelism
(notably GPipe), accelerates parallel training in various architec-
tures. However, existing parallel training architectures normally
use equal data partitioning (EDP), where each layer’s process
maintains identical microbatch-sizes. EDP may hinder training
speed because different processes often require varying optimal
microbatch-sizes. To address this, we introduce UMPIPE, a novel
framework for unequal microbatches-based pipeline parallelism.
UMPIPE enables unequal data partitions (UEDP) across pro-
cesses to optimize resource utilization. We develop a recurrence
formula to calculate the time cost in UMPIPE by considering
both computation and communication processes. To further en-
hance UMPIPE’s efficiency, we propose the Dual-Chromosome
Genetic Algorithm for UMPIPE (DGAP) that accounts for the
independent time costs of forward and backward propagation.
Furthermore, we present TiDGAP, a two-level improvement on
DGAP. TiDGAP accelerates the process by simultaneously calculat-
ing the end time for multiple individuals and microbatches using
matrix operations. Our extensive experiments validate the dual-
chromosome strategy’s optimization benefits and TiDGAP’s accel-
eration capabilities. TiDGAP can achieve better training schemes
than baselines, such as the local greedy algorithm and the global
greedy-based dynamic programming. Compared to (GPipe,
PipeDream), UMPIPE achieves increases in training speed:
(13.89, 11.09)% for GPT1-14, (17.11, 7.96)% for VGG16 and
≥ (170, 100)% for simulation networks.

Index Terms—Parallel training, data parallelism, unequal data
partitions, pipeline parallelism, genetic algorithm.

I. INTRODUCTION

THE advancement of intelligent technology has signifi-
cantly increased the application of deep neural networks

Received 13 January 2024; revised 22 November 2024; accepted 7 December
2024. Date of publication 11 December 2024; date of current version 30 Decem-
ber 2024. This work was supported in part by the National Key Research and
Development Program of China under Grant 2018AAA0103203 and in part by
Project of Key Research and Development Program of Sichuan Province under
Grant 2021YFG0325. Recommended for acceptance by J. Zola. (Corresponding
author: Guangyao Zhou.)

Guangyao Zhou is with the School of Computing and Artificial Intelligence,
Southwest Jiaotong University, Chengdu, Sichuan 610032, China (e-mail:
guangyao_zhou@swjtu.edu.cn).

Wenhong Tian is with the School of Information and Software Engineering,
University of Electronic Science and Technology of China, Chengdu, Sichuan
610056, China (e-mail: tian_wenhong@uestc.edu.cn).

Rajkumar Buyya is with the Cloud Computing and Distributed Systems
(CLOUDS) Laboratory, Department of Computing and Information Sys-
tems, University of Melbourne, Melbourne, VIC 3052, Australia (e-mail:
rbuyya@unimelb.edu.au).

Kui Wu is with the Department of Computer Science, University of Victoria,
Victoria, BC V8P 5C2, Canada (e-mail: wkui@uvic.ca).

Digital Object Identifier 10.1109/TPDS.2024.3515804

(DNNs) in various domains, such as image processing [1],
[2] and natural language processing (NLP) [3]. DNNs come
in diverse structures, such as Convolutional Neural Networks
(CNN) [4], transformer layer-based networks [5], [6], and Graph
Neural Networks [7], [8]. The advent of large language models
(LLMs) has led to an exponential growth in parameter scale.
Consequently, parallel training on distributed systems, such as
GPU clusters, has emerged as a crucial approach and a focal
point of research to overcome these challenges in large-scale
DNNs [4], [9], [10]

Data Parallelism (DP), Tensor Model Parallelism (TMP), and
Pipeline Model Parallelism (PMP) are three foundational par-
allel modes for training DNNs on distributed systems [6], [11],
[12], [13]. PMP and TMP, in particular, often leverage a combi-
nation with DP to enhance their architectures. Renowned PMP
architectures include GPipe [14], PipeDream [15], Dapple [16],
and Hpipe [11], while TMP is represented by Megatron-LM [5]
and Tofu [17]. Further, hybrid 3D parallelism models integrating
DP, TMP, and PMP, like FOLD3D [18] and Merak [13], have sig-
nificantly boosted parallel training performance. These existing
architectures all rely on microbatch-based data parallelism. In
the parallel training, forward propagation (FP) and backward
propagation (BP) comprise computation and communication
processes. A notable challenge is the “bubbles” or idle times
each device experiences while waiting for preceding processes
on other devices to complete [11], [16]. Reducing bubbles and
increasing the overlap between computation and communication
is a key focus in optimizing parallel training [18]. Techniques
such as dynamic programming [19], linear programming [20],
and recurrence methods [21] are developed to mitigate bubbles.

Despite the above progress, Equal Data Partitioning (EDP)
remains a significant limitation across most parallelism. EDP
means that all processes of computations and communications,
must handle the same number of microbatches within a mini-
batch [22]. The limitation caused by EDP is prevalent in almost
all existing parallel architectures that rely on microbatch-based
data parallelism (e.g., GPipe [14], PipeDream [15], Dapple [16].
In the dynamic landscape of DNNs, layer heterogeneity signifi-
cantly impacts computation and communication times, which
are not necessarily proportional to the microbatch-size [23],
[24], [25]. For example in Fig. 1, the layers of GPT-1 with
transformer and VGG16 with CNN have variations in processing
the same 512 pieces of data under different microbatch-sizes,
especially when the microbatch-size is small (if computation
time is proportional to data size, the curves should be straight

1045-9219 © 2024 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on January 18,2025 at 04:57:17 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0809-5799
https://orcid.org/0000-0002-5551-9796
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0002-2069-0032
mailto:guangyao_zhou@swjtu.edu.cn
mailto:tian_wenhong@uestc.edu.cn
mailto:rbuyya@unimelb.edu.au
mailto:wkui@uvic.ca

294 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 2, FEBRUARY 2025

Fig. 1. Computation time to process 512 pieces data in realistic GPU devices.

lines parallel to X-axis). Additionally, different layers have not
only different time consumption but also different inflection
points, which reflects heterogeneity between layers. The hetero-
geneity and nonlinearity suggests that optimal partition numbers
for different processes might vary. Hence, EDP may result in
inefficiencies.

Motivated by this observation, we propose UMPIPE, a
novel pipeline parallel structure utilizing unequal microbatches.
This approach allows for unequal data partitioning (UEDP)
across both computation and communication processes in
DNNs. UMPIPE represents the first exploration into unequal
partitioning within parallel training and effectively harnesses
the heterogeneous time consumption characteristics of DNN
layers. We develop a general recurrence formula and conduct an
in-depth analysis of UMPIPE’s optimality. Our findings indicate
that UMPIPE’s optimal scheme is at least as efficient, if not more
so, than existing methods like GPipe.

To obtain the optimization scheme of UMPIPE, we pro-
pose a dual-chromosome genetic algorithm (DGAP), leveraging
the independence of data partitions of FP and BP. Since the
microbatch-sizes for processes in UMPIPE can be different, the
formula of estimating training time in GPipe [26], [27] does not
apply to UMPIPE. To obtain explicit expressions of training
time in UMPIPE is a challenge. It significantly complicates
the computational process in determining UMPIPE’s optimal
scheme using recurrence formulas. To address this challenge,
we propose a two-level improvement method based on matrix
operations, which expedites calculations by simultaneously pro-
cessing multiple individuals and microbatches. We integrate
this method with DGAP to form Two-level Improved Dual-
Chromosome Genetic Algorithm (TiDGAP).

Our contributions are summarized as follows:
1) UMPIPE: Our approach considers not just the compu-

tation and communication simultaneously but also their
nonlinear time consumption relative to microbatch-size.
We propose UMPIPE, a UEDP-based pipeline parallelism
framework. This innovation allows different microbatch-
sizes for processes within DNNs, thereby accelerating par-
allel training. We derive a recurrence formula and conduct
a comprehensive theoretical analysis for UMPIPE.

2) DGAP: Recognizing that time costs for FP and BP are
independent in UMPIPE, we develop Dual-Chromosome
Genetic Algorithm (DGAP) to identify the optimal
scheme. Our theoretical analysis of the dual-chromosome

strategy highlights its statistical advantages in efficiently
resolving UMPIPE’s unique scheme requirements.

3) TiDGAP: Addressing the challenges in calculating
UMPIPE’s training time due to UEDP, we conduct theoret-
ical derivation and propose TiDGAP, a matrix operation-
based two-level improved method to accelerate DGAP.
TiDGAP can simultaneously calculate the end time cor-
responding to multiple individuals and multiple micro-
batches, substantially boosting DGAP’s search capability.

4) Extensive experiments demonstrate the fast speed and
optimality of TiDGAP compared to baseline methods. Ad-
ditionally, results confirm that UMPIPE achieves a faster
training speed than baseline parallelism without compro-
mising the training convergence of DNNs. Compared to
(GPipe, PipeDream), UMPIPE achieves (13.89, 11.09)%
improvement in GPT1-14, (17.11, 7.96)% in VGG16, and
≥ (170, 100)% in simulation networks.

The rest of this paper is organized as follows. We review the
related work in Section II. The UMPIPE parallelism is presented
in Section III. The DGAP and TiDGAP are presented in Sec-
tion IV. The experiment evaluations are presented in Section V.
Finally, we conclude this paper in Section VI.

II. RELATED WORK

A. Parallelism for Training DNNs

Data parallelism (DP), tensor model parallelism (TMP) and
pipeline model parallelism (PMP) are three basic architectures
to train large-scale DNNs [13], [18].

Data level parallelism generally divides the data into multiple
parts for time-sharing or equipment-sharing training [28], [29].
Joshua Romero et al. [12] implemented a lightweight decen-
tralized coordination strategy by utilizing a response cache to
accelerate collective communication in data parallel training. Lei
Guan et al. [30] proposed pdlADMM that splits the optimization
problem into sub-problems to train the fully connected DNN in
a data-parallel manner.

