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Abstract—In kubernetes-based Cloud Native platforms, allocating containers to micro-services elastically according to workload
changes is benefical to minimizing resource cost while stabling response times. However, inaccurate performance models for multi-
container systems, along with coarse-grained container-based allocation, cause performance fluctuations. In this paper, deep learning,
traditional Jackson Queuing Network (JQN) and feedback control are integrated to devise a container provisioning algorithm which
leverages the neural networks’ ability to fit nonlinear performance models, the real-time responsiveness of feedback control, and the
precise prediction of micro-service interactions offered by the JQN. The proposal is evaluated on a real Kubernetes based Cloud
Native cluster. Experimental results illustrate that the container cost is decreased by 10.94%∼11.36% while satifisfying Service Level
Agreements (SLA) in terms of 95th accessing-path response times.
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1 INTRODUCTION

MORE and more applications are designed or revised
to use the Cloud Native architecture, because of

light-weight deployment, easy auto-scaling and recovery of
containers. In Cloud Native, applications are composed of
tens or even thousands of micro-services, and each micro-
service has multiple back-end container replicas to sup-
port handling of high concurrent requests [1]. Auto-scaling
containers allocated to each micro-service appropriately is
crucial for guaranteeing Quality of Service (QoS) in terms of
response times. Performance models describing the relation-
ship among response times, request arrival rates and given
container resources are the basis of container auto-scaling
algorithms. However, there is no exact performance models
which could be used to describe multi-container systems
accurately. Meanwhile, request transferring among different
micro-services has a great impact on container auto-scaling
too. JackSon Queuing Network (JQN) is an effective method
to describe the impact among micro-services, but JQN is
only designed based on traditional queuing models. Model-
free Deep Reinforcement Learning (DRL) is another kind
of container auto-scaling method which has self-studying
ability, but needs long period of time to collect training
samples before it could be put into practice. The main goal
of this paper is to design a container auto-scaling algorithm
for Cloud Native applications with multiple micro-services
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which is accurate, but needs very short training times. The
main challenges include real-time changes of non-linear
performance models, impact among multiple services, and
coarse granularity of container allocating.

The relationship among response time, arrival rate and
allocated number of containers for a micro-service is non-
linear and changes in real time which makes the con-
tainer auto-scaling complex. Linear, inverse-proportional
and queuing models have been widely used to describe such
relationship. However, there are great deviations between
these time invariant mathematical models and the real-
time changed systems. Although feedback control is an
effective way to make forward performance models suitable
for real time changes of physical systems, such deviations
make feedback control take much effort to become stable
whenever the workload changes.

Complex invoking relationships among micro-services
make the change of allocated containers to one service have
impacts on other services. Modeling such mesh structure
among micro-services is helpful to auto-scaling more ap-
propriately. JQN serves as an effective tool for predicting
cascading effects among multiple micro-services. However,
JQN is designed to cooperate with queuing models in ex-
isting works and queuing models are not able to describe
multi-container systems accurately.

The coarse-grained horizontal resource provisioning ap-
proach results in system instability. Horizontal auto-scaling
is more widely used by Cloud Native Application develop-
ers because existing containers are not influenced by newly
added containers providing uninterrupted service. How-
ever, container based adjustment is not in fine granularity.
When feedback control is utilized to ensure that the system
explicitly follows a specified reference response time, the
allocation or removal of a single additional container can
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sometimes cause the response time to fluctuate significantly
around the reference time, rather than converging precisely
onto it.

In this paper, a Deep Neural Network and collabora-
tive Feedback Control based container provisioning method
(DNN-FC) is developed for container auto-scaling which is
a hybrid method of Deep Neural Network (DNN), JQN and
feedback control. The main contributions include

1) DNN-based performance model is built to describe
the multi-container systems more accurately. DNN-
based feedback control is designed to cope with
real-time changes of system performance.

2) JQN is integrated with DNN-based feedback control
to collaboratively adjust containers across multi-
ple services, taking into account estimated impacts
among them. This integration is capable of shorten-
ing the adjustment cycle.

3) A strategy for suppressing fluctuations based on
state tracing, along with a customized cooling-down
method specifically designed for feedback control,
have been developed to stabilize the control process.

