
Computer Networks 271 (2025) 111592

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

DGPAS: DQN-GRU guided distributed DNN pipeline training and adjacent
scheduling in edge networks
Jiayi Li a , Xiaogang Wang a ,∗, Haokun Chen a , Zexin Wu a , Ziqi Zhu a , Jian Cao b,
Rajkumar Buyya c
a School of Electronic and Information, Shanghai Dianji University, Shanghai, 201306, Pudong New Area District, China
b Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, Minghang District, China
c CLOUDS Laboratory, School of Computing and Information Systems, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia

A R T I C L E I N F O

Keywords:
Heterogeneous edge networks
DNN pipeline parallelism
DQN-GRU guided training
Adaptive adjacent scheduling

 A B S T R A C T

Deep neural networks (DNNs) are increasingly deployed in distributed edge computing environments to meet
the computer vision detection tasks in various industrial production. However, DNN model training and
inference at the edge sides often suffer from the situations such as limited computing resources, restricted
bandwidth and heterogeneous device communication. The existing methods do not effectively solve the
problems of imbalanced task scheduling and idle waiting time in heterogeneous edge devices. Toward this
end, this paper proposes a DQN-GRU guided distributed DNN pipeline training and adjacent scheduling
(DGPAS) model to significantly improve the training efficiency of DNNs for resource-constrained devices in
heterogeneous edge networks. Combining deep reinforcement learning and temporal feature modeling, and
based on the synchronous pipeline parallel mechanism, the model framework is divided into the preparation
stage and execution phase for DNN model partitioning and device scheduling, respectively. In addition, an
adaptive adjacent scheduling strategy during the execution phase is designed to effectively alleviate the bubble
effect (i.e., the idle waiting time between edge devices), which is caused by data dependency from the DNN
collaborative training between devices. Thereby, the DNN training time and the idle waiting time of devices are
all improved in complex dynamic environments. Experimental results show that compared with the baseline
and existing relevant methods, DGPAS reduces the average training time by 36.5% by integrating GRU with
DQN under five types of mainstream DNN models. After adopting adaptive adjacent scheduling, the bubble
rate is decreased by an average of 36.96% under the same DNN models and different number of mini-batches,
significantly improving the training efficiency and robustness of the edge DNN model.
1. Introduction

In the field of industrial product component detection, deep neural
networks (DNNs) have been widely adpoted [1–3], especially in com-
puter vision [4,5] tasks such as quality control [6], defect recognition
in optical thin films [7], mobile screens [8] and semiconductor manu-
facturing processes [9]. Most of traditional optics and visual detection
methods employ the machine vision detection technology. Its principle
involves using high-resolution cameras to capture images, and adopting
algorithms to identify defects such as scratches and pits. However, the
traditional algorithms require repeated parameter adjustments (such
as light threshold values), resulting in high false detection rates un-
der complex background interference. Moreover, customized detection
solutions are needed for different industries. The emergence of DNNs

∗ Corresponding author.
E-mail addresses: lijy@st.sdju.edu.cn (J. Li), wangxg@sdju.edu.cn (X. Wang), chenhk@st.sdju.edu.cn (H. Chen), wuzx@st.sdju.edu.cn (Z. Wu),

zhuzq@st.sdju.edu.cn (Z. Zhu), cao-jian@cs.sjtu.edu.cn (J. Cao), rbuyya@unimelb.edu.au (R. Buyya).

has challenged traditional detection methods by dynamically analyzing
complex component images, and achieving a more convenient and
automated detection process. In terms of the execution environment for
the detection, as the sources of industrial site data become more diverse
and the scale of edge applications expands, traditional cloud computing
has some limitations in the transmission of remote model data due
to bandwidth bottlenecks and high latency, whereas edge computing
with deep learning models deployed on edge devices near terminal
data sources rises gradually [10]. However, general model training
methods in edge sides have encountered some problems in terms of
resource utilization and hardware performance which include limited
computing power, insufficient storage space, restricted bandwidth and
obvious heterogeneity. These always constrain edge devices, which
https://doi.org/10.1016/j.comnet.2025.111592
Received 5 April 2025; Received in revised form 13 July 2025; Accepted 27 July 2
vailable online 5 August 2025
389-1286/© 2025 Elsevier B.V. All rights are reserved, including those for text and
025

 data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/comnet
https://www.elsevier.com/locate/comnet
https://orcid.org/0009-0003-1147-8886
https://orcid.org/0000-0001-5599-5488
https://orcid.org/0009-0000-9412-4693
https://orcid.org/0009-0006-9866-7867
https://orcid.org/0009-0001-8482-9582
mailto:lijy@st.sdju.edu.cn
mailto:wangxg@sdju.edu.cn
mailto:chenhk@st.sdju.edu.cn
mailto:wuzx@st.sdju.edu.cn
mailto:zhuzq@st.sdju.edu.cn
mailto:cao-jian@cs.sjtu.edu.cn
mailto:rbuyya@unimelb.edu.au
https://doi.org/10.1016/j.comnet.2025.111592
https://doi.org/10.1016/j.comnet.2025.111592

J. Li et al. Computer Networks 271 (2025) 111592
make DNN model training on a single device inefficient or even difficult
to execute [11]. In response to the resource efficiency differences
caused by device heterogeneity, Humas et al. [12] propose the stan-
dardization mechanism of heterogeneous sensing resources. Dynamic
performance quantification is utilized to alleviate the fluctuations in
resource utilization, but there are still deficiencies in highly dynamic
scenarios.

In terms of the theoretical basis of system optimization, the re-
search on distributed and collaborative intelligent task allocation has
been continuously advanced. For instance, Shi et al. [13] present
multi-agent high-order interaction modeling based on hypergraphs,
providing support for resource allocation and task scheduling in com-
plex heterogeneous environments. The related methods also include the
multi-objective evolutionary scheduling method in [14], the distributed
traffic routing method in [15] and the edge multi-objective prediction
in [16]. In addition, Duan et al. [17] propose an initialization-free dis-
tributed optimization algorithm for dynamic scheduling of microgrids,
which demonstrates the effectiveness of distributed resource alloca-
tion in complex network environments, and provides a new idea for
the optimization of multi-objective tasks in edge environments. These
achievements have laid a theoretical foundation for the subsequent in-
telligent resource scheduling and efficient collaborative training in het-
erogeneous edge environments. Although the aforementioned theories
and methods provide strong support, deploying deep neural network
training on large-scale edge devices still faces many challenges.

To address this challenge, many researchers have begun exploring
distributed deep learning training frameworks [18,19] in heteroge-
neous edge networks, by partitioning DNN models and datasets to train
models [20,21] in parallel on numerous edge devices near the data
source location. At the same time, Besta and Hoefler [22] conduct
a systematic analysis of the concurrent execution modes of complex
models such as graph neural networks in parallel and distributed
computing environments, which summarizes the characteristics and
performance bottlenecks of different parallel paradigms, and provides a
reference for the efficient distributed scheduling of subsequent complex
neural networks. Efficient distributed training strategies [23–27] play
a crucial role in dealing with large model training. Among them,
the pipeline parallelism has become an effective method for training
models due to its low communication bandwidth requirements and
excellent scalability. Seq1F1B [28] effectively reduces idle waiting time
during the training process by optimizing pipeline scheduling, further
improves the utilization rate of the pipeline. AutoPipe [29] proposes
a pipeline parallel automatic configuration method based on reinforce-
ment learning in a shared GPU cluster, which significantly enhances the
training adaptability and efficiency under different task and resource
states. Asteroid [21] further presents a hybrid pipeline parallelism and
fault-tolerant mechanism for heterogeneous edge devices, achieving
efficient collaboration and dynamic optimization of resources. The
model partitioning and scheduling scheme on the basis of synchronous
pipeline proposed by Huang et al. [30] effectively reduces the time for
DNN synchronous training in heterogeneous IoT environments.

However, the aforementioned relatively fixed task scheduling strat-
egy fails to fully solve the problem of imbalanced task allocation
caused by performance differences between heterogeneous devices,
and is further affected by the phenomenon ‘‘bubbles’’ [31] in pipeline
parallel processing, which refers to the idle waiting time generated by
certain devices waiting for data to arrive or waiting for other devices
to complete calculations. The idle waiting time between these devices
significantly reduces the performance of distributed DNN training and
inference tasks deployed on these edge devices with strictly limited
storage and execution time.

Aiming at the above issues, this paper puts forward a DQN-GRU
guided distributed DNN pipeline training and adjacent scheduling (DG-
PAS) model, which is based on the synchronous pipeline parallelism
algorithm, to solve the distributed training problem in heterogeneous
edge networks. In this place, DQN denotes Deep Q-network, and GRU
2
refers to Gated Recurrent Unit. By allocating and scheduling deep
neural network computing tasks on the edge side, DGPAS can efficiently
achieve real-time running results for the defect detection scenario on
the manufacturing production line, and reduce the delay and band-
width pressure caused by data transmission between the edge and
the cloud sides. In the complex environment of heterogeneous equip-
ments, this method can ensure the stability of the detection process.
Specifically, this model is mainly divided into two stages. In the prepa-
ration stage, we design two network models, Stage Division Network
(SDQN) and Device Scheduling Network (GRDQN). The SDQN network
partitions the DNN model into different stages by means of layering,
and then the GRDQN network matches the divided stages with the
edge devices. The optimal partitioning and scheduling strategies are
decided through the above two types of networks. During the execution
phase, we devise an adaptive adjacent scheduling strategy, which can
dynamically adjust task allocation based on the resource status and
computing power of adjacent heterogeneous devices. This approach ef-
fectively alleviates the ‘‘bubble’’ problem caused by device performance
differences, ensuring that the bubble rate can be significantly reduced,
thus maintains a stable training efficiency.

The main contributions of this paper are as follows:

• DGPAS, a system model for efficient distributed DNN training in
heterogeneous edge computing environments, is proposed, which
includes the two network models: SDQN and GRDQN in the
preparation stage, and the adaptive adjacent scheduling strategy
in the execution phase.

• Combining DQN with GRU network to optimize the decision-
making process of the two network models, SDQN and GRDQN, so
as to obtain the optimal strategy in the model stage division and
device scheduling, thereby the training efficiency of the models
is effectively improved.

• A new adaptive adjacent scheduling strategy has been designed
to dynamically adjust task allocation (i.e., adjust the computing
loads between edge devices through time synchronization and
load balancing optimization) based on the resource status and
computing power of abutting devices, in order to solve the ‘‘data
dependent bubble’’ problem caused by device performance dif-
ferences, ensuring stable and efficient training efficiency even in
complex dynamic environments.

• In the preparation stage and scheduling phase of the DGPAS
scheme, regarding the training time, our designed network was
compared with four baselines and current research methods on
five typical models. In the execution phase, the decrease ratio of
‘‘bubble rate’’ and the training time before and after the adaptive
adjacent scheduling strategy were analyzed. The effectiveness
of the DGPAS system model has been demonstrated through a
series of experiments on the DNN average training time and the
decrease ratio of ‘‘bubble rate’’.

The rest of this paper is organized as follows. Section 2 reviews
the research work in the relevant fields. In Section 3, we provide a
detailed design on the proposed distributed DNN training framework
(DGPAS) based on pipeline parallelism and DQN algorithms, including
the proposed SDQN and GRDQN network models. Section 4 elaborates
on the adaptive collaborative scheduling strategy, with a focus on
how to reduce bubble effects and improve training efficiency through
adjacent device collaboration. In Section 5, the effectiveness of the
proposed framework and strategy is evaluated by using various perfor-
mance indicators. Finally, we summarize the conclusions of this work
in Section 6.

2. Related work

Deep neural network models have become increasingly complex
over time, and the amount of training data is constantly climbing. It

J. Li et al. Computer Networks 271 (2025) 111592
Fig. 1. The network framework of the proposed DGPAS system model.
has become very difficult to train them using only a single edge device.
Therefore, relevant researchers hope to develop effective methods to
improve the training efficiency and high scalability of DNN models in
distributed environments. In recent years, there has been a lot of re-
search on improving the training efficiency of models on heterogeneous
edge devices. The distributed training framework based on pipeline
parallelism especially improves the performance of large-scale model
training by parallelizing computing tasks. We give the following brief
reviews on relevant approaches in some existing work.