Tensor model parallelism divides layers of DNN into multiple
parts from the dimension of tensor operations [11], [27]. Based
on model parallelism, Deepak Narayanan et al. [5] proposed
Megatron-LM to divide the self-attention layer into a multi-
tensor operation model, which allowed the self-attention layer
to be put on different devices.

Pipeline-related parallelism, usually combining DP and TMP,
is an important method in parallel training. GPipe [14] split the
minibatch into multiple microbatches and utilized the pipeline
to train each part of the model on its corresponding distributed
node. Terapipe [6] followed the pipeline of GPipe and improved
the pipelining granularity to reduce the pipeline bubbles of the
transformer-based NLP model by proposing a new dimension,
i.e., token dimension. Based on GPipe, PipeDream [15] shifted
the gradient backward-propagation (BP) of each microbatch
earlier to the moment immediately after its last part of forward.
Dapple [16] followed PipeDream and shifted the BP of other
sub-model nodes to earlier besides that of the last sub-model
node for the same minibatch [16].

Authorized licensed use limited to: University of Melbourne. Downloaded on January 18,2025 at 04:57:17 UTC from IEEE Xplore. Restrictions apply.

ZHOU et al.: UMPIPE: UNEQUAL MICROBATCHES-BASED PIPELINE PARALLELISM FOR DEEP NEURAL NETWORK TRAINING 295

Hybrid 3D parallelism, which integrates DP, PMP, and TMP,
is currently an effective framework for high training effi-
ciency [13], [18]. Fanxin Li et al. [18] proposed FOLD3D
to slice a DNN into multiple segments, which allowed the
computations in the same segment to be scheduled together.
Zhiquan Lai et al. [13] proposed Merak that can automatically
deploy 3D parallelism. Some other hybrid parallelism includes
EffTra [26], ParaDL [31] and PipePar [32].

Other strategies to improve the performance of parallel
training include momentum-driven adaptive synchronization
model [33], NeoFlow (flexible framework for enabling efficient
compilation) [34], PaSE parallelization [21], etc.

B. Optimization Methods

The parallel architecture needs optimization methods to deter-
mine the optimal parallel schemes. Because the cost model was
generally non-analytical or recursive, dynamic programming
is a suitable and widely used method to obtain the optimal
partition of data or model parallelism [19]. Some examples using
dynamic programming include PipeDream [16], Dapple [16],
Terapipe [6], EffTra [26], PaSE [21], PipePar [32] et al. Lin-
ear programming is also a frequently-used method in parallel
training [4], [20], [29]. Some examples include NetPlacer [20],
HGP4CNN [4], DPDA [29]. Other partition methods include
off-the-shelf graph partitioning algorithms [7], recurrence [21],
grouping genetic algorithm [35], and near-optimal layer parti-
tion of local search method [36].

C. Difference of Our Solution

From the reviewed literature, how to construct a well-
performed parallel training architecture to accelerate training
speed by reducing pipeline bubbles and redundant communica-
tion is an urgent topic. The existing DP and TMP frameworks
rely on equal partitioning. However, the optimal partitioning
numbers of layers in DNN may differ, and equal partitioning
will restrict the optimization boundary of parallelism.

The notable feature of our proposed UMPIPE is unequal
data partitioning (UEDP). In UMPIPE, communication and
computation time are non-negligible and are not necessarily
proportional to the microbatch-size. These properties indicate
that the targeted scenarios of our proposed UMPIPE are far
more realistic. Our TiDGAP is also significantly different from
existing algorithms due to UMPIPE. Although TiDGAP still
relies on recurrence formulas, its calculation process has been
improved through matrix operations based on theoretical deriva-
tion. Matrix operation-based formulas enable TiDGAP to obtain
schemes of UMPIPE in the order of seconds.

III. UMPIPE PARALLELISM AND COST MODEL

A. Architecture of UMPIPE Parallelism

For the sake of presenting UMPIPE’s architecture and cost
model, we list notations in Table I. In one epoch of training
DNNs, a dataset is divided into multiple minibatches and each
minibatch needs to start after the previous minibatch ends. The
process undergoing one FP and one BP using a minibatch as the

TABLE I
NOTATIONS AND DESCRIPTIONS

input data is one training iteration of the DNN on the minibatch.
Minimizing the total training time can be equivalently converted
to minimizing the time for training one iteration of one mini-
batch. It can be set that the minibatch-size of training DNN is
P , which means training P pieces of data simultaneously in
one minibatch. These P data can be set as {d1, d2, . . . , dP } .
To reduce parallel training time, the existing microbatch-based
pipeline parallelism (e.g., GPipe) partitions a minibatch into
multiple microbatches. As GPipe makes a constraint that each
layer has the same number of microbatches (equal data parti-
tioning, EDP), some time-consuming processes (computation or
communication) may limit the optimization of the total training
time.

To reduce the training time, UMPIPE introduces unequal
data partitioning (UEDP) into microbatch-based pipeline paral-
lelism. In UMPIPE, different processes in DNN can have differ-
ent microbatch-sizes. UEDP is beneficial for layers’ processes
flexibly selecting appropriate numbers of data partitions. For
the convenience of discussion, we regard all computations and
communications in training DNN to belong to a set of processes.
Based on the characteristics of training DNN, there are 4N − 2
processes for N stages, marked as κ = 〈κ1, κ2, . . . , κ4N−2〉
according to the order of execution. Therefore, we can obtain that
for k ≤ 2N − 1, κk corresponds to the forward computation of
the (k + 1)/2-th stage if k is an odd number, else it is the forward
communication process between the k/2-th and the

(
k
2 + 1

)
-th

stages. It is similar to backward propagation. Assuming the
number of microbatches in the k-th forward process is pk and
that in the k-th backward process is qk, the relationships can be
obtained as (1).⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Fk(pk) =

⎧⎨
⎩
FP

k+1
2

(pk), k mod 2 = 1

FM
k
2

(pk), otherwise

Bk(qk) =

{
BP

N− k−1
2

(qk), k mod 2 = 0

BM
N− k

2

(qk), otherwise

(1)

With pk and qk, we can give the mathematical definitions of
GPipe and UMPIPE to highlight their differences.
� In GPipe, pk and qk must satisfy that for 0 ≤ ∀i ≤ ∀j ≤
2N − 1, pi = pj = qi = qj = p.

� In UMPIPE, it is allowed that ∃i, j s.t. pi �= pj , or qi �= qj ,
or pi �= qj .

Authorized licensed use limited to: University of Melbourne. Downloaded on January 18,2025 at 04:57:17 UTC from IEEE Xplore. Restrictions apply.

296 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 2, FEBRUARY 2025

Fig. 2. FP timeline for an example of a network under GPipe and UMPIPE in two stages with time functions as: FP
1 (2) = FP

1 (4) = 2t (non-linear time-
consuming process), FM

1 (2) = 2FM
1 (4) = 2t, FP

2 (2) = 2FP
2 (4) = 2t, FP

1 (1) = FM
1 (1) = FP

2 (1) = 4t. Mbh means microbatch.

Fig. 3. Timeline with FP and BP for an example of a network under GPipe and UMPIPE in two stages with time functions as:: FP
1 (2) = FP

1 (4) = 2t,
FM
1 (2) = FM

1 (4) = 2t, FP
2 (2) = FP

2 (4) = 2t and BP
1 (2) = 2BP

1 (4) = 2t, BM
1 (2) = 2BM

1 (4) = 2t, BP
2 (2) = 2BP

2 (4) = 2t.

As mentioned above, some time-consuming processes in
GPipe slow down the entire training. It is mainly because Fk

(or Bk) and pk (or qk) are not necessarily inversely proportional
in actual training. In some cases, there may exist a number p
s.t. thatFk(x) = Fk(y) for∀x > y ≥ p. A similar phenomenon
appears in Bk. If different processes choose different partitions
in this case (i.e., applying UMPIPE), it may further reduce the
total training time, which will be better than all partition schemes
of GPipe.

To illustrate the advantages of UEDP between different pro-
cesses in forward propagation, Fig. 2 provides an example
for forward propagation with two stages to present the dif-
ferences between EDP-based pipeline (GPipe) and UMPIPE.
Paying attention to the fact that ∃p s.t. Fk(x) = Fk(y) for
∀x > y ≥ p in some cases, the example in Fig. 2 sets a non-linear
time function for the first layer: when p ≥ 2, the computa-
tion time of each microbatch in the first layer will no longer
decrease correspondingly, i.e., FP

1 (2) = FP
1 (4). In such cases,

parallel training adhering to EDP will be slowed down by the
non-linear time-consuming process that will become the bottle-
neck process of the entire EDP-based parallelism In Fig. 2(a)
and (b), two schemes of GPipe, dividing one minibatch into two
microbatches and four microbatches respectively, correspond
to 8t and 10t training time. Due to the existence of non-linear
time-consuming process, EDP-based parallelism cannot fully
unleash the potential of parallel training. Using UEDP, UMPIPE
in Fig. 2(c) can achieve less training time as 7t, accelerating the
speed by 14.29% compared to GPipe.

UEDP between forward propagation and backward propa-
gation can also reduce training time. An example is shown in
Fig. 3 which also takes nonlinear time-consuming processes
into account by setting FP

1 (2) = FP
1 (4), FM

1 (2) = FM
1 (4),

and FP
2 (2) = FP

2 (4). It can be noted that the training time for

executing the BP in Fig. 3(b) is 6t less than that in Fig. 3(a). Thus,
if combining the scheme of forward propagation in Fig. 3(a) and
the scheme of backward propagation in Fig. 3(b), a better scheme
of UMPIPE can be obtained as Fig. 3(c). According to Fig. 3(c),
the training time under UMPIPE parallelism is 14t better than
the best scheme of GPipe.

These two examples demonstrate that unequal data parti-
tioning of UMPIPE can introduce better solutions than EDP,
which can further improve the speed of parallel training. Data
parallelism is one of the foundations of most existing parallel ar-
chitectures. Therefore, UEDP, which improves data parallelism,
is significant for parallel training.

B. Formulas for UMPIPE

Due to the introduction of UEDP, the training time of DNN
using UMPIPE is not as easy to derive as using GPipe. However,
solving optimization solutions requires evaluation of the opti-
mized solutions inevitably. Therefore, in this section, we present
a recurrence formula and provide a time-consuming recurrence
calculation algorithm.