The rest of the paper is organized as follows. Section
2 is the related work followed by the problem description
in Section 3. Section 4 describes the proposed method and
Section 5 evaluates the proposal in a real Kubernetes cluster.

2 RELATED WORK

Container scheduling of Cloud Native includes auto-scaling
and placement [2]. While container placement primarily
involves selecting suitable nodes for containers considering
resource efficiency [3], energy consumption [4] or network
latency [5], [6], auto-scaling addresses the determination of
the number of containers required for each service, which
is the focus of this paper and is surveyed as follows. In
certain existing work, such as the container scheduling
method for serverless functions [3], the total quantity of
required resources is able to be determined directly by
considering the concurrency of requests and the resource
consumption per request, as outlined in the service spec-
ification. However, for common micro-services, multiple
requests are usually processed by a fixed set of shared
threads simultaneously in each container, requests which
can not be processed immediately are queued in containers
leading to unignorable waiting times and response times
vary under different queuing lengths [7]. Such nonlinear
queuing systems complicate the process of container auto-
scaling in terms of response time control.

2.1 Exact model based auto-scaling methods
For each micro-service in Cloud Native, the average re-
sponse time is determined by the number of allocated
containers, arrival rates of requests and the configuration
of each container. Linear models are the simplest way to
describe the performance of such queuing systems includ-
ing linear time-invariant [8], adaptive parameter [9], or
multi-model switching [10] models. Besides linear models,
an inverse-proportional performance model is proposed
by Baresi et al. [11]. Queuing models are more accurate
than the linear and inverse-proportional models [2]. Given

the arrival rate of requests and provisioned processors or
containers, the average response time can be obtained based
on queuing models. For instance, Salah et al. [12] developed
a Markov queuing model to depict the probabilities of state
transitions for linear two-tier services. However, there are
still unignorable deviation between queuing models and
real systems. Although feedback control is able to amend the
inaccuracy of queuing models [13], [14], the deviation of the
applied performance model and the real system increases
the number of consumed steps of feedback control to follow
the reference point.

For auto-scaling resources of applications with multiple
services, complex invoking relationships among services
should be considered [15]. Auto-scaling resources of one
service usually lead to non-neglectable impact on other
services [16]. For example, when the bottleneck of a service
is eliminated by providing more resources to the service,
the additionally passed requests of the service might gen-
erate more requests to subsequent services leading to new
bottlenecks. JQN is an effective method to modeling the re-
lationship of request transfer among meshed services which
connect multiple diverse queuing models as a network [17],
[18], [19]. However, JQN is still based on inaccurate queuing
models.

2.2 Deep learning based auto-scaling methods

DNN has been used to fit the performance function of single
services more accurately. For example, Rao et al. [16] and
Yazdanov et al. [25] applied Deep Q-Network (DQN) to
scale resource of VMs vertically. For single services with
multiple parallel backend VMs or containers, DQN-based
methods are proposed by Zong et al. [20] and Fang et al. [21]
to allocate VMs horizontally. However, when the number
of containers required by one service increases greatly in
Kubernetes, the action space increases exponentially making
the DQN hard to convergence. In order to relief the impact
of large action space, the action space of DQN is limited to
be increment, decrement of a fixed amount of resources or
no operation [21], [22]. For applications with multiple ser-
vices, the state and action spaces are more larger than single
service applications making the deep reinforcement learning
hard to convergence. Therefore, DQN is only applied to
determine wheather to add or release resources from the
whole system perspective without specifying which services
to adjust, and the detailed service to be adjusted will be
determined by another heuristic method [24]. However, the
heuristic method is hard to cope with the complex service
selecting and resource scheduling task.