2.1. Distributed deep learning framework

In traditional distributed deep learning, earlier work mainly fo-
cuses on data parallelism and model parallelism. For example, Mo-
bilenetv2 [5] optimizes the running efficiency of the model on mobile
devices by designing reverse residuals and linear bottlenecks. PyTorch
Distributed [32] and other frameworks provide data parallel based
solutions that allow for training across multiple devices.

However, as the model size grows, a single parallelization approach
is difficult to meet the training needs on resource-constrained edge
devices. Therefore, pipeline parallelism has emerged as a new form
of parallelism, which reduces the idle time of each node through
pipeline processing. For example, Gpipe [33] reduces the memory
usage of large models during training by using pipeline segmentation.
And PipeDream [34] further improves training efficiency through asyn-
chronous pipeline parallelism. In addition, in terms of optimizing the
resource utilization of models, frameworks such as Megatron-LM [26]
and DeepSpeed [24] decrease memory usage through model parallelism
and activation recalculation techniques, enabling larger scale models to
be trained in limited resource environments.

2.2. Heterogeneous distributed training

The heterogeneity of resources between different devices often cre-
ates bottlenecks in model training, so researchers are conducting re-
search on heterogeneous distributed training methods. HeterPS [35]
dynamically schedules device resources through reinforcement learning
strategies for efficient DNN training in heterogeneous edge device
environments. DAPPLE [36] improves training performance on edge
devices by combining data parallelism with pipeline parallelism. In
addition, Pipemare [37] introduces an asynchronous pipeline parallel
mechanism to address latency and bandwidth issues in heterogeneous
device environments.
3
2.3. Heterogeneous edge computing method based on reinforcement learning

In recent years, the emergence of reinforcement learning has pro-
vided new ideas for scheduling and resource allocation optimization
in distributed systems. For example, scheduling methods based on
policy gradient algorithms are gradually emerging in heterogeneous
edge networks [38,39], which learn allocation strategies for different
tasks between different devices to achieve optimal resource utilization.
HeterPS [35] adopts reinforcement learning to optimize the scheduling
process, which can effectively address the challenges in heterogeneous
edge networks.

The above research still has many shortcomings in the resource
utilization, device latency, and overall model training efficiency when
facing complex dynamic distributed environments. Therefore, this pa-
per further introduces the GRU network into the DQN algorithm, then
combines them to the pipeline parallel DNN training framework, and
finally proposes an adaptive adjacent scheduling strategy to achieve
efficient distributed training by obtaining the optimal strategy in the
early stage and making actual adjustments in the later stage.

3. System model

We design a DGPAS system model that combines reinforcement
learning and pipeline parallel strategy, which enables efficient training
of DNN models on heterogeneous edge devices.

3.1. The overall framework of the system model

As shown in Fig. 1, the proposed system model consists of the
preparation stage and the execution phase, which contain four core
modules (a) to (d) as follows.

(a) Model partitioning. We utilize the trained SDQN network, and
rationally divide the model into multiple computing stages based on
the input DNN model information.

(b) Device scheduling. The heterogeneous computing power, re-
source status of each edge device as well as the division of the model
are all input into the GRDQN network, finally the optimal computing
task and device matching strategy are output.

(c) Actual environment deployment. After obtaining the optimal
strategy, each stage is deployed to the corresponding real environment
based on this strategy.

(d) Adaptive adjacent scheduling. Aiming at the problem of re-
source waste that occurs during the execution phase, the task allocation
is adjusted in real time according to the actual execution situation,
thereby the influence of bubbles is reduced, and the training efficiency
of the DNN model is improved.

To illustrate the above process more clearly, we draw a simplified
version of the system flowchart as shown in Fig. 2.

J. Li et al. Computer Networks 271 (2025) 111592
Fig. 2. A simple flowchart of the DGPAS system.

3.2. DQN based synchronous pipeline parallel DNN training framework

For a given DNN model, the pipeline parallel layered partitioning
method can be used to split the model into multiple stages and allocate
them to different edge devices, thereby achieving distributed training
of the model among these devices. Specifically, this process can be
modeled as a Markov decision process [40] and effectively solved
by DQN [41]. Therefore, the stage division and device scheduling
are simulated as neural networks in the DQN algorithm for learning
optimization.

3.2.1. Model stage division
Define a DNN model as T, which contains J independent layers.

We represent the set of all layers in model T as L, where 𝐿 =
{

𝑙𝑗 ∣ 𝑗 = 1, 2,… , 𝐽
}

. There is the state space 𝑆𝑑𝑖𝑣 in the model stage
division including all possible states 𝑠𝑡, where t represents the current
time. Each state can be represented as 𝑠𝑡 = (𝑅,𝑅𝑡𝑜𝑡𝑎𝑙), where 𝑅 =
(

𝑊𝑗 , 𝑃 𝑎𝑟𝑎𝑚𝑠𝑗 ,𝑀𝑗 , 𝐷𝑜𝑢𝑡
𝑗

)

 is the resource usage information, including
the computation, parameter, memory usage, and data transmission
volume of the 𝑗th layer. 𝑅𝑡𝑜𝑡𝑎𝑙 denotes the total resource information
of all layers, defined as 𝑅𝑡𝑜𝑡𝑎𝑙 =

(

𝑊𝑡𝑜𝑡𝑎𝑙 , 𝑃 𝑎𝑟𝑎𝑚𝑠𝑡𝑜𝑡𝑎𝑙 ,𝑀𝑡𝑜𝑡𝑎𝑙 , 𝐷𝑜𝑢𝑡
𝑡𝑜𝑡𝑎𝑙

)

. The
action space A contains all possible actions 𝑎𝑡 = (𝑠𝑡𝑝, 𝑐𝑜𝑛), where 𝑠𝑡𝑝
represents dividing the model into a new stage after the current layer,
and 𝑐𝑜𝑛 represents the opposite.

We establish duel neural network - DQN, i.e., current and target
value networks, all consisting of an input layer, an output layer and
two hidden layers, with 8, 2, 160, 128, and 64 neurons in respective
layer. DQN utilizes the Q-learning framework. It models the stage
division as a sequential decision-making problem. Neural networks
learn state–action mapping through environmental interaction. This
makes adaptive learning unnecessary to predefined rules for generating
the optimal partitioning strategy by maximizing long-term rewards. As
shown in Fig. 3, the information of each layer 𝑙𝑖 of the DNN model
T is transmitted to the above current value network, and the Q value
of the corresponding action is output for each layer. Based on the
maximum Q value, the corresponding action is selected, and then the
layers of DNN are divided into different stages. Assuming a total of
s stages can be divided, and the model partitioning set is denoted as
𝐒 =

{

𝑆
(

𝑗,… , 𝑗′
)

|𝑗 ∈ 𝐽 , 𝑟 = 1, 2,… , 𝑠
}

.
𝑟

4
3.2.2. Introducing GRU network collaborative device scheduling
In a heterogeneous distributed environment, we use the set 𝑑 =

{

𝑑𝑝|𝑝 = 1, 2,… , 𝑃
} to represent different edge devices. The system state

space 𝑆𝑠𝑐ℎ in the device scheduling is defined to include all possible
states, where each state can be denoted as 𝑠𝑡 = (𝐶𝑟𝑒𝑞 , 𝐷𝑢𝑠𝑒). Thereinto,
𝐶𝑟𝑒𝑞 indicates the computational requirements of the current stage,
including the computational workload 𝑊𝑟 and memory requirements
𝑀𝑟 of that stage; 𝐷𝑢𝑠𝑒 denotes the current usage of device resources, in-
cluding memory 𝑀𝑝, bandwidth 𝐵𝑝, computing power 𝐹𝑝 and whether
the device has been allocated a phase. The action space 𝐴′ is defined
as all possible actions 𝑎′𝑡 =

{(

𝑆𝑟 → 𝑑1
)

,
(

𝑆𝑟 → 𝑑2
)

,… ,
(

𝑆𝑟 → 𝑑𝑝
)}

,
indicating that the model partitioning block 𝑆𝑟 of current stage 𝑟 ∈ [1, 𝑠]
is assigned to a specific device 𝑑𝑝, and ensuring that each device has
only one stage that needs to be calculated.

The GRU (Gated Recurrent Unit) neural network dynamically con-
trols the flow of historical information through the dual gating mech-
anism of update gates and reset gates, and can capture the temporal
dependence and sequence characteristics in device scheduling deci-
sions. Through its built-in memory unit, it remembers and processes
the information of the previous moment. Thus, this enable the model
to fully consider the influence of historical resource allocation and stage
dependency when making scheduling decisions currently. Compared
with LSTM [42], GRU achieves comparable performance with fewer
parameters through a simplified gate structure. Therefore, as depicted
in Fig. 4, we have designed a GRDQN device scheduling network, which
specifically adopts the GRU network as a part of the neural network,
extracts the hidden state ℎ𝑡 using the Eq. (1), and combines it with other
states at the current time as the input 𝑠′ of DQN, so that the model
can perform deeper optimization in time, thereby improve the overall
scheduling effect.
ℎ𝑡 = 𝐺𝑅𝑈

(

𝑥𝑡, ℎ𝑡−1;𝜙
)

(1)

Where 𝑥𝑡 is the input for the current time step, including device
resources and stage dependencies, and ℎ𝑡−1 is the hidden state of the
previous time step.

3.3. Optimize the dual network training framework

3.3.1. Stage division network (SDQN)
A good stage partitioning strategy can effectively improve the train-

ing effectiveness of the model, so optimizing the network training can
obtain the optimal model parameters 𝛿∗𝑑𝑖𝑣 for the stage partitioning
network.

(1) Initialization. Initialize the relevant parameters of the stage
division network, including the experience replay pool 𝑑𝑖𝑣, Q
network and Qtarget network parameters 𝛿𝑑𝑖𝑣, 𝛿−𝑑𝑖𝑣, etc.

(2) Exploration and utilization. By taking the state 𝑠𝑡 of each time
step t as the input of the neural network and using the 𝜖-greedy
strategy to select the action 𝑎𝑡, the model is divided into some
layers. The action of selecting the probability of 𝜖 is defined as an
exploration of partitioning; 𝑎𝑡 = max𝑎 𝑄(𝑠𝑡, 𝑎; 𝛿𝑑𝑖𝑣) is the selected
action with the highest Q value in the current state.

(3) Training and adjustment. Based on the sufficient interaction
between the action and the environment, the feedback 𝑅𝑡 and
the next state 𝑠𝑡+1 are obtained during the training process,
and (𝑠𝑡, 𝑎𝑡, 𝑅𝑡, 𝑠𝑡+1

) is stored in the experience pool. In order to
better guide the selection of actions during the phase division
process, we design the immediate reward 𝑅𝑡 at each time step t
to be either the load balancing reward 𝑟𝑠𝑡𝑝 or the communication
volume reward 𝑟𝑐𝑜𝑛, i.e., 𝑅𝑡 ∈ {𝑟𝑠𝑡𝑝, 𝑟𝑐𝑜𝑛}. The specific form is
shown in Eqs. (2) and (3).

𝑟𝑠𝑡𝑝 =

{

𝑟𝑐 if 𝑊𝑠 > 𝜅 ⋅ 𝐹𝑝
′

(2)

−𝑟𝑐 if 𝑊𝑠 ≤ 𝜅 ⋅ 𝐹𝑝

J. Li et al. Computer Networks 271 (2025) 111592
Fig. 3. Stage division flowchart based on DQN.
Fig. 4. GRDQN device scheduling network architecture diagram.
where 𝑟𝑐 and −𝑟′𝑐 are respectively the positive and negative
constant values in relatively extreme cases, and 𝜅 denotes stage
division threshold parameter. When the model chooses partition-
ing actions, if the computational cost 𝑊𝑠 in the current stage is
greater than 𝜅 times of computing power 𝐹𝑝 and obtains reward
𝑟𝑐 , conversely, imposes the penalty value −𝑟′𝑐 .

𝑟𝑐𝑜𝑛 =

{

𝑟𝑓 if 𝐶𝑠 > 𝜍 ⋅ 𝐵𝑝

−𝑟′𝑓 if 𝐶𝑠 ≤ 𝜍 ⋅ 𝐵𝑝
(3)

where 𝑟𝑓 and −𝑟′𝑓 are also respectively the positive and negative
constant values in relatively extreme cases, and 𝜍 indicates the
other stage division threshold parameter. When the model is not
split, if the internal communication volume 𝐶𝑠 in the current
stage is larger than 𝜍 times of bandwidth 𝐵𝑝 and obtains reward
𝑟𝑓 , on the contrary, imposes the penalty value −𝑟′𝑓 .