Setting the begin time of the i-th microbatch in the k-th
process is Tki, a recurrence formula for UMPIPE is

Tki = max
(
T(k−1)xi

+ Fk−1, Tk(i−1) + Fk

)
(2)

where xi = 	(ipk−1)/pk
 where 	·
 is upward rounding func-
tion. It is complex to derive its analytical expression of the
training time. In practice, we can calculate the end time of
each data based on the dependencies between each data in each
process of DNN. Denoting the end time of the j-th data in the
k-th process as Ekj , the formula of dependencies is:

Ekj = max
(
E(k−1)zkj

, Ekykj

)
+ Fk (3)

Authorized licensed use limited to: University of Melbourne. Downloaded on January 18,2025 at 04:57:17 UTC from IEEE Xplore. Restrictions apply.

ZHOU et al.: UMPIPE: UNEQUAL MICROBATCHES-BASED PIPELINE PARALLELISM FOR DEEP NEURAL NETWORK TRAINING 297

Algorithm 1: Recurrence Algorithm for the Forward Train-
ing Time of One Minibatch Under UMPIPE.

where ykj = pk · (j/pk
 − 1) and zkj = min(pk + ykj , P).
According to the (3), Ekj is only determined by E(k−1)j and
Ekykj

. Thus, we can use the recurrence formula with two lay-
ers of loops to calculate the training time under UMPIPE as
Algorithm 1 assuming Fk is known.

As the backward propagation under UMPIPE parallelism has
a similar process with forward propagation, Algorithm 1 also
applies to backward propagation, which only needs to replace
Ekj by Rkj , Fk by Bk and pk by qk. Although Algorithm 1
can be utilized to obtain the training time under UMPIPE par-
allelism, it will consume a plethora of computational time due
to its two layers of loops, especially in the genetic algorithm. In
the next section, when introducing the optimization algorithm
for solving UMPIPE’s scheme, we will detail the improvement
methods for Algorithm 1 to accelerate the calculation of training
time.

When Fk and Bk are given for ∀k and ∀pk, 〈p1, p2, . . . ,
p2N−1, q1, q2, . . . , q2N−1〉 will determine the final training
time under UMPIPE parallelism. Therefore, 〈p1, p2, . . . ,
p2N−1, q1, q2, . . . , q2N−1〉 can be regarded as the solution of
UMPIPE’s scheme. Then, we can obtain the optimization prob-
lem of UMPIPE as

minω = E(2N−1)P +R(2N−1)P (4)

where E(2N−1)P is determined by 〈p1, p2, . . . , p2N−1〉 and
R(2N−1)P by 〈q1, q2, . . . , q2N−1〉.

C. Analysis for Optimality of UMPIPE

According to properties of basic functions and GPipe, we can
obtain a theorem about the optimal partition number.

Theorem 1: Assuming the set of optional partitions is
〈β1, β2, . . . , βη〉 where β1 = 1 < β2 < · · · < βη = P and the
optimal partition number of GPipe is βα where α < η, that
means pk = βα for ∀k, there must exist γ s.t. Fγ(βα) =
Fγ(βα+1).

Theorem 1 can be proved by contradiction.
Proof 1: According to the property of basic function, the

following relationship is tenable for ∀γ.

Fγ(βα) ≥ Fγ(βα+1)

IfFγ(βα) > Fγ(βα+1), it can be derived that the partition βα+1

is better than βα. It contradicts that βα is the optimal partition
number. Thus, Theorem 1 is proved.

With Theorem 1, we can obtain a relationship between the
optimal solutions of GPipe and UMPIPE.

Theorem 2: (1) If Fγ(βα−1) > Fγ(βα) = Fγ(βα+1) for ∀γ,
then pk = βα is also the optimal solution of UMPIPE, and the
best scheme of GPipe equals to that of UMPIPE. (2) If pk is the
optimal solution of UMPIPE and better than GPipe, then there
must exist i �= j s.t. pi �= pj .

Theorem 2 reveals that the theoretical optimal training scheme
of UMPIPE must be no worse than that of GPipe.

Proof 2: For the first property of Theorem 2, we use the
inductive method to prove it. Assuming the number of processes
in DNN is M , for M = 1, the first property of Theorem 2 is
obviously tenable. For M = 2, it can be assumed that the opti-
mal solution of UMPIPE is 〈p1 = a1, p2 = a2〉. As the GPipe
belongs to UMPIPE, the solution of UMPIPE must be no worse
than GPipe. When a1 = a2, the optimal solution of UMPIPE
is also that of GPipe. In this case, Theorem 2 is tenable. For
a1 �= a2, when only one of a1, a2 equals to βα, it can be set
a1 = βα and a2 �= βα. As Fγ(βα−1) > Fγ(βα) = Fγ(βα+1),
thus it can be derived that 〈p1 = a1, p2 = a2〉 is worse than
p1 = βα = p2. When a1 �= βα and a2 �= βα, it can be proved
that p1 = a1, p2 = a2 must be worse than (p1 = βα, p2 = a2)
or (p1 = a1, p2 = βα). (p1 = βα, p2 = a2) or (p1 = a1, p2 =
βα) are both worse than (p1 = βα, p2 = βα). Thus, (p1 =
a1, p2 = a2) is worse than (p1 = βα, p2 = βα). Therefore, the
first property is tenable for M = 2.

Assuming the first property of Theorem 2 is tenable for
∀M ≤ K − 1. For M = K, we can assume there exists a so-
lution of UMPIPE better than pk = βα. Thus, there must exist
one piece of data at one process with an earlier ending time
in the scheme of UMPIPE than that of GPipe and its previous
microbatches all have the same ending time in UMPIPE as that
of GPipe. It can be set that the index of this process is l ≤ K.
Thus, for ∀k ≤ l − 1, pk = βα and pl �= βα according to the
assumption that Theorem 2 is tenable for ∀M ≤ K − 1. As
Fγ(βα−1) > Fγ(βα) = Fγ(βα+1), thus ∀pl �= βα the ending
time of any piece data in the l-th process must be not earlier
than that of pl = βα. Thus, Theorem 2 is tenable for M = K.
Thus, the first property is proved.

As the first property is tenable, the second property clearly
holds, otherwise, it contradicts the condition that the solution of
UMPIPE is better than that of GPipe.

In fact, all the training schemes of GPipe are special cases
of UMPIPE, which means the schemes of UMPIPE include
that of GPipe. Therefore, our algorithm considers using the
optimal solution of GPipe as the initial solution, which ensures
to obtained UMPIPE’s scheme that is not inferior to GPipe.

IV. IMPROVED GENETIC ALGORITHM FOR UMPIPE

This paper focuses on the improvement of unequal data
partitioning and optimization algorithm, therefore mainly con-
sidering optimization of data partitioning without considering
the model partitioning optimization problem of PMP. It can be
assumed that the minibatch-size P has Q possible cases for
partitioning. Therefore, GPipe also has Q feasible solutions as it
requires EDP. As UMPIPE allows UEDP for different processes,
it has Q4N−2 feasible solutions, which are far more than that of
GPipe and increase exponentially with the number of stages. In

Authorized licensed use limited to: University of Melbourne. Downloaded on January 18,2025 at 04:57:17 UTC from IEEE Xplore. Restrictions apply.

298 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 2, FEBRUARY 2025

the previous section, we analyze that as the solution set expands,
UMPIPE has a better theoretical optimal solution. Leveraging
dynamic programming, recurrence algorithm or enumerate al-
gorithm requires large computational complexity. Thus, one of
the keys is to find an algorithm with acceptable complexity that
can find a better solution than the GPipe optimal solution.

As 〈p1, p2, . . . , p2N−1, q1, q2, . . . , q2N−1〉 can be regarded as
the solution of UMPIPE, we consider using the genetic algorithm
to search the optimal solution of (4). In genetic algorithms,
the fitness of each individual is related to the training time
corresponding to its solution. According to Algorithm 1, cal-
culating the fitness of all individuals in each generation will
require three layers of loops, which consume a large amount of
time. Therefore, we also propose a method to eliminate loops
through GPU-based matrix operations, significantly improving
the search speed of genetic algorithms.

A. DGAP: Dual Chromosomes-Based Genetic Algorithm

Referring to the existing terms of genetic algorithms [37],
[38], the base components of DGAP are set as:

1) Gene, Chromosome and Individual: we regard the par-
tition number pk or qk of each process as a gene. We
set each individual has two chromosomes: first is a vec-
tor C = 〈p1, p2, . . . , p2N−1〉 and the second is a vector
D = 〈q1, q2, . . . , q2N−1〉 both with 2N − 1 genes corre-
sponding to a data partition scheme of the UMPIPE.

2) Fitness and Chromosomes selector: An individual’s fitness
equals the training time of DNN corresponding to individ-
ual’s genes-determined partition scheme under UMPIPE
parallelism (called time corresponding to the individual).
The fitness of the chromosome C is equal to its corre-
sponding forward propagation time E(2N−1)P and that
of D is to backward time R(2N−1)P . DGAP sorts the two
sets of chromosomes of all individuals separately and then
selects better parts of each set of chromosomes in pairing
and crossover respectively.

3) Crossover: In this paper, we set the crossover to oc-
cur between four chromosomes Cα, Cβ , Dγ , Dη . Their
crossover is defined as separately extracting a part of genes
from them to gain two new chromosomes C(new) and
D(new) to construct the children individual.

4) Mutation: Mutation is replacing some elements of a chro-
mosome by randomly generated genes.

5) Population regeneration mechanism: The genetic algo-
rithm for UMPIPE applies elitist strategy [38] to combine
the parent individuals with their children individuals to
jointly compete to produce the next generation.

Then, we can present the dual-chromosome genetic algorithm
for UMPIPE in Algorithm 2.