2.3 Comparison to existing studies

For exact methods, although feedback control has made
up for the inaccuracy of queuing models, finding more
accurate performance model itself for multi-container sys-
tem is still a promising method to decrease the drawback
time. Additionally, achieving convergence in DRL for multi-
service applications that possess extremely large state and
action spaces necessitates a considerable amount of time.
Therefore, in this paper, DNN has been first used to model
the relationship among response time, arrival rate and the
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TABLE 1: A comparison of existing resource provisioning methods for Cloud and Edge systems

Works Application types Platforms Methods

[20], [21] Single multi-instance services CloudSim, simulation DQN based horizontal or vertical auto-scaling
[22] Two-tier multi-instance services Amazon EC2 Accessing pattern extracting, DQN, limited action space
[12], [17] Linear multi-instance services Virtual machine based data center, discrete-event

simulation
Queuing network, Embedded Markov chain, Scaling up
all tiers proportionally

[23] Meshed multi-instance services Physical machines of PlanetLab Ilog Cplex 9.0, ignoring queuing times of concurrent users
[15] Meshed multi-instance services Physical machine data center Multi-tier negotiating
[24] Meshed multi-instance services OpenStack based Edge and Cloud data centers DQN for high-level strategy and heuristic based action

selection
[18], [19] Meshed multi-instance services CloudSim or Kubernetes based Cloud data center Queuing network
[14] Meshed multi-instance services CloudSim based Cloud data center Queuing network, feedback control
Our approach Meshed multi-instance services Kubernetes based Cloud data centers Deep neural network, Queuing network and control

theory

number of containers forming a more accurate and light-
weight performance model. Then, the light-weight DNN-
based model is used to replace queuing models of JQN.
Finally, DNN-based feedback control is applied to follow
the required performance closely.

3 PROBLEM DESCRIPTION

The service architecture is widely used in Cloud Native
applications which are usually composed of multiple micro-
services with meshed interactions among them [1]. For
example, Figure 1 shows a bookinfo application [26] which
displays information about books and contains product page,
details, reviews and rating micro-services. Each micro-service
contains multiple parallel backend containers. Requests to
the same micro-service are routed to different backend con-
tainers using diverse load-balancing algorithms. Kubernetes
is an open source system which is usually used to organize
these containerized micro-services. Micro-services usually
need to invoke other micro-services synchronously or asyn-
chronously. Different business types have diverse accessing
paths. For example, in Figure 1, p1=(S1), p2=(S1 → S2) and
p3=(S1 → S3 → S4) are three accessing paths of different
business types. Each business type usually has a path-SLA
which specifies that the percentage Vpl

of the 95th response
time (or mean response time) of the corresponding accessing
path pl larger than a upper-limit Tpl

should be smaller than
a threshold θthr (e.g., 5%). The main goal of this paper is
to design a horizontal container auto-scaling algorithm to
minimize the cost of deployed containers while satisfying
path-SLAs. For simplification, the cost of each container
(pod) is set to be unit 1 per control interval. Let Ni(k) be
the number of allocated pods to service Si at control step k
and L be the count of business paths. The formal description
of the considered problem is

min C =
∑
Si∈S

K∑
k=1

Ni(k) (1)

st. Vpl
< θthr, l = 1, 2, ..., L (2)

Equation (1) minimize the total cost of allocated pods
for all micro-services where K is the number of considered
control steps and S = {Si|i = 1, ..., n} is the set of all
micro-services. Equation (2) is the constraint of fulfilling
path-SLAs. In order to fulfill the path-SLAs, every micro-
service is usually needed to be allocated a separate service-
SLA (e.g., average processing time of the micro-service Si is

Productpage 
（S1）

Details （S2）

Reviews （S3） Rating（S4）
Load balancer

Load balancer Load balancer

S1 S2 S3S1 S4S1

Cloud

Container

K8s based 
Cloud nodes

Pod

Performance 
Monitoring

Container Auto-
scaling Controller

Figure 1: Architecture of container auto-scaling in Kubernetes

TABLE 2: Common notations

Notation Description

k the index of control step
Si micro-service i

pj the j−th accessing path of services
Ni the number of allocated containers to Si

W r
i the reference time of Si (service-SLA)

λi request arrival rate of Si

ωi(k) adjustment factor of λi for step k of Si

φi(k) cumulative arrival rate adjustment factor for Si

qi the queuing length of requests in Si

yi(k) the real time processing time of Si at step k

µ̂i the average request processing rate per container of Si

smaller than a reference time W r
i ). Service-SLAs should be

set appropriately for each micro-service so that the SLA of
each path will be fulfilled when service-SLAs of all micro-
services are fulfilled. In this paper, it is assumed that service-
SLAs of all micro-services have been given in advance based
on characteristics of each microservice. Then, the main ob-
jective of the proposed algorithm is to allocate appropriate
number of Pods to each micro-service to fulfill its service-
SLA. Common notations are shown in Table 2.