Each layer of the DNN model has its own different computational
complexity. If each layer cannot be reasonably divided into different
stages, it is easy to cause uneven distribution of computational load,
which affects the overall training performance. Therefore, the variance
of stage time 𝑇𝑝ℎ𝑎𝑠𝑒 is taken as the main measurement parameter, as
expressed in Eq. (4).

𝑇𝑝ℎ𝑎𝑠𝑒 =
1

𝑠
∑

(

𝑇𝑟 − 𝑇𝐴𝑣𝑔
)2 (4)
𝑠 𝑟=1

5
Where 𝑇𝑟 is the computation time of the r -th stage, and 𝑇𝐴𝑣𝑔
denotes the average computation time for all stages. After obtaining
the complete phase division strategy, the actually calculated 𝑇𝑝ℎ𝑎𝑠𝑒 is
compared with the average threshold 𝑇𝑏𝑎𝑙𝑎𝑛𝑐𝑒, and the final reward 𝑅𝑑𝑖𝑣
is allocated to the strategy. The specific form is shown in Eq. (5).

𝑅𝑑𝑖𝑣 =

{

max
(

5, 6 − 𝑇𝑝ℎ𝑎𝑠𝑒 × 10
) if 𝑇𝑝ℎ𝑎𝑠𝑒 ≤ 𝑇𝑏𝑎𝑙𝑎𝑛𝑐𝑒

−min
(

3, 𝑇𝑝ℎ𝑎𝑠𝑒
) if 𝑇𝑝ℎ𝑎𝑠𝑒 > 𝑇𝑏𝑎𝑙𝑎𝑛𝑐𝑒

(5)

If the number of stages divided and the duration of each stage are
close to the average time, additional positive rewards will be given.
Next, we randomly select a small batch of (𝑠𝑡, 𝑎𝑡, 𝑅𝑡, 𝑠𝑡+1

) from the
experience pool, and calculate the target value as Eq. (6).

𝑄𝑡𝑎𝑟𝑔𝑒𝑡𝑡 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑅𝑡
if 𝑠𝑡+1 𝑖𝑠 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑡𝑒;

𝑅𝑡 + 𝛾 max𝑎𝑡+1 𝑄(𝑠𝑡+1, 𝑎𝑡+1; 𝛿−𝑑𝑖𝑣)
Otherwise

(6)

In order to reduce the difference between the target Q value and
the network predicted Q value, DQN uses gradient descent to adjust
the network parameters based on the calculated target Q value. By
minimizing the loss function 𝐿(𝛿𝑑𝑖𝑣) as shown in Eq. (7), the network’s
decisions gradually approach the true Q value:

𝐿(𝛿) = E()

[

(

𝑄𝑡𝑎𝑟𝑔𝑒𝑡 −𝑄(𝑠 , 𝑎 ; 𝛿)
)2
]

(7)
𝑑𝑖𝑣 𝑠𝑡 ,𝑎𝑡 ,𝑅𝑡 ,𝑠𝑡+1 ∼𝑠 𝑡 𝑡 𝑡 𝑑𝑖𝑣

J. Li et al. Computer Networks 271 (2025) 111592
Algorithm 1 SDQN Stage Division Network Algorithm
Input: DNN model parameters 𝑅,𝑅𝑡𝑜𝑡𝑎𝑙, maximum episodes 𝑅𝑜𝑢𝑛𝑑1, thresholds

𝜅, 𝜍, 𝑇𝑏𝑎𝑙𝑎𝑛𝑐𝑒
Output: 𝛿∗𝑑𝑖𝑣: Optimal strategy for stage division
1: Initialize: Q-network 𝛿𝑑𝑖𝑣, target network 𝛿−𝑑𝑖𝑣, replay buffer 𝑑𝑖𝑣
2: for episode = 1, 𝑅𝑜𝑢𝑛𝑑1 do
3: Reset the environment and observe initial state.
4: for t = 1,T do
5: 𝑎𝑡 ← select a random action with probability 𝜖, otherwise 𝑎𝑡 =

max𝑎 𝑄(𝑠𝑡, 𝑎; 𝛿𝑑𝑖𝑣)
6: 𝑅𝑡 ∈ {𝑟𝑠𝑡𝑝, 𝑟𝑐𝑜𝑛}, 𝑠𝑡+1 ← Execute action 𝑎𝑡

7: 𝑅𝑑𝑖𝑣 ←

⎧

⎪

⎨

⎪

⎩

max
(

5, 6 − 1
𝑠

∑𝑠
𝑟=1

(

𝑇𝑟 − 𝑇𝐴𝑣𝑔
)

× 10
)

−min
(

3, 1
𝑠

∑𝑠
𝑟=1

(

𝑇𝑟 − 𝑇𝐴𝑣𝑔
)

)

8: 𝑂𝑑𝑖𝑣 ← Store (𝑠𝑡, 𝑎𝑡, 𝑅𝑡, 𝑠𝑡+1)
9: Sample a mini-batch from 𝑑𝑖𝑣 for training
10: 𝑄𝑡𝑎𝑟𝑔𝑒𝑡𝑡 ←

{

𝑅𝑡

𝑅𝑡 + 𝛾 max𝑎𝑡+1 𝑄(𝑠𝑡+1, 𝑎𝑡+1; 𝛿−𝑑𝑖𝑣)

11: 𝐿(𝛿𝑑𝑖𝑣) ← E(

𝑠𝑡 ,𝑎𝑡 ,𝑅𝑡 ,𝑠𝑡+1
)

∼𝑠

[

(

𝑄𝑡𝑎𝑟𝑔𝑒𝑡𝑡 −𝑄(𝑠𝑡, 𝑎𝑡; 𝛿𝑑𝑖𝑣)
)2
]

12: 𝛿−𝑑𝑖𝑣 ← Periodically update target network parameters with 𝛿𝑑𝑖𝑣
13: end for
14: end for
15: return 𝛿∗𝑑𝑖𝑣

After training the network repeatedly, the parameters of the current
network are copied to the Qtarget network. When completing 𝑅𝑜𝑢𝑛𝑑1
rounds of iterative optimization, the optimal parameters 𝛿∗𝑑𝑖𝑣 for the
stage partitioning network are obtained, thus the optimal model stage
partitioning strategy is achieved.

The corresponding SDQN algorithm is devised and shown in Algo-
rithm 1. Line 1 initializes the Q-network 𝛿𝑑𝑖𝑣, target network 𝛿−𝑑𝑖𝑣, and
replay buffer 𝑑𝑖𝑣. Lines 2 to 12 iterate each episode until the maximum
number of iterations 𝑅𝑜𝑢𝑛𝑑1 is reached. Line 3 resets the environment
and observes the initial state. Lines 4 to 12 iterate for each time step
𝑡. Line 5 randomly selects an action 𝑎𝑡 with a probability of 𝜖, or 𝑎𝑡 =
max𝑎 𝑄(𝑠𝑡, 𝑎; 𝛿𝑑𝑖𝑣). Line 6 executes action 𝑎𝑡, obtaining the next state 𝑠𝑡+1
and the immediate reward 𝑅𝑡. The reward 𝑅𝑡 is determined as either
𝑟𝑠𝑡𝑝 or 𝑟𝑐𝑜𝑛 based on the executed action 𝑎𝑡. Line 7 calculates the reward
𝑅𝑑𝑖𝑣 of the final stage partition network. Line 8 stores the current state,
action, reward and next state (𝑠𝑡, 𝑎𝑡, 𝑅𝑡, 𝑠𝑡+1) in the experience buffer
𝑂𝑑𝑖𝑣. Line 9 samples a mini-batch from 𝑑𝑖𝑣 for training. Lines 10 and
11 calculate the target Q value and loss function respectively to update
the optimization network. Line 12 regularly updates the target network
parameters 𝛿−𝑑𝑖𝑣 with 𝛿𝑑𝑖𝑣. Finally, Line 15 returns the optimal stage
division strategy 𝛿∗𝑑𝑖𝑣.

The time complexity of Algorithm 1 is  (

𝑅𝑜𝑢𝑛𝑑1 ⋅ 𝑇 ⋅ 𝐶
)

, where
𝑅𝑜𝑢𝑛𝑑1 is the maximum iteration number, 𝑇 is the number of time steps
and 𝐶 is the complexity of the neural network execution for each batch
update considering forward and backward propagation.

3.3.2. Device scheduling network (GRDQN)
In order to obtain the optimal model parameters 𝛿∗𝑠𝑐ℎ for the GRDQN

network, this device scheduling network need to be optimized and
trained.

1. Initialization. The experience replay pool 𝑠𝑐ℎ, Q network (𝛿𝑠𝑐ℎ)
and Qtarget network parameters (𝛿−𝑠𝑐ℎ), and regularly synchro-
nized parameters of Q network to Qtarget network are all ini-
tialized.

2. Interaction with the environment. Input the device informa-
tion of each time step 𝑡 into the GRU network to calculate the
hidden state ℎ𝑡, then combine it with other states in the system
to form 𝑠′𝑡, and subsequently input it into the Q network. Use
𝜖-greedy strategy to select action 𝑎𝑡, where there is a proba-
bility of 𝜖 randomly selecting an action; In other cases, 𝑎 =
𝑡

6
max𝑎 𝑄(𝑠′𝑡 , 𝑎; 𝛿𝑠𝑐ℎ) selects the action that maximizes the Q value
in the 𝑠′𝑡 state. After executing an action, a reward and the next
state are returned through the environment to learn the value of
the action.

3. Training and Adjustment. Store the current interaction infor-
mation

(

𝑠′𝑡 , 𝑎𝑡, 𝑅
′
𝑡 , 𝑠

′
𝑡+1

)

 into the experience pool.

Reducing task execution delay and balancing device loads are the
two main goals of optimizing device scheduling. Therefore, based on
these two factors, we design a reward function as Eq. (8).

𝑅𝑠𝑐ℎ = 𝜐 − 𝛼𝐷𝑡 − 𝛽
𝑃
∑

𝑝=1
𝐿2
𝑝

= 𝜐 − 𝛼
𝑊𝑟

𝐹𝑝 + 𝜀
− 𝛽

𝑃
∑

𝑝=1

(

𝐿2
𝑚𝑒𝑚𝑜𝑟𝑦 + 𝐿2

𝑐𝑜𝑚𝑝𝑢𝑡𝑒

)

(8)

Where 𝐷𝑡 represents the task execution delay at time step t,
∑𝑃

𝑝=1 𝐿
2
𝑝

indicates the balance of device loads, 𝛼 and 𝛽 are coefficients used
to adjust the weights of delay and load balancing. 𝜀 is set to prevent
zero division errors. When an edge device meets the requirements of
computing power, memory and bandwidth of the tasks simultaneously,
an additional positive rewards 𝜐 will be given.

Next, a batch of experiences are randomly selected from the ex-
perience replay pool, their hidden states ℎ𝑡 and ℎ𝑡+1 are calculated,
and then the target network is used to calculate the target Q value by
Eq. (9).
𝑄𝑡𝑎𝑟𝑔𝑒𝑡𝑡 = 𝑅′

𝑡 + 𝛾 max
𝑎𝑡+1

𝑄(𝑠′𝑡+1, 𝑎𝑡+1; 𝛿
−
𝑠𝑐ℎ) (9)

In addition, using mean square error as the loss function 𝐿(𝛿𝑠𝑐ℎ) to
measure the distance between the target Q value and the estimated Q
value as Eq. (10).

𝐿(𝛿𝑠𝑐ℎ) =
1
2
∑

𝑡

[

(

𝑄𝑡𝑎𝑟𝑔𝑒𝑡𝑡 −𝑄(𝑠′𝑡 , 𝑎𝑡; 𝛿𝑠𝑐ℎ)
)2
]

(10)

Continuously repeating 𝑅𝑜𝑢𝑛𝑑2 iterations until the model converges,
so that DQN can effectively learn better strategies in complex environ-
ments, while reducing the variance during training based on the target
network and experience replay, and increasing the stability of learning.