Algorithm 2 is a version calling Algorithm 1 to calculate the
fitness (i.e., training time) of each individual, it requires four
layers of loops, including loop in generation index, loop in
individual index i, loop in DNN’s process index k and loop
in input data index j. Due to too many loop layers, Algo-
rithm 2 will take a long time to search for an optimal solu-
tion with time complexity O(Ng · P · (Np +Nc) · (4N − 2)),

Algorithm 2: Dual-Chromosome Genetic Algorithm for
UMPIPE (DGAP).

which is mainly consumed in the calculation of fitness. To
enable genetic algorithms feasible to solve the optimal data
partitioning in practical applications, it is necessary to reduce
the time spent on each iteration of the genetic algorithm. We
will introduce the improvement way to accelerate DGAP sub-
sequently. Before that, we analyze the convergence of the dual
chromosome strategy theoretically.

B. Analysis of Convergence for Dual-Chromosomes Strategy

In one minibatch, all the backward propagation need to start
after the ending of all forward propagation, so the optimization
of ω in (4) can be divided into two independent objectives
minE(2n−1)P and minR(2n−1)P . Correspondingly, we set one
individual to have two chromosomes C and D in DGAP.

Next, we can analyze the convergence probability in each
generation to demonstrate the superiority of two chromosomes
compared to using one chromosome.

It can be obtained that the number of feasible solutions for
UMPIPE is Q4N−2. We can set all genes of individuals in each
generation to be randomly generated again without considering
the evolutionary ability of the crossover and mutation in genetic
algorithms. Then, the probability of obtaining the theoretically
optimal individual in one generation is φ1 = Np/Q

4N−2 as-
suming each generation has Np different individuals and there
is only one theoretical solution. Thus, for one chromosome, the
probability of obtaining the global optimal solution at the g-th
generation is (1− φ1)

g−1 · φ1. Therefore, the expectation of
generations required to achieve theoretically optimal individuals
is Q4N−2/Np.

For two chromosomes, the probabilities of obtaining the
theoretically optimal C and D in one generation are both φ2 =
Np/Q

2N−1. The probability of obtaining the global optimal C
at the g-th generation is (1− φ2)

g−1 · φ2, which is same to D.
Therefore, the expectation of generations required to achieve
theoretical optimal C chromosome is 1/φ2. As C and D are

Authorized licensed use limited to: University of Melbourne. Downloaded on January 18,2025 at 04:57:17 UTC from IEEE Xplore. Restrictions apply.

ZHOU et al.: UMPIPE: UNEQUAL MICROBATCHES-BASED PIPELINE PARALLELISM FOR DEEP NEURAL NETWORK TRAINING 299

independent, the expectation of generations required to both
achieve theoretical optimal individual for dual-chromosomes-
based genetic algorithm (DGAP) is 2Q2N−1/Np which is far
less than that of one-chromosome-based genetic algorithm.

This conclusion is also valid when considering the evolution-
ary ability of crossover and mutation in genetic algorithms. For
the general situation considering crossover and mutation, it can
be proved that the dual-chromosome-based genetic algorithm
has a higher probability of reaching the optimal solution for each
generation than the one-chromosome-based genetic algorithm.
Therefore, the solution of DGAP in each generation will be
statistically superior to GAP.

C. OiDGAP: One-Level Improved DGAP

To accelerate DGA for UMPIPE, we improve Algorithm 2
from two aspects, including eliminating the loop in the individ-
uals’ index (the “for loop” of line 3 and line 5 in Algorithm 2)
and eliminating the loop in input data’s index (the “for loop” of
line 3 in Algorithm 1).

Eliminating the loop in the individual index indicates simulta-
neously calculating the training time corresponding to multiple
individuals. It can be set that the available partition numbers con-
struct a one-dimensional array W = [w0, w1, . . . , wQ−1]; the
corresponding time functions of each process in DNN construct
two arrays F = {fkj}(2N−1)×Q and B = {bkj}(2N−1)×Q with
two-dimensions where fkj = Fk+1(wj) and bkj = Bk+1(wj)
for 0 ≤ k < 2N − 1 and 0 ≤ j < Q; the indexes for all indi-
viduals’ genes in array W construct a two-dimensional array
G = {gik}Np×(4N−2) which means the partition number of
the (k + 1)-th process determined by the (i+ 1)-th individual’
genes is

W [gik] = wgik =

{
p(i+1)(k+1), if k < 2N − 1
q(i+1)(k+2−2N), others

(5)

Therefore, whenW is given, the arrayG is equivalent to genes
in the genetic algorithm. As the calculations for the training time
of FP and BP have similarities, we only discuss the calculation
for the training time of FP. The array, composed of the k-th gene
of all individuals, can be obtained as G[:, k] where 0 ≤ k <
2N − 1, thus the array of its corresponding time functions of
all individuals are F [k,G[:, k]] and that of the partition numbers
are W [G[:, k]]. The microbatch-sizes of the k-th process for all

individuals are
⌈

P
W [G[:,k]]

⌉
. It can be assumed that the end time

of the j-th data in the k-th forward process for the (i+ 1)-th
individual is eijk which can construct a three-dimensional array
E = {eijk}Np×(P+1)×2N . Thus, the recurrence relationship for
calculating the fitness of multiple individuals simultaneously
can be derived as (6) where the array Z(b) indicates the starting
index of data whose initial value is [1, 1, . . . , 1]Np

and Z(e) is
end index.⏐⏐⏐⏐⏐⏐⏐
Z(e) = min

(
Z(b) + 	P/W [G[:, k]]
 , P + 1

)
E
[
:, Z(b)[:] : Z(e)[:], k

]
= F [k,G[:, k]]

+max
(
E
[
:, Z(e)[:]−1, k − 1

]
,E

[
:, Z(b)[:]−1, k

])
Z(b) = Z(e)

�

(6)

Algorithm 3: One-Level Improved DGA for UMPIPE
(OiDGAP): Simultaneously Calculating the Training Time
Corresponding to Multiple Individuals.

Due to the possible differences in the number of partitions
corresponding to the same process for multiple individuals, the
number of columns required to be broadcast in each row of
the second formula of (6) will be different. It can be achieved
by using matrix multiplication if the programming with array
operation does not support imbalanced broadcasting. Then, the
genetic algorithm for UMPIPE after one level of improvement
can be shown in Algorithm 3. Assuming executed on one or
multiple GPUs with sufficient parallel capability, Algorithm 3
has the time complexity as O(Ng · P · (4N − 2)).

D. TiDGAP: Two-Level Improved DGAP

Eliminating the loop in input data indicates simultaneously
calculating the end time of multiple microbatches (all data in
one minibatch of the k-th process), i.e., obtaining E[i, :, k] after
one set of operations without loop.

As shown in (3), the start time of the j-th data in the k-th
process mainly depends on the maximum end time between
the zkj-th data in the (k − 1)-th process (called preprocess
baseline) and the ykj-th data in the k-th process (called preorder
baseline). Therefore, we can divide the start time of data in the
k-th process into pk parts (corresponding to pk microbatches),
where all data in the same part has the same start time. Thus,
we only need to quickly calculate the start time of one data in
each part to know the start time of other data in the same part.
Assuming the end time of each data in the (k − 1)-th process is

Authorized licensed use limited to: University of Melbourne. Downloaded on January 18,2025 at 04:57:17 UTC from IEEE Xplore. Restrictions apply.

300 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 2, FEBRUARY 2025

known, we can obtain the preprocess baseline for each micro-
batch in the k-th process is [E[i, 	 P

pk

, k − 1], E[i, 2	 P

pk

, k −

1], . . . , E[i, P, k − 1]] that can be set as [η1, η2, . . . , ηpk
] for

the sake of presentation. Therefore, the start time of the 1st
microbatch in the k-th process is η1, and that of the 2nd mi-
crobatch is max(η1 + f, η2) where f means the time function.
By mathematical induction, we derive a provable property that
the start time of the j-th microbatch in the k-th process is

j
max
l=1

(ηl + (j − l)f) =
j

max
l=1

(ηl − lf) + jf (7)

Thus, we only need to calculate maxjl=1(ηl − lf) for each j.
We can construct a array as PB = [η1 − f, η2 − 2f, . . . , ηj −
jf, . . . , ηpk

− pkf]. Significantly, maxjl=1(ηl − lf) is exactly
the maximum value of the first j items for the array PB, which
can be quickly obtained by calling the ‘cummax’ function of
array operation or using upper triangular matrix (if without
‘cummax’ function). Then, cummax(PB) + [1, 2, . . . , pk]f is
the array composed of the start time of each microbatch in the
k-th process.

This approach still applies to calculating the starting time of
multiple data of multiple individuals simultaneously by com-
bining with Algorithm 3, which can simultaneously eliminate
two layers of loops in Algorithm 2 including the loop in the
individuals’ index (the “for loop” of line 3 and line 5 in Algo-
rithm 2) and the loop in input data’s index (the “for loop” of
line 3 in Algorithm 1). Then, the two-level improved DGA for
UMPIPE simultaneously calculating the starting time of mul-
tiple data and multiple individuals can be seen in Algorithm 4.
The time complexity of Algorithm 4 isO(Ng · (4N − 2))which
is approximately 1

P of Algorithm 3.
Our proposed TiDGAP has a much lower time complexity

that provides a method to quickly calculate the training time
corresponding to different data partitioning schemes and allows
UMPIPE (unequal data partitions for microbatch-based pipeline
parallelism) to apply in the practical optimization and acceler-
ation of parallel training. With the increase of Np and P , the
execution time of TiDGAP in real GPU devices will also increase
slowly, while it is still small enough for optimization of parallel
training for large-scale DNN. In subsequent experiments, we
will also evaluate the execution time of TiDGAP compared to
DGAP and OiDGAP.

V. PERFORMANCE EVALUATION

A. Experiment Settings

For the sake of the comprehensive evaluations of the unequal
data partitions-based parallelism (i.e., UMPIPE) and two-level
improved dual-chromosome genetic algorithm (TiDGAP), we
carry out four groups of experiments from various aspects in-
cluding:

1) EX1: Comparing TiDGAP with TiGAP to demonstrate
the optimization effect of dual-chromosome strategy;

2) EX2: Comparing TiDGAP with OiDGAP and DGAP to
demonstrate the acceleration effect on the evolution of
two-level improvement with array operation;

Algorithm 4: Two-Level Improved DGA for UMPIPE
(TiDGAP): Simultaneously Calculating the Starting Time
of Multiple Data and Multiple Individuals.