4 PROPOSED PROVISIONING METHOD

In this paper, as shown in Figure 2, a JQN-based scheduling
framework is first proposed in which not only queuing
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Figure 2: Architecture of the proposed algorithm

models, but also deep-learning based models can be used to
describe the system performance. Then, DNN-based perfor-
mance model is built for the scheduling framework based on
off-line sampling (JProfiling) to describe the complex non-
linear relationships among response times, resources and ar-
rival rate of each micro-service accurately. Feedback control
is utilized to adjust the parameters (arrival rate fixing factor)
of the DNN-based performance model, ensuring its suitabil-
ity for real-time changes. Initially, the original arrival rate of
each service is updated using the arrival rate fixing factor.
This factor is dynamically adjusted by DNN-based feedback
control, which fine-tunes it based on real-time performance
metrics. Subsequently, the updated arrival rates of all tiers
are employed to derive the final arrival rates, utilizing
the JQN method to account for request transfers between
services. Finally, the number of allocated containers for each
service is determined in accordance with the relationships
outlined by the DNN-based performance model. To mitigate
the fluctuation arising from coarse-grained container-based
provisioning and variations in workload, a novel cooling
down approach is introduced, which integrates container
number cooling down (CDNumber) and feedback control
ratio cooling down (CDRatio), along with a state-tracing
based fluctuation detection strategy (Isfluctuating).

4.1 Queuing network based scheduling framework

When a micro-service does not have sufficient containers,
many requests are blocked in its waiting queue. When
sufficient number of containers are allocated to such kind
of micro-services, there are additional passed requests from
these micro-services to other connected micro-services lead-
ing to workload surge. In JQN, the additional passed-
through request rate ∆λi can be estimated using queuing
theory as follows [19].

∆λi =

{
λi − µ̂i ×Ni + qi µ̂i ×Ni < λi

qi otherwise
(3)

where qi, λi, Ni and µ̂i are the queuing length, arrival rate,
container count and request processing rate per container

for Si, respectively. The final arrival rate of each service is

λui = λi + qi +
n∑

j=1

∆λj × ψji, i ∈ {1, 2, . . . , n} (4)

where ψji is the request transition probability matrix. Ad-
justing containers based on estimation of such interactions is
beneficial to decreasing the length of the resource adjusting
period.

After estimating request arrival rates of services based
on JQN, performance models are required to determine
the required resource of each service. In existing JQN-
based resource scheduling algorithms, the M/M/N or its
variants are widely used, but they could be replaced by
other more accurate models. In this paper, a JQN-based
resource scheduling framework is proposed which does not
specify applied performance models. A performance model
yi = ϕ(Ni, λi, µ̂i) of Si with multiple containers is used to
describe the relationship among λi, Ni, µ̂i and yi. Given λi,
Ni and µ̂i of Si, the response time yi could be calculated by
the performance model. On the contrary, given λi, µ̂i and
a reference time W r

i , the number of required containers for
the micro-service could be obtained by

Ni = min
Ni∈Z+

{Ni|ϕ(Ni, λi, µ̂i) ≤W r
i } (5)

If the performance model is not accurate, allocating Ni

containers to Si, the real response time yi might deviate
from W r

i . Feedback control could be used to amend Ni

to minimize the deviation through adjusting multiplication
factors of λi [14] or W r

i [13]. Different kinds of provisioning
algorithms could be obtained by providing different per-
formance models. In this paper, a DNN-based performance
model is proposed in Section 4.3.

4.2 Service time extracting

During synchronize calls, the caller services do nothing but
wait the return of remote calls. Therefore, the response
time of a caller service includes the turnaround time of
remote calls. Longer response times in caller services may
not necessarily stem from a lack of resources within the
caller service itself, but rather from insufficient resources in
the called services. The existence of synchronize calls makes
the estimation of real computation capacity requirement of
each service complex. Therefore, the actual processing time
of a service (called service time) is determined by excluding
the turnaround time associated with invoking subsequent
services. Taking the accessing path (S1 → S3 → S4) as an
example, when response times of S1, S3 and S4 are 0.8, 0.5
and 0.2, the service time of them are 0.3 (0.8-0.5), 0.3 (0.5-
0.2) and 0.2, respectively. In Traefik and Istio based systems,
accessing trace of requests can be obtained and used to
calculate service times.