The proposed GRDQN algorithm is designed based on the GRDQN
device scheduling model, as shown in Algorithm 2. Lines 1 initializes
the hidden state ℎ𝑡 of the GRU network, the parameter of the Q-network
𝛿𝑠𝑐ℎ, the target Q network parameter 𝛿−𝑠𝑐ℎ, and the experience replay
pool 𝑠𝑐ℎ, while employing the 𝜖-greedy policy for exploration. Lines
2 to 14 create the outer loop, iterating over each episode until the
maximum number of iterations 𝑅𝑜𝑢𝑛𝑑2 is reached. At the start of each
episode, the environment resets, and the initial state 𝑠0 is initialized.
Lines 4 to 13 form the inner loop, iterating over each time step t.
Lines 5 and 6 extract the current input 𝑥𝑡, which includes device status
𝐷𝑝, and feed it into the GRU network, calculating the current hidden
state. Line 7 calculates the current state 𝑠′𝑡 based on the hidden state ℎ𝑡
and the current resource level 𝑅𝑟. Line 8 selects an action 𝑎𝑡 based on
this state and the 𝜖-greedy policy. Line 9 executes action 𝑎𝑡, yielding
the reward 𝑅𝑠𝑐ℎ and the next state 𝑠𝑡+1. Line 10 stores the experience
(𝑠𝑡, 𝑎𝑡, 𝑅𝑡′ , 𝑠𝑡+1) of the current time step in the experience replay buffer
𝑂𝑠𝑐ℎ. Line 11 samples a mini-batch from the experience replay buffer
𝑂𝑠𝑐ℎ, forming the training dataset for the current time step. Lines 12
and 13 compute the target Q-value and the loss function using Eqs.
(9) and (10), respectively. Line 14 periodically copies 𝛿𝑠𝑐ℎ to the target
network 𝛿−𝑠𝑐ℎ to maintain training stability. Finally, Line 17 returns the
optimal policy 𝛿∗𝑠𝑐ℎ.

The time complexity of Algorithm 2 is 
(

Round2 ⋅ 𝑇 ⋅
(

𝐻 ⋅ 𝑃 +𝐻2 + 𝐵 ⋅𝑁𝑞
))

, where 𝑅𝑜𝑢𝑛𝑑2 denotes the number of iterations
in the outer loop. The symbol 𝑇 represents the number of time steps, 𝐻
denotes the hidden state dimension of the GRU network, 𝑃 represents
the number of devices, 𝐵 indicates the batch size and 𝑁𝑞 denotes the
number of parameters in the Q-network.

J. Li et al. Computer Networks 271 (2025) 111592
Fig. 5. Data dependency bubble structure diagram.
Algorithm 2 GRDQN Device Scheduling Network Algorithm
Input: Edge devices 𝑑 =

{

𝑑𝑝|𝑝 = 1, 2,… , 𝑃
}

; Maximum number of iterations
𝑅𝑜𝑢𝑛𝑑2

Output: 𝛿∗𝑠𝑐ℎ: Optimal strategy for device scheduling
1: Initialize: GRU network for hidden state ℎ𝑡; Q-network parameters 𝛿𝑠𝑐ℎ;
target Q-network parameters 𝛿−𝑠𝑐ℎ; replay buffer 𝑂𝑠𝑐ℎ; 𝜖-greedy exploration
with 𝜖 ∈ [0.1, 1.0] and decay rate

2: for episode = 1, 𝑅𝑜𝑢𝑛𝑑2 do
3: Reset environment and initialize initial state 𝑠0
4: for t=1,T do
5: Extract current input 𝑥𝑡 = 𝐷 including device states 𝐷𝑝
6: ℎ𝑡 ← 𝐺𝑅𝑈 (𝑥𝑡, ℎ𝑡−1;𝜙)
7: 𝑠′𝑡 ← Use ℎ𝑡 and 𝑅𝑟 to get current state
8: 𝑎𝑡 ← Use 𝑠′𝑡 and 𝜖-greedy policy
9: 𝑅𝑠𝑐ℎ, 𝑠𝑡+1 ← Execute action 𝑎𝑡
10: 𝑂𝑠𝑐ℎ ← Store (𝑠𝑡, 𝑎𝑡, 𝑅𝑡′ , 𝑠𝑡+1) in replay buffer
11: Sample a mini-batch of transitions from 𝑂𝑠𝑐ℎ
12: 𝑄𝑡𝑎𝑟𝑔𝑒𝑡𝑡 ← 𝑅′

𝑡 + 𝛾 max𝑎𝑡+1 𝑄(𝑠′

𝑡+1, 𝑎𝑡+1; 𝛿
−
𝑠𝑐ℎ)

13: 𝐿(𝛿𝑠𝑐ℎ) ←
1
2

∑

𝑡

[

(

𝑄𝑡𝑎𝑟𝑔𝑒𝑡𝑡 −𝑄(𝑠′

𝑡 , 𝑎𝑡; 𝛿𝑠𝑐ℎ)
)2
]

14: Periodically update target Q-network parameters 𝛿−𝑠𝑐ℎ ← 𝛿𝑠𝑐ℎ
15: end for
16: end for
17: return 𝛿∗𝑠𝑐ℎ

4. Adaptive adjacent scheduling strategy in heterogeneous edge
networks

4.1. The data dependency bubbles in pipeline parallel

Heterogeneous edge devices do not have exactly the same execution
speed for micro-batches in pipeline tasks. Therefore, during the forward
computing process of data transmission, if the device 𝑑𝑝 in the r -th stage
has a shorter execution time than the device 𝑑𝑝−1 in the previous stage,
due to the dependency relationship between parallel executing tasks in
the pipeline, the device 𝑑𝑝 cannot immediately perform the calculation
of the next micro-batch, but stagnates and waits for the forward result
calculated by the device 𝑑𝑝−1 to be transmitted, as shown in Fig. 5.
This stagnation causes the pipeline to be interrupted, which brings in
additional bubbles, i.e., data dependency bubbles.

The above phenomenon also exists in the backpropagation process
of the gradient feedback stage. If a device completes its calculations
faster than the dependent device, it needs to wait for the dependent
device to transmit the gradient results, and its backpropagation calcu-
lation will also be forced to wait, further exacerbating the generation
of data dependency bubbles and reducing the overall efficiency of the
model training.

Assuming that the micro-batches in each stage are equal 𝑇 𝑟
𝑓 and

𝑇 𝑟
𝑏 , which respectively represent the forward and backward propaga-
tion time of each micro-batch in stage r, where suppose 𝑇 𝑟

𝑏 = 𝑇 𝑟
𝑓 .

In heterogeneous edge networks, the significant difference in device
performance is the inevitable introduction of additional bubble time
𝑇𝑝𝑏. In order to more accurately model the bubble consumption area
𝑆𝑡𝑝𝑏, we give the mathematical expression as Eq. (11).

𝑆𝑡𝑝𝑏 = 𝑇𝑝𝑏 +
𝑠
∑

[

(𝑠 − 𝑟) ⋅
(

∫

𝑇 𝑟
𝑓
𝑒−𝜆𝑥𝑑𝑥 + log(1 + 𝑇 𝑟

𝑏)
)

]

(11)

𝑟=1 0

7
Among them, ∫ 𝑇 𝑟
𝑓

0 𝑒−𝜆𝑥𝑑𝑥 is used to describe the cumulative delay
introduced by heterogeneous device computing performance within the
forward propagation time interval [0, 𝑇 𝑟

𝑓]. 𝜆 represents a parameter
that measures the degree of device heterogeneity (i.e., the larger the
𝜆, the more significant the performance difference and the faster the
attenuation). The exponential decay model is used to reflect that as
the calculation progresses, the delay introduced by the new unit time
gradually decreases. log(1 + 𝑇 𝑟

𝑏) uses a convex function to model the
nonlinear growth effect of backpropagation time 𝑇 𝑟

𝑏 on bubble accu-
mulation, that is, as the backpropagation time increases, the growth
rate of pipeline bubbles shows an increasing trend.

4.2. Adaptive adjacent scheduling strategy

To avoid the accumulation of data dependency bubbles in complex
dynamic environments, an adaptive adjacent scheduling strategy is
proposed. When there is a significant difference in device performance,
data dependency bubbles 𝑇𝑝𝑏, dynamic delay term ∫ 𝑇 𝑟

𝑓
0 𝑒−𝜆𝑥𝑑𝑥, and

nonlinear cumulative effect log(1 + 𝑇 𝑟
𝑏) which will aggravate the de-

crease in training efficiency of DNN models. The adaptive adjacent
scheduling strategy dynamically adjusts the computing loads between
devices through time synchronization and load balancing optimization.
Specifically, when a device completes a task ahead of scheduling, it ac-
tively sends an assistance request signal, including remaining memory
(RM), computing speed and bandwidth information, to inquire whether
neighboring dependent devices need assistance. For each micro-batch, a
corresponding checkpoint is designed. When the checkpoint is reached
during the calculation process, it stops to check whether assistance
requests are received from neighboring devices. If a request is received,
the data will be reallocated to balance execution time and reduce
bubbles caused by device idling.

Taking an example about the specific process of the above schedul-
ing strategy, and expounding the performance difference between de-
vice 1 and device 2 during the data transmission phase as depicted in
Fig. 6. In the course of the initial forward propagation process, when
device 2 completes the calculation of the first micro-batch, device 1
has not yet completed the calculation of the second micro-batch. At
this point, device 2 actively sends an assistance request to device 1
as it has not received the corresponding data transmitted by device
1. When device 1 reaches the preset checkpoint, it checks whether it
has received the assistance signal from device 2. If a signal is received,
device 1 will reassign the remaining tasks and assign some tasks to
device 2. After the first assistance, if a similar phenomenon occurs
again when device 2 completes the third micro-batch, the assistance
strategy will be activated again to reassign the corresponding tasks.
Through the continuous collaboration of adaptive adjacent scheduling
strategies, the proportion of bubbles in the forward propagation process
gradually decreases, and the overall execution efficiency is significantly
improved. In heterogeneous edge networks, the advantages of this
strategy will be more prominent, which achieve maximum resource
utilization and efficient training processes.

Define the data volume of device 𝑑𝑝′ on the 𝑘th micro-batch as
𝑀𝑝′ ,𝑘, where 𝑝′ ∈ 𝑃 , 𝑘 ∈ 𝑁 . while 𝑃 represents the set of all
devices involved in scheduling, and 𝑁 is the micro-batch index set
for the current stage. During parallel execution on different devices,

J. Li et al. Computer Networks 271 (2025) 111592
Fig. 6. Collaborative scheduling flowchart between adjacent devices.
if a data dependency bubble occurs during the same time period, the
corresponding auxiliary strategy will be triggered to reallocate the
remaining data 𝑀𝑝′ ,𝑘 − 𝑡𝐹𝑝′ from the th batch of device 𝑑𝑝′ , where 𝑡
is the processing time consumed and 𝐹𝑝′ is the computing performance
of device 𝑑𝑝′ .

To achieve more synchronized execution time between devices 𝑑𝑝′
and 𝑑𝑝 after data reallocation, an optimization strategy 𝜑

(

𝑝′ → 𝑝, 𝐴𝑝
)

is designed based on the least squares method. This strategy represents
the data size 𝐴𝑝 of transmission from device 𝑑𝑝′ to device 𝑑𝑝. To
avoid unreasonable task allocation, we give the constraint conditions
to ensure that the transmission volume is within the allowable range of
device margin 𝑅𝑀𝑝, and the received data 𝑅𝑒𝑐𝑝 is 0. Determining the
optimal strategy for adjacent scheduling is just to solve the optimization
problem as Eq. (12).

min
𝜑(𝑝′→𝑝,𝐴𝑝)

(𝑀𝑝′ ,𝑘 − 𝑡𝐹𝑝′ − 𝐴𝑝

𝐹𝑝′
−

𝐴𝑝

𝐹𝑝

)2

s.t. 0 ≤ 𝐴𝑝 ≤ min
(

𝑀𝑝′ ,𝑘 − 𝑡𝐹𝑝′ , 𝑅𝑀𝑝
)

,

𝑅𝑒𝑐𝑝 = 0

(12)

Algorithm 3 shows dynamic task scheduling process in acceleration
phase for the adaptive neighbor scheduling strategy. Line 1 initializes
the strategy set 𝜑 to an empty set and sets 𝐴𝑝 of all devices to 0. Lines
2 to 14 iterate each small batch 𝑘, and lines 3 to 13 iterate each device
𝑑𝑝 in parallel. Line 4 indicates that each device 𝑑𝑝 is calculated to the
checkpoint for inspection. Line 5 checks whether there is an assistance
signal. If the condition is met, lines 6 to 7 obtain the value of 𝐴𝑝 by
using the Eq. (12) and its constraints. Line 8 updates the strategy 𝜑 by
adding the data transmission (𝑝′ → 𝑝, 𝐴𝑝) from device 𝑑𝑝′ to 𝑑𝑝. Lines 9
to 10 update the small batch size of devices 𝑑𝑝′ and 𝑑𝑝, and the value
of 𝑅𝑒𝑐𝑝 accordingly. Line 12 continues the calculation. Finally, line 15
returns the strategy 𝜑.