3) EX3: Comparing TiDGAP with baselines local greedy
algorithm and global greedy-based dynamic programming
to demonstrate the optimality of DGAP for UMPIPE.

4) EX4: Comparing UMPIPE with GPipe, UMPipeDream
and PipeDream to demonstrate the superiority of UEDP.

EX1 and EX2 are conducted on a randomly generated
simulation dataset, which is beneficial for executing sufficient
experiments. EX3 and EX4 are conducted on real parallel
training in multiple GPUs, which is conducive to demonstrating
the advantages and feasibility simultaneously of our proposed
UMPIPE architecture and TiDGAP algorithm. The baseline
algorithms in EX3 represent that:

1) Local Greedy Algorithm for UMPIPE (LG): For each
process, select the number of partitions that make the
current process have the earliest end time. The algorithm
can be seen in Algorithm 5.

2) Global Greedy-based Dynamic Programming for
UMPIPE (GG): For each process, selecting the number
of partitions that make the last process have the earliest
end time, whose algorithm can be seen in Algorithm 6. In
Algorithm 6, the parameter ‘rounds’ can be flexibly set
and can also be replaced by that �C ′ better than C which
is a convergence condition of Algorithm 6.

Each group of experiments adopts the control variables to
ensure the reliability of comparisons. In EX1, the indicators
are the optimization results over generations and the proba-
bility of finding the global optimal solution over generations

Authorized licensed use limited to: University of Melbourne. Downloaded on January 18,2025 at 04:57:17 UTC from IEEE Xplore. Restrictions apply.

ZHOU et al.: UMPIPE: UNEQUAL MICROBATCHES-BASED PIPELINE PARALLELISM FOR DEEP NEURAL NETWORK TRAINING 301

Algorithm 5: Local Greedy for UMPIPE (LG).

Algorithm 6: Global Greedy-Based Dynamic Programming
for UMPIPE (GG).

to demonstrate the convergence of dual-chromosome strategy,
where the optimization results present the parallel training time
corresponding to the optimization solutions.EX2 is mainly used
to observe the execution time of different algorithms controlling
the number of individuals (Np) and generations (Ng) in different
scales. EX3 is to observe the stable optimization results of the
different algorithms. EX4 is to observe the optimal training
time and convergence under UMPIPE parallelism, compared
with other parallelism. We test a large number of instances in
each group of experiments, and instances from the same group
of experiments point to similar conclusions. Therefore, we only
provide a subset of them in this paper. Then, the optimization
algorithm is launched on a desktop and the realistic parallel
training is launched on the servers. The configurations of them
are as follows.
� Program version: Python 3.7 + Pytorch 1.13.1;
� Desktop: NVIDIA GeForce RTX 3060 Ti @ 8GB;
� Servers: NVIDIA TESLA V100 @ 32GB × 2.

B. EX1: Evaluation of Dual-Chromosome Strategy of
TiDGAP Compared With TiGAP

To observe the optimization effect of the dual-chromosome
strategy, we compare TiDGAP with TiGAP in the simulation

Fig. 4. The optimization results (corresponding to time for training one
minibatch) over generations in randomly generated basic time arrays comparing
TiDGAP with TiGAP, where: Np = 100, Ng = 100, F,B ∼ U = [1, 100],
randomly initializing Np individuals.

TABLE II
THE QUANTITATIVE OPTIMIZATION RESULTS OF TIDGAP AND TIGAP AT THE

100TH GENERATION IN THE EXPERIMENTS OF FIG. 4

scenarios. In the simulation scenarios, we randomly gener-
ate F = {fkj}(2N−1)×Q and B = {bkj}(2N−1)×Q. As the out-
comes from different random distributions echo the consistent
trends and results, we only present the results obtained from the
uniform distribution U = [1, 100] ∩ N∗.

First, we observe the trends of optimization results over
generations in several scenarios, including (N = 10, P = 64),
(N = 10, P = 512), (N = 20, P = 512) and (N = 100, P =
1024). In experiments, we set the number of individuals as
Np = 100, and the number of generations as Ng = 100, and
the algorithms don’t set equal partitions into initial states (i.e.,
random initialization). Then, we plot the results in Fig. 4.

From Fig. 4, the curves of TiDGAP with dual-chromosome
strategy remain lower than that of TiGAP. The unique difference
between TiDGAP and TiGAP is the number of chromosomes per
individual in genetic algorithms. TiDGAP and TiGAP both have
4N − 2 genes in one individual. The two chromosomes of the
individual in TiDGAP are composed of 2N − 1 genes respec-
tively, while the individual in TiGAP only has one chromosome.
The comparative results in Fig. 4 show that the usage of the dual-
chromosome strategy is beneficial for improving convergence of
GAP, which is consistent with the analysis in Section IV-B. The
time costs of forward and backward propagation in UMPIPE
are independent mutually. Therefore, setting two chromosomes
to represent forward propagation and backward propagation
respectively has lower expected generations than the single-
chromosome to achieve the optimal solution of UMPIPE. The
statistical indicator (lower expected generations) points to better
optimization results (corresponding to lower training time under
UMPIPE parallelism) over the generation as Fig. 4. For the sake
of observation of the quantitative comparison between TiDGAP
and TiGAP in Fig. 4, we have listed the optimization results of
TiDGAP and TiGAP at the 100th generation in Table II where

Authorized licensed use limited to: University of Melbourne. Downloaded on January 18,2025 at 04:57:17 UTC from IEEE Xplore. Restrictions apply.

302 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 2, FEBRUARY 2025

Fig. 5. The optimization results (corresponding to training time for one
minibatch) over generations in randomly generated basic time arrays comparing
TiDGAP with TiGAP, where: Np = 100, Ng = 100, F,B ∼ U = [1, 100],
using the optimal GPipe solution as the initial individuals.

TABLE III
THE QUANTITATIVE OPTIMIZATION RESULTS OF TIDGAP, TIGAP AT THE

100TH GENERATION AND THAT OF GPIPE IN THE EXPERIMENTS OF FIG. 5 FOR

N = 10, SETTING EQUAL PARTITIONS INTO INITIAL STATES

εTiGAP
TiDGAP = TiGAP−TiDGAP

TiGAP means the reduction magnitude of
TiDGAP in training time compared to TiGAP. From Table II,
TiDGAP within 100 generations reduces the training time under
UMPIPE by 18.33%, 64.02%, 47.88% and 20.60% compared to
TiGAP.

The experiments in Fig. 4 do not set the solution of GPipe as
one of the initial individuals. To verify the advantages of dual-
chromosome strategy for UMPIPE over single chromosome
have universality, we carry out experiments in two combinations
of (N = 10, P = 64) and (N = 10, P = 512) by setting equal
partitions into initial states as the line 1 in Algorithm 4. Then, we
plot the optimization results over generations of TiDGAP and
TiGAP in Fig. 5. In Fig. 5, we also draw a straight line paralleling
to the horizontal axis to represent the optimal training time of
DNN under GPipe parallelism. From Fig. 5, the convergence
of TiDGAP to solve the scheme of UMPIPE is still better
than that of TiGAP. This also confirms once again that the
dual-chromosome strategy is more suitable for UMPIPE than
the single-chromosome. Moreover, the solutions of TiDGAP and
TiGAP are both better than those of GPipe, which proves that
the UMPIPE architecture is superior to GPipe in the randomly
generated basic time functions. This phenomenon can reflect the
significance of UMPIPE. In order to evaluate the performance of
TiDGAP and UMPIPE in this scenario, we list the optimization
results at the 100th generation in Table III where εGPipe

TiDGAP =
GPipe−TiDGAP

TiDGAP means the improvement ratio of TiDGAP (also
representing UMPIPE) in training speed compared to GPipe.

From Table III, the parallel training scheme of UMPIPE
solved by the TiDGAP algorithm has a speed increase of
1.33× and 2.74× respectively in (N = 10, P = 64) and (N =
10, P = 512) compared to GPipe, which is consistent with the
analysis of UMPIPE’s optimality in Section III-C.

To further evaluate the convergence of TiDGAP, we carry out
experiments in small-scale scenarios including (N = 2, P =
512), (N = 3, P = 64), (N = 5, P = 8), (N = 12, P = 2).
We use an enumerated algorithm to obtain the theoretical optimal
solution of UMPIPE. In each scenario, we execute 100 instances,

Fig. 6. The probabilities of achieving global optimization (PAGO) over gener-
ations in randomly generated basic time arrays comparing TiDGAP with TiGAP,
where:Np = 100,Ng = 100,F,B ∼ U = [1, 100], randomly initializingNp

individuals.

record the generations when the algorithm reaches the theo-
retical optimal for each instance, and calculate the probability
of achieving global optimization over generations. The genetic
algorithm in GAP preserves the current best individual to the
next generation, so if the algorithm reaches theoretical optimal
in a certain generation, it will remain theoretically optimal in
all subsequent generations, and hence the count of achieving
theoretical optimal in subsequent generations will be increased
by 1. Then, we plot the results in Fig. 6. Obviously, TiDGAP
has higher probabilities than TiGAP to obtain the theoretical
optimal solution within the same generations in Fig. 6, which
also proves the superiority of the dual-chromosome strategy.

C. EX2: Evaluation of Two-Level Improvement of TiDGAP
Compared With OiDGAP and DGAP

To observe the acceleration effect of the two-level improve-
ment, we compare TiDGAP with OiDGAP and DGAP in the
simulation scenarios with random basic time functions. As
the two-level improvement of TiDGAP mainly eliminates two
layers of loops, including the loop in the individuals’ index and
the loop in the input data’s index, we execute experiments in
four configurations with varying minibatch-size or number of
individuals as follows:
� (N = 10, P ∈ [1, 32]× 16), (Np = 100, Ng = 100);
� (N = 20, P ∈ [1, 32]× 16), (Np = 100, Ng = 100);
� (N = 10, P = 512, (Np ∈ [1, 10]× 10, Ng = 100);
� (N = 20, P = 512, (Np ∈ [1, 10]× 10, Ng = 100).
These algorithms are executed on the Desktop.
Using the changed parameters as the abscissa and the algo-

rithm execution time as the ordinate, we plot the execution time
of TiDGAP, OiDGAP and DGAP in Fig. 7.