4.3 Deep neural network based performance model

In this paper, a lightweight four-layer fully-connected DNN
has been implemented for modeling multi-container sys-
tems, offering exceptional computational efficiency and
rapid initialization capabilities. The input layer contains the
arrival rate λi and the number of containers Ni. There are
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Figure 3: Response times of a service under different arrival rates

two hidden layers and an output layer which only contains
the response time yi(k), i.e.,

yi(k) = DNNθ(Ni, λi), (6)

where θ is the parameters of the DNN. The activation
function is Relu and the optimization algorithm is Adam.
The DNN is trained offline based on JMeter profiling data.
Figure 3 shows the estimated response times of different
performance models for different arrival rates given a fixed
number of containers. The blue five-pointed stars are ar-
rival rates which increase as the sample id increases. As
the arrival rate increases, the response times increase and
the deviations between the M/M/N and the sample data
increases too. As a whole, DNN is more accurate than the
M/M/N. Given the trained DNN, the number of containers
could be obtained for a given λi and Wr as follows

Ni = min
Ni∈Z+

{Ni|DNN(Ni, λi) ≤W r
i } (7)

In order to automate the profiling process, a JMeter
based profiling method (JProfiling) is developed which inte-
grates seamlessly with Kubernetes. Upon each new service
is deployed to Kubernetes, JProfiling automatically initiates
data acquisition processes and constructs a dedicated DNN
model. JProfiling systematically evaluates latency character-
istics under different combinations of request arrival rates
and allocated containers.

4.4 DNN-based feedback control
According to equation (7), yi should be close to W r

i given
Ni containers under a real arrival rate λi, i.e.,

λi ≈ DNN−1(Ni,W
r
i ) (8)

However, in practice, yi(k) may differ from W r
i resulting in

an output error e(k) = W r
i − yi(k). The theoretical arrival

rate used to generate yi(k) based on DNN is

λthi = DNN−1(Ni, yi(k)) (9)

In other words, λthi is the arrival rate experienced by the
DNN. Let φ(k) = λthi /λi be a fixing coefficient, the DNN
model could be fixed to be

yi(k) = DNN(Ni, λ× φi(k)), (10)

which is more consistent with the real performance model.
It is assumed that this model is accurate for different Ni.
Therefore, allocating

Ni = min
Ni∈Z+

{Ni|DNN(Ni, λi × φi(k)) ≤W r
i } (11)

containters will lead to a response time more close to W r
i . In

other words, fixing the DNN by adding a coefficient φi(k)
to the arrival rate is able to adjust the real response time
from yi(k) to Wr.

Feedback control is a widely used technique which al-
lows to minimize the output error e(k) step by step while
observing real-time effect. As shown in Figure 4, the DNN-
based performance model could be abstract to be a linear
model

yi(k + 1) = yi(k) + ui(k) (12)

by considering DNN and the inverse of it as a whole, like
[27] to simplify the design of feedback controller where u(k)
is the control input. If a proportional control (PC) is applied,
u(k) = Kpe(k) where Kp is the control gain of proportional
gain. PC tries to adjust yi(k) to yi(k+1) with a step size u(k)
each time. If we want to make the response time change
from yi(k) to yi(k + 1) rather than Wr , the DNN should be
fixed according to Equation (10) by setting

φi(k) = λthi /λ
ref
i (13)

where λrefi = DNN−1(Ni, yi(k + 1)), and used to obtain
a new Ni. The goal of PC is to minimize ei(k) through
fixing the DNN model based on ui(k) and obtain new
Ni using fixed DNN model yi(k) = DNN(Ni, λ × φi(k)).
After resource is adjusted according to Ni, the new response
time yi(k) is updated. Based on the fixed DNN model, the
theoretical arrival rate for yi(k) is

λthi = DNN−1(Ni, yi(k))/φi(k) (14)

If there is still an output error, a new yi(k+1) will be selected
by the PC. Let λrefi = DNN−1(Ni, yi(k + 1))/φi(k), the
coefficient for fixing the DNN model of Equation (10) again
is