The time complexity of Algorithm 3 is mainly affected by the
number n of devices involved in the scheduling, so it can be considered
to be  (𝑛).

In order to illustrate the effectiveness of the proposed adaptive
adjacent strategy, we present Theorem 1 and its proof as follows.

Theorem 1. In complex dynamic heterogeneous edge networks, the use of
adaptive adjacent scheduling strategies can effectively reduce data depen-
dency bubbles generated during pipeline parallel processes within the given
iteration cycle, and significantly improve the training efficiency of DNN
models.
8
Algorithm 3 Dynamic Task Scheduling in Acceleration Phase
Input: 𝑀𝑝′ ,𝑘: Size of the 𝑘-th micro-batch for device 𝑑𝑝′ ; 𝐹𝑝, 𝐹𝑝′ : Computing

performance of devices 𝑑𝑝 and 𝑑𝑝′ ; 𝑅𝑀𝑝: Remaining memory for device 𝑑𝑝
Output: 𝜑: Optimized adaptive adjacent scheduling strategy
1: Initialize: 𝜑 ← ∅, 𝐴𝑝 = 0,∀𝑝
2: for each 𝑘 do
3: for each 𝑑𝑝 in parallel do
4: Compute until checkpoint
5: if an assistance signal is detected at the checkpoint then
6: min𝐴𝑝

(

𝑀𝑝′ ,𝑘−𝑡𝐹𝑝′−𝐴𝑝

𝐹𝑝′
− 𝐴𝑝

𝐹𝑝

)2

7: s.t. 0 ≤ 𝐴𝑝 ≤ min(𝑀𝑝′ ,𝑘 − 𝑡𝐹𝑝′ , 𝑅𝑀𝑝), 𝑅𝑒𝑐𝑝 = 0
8: 𝜑 ← 𝜑 ∪ {(𝑝′ → 𝑝, 𝐴𝑝)}
9: 𝑀𝑝′ ,𝑘 ← 𝑀𝑝′ ,𝑘 − 𝐴𝑝, 𝑀𝑝,𝑘 ← 𝑀𝑝,𝑘 + 𝐴𝑝
10: 𝑅𝑒𝑐𝑝 ← 𝑅𝑒𝑐𝑝 + 𝐴𝑝∕𝐹𝑝
11: end if
12: Resume the computing
13: end for
14: end for
15: return 𝜑

Proof. Defining the total duration of a training process as 𝑇 , where 𝑡′ ∈
[0, 𝑇], and assuming that the adjacent collaborative scheduling strategy
between device 𝐷𝑝′ and 𝐷𝑝 within time slice 𝑡′ is 𝜉𝑡

′

𝑝′𝑝

(

𝑝′ ⇒ 𝑝, 𝐴𝑝
)

.
Based on the adaptive scheduling strategy and Eq. (12), let 𝜃𝑡′ represent
the bubble reduction rate caused by initiating collaborative scheduling
between adjacent devices within time slice 𝑡′:

𝜃𝑡′ = 1 −

|

|

|

|

|

max
(

𝑀𝑝′ ,𝑘−𝑡⋅𝐹𝑝′−𝐴𝑝
𝐹𝑝′

,
𝐴𝑝
𝐵𝑝′

)

− 𝐴𝑝
𝐹𝑝

|

|

|

|

|

𝑇𝑝𝑏
Accumulating the decrease in the bubble rate caused by the activa-

tion strategy in all time slices during the cycle, and then calculating the
proportion of additional bubbles:

𝑇𝑝𝑏 ≤ 𝑇 0
𝑝𝑏 ⋅

𝑇
∏

𝑡′=1

(

1 − 𝜃𝑡′
)

≤
𝑇 0
𝑝𝑏

𝑇𝑝𝑏
⋅ |max(

𝑀𝑝′ ,𝑘 − 𝑡 ⋅ 𝐹𝑝′ − 𝐴𝑝

𝐹𝑝′
,
𝐴𝑝

𝐵𝑝′
) −

𝐴𝑝

𝐹𝑝
|

The above inequality verification shows that when the number of
bubbles in each time slot decreases, the final proportion of additional
bubbles 𝑇𝑝𝑏 will also be lower than the initial proportion of bubbles,
where 𝑇 0 represents the initial additional bubbles when the adjacent
𝑝𝑏

J. Li et al. Computer Networks 271 (2025) 111592
scheduling strategy 𝜉 is not introduced. When 𝜃𝑡′ approaches 1 in-
finitely, the bubbles in each time slot also approach 0 infinitely, as
described by the formula below:

lim
𝜃𝑡′→1

𝑇𝑝𝑏 ≤ 𝑇 0
𝑝𝑏 ⋅

𝑇
∏

𝑡′=1
(1 − 𝜃𝑡′) = 𝑇 0

𝑝𝑏 ⋅ 0 = 0

When 𝑇𝑝𝑏 approaches 0 infinitely, the idle time caused by data
dependency is reduced, thereby improving the training efficiency of
the DNN model. Specifically, the training efficiency 𝜂 of the model is
represented by the following formula:

lim
𝑇𝑝𝑏→0

𝜂 =
𝑇 0
𝑝𝑏 − 𝑇𝑝𝑏

𝑇 0
𝑝𝑏

= 1 − 0
𝑇 0
𝑝𝑏

= 1

The theoretical effectiveness of the adaptive adjacent scheduling
strategy has been verified based on the above derivation.

5. Performance appraisal

In this section, we conducted extensive experiments to validate the
effectiveness of the DGPAS system model. At first, the performance
evaluation indicators related to the research objectives were defined,
and the composition of the experimental platform and the relevant
experimental parameters were described in detail. Then, for the ex-
periments of the preparation stage, we compared our method with the
baseline algorithm and advanced methods previously studied, and car-
ried out multiple experiments under the different parameter conditions
for comparative analysis. Next, for the experiments of the execution
phase, we validated the effectiveness of our strategy by comparing the
decrease in bubble rate and the improvement in training time before
and after the proposed strategy. Finally, we summarized the experi-
mental results and discussed their impact on practical applications. Our
experimental code is available at https://github.com/Lilili214/DGPAS.

5.1. Definition of performance evaluation indicators

To evaluate the distributed training performance of the DGPAS
model in heterogeneous edge environments, the experimental evalu-
ation mainly adopts the following two core indicators, whose settings
directly correspond to the goals of ‘‘improving training efficiency and
alleviating the bubble effect’’ proposed in the introduction of this paper.

5.1.1. The total training time of the model
In synchronous pipeline parallelism, the training process is divided

into 𝑠 stages, and each stage runs on an edge node. The entire round of
training tasks is divided into 𝑀 micro-batches, and each micro-batch
enters the pipeline in sequence. The parameter update time can almost
be ignored because it is very short here. Therefore, the total training
duration 𝑇total is defined as follows.
𝑇total = 𝑡(𝑀,𝑠)

f inish − 𝑡(1,1)start (13)

Where 𝑡(1,1)start represents the time when the first micro-batch starts
processing in the first stage, and 𝑡(𝑀,𝑠)

f inish indicates the time when the last
micro-batch is completed in the last stage. 𝑀 denotes the total number
of micro-batches, and 𝑠 is the number of pipeline stages.

5.1.2. Bubble rate during the training process
The bubble rate is used to measure the proportion of idle resources

of heterogeneous devices under data dependency constraints, which
reflects the utilization rate of the pipeline parallel scheduling strategy.
Its definition refers to the bubble modeling in Eq. (11), that is as
follows.

𝑅bubble =
𝑆𝑡𝑝𝑏

𝑠 ⋅ 𝑇total
(14)

Where 𝑆𝑡𝑝𝑏 represents the size of the bubble area, 𝑠 denotes the
number of pipeline stages, and 𝑇total is the total training time. The lower
the bubble rate is, the higher the resource utilization rate is, and the
better the training efficiency is.
9
Fig. 7. The experimental edge network of the DGPAS system.

5.2. Experimental setup

5.2.1. Composition of experimental platform and related experimental pa-
rameters

Based on the basic principle of pipeline parallelism, we hope to
adaptively divide the DNN model into different stages when facing
dynamic and complex environments, and perform optimal scheduling
on heterogeneous edge devices. Therefore, we built an experimental
platform as shown in Fig. 7, which includes three different types of edge
devices connecting to the same local area network through a switch.
The detailed information about device names, CPUs, GPUs and memory
is described in Table 1.

To verify the effectiveness of the proposed scheme, we select five
classic DNN image classification models, AlexNet [43], VGG19 [44],
InceptionV3 [45], ResNeXt101 [46], and RegNet-200 MF [47], for
multiple experiments on our experimental platform. As shown in Table
2, each model contains the key information such as its name, parameter
count, memory and floating-point numbers. For the selection of models,
we focus on the representativeness of different complexities and scales
to cover a variety of network structures ranging from lightweight to
large-scale. These five models are complementary in terms of parameter
scale and actual resource requirements, which is conducive to the
systematic analysis of the applicability and robustness of the DGPAS
scheme in diverse scenarios.

The actual execution environment is full of variable uncertainty, so
we performed multiple micro-batch processes on each edge device for
the five models mentioned above, and collected the actual execution
time, memory usage and CPU utilization of each layer of each model.
Specifically, each of edge devices was pre-trained 5 times, followed
by recording the average of 10 runs of data. We conducted multiple
simulation experiments using the collected data as actual parameters
of the real environment. In the experiments, the size of the mini-batch
was set as 256. Each mini-batch was divided into 8 micro-batches, and
the size of each micro-batch was 32. This setting takes into account
both the stability of parameter update and the efficiency of pipeline
parallelism, and can effectively improve the system throughput rate and
mitigate the impact of bubbles. Different models were trained multiple
times, and the average values were taken as the final results to ensure
the stability of the experimental data. At the same time, we verified
that the adaptive adjacent assistance strategy can effectively reduce the
bubble rate and improve the training efficiency through real parallel
execution between devices with different micro-batch sizes.

5.2.2. The overview of compared methods
All the methods being compared are described below as follows.

https://github.com/Lilili214/DGPAS

J. Li et al. Computer Networks 271 (2025) 111592
Table 1
Hardware types and specifications for running experiments.
 Hardware CPU GPU Memory Number
 Jetson Orin Nano 6-core ARM

Cortex-A78AE @ 1.5 GHz
NVIDIA Ampere architecture
1024 × NVIDIA CUDA Cores
32 × 3rd Gen Tensor Cores

8 GB 128-bit LPDDR5 68 GB/s 2

 Jetson Xavier NX 6-core NVIDIA Carmel ARM
v8.2 64-bit @ 1.4 GHz

NVIDIA Volta architecture
384 × NVIDIA CUDA Cores
48 × Tensor Cores

8 GB 128-bit LPDDR4x 51.2 GB/s 1

 Raspberry Pi 5 Broadcom BCM2712 quad-core
Arm Cortex A76 processor @ 2.4 GHz

/ 8 GB RAM LPDDR4x 12
Table 2
Five typical DNN image classification model specifications.
 Model name Params Memory Flops
 AlexNet 61,100,840 4.19 MB 715.54MFlops
 VGG19 143,667,240 119.34 MB 19.67GFlops
 InceptionV3 23,834,568 70.63 MB 5.73GFlops
 ResNext101 88,791,336 276.02 MB 16.49GFlops
 RegNet-200MF 21,152,810 7.90 MB 2.97GFlops

Fig. 8. The reward curve of SDQN network.