First, the execution time of TiDGAP in Fig. 7 is significantly
smaller in magnitude than OiDGAP and DGAP. Concretely, for
N = 10 and Ng = 100 of Fig. 7(a) and (c), The execution time
of TiDGAP is about [0.8s, 0.9s] less than 1s; and that of OiDGAP
and DGAP are respectively [1s, 150s] and [100s, 1800s]. For
N = 20 and Ng = 100 of Fig. 7(b) and (d), that of TiDGAP
is about [1.5s, 1.8s] less than 2s; and that of OiDGAP and

Authorized licensed use limited to: University of Melbourne. Downloaded on January 18,2025 at 04:57:17 UTC from IEEE Xplore. Restrictions apply.

ZHOU et al.: UMPIPE: UNEQUAL MICROBATCHES-BASED PIPELINE PARALLELISM FOR DEEP NEURAL NETWORK TRAINING 303

Fig. 7. The execution time of TiDGAP, OiDGAP and DGAP for solving
UMPIPE in simulated scenarios launched on GeForce RTX 3060 Ti.

DGAP are respectively [2s, 400s] and [300s, 4000s]. Second,
comparing OiDGAP to DGAP can demonstrate the effective-
ness of improvement to simultaneously calculate the end time
corresponding to multiple individuals, as well as comparing
TiDGAP to OiDGAP can demonstrate the effectiveness of im-
provement to simultaneously calculate the end time of mul-
tiple microbatches. Lastly, the execution time of OiDGAP is
approximately proportional to both minibatch-size P and the
number of individuals Np, i.e., linearly increasing with the
increase of P and Np. DGAP also has the same phenomenon.
Unlike OiDGAP and DGAP, in the scenarios of Fig. 7, the
execution time of TiDGAP remains relatively stable without
increasing with P and Np. These are generally consistent with
the theoretical time complexities. This indicates that within a
certain range of parameters, the computing speed of TiDGAP
can be maintained unaffected by P and Np beneficial from the
parallel computing ability of GPU. In detail, according to the
results of Fig. 7(c) and (d), the execution speeds of TiDGAP
are (162.86×, 226.36×) of OiDGAP, and (1590.23×, 2473.02×)
of DGAP in (N = 10, N = 20) for P = 512 and Np = 100.

However, the execution time of OiDGAP in Fig. 7(c) and (d)
is directly proportional to the number of individuals Np which
seems to contradict the theoretical complexity of OiDGAP but
actually not. Theoretical complexity assumes that the ideal GPU
has sufficient parallel capability, while the parallel capability of
GPUs is not infinite in reality. When the computational complex-
ity reaches a certain level that exceeds the maximum value that
the GPU’s parallel cores can carry, its computational complexity
will also increase with the Np. This property will also apply to
TiDGAP. To further evaluate the execution time of TiDGAP with
respect to the number of individuals, we conduct experiments in
simulated scenarios ofNp ∈ [10, 1000] andNp ∈ [1000, 20000]

Fig. 8. The execution time of TiDGAP for solving UMPIPE in simulated
scenarios where (N = 10, P = 512,Ng = 100).

TABLE IV
DETAIL OF SELF-DESIGNED CNNS

both with (N = 10, P = 512, Ng = 100). Then, we plot the
execution time of TiDGAP in Fig. 8.

In Fig. 8, we can observe that when the number of individ-
uals is large enough, the execution time of TiDGAP will also
linearly increase with the number of individuals Np. However,
the slope of TiDGAP is still much smaller than that of OiDGAP
and DGAP. It is worth emphasizing that, the execution time
of TiDGAP in Np = 1000 is only 1.68s for N = 10 and that
in Np = 20000 is only 19.24s. In the experiments of Figs. 4
and 5, 100 individuals are enough to obtain competitive optimal
solutions. This strongly validates the rapidity of TiDGAP with
the two-level improvement based on matrix operations on GPU.
Similarly, when minibatch-size P is large enough, the execution
time of TiDGAP will also linearly increase with P , while with a
far smaller slope than that of OiDGAP and DGAP. The speed of
TiDGAP is adequate to meet the requirements of current realistic
large-scale DNNs.

D. EX3 : Evaluation of TiDGAP for UMPIPE Compared
With Local Greedy Algorithm and Dynamic Programming

To additionally demonstrate the superiority and feasibility
of our proposed TiDGAP for UMPIPE, we choose two typical
neural networks (VGG16 and GPT-1) and some self-designed
networks, and then execute the experiments in realistic envi-
ronments. VGG16 (trained in MNist dataset) and GPT-1 (in
WikiText-2 dataset) are respectively typical CNN-based DNN
in CV and transformer-based DNN in NLP. Then self-designed
DNNs are based on CNN, whose configuration can be seen in Ta-
ble IV. In order to compare algorithms at the same computational
speed level, we apply our proposed two-level improvements to
the baseline algorithms to greatly improve their computational
speed. As the local greedy algorithm does not have continuous
search capability, we use its convergence solution to supplement
the curve of subsequent time.

For VGG16 and GPT-1, we carry out the training on the
servers with multiple Tesla V100 GPUs and obtain the basic
time functions. We do not use the solution of GPipe as the
initial solution of these algorithms, i.e., the initial states of the
algorithms participating in the comparison are all randomly

Authorized licensed use limited to: University of Melbourne. Downloaded on January 18,2025 at 04:57:17 UTC from IEEE Xplore. Restrictions apply.

304 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 2, FEBRUARY 2025

Fig. 9. The optimization results (i.e., time for training one minibatch) over
times in realistic environments for GPT-1 and VGG16 comparing TiDGAP
with local greedy and global greedy algorithms with randomly generated initial
solutions, where: Np = 100, Ng = 100, under distributed systems with Tesla
V100 GPUs, randomly initializing Np individuals.

TABLE V
THE QUANTITATIVE OPTIMIZATION RESULTS OF TIDGAP, LOCAL GREEDY

(LG) AND GLOBAL GREEDY (GG) IN THE EXPERIMENTS OF FIG. 9 WITH

RANDOMLY GENERATED INITIAL SOLUTIONS

Fig. 10. Waterfall charts of optimal partitions of TiDGAP in Fig. 9.

generated. Then, the optimal results over the execution time
of TiDGAP and baselines (local greedy and global greedy)
are plotted in Fig. 9. From the overall trends in Fig. 9, it can
be seen that solutions of TiDGAP are better than baselines
over time. When the time is long enough, TiDGAP achieves
the best convergence solutions in both VGG16 and GPT-1 fol-
lowed by global greedy and local greedy. Although the global
greedy algorithm also has search-ability, each search step in
it requires calculating the overall training time corresponding
to the current optimization solution, which consequently con-
sumes redundant computational complexities. Moreover, the
global greedy algorithm can only search for one solution at a
time. TiDGAP, based on the individual evolution strategy of the
genetic algorithm, can solve multiple solutions simultaneously,
which makes it less likely to fall into local optima. The optimal
solutions of TiDGAP at the 100th generation and the solutions
of baselines at the corresponding time point are listed in Table V.
Concretely, the optimization results of TiDGAP are 171.71s
and 7.06s respectively for GPT-1 and VGG16, reducing the
training time by (3.25, 17.78)% compared to global greedy and
by (21.44, 24.68)% compared to local greedy algorithm.

To show the role of UEDP in the solution process of
UMPIPE’s training scheme, Fig. 10 provides waterfall charts of
the current generation’s optimal partition number for TiDGAP in
solving the optimization scheme. It can be seen that the optimal
number of partitions for each process of DNN throughout the
entire solving process has always been unequal, revealing the
advantage of UEDP. In fact, GG and TiDGAP can be combined
to establish a growable genetic algorithm using GG as the growth
route of TiDGAP, which will have improved performances in

Fig. 11. The results of self-designed CNN-based networks for 100 minibatches
with different numbers of layers in realistic environments comparing TiDGAP
with LG and GG algorithms, where Np = 100, Ng = 100, randomly initializ-
ing Np individuals. R1 = εLG

TiDGAP, R2 = εGG
TiDGAP.

terms of convergence and optimality. The growable genetic algo-
rithm is an innovative framework, allowing different algorithms
to serve as growth routes to solve optimization problems [39].
As this paper focuses on proposing the novel UMPIPE parallel
architecture and its corresponding optimization algorithm with
two-level improvement to accelerate DGAP, we do not delve into
the discussion of the growable genetic algorithm for UMPIPE.

In order to increase the comprehensiveness of the validation
scenario, we perform training of self-designed DNNs on RTX
3060Ti GPUs to obtain the basic time functions. In self-designed
DNNs, we change the number of layers to observe the trend
of algorithms. We use the stable convergence solution as the
ordinate. Then, the optimal results and relative reduction with
different numbers of layers are plotted in Fig. 11.

In Fig. 11(a), the curves of TiDGAP remain the lowest fol-
lowed by global greedy and local greedy. The performance rank-
ing is consistent with that of Fig. 9. Combined with Fig. 11(a),
the results validate the advantages of our proposed TiDGAP are
universal. From Fig. 11(a), it can be seen that as the number of
layers increases, the absolute differences between our proposed
TiDGAP and the comparison baselines become increasingly
larger. In Fig. 11(b), εLGTiDGAP shows an increasing trend from 0.1
to 0.5 with the number of layers. This is because the feasible solu-
tion space of UMPIPE increases exponentially with the number
of layers increases, which leads to a decrease in the algorithm’s
solving ability. LG does not have search capability and decreases
faster than TiDGAP. Additionally, εGG

TiDGAP fluctuates between
0 and 0.2. TiDGAP can maintain its advantage of around 10%.