φi(k)
′
=

λthi × φi(k)

λrefi × φi(k)
=

DNN−1(Ni, yi(k))

DNN−1(Ni, yi(k + 1))
(15)

The cumulative fixing coefficient for Si is

φi(k + 1) = φi(k)× ωi(k) (16)

where ωi(k) = φi(k)
′

is the adjustment factor of every step.
The above process iterates to monitor and minimize the out-
put error continuously. To avoid excessive adjustments in
one step, ωi(k) is limited within the interval [ωlower, ωupper].
Similarly, ei(k) is trimmed as

ei(k) =


lower thr − yi(k) yi(k) < lower thr

upper thr − yi(k) yi(k) > upper thr

0 Otherwise

(17)

where upper thr and lower thr are two thresholds which
define a tolerable interval [lower thr, upper thr] for the
real response time. By applying such threshold based er-
ror computing strategy, resources are not adjusted when
the real response time is within the interval avoiding too
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frequent adjustment. φ(k) is limited within an interval
[φlower, φupper] which will be used to obtained a fixed
arrival rate for each service by λci = λi × φi(k). Af-
ter more accurate arrival rate λci of every Si is obtained
by the DNN-based feedback control as mentioned above,
JQN will be used to calculate the final arrival rate λui of
each service (Equations (3) and (4)) considering interactions
among services. Finally, Ni is determined based on λui using
the proposed DNN-based performance model according to
Equation (7).

4.5 Cooling down for feedback control
When the arrival rate increases, additional containers are
allocated to stabilize response times. When the arrival rate
decreases, a part of containers are required to be released
for saving cost. When the arrival rate increases again, new
containers are required once more. However, it consumes
several seconds for new containers to be ready leading
to temporary high response times. Meanwhile, frequent
adjusting of the number of allocated containers consumes
additional overheads decreasing system performance fur-
ther. The cooling down (CD) is a kind of strategy which
is widely used to avoid resource fluctuations. However, in
existing works, CD is usually only used at the last step to
stabilize the container numbers directly (called CDNumber)
without considering collaboration with feedback control.
For instance, Algorithm 1 illuminates the cooling-down
mechanism in HPA [28], specifying that the present number
of allocated containers is capped at the maximum quantity
allocated during the preceding cooling-down period.

Algorithm 1 Container number cooling down (CDNumber)

Input: Ni container number of service Si, νd length of the
cooling down period.

Output: container number of service Si after cooling down
1: Append Ni to the end of a queue Qi;
2: if |Qi| > νd then
3: Remove the first element of Qi;
4: end if
5: N

′

i ← maxQi;
6: return N

′

i

For the proposed feedback control method in Section
4.4, cooling-down strategy is also required to stabilize the
control ratio ω(k). Unrestricted adjustments to ω(k) may
lead to an undesirable proliferation of unnecessary con-
trol actions. When the CDNumber is applied, a control
action of decreasing ω(k) will not take effect only after

a cooling-down period νd. Therefore, during the cooling-
down period, ω(k) should not be decreased again, i.e., ω(k)
cannot be decreased again before the action actually takes
effect to avoid excessive control. Meanwhile, ω(k) takes
the maximum value of past Lq steps to avoid occasional
changes. Since decreasing actions may only take effect after
Lq steps, νd should be increased by Lq to compensate for the
inherent latency. On the contrary, increasing ω(k) whenever
necessary is helpful for dealing with workload surges, but
it might consume several control steps before the control
action of increasing containers takes effect. Therefore, ω(k)
cannot be increased again only after an increase cooling-
down period νu. The formal description of the control-ratio
cooling-down strategy is shown in Algorithm 2.

Algorithm 2 Control-ratio cooling down (CDRatio)

Input: ωi(k) control ratio, k index of control steps, Ku the
index of last control step which allowed to increase
φi(k), Kd the index of last control step which allowed
to decrease φi(k).