DGPAS strategy: The method proposed in this paper analyzes and
evaluates the different parameters of the DNN models and the states
of heterogeneous devices, and combines GRU to design two networks
for stage partitioning and device scheduling. Based on the DQN algo-
rithm, the network parameters are iteratively optimized to ultimately
obtain the global optimal solution for model partitioning and device
scheduling.

Dynamic Programming (DP) [48]: Using dynamic programming
algorithms to segment and schedule tasks for the DNN models, and
the multi-stage optimization is achieved, i.e., reaching relative load
balancing between stages.

Particle Swarm Optimization (PSO) [49]: The partitioning and
scheduling of the DNN models are encoded as the position and velocity
vectors of the particles. Using the particle swarm optimization algo-
rithm, each particle continuously adjusts the solution based on its own
historical experience and the optimal solution of the group.

Genetic Algorithm (GA) [50]: Encoding the partitioning and
scheduling of the DNN models into chromosomes, initializing the popu-
lation to generate multiple schemes, and optimizing the chromosomes
through selection, crossover and mutation operations, and using the
fitness function to evaluate so as to obtain the optimal solution.

Proximal Policy Optimization (PPO) [51]: Proximal policy op-
timization treats the partitioning and scheduling of DNN models as
a reinforcement learning problem, and searches for the optimal solu-
tion by continuously alternating between sampling and optimizing the
strategy, and constraining the strategy update amplitude.
10
Fig. 9. The reward curve of GRDQN network.

PG-MPSS [30]: It is a policy-based reinforcement learning algorithm
that encodes the different parameters of the model in high dimensions,
replicates the slowest stage, and uses the policy gradient algorithm to
optimize and update for finding the optimal solution.

AutoPipe [29]: It is a framework for pipeline parallel training in
a shared GPU cluster. This method is based on reinforcement learn-
ing. It conducts high-precision modeling of the actual communication
and computing processes, and utilizes multi-step decision-making for
intelligent partitioning and allocation.

Seq1F1B [28]: It proposes pipeline parallel scheduling based on
sequence partitioning. By further refining the schedulable units, it
reduces pipeline bubbles during the training process, and optimizes the
utilization of computing resources.

5.3. Performance analysis

5.3.1. Convergence analysis of SDQN and GRDQN network
Taking VGG19 as an example, we conducted a convergence analysis

of the SDQN network and the GRDQN network. As depicted in Fig.
8, we can see that the reward value of the SDQN network shows a
clear upward trend in the early stage of training, which indicates that
the network can quickly learn a better stage division strategy in this
stage. As the training progresses, the reward value begins to fluctuate
to a certain extent. Although the fluctuation range is large, it does
not show a downward trend as a whole, but enters a relatively stable
stage. Similarly, we can see from Fig. 9 that the reward value of the
GRDQN network also shows a clear upward trend in the early stage
of training, i.e., quickly learning the optimal scheduling plan of the
devices, and then enters a fluctuation period. Through continuously
iterative learning, the rewards finally stabilize at around 130.

Based on the two graphs above, we can conclude that both the
SDQN and GRDQN networks demonstrate good convergence during the
training processes. Through multiple iterations, the system ultimately
learns the optimal stage partitioning and device scheduling strategies,
and achieves relatively stable performance levels in the later stages of
training.

J. Li et al. Computer Networks 271 (2025) 111592
Fig. 10. The training time of different models.
5.3.2. Comparative analysis of DGPAS strategy and other algorithms
In order to demonstrate the effectiveness of this approach in im-

proving the training performance of DNN models, comparative experi-
ments were conducted on five typical DNN image classification models
(i.e., AlexNet, VGG19, InceptionV3, ResNeXt101 and RegNet-200MF)
by using DGPAS, four typical baseline strategies (i.e., DP, PSO, GA
and PPO), as well as the improvement schemes PG-MPSS and AutoPipe
in related fields. The average values of 10 experimental results were
calculated to obtain five sets of comparative results as shown in Fig.
10.

As depicted in Fig. 10, we can see that DGPAS has achieved sig-
nificant training time optimization effects than other methods. Taking
the AlexNet model as an example, DGPAS reduces the training time by
21.3% and 18.7% respectively compared with the two improved meth-
ods, PG-MPSS and AutoPipe, further the time is decreased by 43.7%,
30.6%, 21.6% and 12.9% respectively than the four classic methods
of DP, GA, PSO and PPO. Under the ResNeXt101 model, DGPAS’s
training time is reduced by 7.0%, 3.7%, 11.1%, 4.8%, 25.7% and 16.1%
respectively compared with PG-MPSS, AutoPipe, DP, GA, PSO and PPO.
For VGG19, the time is decreased by 8.4%, 12.97%, 46.0%, 29.4%,
37.5% and 29.9% respectively compared with other approaches. Under
InceptionV3, the proportions of the reduction are 16.3%, 4.5%, 38.0%,
27.2%, 30.8% and 33.4% respectively. On RegNet-200MF, DGPAS can
also effectively decrease the training time compared with the above-
mentioned methods. Therefore, whether facing traditional classical
algorithms or multiple improved methods in recent years, DGPAS can
effectively improve the training efficiency under different network
structures.

5.3.3. Comparative analysis of bubble rate under adaptive adjacent schedul-
ing strategy

The model partitioning and device scheduling schemes from static
training often have difficulty in maintaining optimal states under het-
erogeneous computing environments. Specifically, the load and mem-
ory usage of edge devices will constantly change over time, which
may lead to fluctuations in the computing power of heterogeneous
devices. The bandwidth and delay indicators of the networks may also
change due to factors such as signal interference, leading to insufficient
resource utilization and decreased training efficiency. Therefore, our
strategy can dynamically adjust the bubble problem during execution
by continuously reallocating data between adjacent devices.

To verify the effectiveness of the proposed strategy, we conducted
experiments on five typical DNN image classification models:
11
Fig. 11. Under the five typical models, the decrease ratio of ‘‘bubble rate’’ before and
after the strategy of different mini-batch numbers changed.

ResNeXt101, VGG19, InceptionV3, RegNet-200MF and AlexNet. We
tested the changes in the decrease ratio of ‘‘bubble rate’’ before and
after the adaptive adjacent scheduling strategy under different number
of mini-batches, as shown in Fig. 11. It can be seen that as the number
of mini-batches continues to increase, the decrease ratio of ‘‘bubble
rate’’ before and after the adaptive adjacent scheduling strategy shows
a significant upward trend, indicating that our strategy can effectively
reduce the number of bubbles generated during actual execution.

5.3.4. Comparative analysis of training efficiency under adaptive adjacent
scheduling strategy

Because the ‘‘bubble’’ problem is actually the device idle time
caused by data dependency during the execution process, the con-
tinuous adjustment of the adaptive adjacent scheduling strategy can
effectively reduce the idle waiting time of the devices, thereby further
improving the training efficiency of the DNN models. As shown in
Fig. 12, for five typical DNN image classification models, namely
ResNeXt101, VGG19, InceptionV3, RegNetX200MF and AlexNet, we
compared the training time performances of adopting our optimal
partition scheduling (DGPAS), the optimization strategy introducing
adaptive adjacent scheduling (DGPAS_Co), and the advanced pipeline
parallel method (Seq1F1B) in the current distributed training field.

J. Li et al.

.

Computer Networks 271 (2025) 111592
Fig. 12. Comparison of training time using our DGPAS_Co and not using it under
different models.

Table 3
Comprehensive comparison of average training time (s) for all methods on five models
 Method AlexNet ResNeXt101 VGG19 InceptionV3 RegNet-200MF
 DGPAS 4.73 52.77 63.96 35.94 5.45
 PG-MPSS 6.01 56.75 69.81 42.94 12.43
 DP 8.41 59.39 118.50 58.50 15.97
 GA 6.81 55.41 90.63 49.39 13.89
 PSO 6.03 71.04 102.34 51.92 16.07
 PPO 5.43 62.95 91.30 53.92 15.52
 AutoPipe 5.82 54.83 73.52 37.63 7.62
 DGPAS_Co 2.96 35.56 36.66 25.28 3.74
 Seq1F1B 3.8976 57.6603 44.3120 36.1771 6.0470

By comparing the five groups of experiments in Fig. 12, we can
find that there are significant differences in the training efficiency of
the three methods on all models. Compared with DGPAS, the training
time of DGPAS_Co with the adaptive adjacent scheduling reduces by
38.91%, 36.12%, 30.11%, 32.82% and 45.95% respectively on AlexNet,
RegNetX200MF, InceptionV3, ResNeXt101 and VGG19. Compared with
Seq1F1B, DGPAS_Co also saved 24.0%, 38.2%, 30.1%, 38.3% and
17.3% of the training time respectively. These results demonstrate the
superiority of our method in distributed training.

To demonstrate the performance of the proposed method in en-
hancing the efficiency and adaptability of DNN distributed training in
edge environments, we have summarized average training time of all
compared methods, as shown in Table 3. In terms of model partitioning
and scheduling strategies, compared with other typical or improved
optimization algorithms, the average training time of DGPAS on each
model is the lowest. This not only verifies the outstanding performance
of the scheme we proposed in terms of balanced resource utilization
and execution efficiency, but also further supports the original intention
of the research, that is, the existing methods have obvious bottlenecks
in heterogeneous and resource-constrained scenarios. Furthermore, in
response to the practical challenges such as dynamic resource fluctu-
ations during the distributed training process, the adaptive adjacent
scheduling strategy introduced by DGPAS_Co effectively avoids the
problem that the ‘‘optimal’’ strategy is no longer optimal due to the
complex dynamic environment during the training process of the DNN
model. It is significantly superior to the original DGPAS method and
other improved distributed training methods. This further enhances the
training efficiency and system robustness.

6. Conclusions and future work

In response to the time-consuming training and scheduling chal-
lenges arisen from using DNNs in industrial product detection scenario,
the DGPAS system model is proposed to address the issues of low
resource utilization, device delay and low training efficiency in dis-
tributed training of DNN models in heterogeneous edge networks.
This model constructs the key DNN model partitioning and device
12
scheduling as two collaborative networks in pipeline parallelism, and
uses the DQN algorithm for learning optimization. Experiments have
proved that the proposed method has the less training time and lower
‘‘bubble rate’’ (i.e, idle waiting time between devices) than existing
methods in various typical DNN models and real heterogeneous edge
environments. Moreover, it can ensure the stability of the detection pro-
cess under the heterogeneous performance of devices and the dynamic
changes of the network.

In future applications of industrial product image detection, such
as in automotive component manufacturing plants, it is necessary to
conduct real-time defect detection on the products (such as gears and
bearings) on the production line. The edge devices should have a high
processing speed, and the algorithms should have a high detection accu-
racy rate. This can be achieved through the method of the DNN pipeline
parallel training. By applying our improved method, we divide the
backbone network such as RestNet into 4 stages, and the detection head
uses YOLO. The gradient calculations can be simultaneously performed
on multiple micro-batches using the GPUs of different edge devices. In
terms of some key performance indicators such as the training speed,
the accuracy rate of normal product identification, recall rate, and
F1 value for crack detection, our approach will show a significant
improvement.

However, this study still has certain limitations. The current meth-
ods are mainly aimed at medium and small-scale heterogeneous sce-
narios, and the scalability in extremely large-scale device clusters still
needs to be further verified and improved. Further work will be ori-
ented towards more deep learning models and diverse heterogeneous
computing power platforms, so as to further enhance the generalization
and robustness of DGPAS in different models and application scenarios,
and achieve more flexible and efficient distributed training.

CRediT authorship contribution statement

Jiayi Li: Writing – original draft, Software, Methodology, Investi-
gation, Formal analysis, Data curation, Conceptualization. Xiaogang
Wang: Writing – review & editing, Resources, Project administration,
Methodology, Funding acquisition. Haokun Chen: Validation, Soft-
ware. Zexin Wu: Validation, Software. Ziqi Zhu: Visualization, Valida-
tion. Jian Cao: Resources, Project administration, Funding acquisition.
Rajkumar Buyya: Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work is supported in part by National Natural Science Foun-
dation of China (Granted Number 62072301), in part by Shanghai
Science and Technology Innovation Action Plan (Granted Number
22ZR1425300), and in part by Program of Technology Innovation
of the Science and Technology Commission of Shanghai Municipality
(Granted Number 21511104700).