E. EX4 : Evaluation of UEDP Compared UMPIPE With
State-of-the-Art Parallelism

To demonstrate the superiority of our proposed parallelism
UMPIPE and UEDP, we compare it to GPipe and PipeDream in
this group of experiments.

To further verify the potential of UEDP for various parallel
architectures based on the control variable method, we also
include the architecture that combines UEDP with pipedream
(called UMPipeDream referring to the naming convention
of UMPIPE where UMPipeDream = UMPIPE + 1F1B =
PipeDream + UEDP) in the comparison. Due to the lack of fast
calculation formulas for PipeDream and UMPipeDream, our ex-
periments use recursive algorithms to calculate the training time
corresponding to the data partitioning scheme of PipeDream
or UMPipeDream to support the optimization. In experiments,
the optimal data partitioning schemes of GPipe and PipeDream

Authorized licensed use limited to: University of Melbourne. Downloaded on January 18,2025 at 04:57:17 UTC from IEEE Xplore. Restrictions apply.

ZHOU et al.: UMPIPE: UNEQUAL MICROBATCHES-BASED PIPELINE PARALLELISM FOR DEEP NEURAL NETWORK TRAINING 305

TABLE VI
THE COMPARISON OF VARIOUS PARALLEL ARCHITECTURES (GPIPE, UMPIPE, PIPEDREAM, UMPIPEDREAM) IN DIFFERENT SCENARIOS

are obtained through the enumeration method, as EDP allows
enumeration; that of UMPIPE and UMPipeDream are solved
by the genetic algorithm with 4000 generations (for the sake of
obtaining sufficiently optimized results to reflect the inherent
performance of the architectures themselves). Experiments in-
clude two representative networks VGG16 (with CNN layers,
minibatch-size is 64) and GPT-14 (with transformer layers,
minibatch-size is 512) in realistic environments executed with
multiple Tesla V100 GPUs, as well as multiple simulation
networks generated by realistic devices-based random simula-
tion environments. The optimization results (corresponding to
training time) for each architecture in different scenarios are
shown in Table VI.

From Table VI, UMPIPE is generally superior to GPipe and
PipeDream, indicating UMPIPE has certain advantages as a
new parallel architecture. The comparison between UMPIPE
and GPipe demonstrates that UEDP can improve the speed of
AFAB (all forward all backward) architectures. Compared with
PipeDream, UMPipeDream achieves faster training speed, indi-
cating that UEDP also has a positive effect on accelerating 1F1B
(one forward one backward) architectures such as PipeDream.
Moreover, UMPipeDream overall achieved the best results, in-
dicating the potential of extending UEDP to other parallel archi-
tectures. In GPT-1 and VGG16, UMPIPE accelerates the train-
ing speed by (13.89, 11.09)% and (17.11, 7.96)% respectively
compared with (GPipe, PipeDrea); UMPipeDream accelerates
the training speed by 13.49% and 17.95% respectively compared
with PipeDream. In the simulation scenarios, the heterogeneity
of the network layer is more apparent. Thus, UEDP-based par-
allel architectures (UMPIPE and UMPipeDream) have a greater
improvement on the basis of EDP-based parallel architectures
(GPipe, PipeDream), with an improvement ≥ (170%, 100%) in
terms of training speed.

When evaluating the optimization scheme under the 1F1B
architecture in experiments, we calculated the optimal 1F1B
scheme under the given data partition as its evaluation value.
Therefore, the optimization results of PipeDream in the ex-
periment represent the performance of architectures such as
PipeDream and Dapple [15], [16]. Therefore, the above re-
sults can not only demonstrate the significance of UMPIPE

in reducing the training time under microbatch-based pipeline
parallelism in AFAB, but also reveal the potential of UEDP in
improving various architectures in 1F1B such as PipeDream
and Dapple. It is notable that the UMPIPE architecture can
be further improved, because adding 1F1B strategy on the
basis of UMPIPE (i.e., UMPipeDream) can enhance the train-
ing speed on the basis of UMPIPE according to the experi-
mental results in Table VI. This paper addresses a challenge:
for UMPIPE with the addition of UEDP on the basis of
GPipe, we propose the matrix operations-based fast calculation
formulas (i.e., (6) and (7)) to simultaneously evaluate mul-
tiple training schemes of UMPIPE, which allows optimiza-
tion algorithms to complete the search for optimization solu-
tions of data partitioning in a short period of time. However,
for UMPipeDream (UMPipeDream = UMPIPE + 1F1B =
PipeDream + UEDP = GPipe + UEDP + 1F1B), the com-
bination of UEDP and 1F1B strategies cause a more com-
plex calculation process for the training time corresponding
to the scheme. The recursive algorithm chosen in experi-
ments for UMPipeDream consumes a significant amount of
computation time, which also inspires future work to focus
on deriving fast calculation formulas for UMPipeDream (i.e.,
the further extension of UMPIPE). In addition, UEDP will
bring additional programming work and data-switching pro-
cesses in parallel architecture, which require further research on
generalization.

In order to supplement the practical application significance
of UMPIPE, we need to verify that the UEDP of UMPIPE does
not worsen the DNNs’ accuracy over epochs during the training
process. We choose two self-designed CNN-based networks
with 5 layers and carry out the training respectively in MNist
dataset and CIFAR10 dataset. The configures of networks and
data partitioning schemes of UMPIPE are listed in Table VII,
where “U_1” means UMPIPE_1 (the scheme of UMPIPE with
index of 1), the column “Or”. means the original structure
without data partitions, GPipe-2 means dividing the minibatch
into two microbatches for all layers in GPipe, and type of
layer C(1, 20) means CNN layer with the input channel as 1
and output channels as 20, and FC(160, 10) means full con-
nection layer with input neurons as 160 and output neurons

Authorized licensed use limited to: University of Melbourne. Downloaded on January 18,2025 at 04:57:17 UTC from IEEE Xplore. Restrictions apply.

306 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 2, FEBRUARY 2025

TABLE VII
THE CONFIGURES OF NETWORKS FOR MNIST AND CIFAR10 DATASET WITH

THEIR DATA PARTITIONING SCHEMES OF PARALLELISM

Fig. 12. The accuracy over epochs in self-designed CNN-based networks in
MNist and CIFAR10 dataset comparing UMPIPE with GPipe, where the data
partitioning schemes of UMPIPE are listed in Table VII, minibatch-size is 64.

as 10. The minibatch-sizes of Table VII are both 64, and the
convolution kernels are all 3× 3. For the sake of presentation,
we use the power of 2 as the number of microbatches for
each layer. UMPIPEs with different subscripts correspond to
different UEDP schemes. As communication doesn’t affect the
accuracy of over epochs, we don’t consider the data partitions
of communication processes. In this set of experiments, forward
propagation and backward propagation in the same layer have
the same number of data partitions, which does not affect the ex-
perimental conclusion, because the main process that determines
the convergence of network training is the gradient descent in
backward propagation. Then, we plot the training accuracy and
testing accuracy within 20 training epochs in Fig. 12. The results
of Fig. 12 show that the accuracy trends of UMPIPE with UEDP
do not lag behind the original or GPipe-2. This demonstrates that
UMPIPE will not worsen the DNNs’ accuracy over epochs. With
less time per epoch, UMPIPE will have better convergence over
time than GPipe.

VI. CONCLUSION AND FUTURE WORK

Based on the microbatch-based pipeline parallelism, this pa-
per proposes unequal microbatches-based (i.e., unequal data
partitions-based) pipeline parallelism (UMPIPE), not only con-
sidering computation time and communication time simulta-
neously, but also considering them probably nonlinear with
data size. This paper derives the recurrence formula for the
training time of DNN under UMPIPE parallelism and proves
the optimality of UMPIPE in theory.

To obtain the optimization scheme of UMPIPE, this pa-
per proposes the dual-chromosome genetic algorithm (DGAP).
Dual-chromosome is proved with better convergence than the
single chromosome for solving training scheme of UMPIPE.
Aiming at accelerating DGAP algorithm, we further delve into
theoretical derivations of the recurrence formula for UMPIPE
and propose the two-level improved DGAP (TiDGAP). TiDGAP
can simultaneously calculate the end time of multi-schemes and
multi-microbatches for UMPIPE.

The experimental results comprehensively get corroboration
to our theoretical analysis, demonstrating the advantages of
dual-chromosome strategy and matrix operation-based two-
level improvement method of TiDGAP. Compared with baseline
optimization methods (local greedy and global greedy),
TiDGAP has better convergence and optimality. Compared
with baseline parallelism (GPipe and PipeDream), UMPIPE
achieves less training time. Compared to (GPipe, PipeDream),
UMPIPE improves training speed by (13.89, 11.09)% in GPT1-
14, (17.11, 7.96)% in VGG16, and ≥ (170%, 100%) in other
simulation networks.

As part of future work, we will extend UEDP to other
parallel architectures, as well as study the matrix-based fast
calculation formulas for UMPipeDream and other UEDP-based
parallelism. In this paper, UMPIPE mainly considers the op-
timization of training speed, without specifically considering
memory. Introducing multi-objective optimization algorithms to
simultaneously optimize the speed and memory of UEDP-based
parallelism is also a potential new direction.

REFERENCES

[1] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[2] F. Xue, Q. Wang, and G. Guo, “TransFER: Learning relation-aware facial
expression representations with transformers,” in Proc. IEEE/CVF Int.
Conf. Comput. Vis., Montreal, QC, Canada, 2021, pp. 3581–3590.

[3] J. E. Zini and M. Awad, “On the explainability of natural language process-
ing deep models,” ACM Comput. Surv., vol. 55, no. 5, pp. 103:1–103:31,
2023.

[4] H. Fu et al., “HGP4CNN: An efficient parallelization framework for train-
ing convolutional neural networks on modern GPUs,” J. Supercomput.,
vol. 77, no. 11, pp. 12 741–12 770, 2021.

[5] D. Narayanan et al., “Efficient large-scale language model training on GPU
clusters using Megatron-LM,” in Proc. Int. Conf. High Perform. Comput.
Netw. Storage Anal., St. Louis, Missouri, USA, 2021, pp. 58:1–58:15.