Output: ωi(k) adjusted control ratio
1: if ωi(k) > 1 then
2: if k −Ku > νu then
3: Ku ← k and return ωi(k) ;
4: end if
5: else
6: Append ωi(k) to the end of the queue Qω

i ;
7: if |Qω

i | > Lq then
8: Remove the first element of Qω

i ;
9: end if

10: ωi(k)← maxQω
i ;

11: if ωi(k) < 1 and k −Kd > νd + Lq then
12: Kd ← k and return ωi(k) ;
13: end if
14: end if
15: return 1 ;

4.6 State tracing based fluctuation suppression
The main objective of control method is to make
the real response time yi(k) within the interval
[lower thr, upper thr]. However, containers are provi-
sioned in a coarse-grained granularity. For an arrival rate,
allocating a certain number of containers results in yi(k)
falling below lower thr, however, releasing even a single
container cause yi(k) to surge beyond upper thr. If the
control method keeps the original objective unchanged, the
system will fluctuate greatly.
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Figure 5: State changes of one micro-service

In this section, a state-monitoring based fluctuation
suppression method IsFluctuating is proposed. The core
concept is that when yi(k) experiences fluctuations around
the range of [lower thr, upper thr] due to the repeated
allocation of an additional container or the release of one
container, further alterations in the number of allocated
containers are not permitted in order to prevent continued
fluctuations. As shown in Figure 5, the micro-service starts
in state 0 and transitions to 1 when yi(k) crosses from below
lower thr to above upper thr. From state 0 or 1, it moves
to state 2 if yi(k) drops from above upper thr to below
lower thr. At state 2, it advances to state 3 when yi(k) rises
from below lower thr to above upper thr. From state 3, it
proceeds to state 4 if yi(k) falls from above upper thr to
below lower thr. The state remains unchanged if, while in
state 1 and 3, yi(k) shifts from above upper thr into the
[lower thr, upper thr] interval, or while in state 2, yi(k)
moves from below lower thr into the same interval. In any
state 1-4, the micro-service reverts to state 0 if the current
arrival rate significantly deviates from the original arrival
rate (e.g., 2 × µ̂i) recorded upon entering that state. Upon
reaching state 4, ω(k) becomes immutable and IsFluctuating
returns true, otherwise, IsFluctuating returns false.

4.7 Formal description of DNN-FC
The formal description of the auto-scaling algorithm is
show in Algorithm 3. At first, JProfiling is called to train
a DNN-based performance model for each micro-service.
For each control step, logs are collected from Kubernetes to
calculate the average pure processing time of each micro-
service by eliminating the times of remote calls. During
the feedback control period, output errors are computed
through Equation (17) and used to calculate the adjusted
arrival rate λci based on Equation (15) and the cooling-down
strategy CDRatio for ωi(k). Next, the final arrival rate λui of
each micro-service is calculated based on JQN via Equations
(3) and (4) considering the impacts among micro-services.
Finally, the container number Ni of each micro-service is
obtained using DNN-based performance model according
to Equation (7) and the container number cooling-down
strategy CDNumber, and sent to Kubernetes for adjusting.

5 PERFORMANCE EVALUATION

Our approaches are first compared with QFC [14] which is
the state-of-art algorithm for meshed multi-instance micro-
service applications. Then, the proposals are compared with
the Kubernetes’ built-in Horizontal Pod Autoscaler (HPA)

Algorithm 3 DNN-FC

Input: W r
i reference times, [ωlower, ωupper], [φlower, φupper]

1: Call JProfiling() for each service upon deployed.
2: while True do
3: for every control step k do
4: for Si ∈ S do
5: Update service times based on trace logs;
6: Calculate ei(k) using Equation (17);
7: ui(k) = Kpei(k);
8: if IsFluctuating() then
9: ωi(k)← 1;

10: else
11: ωi(k)← Equation (15);
12: end if
13: ωi(k)← CDRatio(ωi(k));
14: φi(k)← φi(k − 1)× ωi(k);
15: Limit φ(k) within [φlower, φupper];
16: λci = λi × φi(k);
17: end for
18: Sort Si ∈ S in topological order;
19: for Si ∈ S do
20: λui ← Equations (3) and (4), by inputting λci ;
21: end for
22: for each Si do
23: Ni ← Equation (7), by inputting λui ;
24: Ni ← CDNumber(Ni);
25: Adjust containers of Kubernetes based on Ni;
26: end for
27: end for
28: end while

[28] which dynamically adjusts Pod counts based on CPU
utilization. Finally, our approaches are also compared with
the C-DQN method [24], which integrates a centralized
DQN and heuristic rules in a hybrid framework. Algorithms
are evaluated on a real Kubernetes platform which is estab-
lished on a cluster with one master virtual machine and 8
slave virtual machines. These virtual machines locate on a
physical cluster including two machines with 40 CPU cores
and 80 GB Memory, and one machine with 64 cores and 128
GB Memory.