Data availability

The research code for this paper is illustrated in the experimental
section of the paper, linked to the share base of the author’s github
account.

J. Li et al. Computer Networks 271 (2025) 111592
References

[1] M.W. Hridoy, M.M. Rahman, S. Sakib, A framework for industrial inspection
system using deep learning, Ann. Data Sci. 11 (2) (2024) 445–478, http://dx.
doi.org/10.1007/s40745-022-00437-1.

[2] J. Lu, S.-H. Lee, Real-time defect detection model in industrial environment
based on lightweight deep learning network, Electronics 12 (21) (2023) http:
//dx.doi.org/10.3390/electronics12214388.

[3] D.G. Pena, D.G. Perez, I.D. Blanco, J.M. Juarez, Exploring deep fully convolu-
tional neural networks for surface defect detection in complex geometries, Int.
J. Adv. Manuf. Technol. 134 (1–2) (2024) 97–111, http://dx.doi.org/10.1007/
s00170-024-14069-7.

[4] D.-Y. Jung, Y.-J. Oh, N.-H. Kim, A study on GAN-based car body part defect
detection process and comparative analysis of YOLO v7 and YOLO v8 object
detection performance, Electronics 13 (13) (2024) http://dx.doi.org/10.3390/
electronics13132598.

[5] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen, MobileNetV2:
Inverted residuals and linear bottlenecks, in: 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2018, pp. 4510–4520, http://dx.doi.
org/10.1109/CVPR.2018.00474.

[6] J. Villalba-Diez, D. Schmidt, R. Gevers, J. Ordieres-Mere, M. Buchwitz, W. Well-
brock, Deep learning for industrial computer vision quality control in the printing
industry 4.0, Sensors 19 (18) (2019) http://dx.doi.org/10.3390/s19183987.

[7] N. Tuyen Le, J.-W. Wang, M.-H. Shih, C.-C. Wang, Novel framework for optical
film defect detection and classification, IEEE Access 8 (2020) 60964–60978,
http://dx.doi.org/10.1109/ACCESS.2020.2982250.

[8] C. Li, X. Zhang, Y. Huang, C. Tang, S. Fatikow, A novel algorithm for defect
extraction and classification of mobile phone screen based on machine vision,
Comput. Ind. Eng. 146 (2020) http://dx.doi.org/10.1016/j.cie.2020.106530.

[9] G. Tello, O.Y. Al-Jarrah, P.D. Yoo, Y. Al-Hammadi, S. Muhaidat, U. Lee, Deep-
structured machine learning model for the recognition of mixed-defect patterns
in semiconductor fabrication processes, IEEE Trans. Semicond. Manuf. 31 (2)
(2018) 315–322, http://dx.doi.org/10.1109/TSM.2018.2825482.

[10] D.H. Nam, A comparative study of mobile cloud computing, mobile edge comput-
ing, and mobile edge cloud computing, in: 2023 Congress in Computer Science,
Computer Engineering, and Applied Computing, CSCE, 2023, pp. 1219–1224,
http://dx.doi.org/10.1109/CSCE60160.2023.00204.

[11] M.M.H. Shuvo, S.K. Islam, J. Cheng, B.I. Morshed, Efficient acceleration of deep
learning inference on resource-constrained edge devices: A review, Proc. IEEE
111 (1) (2023) 42–91, http://dx.doi.org/10.1109/JPROC.2022.3226481.

[12] Q. Hua, D. Yang, S. Qian, J. Cao, G. Xue, M. Li, Humas: A heterogeneity- and
upgrade-aware microservice auto-scaling framework in large-scale data centers,
IEEE Trans. Comput. 74 (3) (2025) 968–982, http://dx.doi.org/10.1109/TC.
2024.3506862.

[13] J. Shi, C. Liu, J. Liu, Hypergraph-based model for modeling multi-agent Q-
learning dynamics in public goods games, IEEE Trans. Netw. Sci. Eng. 11 (6)
(2024) 6169–6179, http://dx.doi.org/10.1109/TNSE.2024.3473941.

[14] W. Zhang, S. Zhang, Research on multi-objective optimisation for shared bicycle
dispatching, Int. J. Veh. Inf. Commun. Syst. 9 (4) (2024) 372–392.

[15] G. Sun, Y. Zhang, H. Yu, X. Du, M. Guizani, Intersection fog-based distributed
routing for V2V communication in urban vehicular ad hoc networks, IEEE Trans.
Intell. Transp. Syst. 21 (6) (2020) 2409–2426, http://dx.doi.org/10.1109/TITS.
2019.2918255.

[16] L. Song, G. Sun, H. Yu, D. Niyato, ESPD-LP: Edge service pre-deployment
based on location prediction in MEC, IEEE Trans. Mob. Comput. 24 (6) (2025)
5551–5568, http://dx.doi.org/10.1109/TMC.2025.3533005.

[17] Y. Duan, Y. Zhao, J. Hu, An initialization-free distributed algorithm for dynamic
economic dispatch problems in microgrid: Modeling, optimization and analysis,
Sustain. Energy Grids Netw. 34 (2023) http://dx.doi.org/10.1016/j.segan.2023.
101004.

[18] M. Dehghani, Z. Yazdanparast, From distributed machine to distributed deep
learning: a comprehensive survey, J. Big Data 10 (1) (2023) http://dx.doi.org/
10.1186/s40537-023-00829-x.

[19] Y. Chen, Q. Yang, S. He, Z. Shi, J. Chen, M. Guizani, FTPipeHD: A fault-tolerant
pipeline-parallel distributed training approach for heterogeneous edge devices,
IEEE Trans. Mob. Comput. 23 (4) (2024) 3200–3212, http://dx.doi.org/10.1109/
TMC.2023.3272567.

[20] S. Ye, J. Du, L. Zeng, W. Ou, X. Chu, Y. Lu, X. Chen, Galaxy: A resource-
efficient collaborative edge AI system for in-situ transformer inference, 2024,
arXiv:2405.17245.

[21] S. Ye, L. Zeng, X. Chu, G. Xing, X. Chen, Asteroid: Resource-efficient hybrid
pipeline parallelism for collaborative DNN training on heterogeneous edge
devices, 2024, arXiv:2408.08015.

[22] M. Besta, T. Hoefler, Parallel and distributed graph neural networks: An in-
depth concurrency analysis, IEEE Trans. Pattern Anal. Mach. Intell. 46 (5) (2024)
2584–2606, http://dx.doi.org/10.1109/TPAMI.2023.3303431.
13
[23] C. Zhang, M. Yu, L. Yu, P. Cong, Y. Yan, J. Bao, J. Jiang, X. Wang, X. Ye,
T. Tang, L. Xiao, MSCH: Microbatch-based selective activation checkpointing
with recomputation hidden for efficient training of LLM models, IEEE Access
12 (2024) 178460–178475, http://dx.doi.org/10.1109/ACCESS.2024.3456788.

[24] J. Rasley, S. Rajbhandari, O. Ruwase, Y. He, DeepSpeed: System optimizations
enable training deep learning models with over 100 billion parameters, in:
KDD ‘20: Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2020, pp. 3505–3506, http://dx.doi.org/
10.1145/3394486.3406703.

[25] S. Rajbhandari, J. Rasley, O. Ruwase, Y. He, ZeRO: Memory optimizations toward
training trillion parameter models, in: Proceedings of SC20: The International
Conference for High Performance Computing, Networking, Storage and Analysis,
SC20, 2020, http://dx.doi.org/10.1109/SC41405.2020.00024.

[26] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, B. Catanzaro, Megatron-
LM: Training multi-billion parameter language models using model parallelism,
2020, arXiv:1909.08053.

[27] D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary, V. Korthikanti,
D. Vainbrand, P. Kashinkunti, J. Bernauer, B. Catanzaro, A. Phanishayee,
M. Zaharia, Efficient large -scale language model training on GPU clusters
using megatron-LM, in: SC21: International Conference for High Performance
Computing, Networking, Storage and Analysis, 2021, http://dx.doi.org/10.1145/
3458817.3476209.

[28] A. Sun, W. Zhao, X. Han, C. Yang, X. Zhang, Z. Liu, C. Shi, M. Sun, Seq1F1B:
Efficient sequence-level pipeline parallelism for large language model training,
2024, arXiv:2406.03488.

[29] J. Hu, Y. Liu, H. Wang, J. Wang, AutoPipe: Automatic configuration of pipeline
parallelism in shared gpu cluster, in: Proceedings of the 53rd International
Conference on Parallel Processing, 2024, pp. 443–452, http://dx.doi.org/10.
1145/3673038.3673047.

[30] B. Huang, X. Huang, X. Liu, C. Ding, Y. Yin, S. Deng, Adaptive partitioning
and efficient scheduling for distributed DNN training in heterogeneous IoT
environment, Comput. Commun. 215 (2024) 169–179, http://dx.doi.org/10.
1016/j.comcom.2023.12.034.

[31] P. Qi, X. Wan, G. Huang, M. Lin, Zero bubble pipeline parallelism, 2023,
arXiv:2401.10241.

[32] S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis, T. Li, A. Paszke, J.
Smith, B. Vaughan, P. Damania, S. Chintala, PyTorch distributed: Experiences on
accelerating data parallel training, Proc. Vldb Endow. 13 (12) (2020) 3005–3018,
http://dx.doi.org/10.14778/3415478.3415530.

[33] Y. Huang, Y. Cheng, D. Chen, H. Lee, J. Ngiam, Q.V. Le, Z. Chen, GPipe:
Efficient training of giant neural networks using pipeline parallelism, 2018,
CoRR, abs/1811.06965, arXiv:1811.06965.

[34] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N.R. Devanur, G.R.
Ganger, P.B. Gibbons, M. Zaharia, PipeDream: Generalized pipeline parallelism
for DNN training, in: Proceedings of the Twenty-Seventh Acm Symposium on
Operating Systems Principles, SOSP ‘19, 2019, pp. 1–15, http://dx.doi.org/10.
1145/3341301.3359646.

[35] J. Liu, Z. Wu, D. Feng, M. Zhang, X. Wu, X. Yao, D. Yu, Y. Ma, F. Zhao, D. Dou,
HeterPS: Distributed deep learning with reinforcement learning based scheduling
in heterogeneous environments, Futur. Gener. Comput. Syst. Int. J. Escience 148
(2023) 106–117, http://dx.doi.org/10.1016/j.future.2023.05.032.

[36] S. Fan, Y. Rong, C. Meng, Z. Cao, S. Wang, Z. Zheng, C. Wu, G. Long, J. Yang,
L. Xia, L. Diao, X. Liu, W. Lin, DAPPLE: A pipelined data parallel approach for
training large models, 2020, arXiv:2007.01045.

[37] B. Yang, J. Zhang, J. Li, C. Ré, C.R. Aberger, C.D. Sa, PipeMare: Asynchronous
pipeline parallel DNN training, 2020, arXiv:1910.05124.

[38] Y. Gong, H. Yao, J. Wang, L. Jiang, F.R. Yu, Multi-agent driven resource
allocation and interference management for deep edge networks, IEEE Trans.
Veh. Technol. 71 (2) (2022) 2018–2030, http://dx.doi.org/10.1109/TVT.2021.
3134467.

[39] T. Liu, S. Ni, X. Li, Y. Zhu, L. Kong, Y. Yang, Deep reinforcement learning based
approach for online service placement and computation resource allocation in
edge computing, IEEE Trans. Mob. Comput. 22 (7) (2023) 3870–3881, http:
//dx.doi.org/10.1109/TMC.2022.3148254.

[40] W. Wang, Y. Zhang, Y. Jin, H. Tian, L. Chen, MDP: Model decomposition and
parallelization of vision transformer for distributed edge inference, in: 2023 19th
International Conference on Mobility, Sensing and Networking, MSN, 2023, pp.
570–578, http://dx.doi.org/10.1109/MSN60784.2023.00086.