[6] Z. Li et al., “TeraPipe: Token-level pipeline parallelism for training large-
scale language models,” in Proc. 38th Int. Conf. Mach. Learn., 2021,
pp. 6543–6552.

[7] Y. Lee, J. Chung, and M. Rhu, “SmartSAGE: Training large-scale graph
neural networks using in-storage processing architectures,” in Proc. 49th
Annu. Int. Symp. Comput. Architecture, 2022, pp. 932–945.

[8] T. Rao, J. Li, X. Wang, Y. Sun, and H. Chen, “Facial expression recognition
with multiscale graph convolutional networks,” IEEE Multimedia, vol. 28,
no. 2, pp. 11–19, Second Quarter, 2021.

[9] H. Wang et al., “A comprehensive survey on training acceleration for large
machine learning models in IoT,” IEEE Internet of Things J., vol. 9, no. 2,
pp. 939–963, Jan. 2022.

[10] Z. Li et al., “Optimizing makespan and resource utilization for multi-
DNN training in GPU cluster,” Future Gener. Comput. Syst., vol. 125,
pp. 206–220, 2021.

[11] X. Ye et al., “Hippie: A data-paralleled pipeline approach to improve
memory-efficiency and scalability for large DNN training,” in Proc. 50th
Int. Conf. Parallel Process., 2021, pp. 71:1–71:10.

[12] J. Romero et al., “Accelerating collective communication in data parallel
training across deep learning frameworks,” in Proc. 19th USENIX Symp.
Netw. Syst. Des. Implementation, 2022, pp. 1027–1040.

Authorized licensed use limited to: University of Melbourne. Downloaded on January 18,2025 at 04:57:17 UTC from IEEE Xplore. Restrictions apply.

ZHOU et al.: UMPIPE: UNEQUAL MICROBATCHES-BASED PIPELINE PARALLELISM FOR DEEP NEURAL NETWORK TRAINING 307

[13] Z. Lai et al., “Merak: An efficient distributed DNN training framework
with automated 3D parallelism for giant foundation models,” IEEE Trans.
Parallel Distrib. Syst., vol. 34, no. 5, pp. 1466–1478, May 2023.

[14] Y. Huang et al., “GPipe: Efficient training of giant neural networks using
pipeline parallelism,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2019,
pp. 103–112.

[15] D. Narayanan et al., “PipeDream: Generalized pipeline parallelism for
DNN training,” in Proc. 27th ACM Symp. Operating Syst. Princ., T. Brecht
and C. Williamson, Eds., 2019, pp. 1–15.

[16] S. Fan et al., “DAPPLE: A pipelined data parallel approach for training
large models,” in Proc. 26th ACM SIGPLAN Symp. Princ. Pract. Parallel
Program., 2021, pp. 431–445.

[17] M. Wang, C. Huang, and J. Li, “Supporting very large models using
automatic dataflow graph partitioning,” in Proc. 14th EuroSys Conf., 2019,
pp. 26:1–26:17.

[18] F. Li et al., “Fold3D: Rethinking and parallelizing computational and
communicational tasks in the training of large DNN models,” IEEE Trans.
Parallel Distrib. Syst., vol. 34, no. 5, pp. 1432–1449, May 2023.

[19] S. Ouyang et al., “Communication optimization strategies for distributed
deep neural network training: A survey,” J. Parallel Distrib. Comput.,
vol. 149, pp. 52–65, 2021.

[20] Z. Zhang, J. Chen, and B. Hu, “The optimization of model parallelization
strategies for multi-GPU training,” in Proc. IEEE Glob. Commun. Conf.,
2021, pp. 1–6.

[21] V. Elango, “Pase: Parallelization strategies for efficient DNN train-
ing,” in Proc. 35th IEEE Int. Parallel Distrib. Process. Symp., 2021,
pp. 1025–1034.

[22] L. Cui et al., “A bidirectional DNN partition mechanism for efficient
pipeline parallel training in cloud,” J. Cloud Comput., vol. 12, no. 1, 2023,
Art. no. 22.

[23] J. Xu et al., “Effective scheduler for distributed DNN training based on
MapReduce and GPU cluster,” J. Grid Comput., vol. 19, no. 1, 2021,
Art. no. 8.

[24] J. Dong et al., “EFLOPS: Algorithm and system co-design for a high per-
formance distributed training platform,” in Proc. Int. Symp. High Perform.
Comput. Architecture, 2020, pp. 610–622.

[25] G. Zhou et al., “CSIMD: Cross-search algorithm with improved multi-
dimensional dichotomy for micro-batch-based pipeline parallel training in
DNN,” in Proc. 30th Eur. Conf. Parallel Distrib. Process., Madrid, Spain,
2024, pp. 288–301.

[26] Z. Zeng, C. Liu, Z. Tang, W. Chang, and K. Li, “Training acceleration
for deep neural networks: A hybrid parallelization strategy,” in Proc. 58th
ACM/IEEE Des. Automat. Conf., 2021, pp. 1165–1170.

[27] L. Zheng et al., “Alpa: Automating inter- and intra-operator parallelism for
distributed deep learning,” in Proc. 16th USENIX Symp. Operating Syst.
Des. Implementation, 2022, pp. 559–578.

[28] Z. Han et al., “Exploit the data level parallelism and schedule dependent
tasks on the multi-core processors,” Inf. Sci., vol. 585, pp. 382–394, 2022.

[29] Y. Li, Z. Zeng, J. Li, B. Yan, Y. Zhao, and J. Zhang, “Distributed model
training based on data parallelism in edge computing-enabled elastic
optical networks,” IEEE Commun. Lett., vol. 25, no. 4, pp. 1241–1244,
Apr. 2021.

[30] L. Guan, Z. Yang, D. Li, and X. Lu, “pdlADMM: An ADMM-based frame-
work for parallel deep learning training with efficiency,” Neurocomputing,
vol. 435, pp. 264–272, 2021.

[31] A. N. Kahira et al., “An oracle for guiding large-scale model/hybrid parallel
training of convolutional neural networks,” in Proc. 30th Int. Symp. High-
Perform. Parallel Distrib. Comput., 2021, pp. 161–173.

[32] J. Zhang et al., “PipePar: Enabling fast DNN pipeline parallel train-
ing in heterogeneous GPU clusters,” Neurocomputing, vol. 555, 2023,
Art. no. 126661.

[33] Z. Zhang, Z. Ji, and C. Wang, “Momentum-driven adaptive synchroniza-
tion model for distributed DNN training on HPC clusters,” J. Parallel
Distrib. Comput., vol. 159, pp. 65–84, 2022.

[34] S. Zheng et al., “NeoFlow: A flexible framework for enabling efficient
compilation for high performance DNN training,” IEEE Trans. Parallel
Distrib. Syst., vol. 33, no. 11, pp. 3220–3232, Nov. 2022.

[35] R. Gu et al., “Liquid: Intelligent resource estimation and network-efficient
scheduling for deep learning jobs on distributed GPU clusters,” IEEE
Trans. Parallel Distrib. Syst., vol. 33, no. 11, pp. 2808–2820, Nov. 2022.

[36] S. Zhao et al., “vPipe: A virtualized acceleration system for achieving
efficient and scalable pipeline parallel DNN training,” IEEE Trans. Parallel
Distrib. Syst., vol. 33, no. 3, pp. 489–506, Mar. 2022.

[37] K. S. Pal and P. P. Wang, Genetic Algorithms for Pattern Recognition.
Boca Raton, FL, USA: CRC Press, 1996.

[38] K. Deb, A. Pratap, S. Agrawal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[39] G. Zhou, W. Tian, R. Buyya, and K. Wu, “Growable genetic algorithm with
heuristic-based local search for multi-dimensional resources scheduling of
cloud computing,” Appl. Soft Comput., vol. 136, 2023, Art. no. 110027.

Guangyao Zhou received the bachelor’s and master’s
degrees from Tianjin University, China, and the PhD
degree from the University of Electronic Science and
Technology of China, China. He is now an assistant
professor with the Southwest Jiaotong University,
China. His research interests include scheduling algo-
rithms in cloud computing or edge computing, image
recognition especially facial expression recognition,
parallel training of large-scale model, and evolution
algorithms.

Wenhong Tian (Member, IEEE) received the PhD
degree from the Department of Computer Science,
North Carolina State University, Raleigh, NC, USA.
He is now a professor with the University of Elec-
tronic Science and Technology of China, China. His
research interests include scheduling in cloud com-
puting and Bigdata platforms, image recognition by
deep learning, algorithmic theory of machine learn-
ing, parallel training of large-scale model, and evolu-
tion algorithms.

Rajkumar Buyya (Fellow, IEEE) is a Redmond
Barry distinguished professor and director with
the Cloud Computing and Distributed Systems
(CLOUDS) Laboratory, University of Melbourne,
Australia. He is also serving as the founding CEO
of Manjrasoft, a spin-off company of the University,
commercializing its innovations in cloud computing.
He served as a future fellow of the Australian Re-
search Council during 2012–2016. He has authored
more than 750 publications and seven text books. He
is one of the highly cited authors in computer science

and software engineering worldwide (h-index=170, gindex=374, 155100+
citations). He is recognized as a “Web of Science Highly Cited researcher”
for six consecutive years since 2016, and Scopus researcher of the Year 2017
with Excellence in Innovative Research Award by Elsevier for his outstanding
contributions to cloud computing and distributed systems.

Kui Wu (Member, IEEE) received the BSc and MSc
degrees in computer science from Wuhan University,
Wuhan, China, in 1990 and 1993, respectively, and the
PhD degree in computing science from the University
of Alberta, Edmonton, AB, Canada, in 2002. In 2002,
he joined the Department of Computer Science, Uni-
versity of Victoria, Victoria, BC, Canada, where he
is currently a professor. His current research interests
include network performance analysis, online social
networks, Internet of Things, and parallel and dis-
tributed algorithms.

Authorized licensed use limited to: University of Melbourne. Downloaded on January 18,2025 at 04:57:17 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