[41] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A.
Graves, M.A. Riedmiller, A.K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A.
Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, D. Hassabis,
Human-level control through deep reinforcement learning, Nature 518 (2015)
529–533, http://dx.doi.org/10.1038/nature14236.

http://dx.doi.org/10.1007/s40745-022-00437-1
http://dx.doi.org/10.1007/s40745-022-00437-1
http://dx.doi.org/10.1007/s40745-022-00437-1
http://dx.doi.org/10.3390/electronics12214388
http://dx.doi.org/10.3390/electronics12214388
http://dx.doi.org/10.3390/electronics12214388
http://dx.doi.org/10.1007/s00170-024-14069-7
http://dx.doi.org/10.1007/s00170-024-14069-7
http://dx.doi.org/10.1007/s00170-024-14069-7
http://dx.doi.org/10.3390/electronics13132598
http://dx.doi.org/10.3390/electronics13132598
http://dx.doi.org/10.3390/electronics13132598
http://dx.doi.org/10.1109/CVPR.2018.00474
http://dx.doi.org/10.1109/CVPR.2018.00474
http://dx.doi.org/10.1109/CVPR.2018.00474
http://dx.doi.org/10.3390/s19183987
http://dx.doi.org/10.1109/ACCESS.2020.2982250
http://dx.doi.org/10.1016/j.cie.2020.106530
http://dx.doi.org/10.1109/TSM.2018.2825482
http://dx.doi.org/10.1109/CSCE60160.2023.00204
http://dx.doi.org/10.1109/JPROC.2022.3226481
http://dx.doi.org/10.1109/TC.2024.3506862
http://dx.doi.org/10.1109/TC.2024.3506862
http://dx.doi.org/10.1109/TC.2024.3506862
http://dx.doi.org/10.1109/TNSE.2024.3473941
http://refhub.elsevier.com/S1389-1286(25)00559-6/sb14
http://refhub.elsevier.com/S1389-1286(25)00559-6/sb14
http://refhub.elsevier.com/S1389-1286(25)00559-6/sb14
http://dx.doi.org/10.1109/TITS.2019.2918255
http://dx.doi.org/10.1109/TITS.2019.2918255
http://dx.doi.org/10.1109/TITS.2019.2918255
http://dx.doi.org/10.1109/TMC.2025.3533005
http://dx.doi.org/10.1016/j.segan.2023.101004
http://dx.doi.org/10.1016/j.segan.2023.101004
http://dx.doi.org/10.1016/j.segan.2023.101004
http://dx.doi.org/10.1186/s40537-023-00829-x
http://dx.doi.org/10.1186/s40537-023-00829-x
http://dx.doi.org/10.1186/s40537-023-00829-x
http://dx.doi.org/10.1109/TMC.2023.3272567
http://dx.doi.org/10.1109/TMC.2023.3272567
http://dx.doi.org/10.1109/TMC.2023.3272567
http://arxiv.org/abs/2405.17245
http://arxiv.org/abs/2408.08015
http://dx.doi.org/10.1109/TPAMI.2023.3303431
http://dx.doi.org/10.1109/ACCESS.2024.3456788
http://dx.doi.org/10.1145/3394486.3406703
http://dx.doi.org/10.1145/3394486.3406703
http://dx.doi.org/10.1145/3394486.3406703
http://dx.doi.org/10.1109/SC41405.2020.00024
http://arxiv.org/abs/1909.08053
http://dx.doi.org/10.1145/3458817.3476209
http://dx.doi.org/10.1145/3458817.3476209
http://dx.doi.org/10.1145/3458817.3476209
http://arxiv.org/abs/2406.03488
http://dx.doi.org/10.1145/3673038.3673047
http://dx.doi.org/10.1145/3673038.3673047
http://dx.doi.org/10.1145/3673038.3673047
http://dx.doi.org/10.1016/j.comcom.2023.12.034
http://dx.doi.org/10.1016/j.comcom.2023.12.034
http://dx.doi.org/10.1016/j.comcom.2023.12.034
http://arxiv.org/abs/2401.10241
http://dx.doi.org/10.14778/3415478.3415530
http://arxiv.org/abs/1811.06965
http://dx.doi.org/10.1145/3341301.3359646
http://dx.doi.org/10.1145/3341301.3359646
http://dx.doi.org/10.1145/3341301.3359646
http://dx.doi.org/10.1016/j.future.2023.05.032
http://arxiv.org/abs/2007.01045
http://arxiv.org/abs/1910.05124
http://dx.doi.org/10.1109/TVT.2021.3134467
http://dx.doi.org/10.1109/TVT.2021.3134467
http://dx.doi.org/10.1109/TVT.2021.3134467
http://dx.doi.org/10.1109/TMC.2022.3148254
http://dx.doi.org/10.1109/TMC.2022.3148254
http://dx.doi.org/10.1109/TMC.2022.3148254
http://dx.doi.org/10.1109/MSN60784.2023.00086
http://dx.doi.org/10.1038/nature14236

J. Li et al. Computer Networks 271 (2025) 111592
[42] S.B. Tandale, M. Stoffel, Recurrent and convolutional neural networks in struc-
tural dynamics: a modified attention steered encoder-decoder architecture versus
LSTM versus GRU versus TCN topologies to predict the response of shock wave-
loaded plates, Comput. Mech. 72 (4) (2023) 765–786, http://dx.doi.org/10.
1007/s00466-023-02317-8.

[43] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep
convolutional neural networks, Commun. ACM 60 (6) (2017) 84–90, http://dx.
doi.org/10.1145/3065386.

[44] S. Pan, Z. Chang, WD-1D-VGG19-FEA: An efficient wood defect elastic modulus
predictive model, Sensors 24 (17) (2024) http://dx.doi.org/10.3390/s24175572.

[45] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception
architecture for computer vision, in: 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR, 2016, pp. 2818–2826, http://dx.doi.org/10.
1109/CVPR.2016.308.

[46] S. Xie, R. Girshick, P. Dollár, Z. Tu, K. He, Aggregated residual transformations
for deep neural networks, in: 2017 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR, 2017, pp. 5987–5995, http://dx.doi.org/10.1109/
CVPR.2017.634.

[47] I. Radosavovic, R.P. Kosaraju, R. Girshick, K. He, P. Dollar, Designing network
design spaces, in: 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2020, 2020, pp. 10425–10433, http://dx.doi.org/10.1109/
CVPR42600.2020.01044.

[48] S.S. Hassan, S. Sarkka, Fourier-Hermite dynamic programming for optimal
control, IEEE Trans. Autom. Control 68 (10) (2023) 6377–6384, http://dx.doi.
org/10.1109/TAC.2023.3234236.

[49] B. Lin, Y. Huang, J. Zhang, J. Hu, X. Chen, J. Li, Cost-driven off-loading for DNN-
based applications over cloud, edge, and end devices, IEEE Trans. Ind. Inform.
16 (8) (2020) 5456–5466, http://dx.doi.org/10.1109/TII.2019.2961237.

[50] L. Cui, J. Zhang, L. Yue, Y. Shi, H. Li, D. Yuan, A genetic algorithm based data
replica placement strategy for scientific applications in clouds, IEEE Trans. Serv.
Comput. 11 (4) (2018) 727–739, http://dx.doi.org/10.1109/TSC.2015.2481421.

[51] S. Liu, Research on manipulator control strategy based on PPO algorithm,
in: 2023 Global Conference on Information Technologies and Communications,
GCITC, 2023, pp. 1–4, http://dx.doi.org/10.1109/GCITC60406.2023.10426371.

Jiayi Li is currently pursuing the master’s degree with
the School of Electronics and Information, Shanghai Dianji
University, China. Her research interests include distributed
machine learning, computer network and scheduling
algorithms, edge computing and deep learning.

Xiaogang Wang (Member, IEEE) received the Ph.D. degree
in computer science and technology from Shanghai Jiao
Tong University, China, in 2018. He is currently a Professor
with the School of Electronics and Information, Shanghai
Dianji University, China. He was also the Visiting Research
Scholar with the CLOUDS Laboratory, University of Mel-
bourne, Australia, from 2019 to 2020. He has published
more than 50 papers in some journals and conferences
such as TC, TSC, JSS, FGCS, CC, APIN, WI-IAT and APSCC.
His research interests include distributed machine learning,
computer network and scheduling algorithms, cloud and
service computing, edge computing and deep learning. He
is a member of the China Computer Federation.
14
Haokun Chen is currently pursuing the master’s de-
gree with the School of Electronics and Information,
Shanghai Dianji University, China. His research interests
include distributed machine learning, computer network and
scheduling algorithms, edge computing and deep learning.

Zexin Wu is currently pursuing the master’s degree with
the School of Electronics and Information, Shanghai Dianji
University, China. His research interests include distributed
machine learning, computer network and scheduling al-
gorithms, edge computing, object detection and deep
learning.

Ziqi Zhu is currently pursuing the master’s degree with
the School of Electronics and Information, Shanghai Dianji
University, China. Her research interests include distributed
machine learning, computer network and scheduling al-
gorithms, edge computing, object tracking and deep
learning.

Jian Cao (Senior Member, IEEE) received the Ph.D. degree
from the Nanjing University of Science and Technology,
in 2000. He is currently a Professor in the Department
of Computer Science and Engineering at Shanghai Jiao
Tong University. His main research interests include ser-
vice computing, cloud computing, network computing and
scheduling algorithms, cooperative information systems and
software engineering. He has published more than 200
papers in prestigious journals, such as TPDS, TMC, TSC,
JSS and FGCS. He is a distinguished member of the China
Computer Federation.

Rajkumar Buyya (Fellow, IEEE) received the Ph.D. de-
gree in computer science and software engineering from
Monash University, Melbourne, Australia, in 2002. He is
a Redmond Barry distinguished professor and director of
the Cloud Computing and Distributed Systems (CLOUDS)
Laboratory, the University of Melbourne, Australia. He
served as a Future fellow of the Australian Research Coun-
cil during 2012-2016. He has authored more than 625
publications and seven textbooks. He is one of the highly
cited authors in computer science and software engineering
worldwide (h-index=155, g-index=334, 126,300+ citations).
He served as the founding editor-in-chief of the IEEE
Transactions on Cloud Computing. He is currently serving
as co-editor-in-chief of Journal of Software: Practice and
Experience.

http://dx.doi.org/10.1007/s00466-023-02317-8
http://dx.doi.org/10.1007/s00466-023-02317-8
http://dx.doi.org/10.1007/s00466-023-02317-8
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.3390/s24175572
http://dx.doi.org/10.1109/CVPR.2016.308
http://dx.doi.org/10.1109/CVPR.2016.308
http://dx.doi.org/10.1109/CVPR.2016.308
http://dx.doi.org/10.1109/CVPR.2017.634
http://dx.doi.org/10.1109/CVPR.2017.634
http://dx.doi.org/10.1109/CVPR.2017.634
http://dx.doi.org/10.1109/CVPR42600.2020.01044
http://dx.doi.org/10.1109/CVPR42600.2020.01044
http://dx.doi.org/10.1109/CVPR42600.2020.01044
http://dx.doi.org/10.1109/TAC.2023.3234236
http://dx.doi.org/10.1109/TAC.2023.3234236
http://dx.doi.org/10.1109/TAC.2023.3234236
http://dx.doi.org/10.1109/TII.2019.2961237
http://dx.doi.org/10.1109/TSC.2015.2481421
http://dx.doi.org/10.1109/GCITC60406.2023.10426371

	DGPAS: DQN-GRU guided distributed DNN pipeline training and adjacent scheduling in edge networks
	Introduction
	Related work
	Distributed deep learning framework
	Heterogeneous distributed training
	Heterogeneous edge computing method based on reinforcement learning

	System model
	The overall framework of the system model
	DQN based synchronous pipeline parallel DNN training framework
	Model stage division
	Introducing GRU network collaborative device scheduling

	Optimize the Dual Network Training Framework
	Stage division network (SDQN)
	Device scheduling network (GRDQN)

	Adaptive adjacent scheduling strategy in heterogeneous edge networks
	The data dependency bubbles in pipeline parallel
	Adaptive adjacent scheduling strategy

	Performance appraisal
	Definition of performance evaluation indicators
	The total training time of the model
	Bubble rate during the training process

	Experimental setup
	Composition of experimental platform and related experimental parameters
	The overview of compared methods

	Performance analysis
	Convergence analysis of SDQN and GRDQN network
	Comparative analysis of DGPAS strategy and other algorithms
	Comparative analysis of bubble rate under adaptive adjacent scheduling strategy
	Comparative analysis of training efficiency under adaptive adjacent scheduling strategy

	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