The test book-info application consists of four micro-
services. To simulate micro-services that consume varying
amounts of computational and memory resources, the origi-
nal four micro-services have been replaced with four micro-
services that recursively compute Fibonacci numbers. The
access paths among these micro-services remain unchanged.
Each micro-service randomly computes between 10 and
70 Fibonacci numbers. The micro-services are deployed in
Tomcat Web servers with connection time-out of 2 seconds.
Each replica of the micro-service is deployed in a Pod with
one CPU core and 500 Mi Memory. The Traefik is applied as
the reverse proxy and load balancer of each micro-service
using the Dynamic Round Robin load-balancing algorithm.
The JMeter is used to generate high concurrency user re-
quests which is deployed on a physical machine with 8
CPU cores and 16 GB Memory. To simulate the fluctuation
of arrival rates, the accessing history of Wikipedia [29]
and NASA-HTTP [30] websites are adopted to change the
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TABLE 3: SVRs of algorithms with and without CD and FS operators

Service

Wiki NASA

QFC DNN-FC QFC DNN-FC

FFF TTT FFF FFT TTF TTT FFF TTT FFF FFT TTF TTT

S1 25.95% 26.66% 20.62% 23.73% 12.01% 7.9% 31.36% 18.36% 33.43% 28.63% 12.57% 9.04%

S2 1.27% 0.0% 12.01% 10.58% 5.22% 2.82% 3.39% 0.0% 13.68% 8.46% 2.4% 1.27%

S3 4.23% 0.0% 9.18% 7.48% 2.12% 3.39% 4.94% 0.0% 9.17% 2.4% 1.69% 0.85%

S4 0.28% 0.0% 11.58% 4.51% 2.4% 2.12% 0.42% 0.14% 18.05% 2.12% 3.67% 2.68%

Total costs 27192 30142 27708 28025 29400 29453 34590 38675 35033 36757 37612 37496

number of requests per seconds over time.
Several combinations of reference response times for

services are given in advance by hand. How to select an
appropriate reference time combination for services is left
as future work. Let W r

i be the allocated reference response
time of Si. The service time upper-limit upper thri of each
micro-service is set to W r

i and lower thri = W r
i − 0.02s.

[ωlower, ωupper] and [φlower, φupper] are set to be [0.95, 1.1]
and [0.7, 1.3] based on experimental comparison. Lq is set
to 3, balancing the trade-off between quick response and
stability. Kp is set to 1 for quick response. The increase
cooling-down period should be set as short as possible while
still allowing sufficient time for container setup. Conversely,
the decreasing cooling-down period cannot be too short to
ensure stabilization. Therefore, the values are set as νu = 2
for the increasing phase and νd = 20 (same with HPA) for
the decreasing phase. The upper-limit Tp of 95th response
time of path p2=(S1 → S2) and p3=(S1 → S3 → S4) are set
to be 0.7s and 1.05s according to the computation complexity
of the tested micro-services, respectively. The mean response
time violation ratio of a path (PVR) represents the propor-
tion of the average response time of the path that exceeds
the sum of reference times for the services on that path. The
95th response time violation ratio of a path (95thPVR) is
the fraction of instances where the 95th response time of
the path surpasses a predefined threshold Tp. The threshold
of PVR and 95thPVR is set to be 5%. The ratio of average
response times for Si that surpass the predefined reference
time W r

i is termed the Service reference time Violation Ratio
(SVR). This metric represents the ability of auto-scaling
algorithms to adhere to the specified service reference times.
The control interval is set to 15 seconds and containers are
charged by intervals of 15 seconds too.

5.1 Ablation experiments and parameter tuning
To illustrate the performance of CDNumber, CDRatio and
IsFluctuating, algorithms with and without these operators
are evaluated. QFC-FFF means QFC without any operators,
while QFC-TTT means QFC with all operators. In other
words, the first ”F” or ”T” indicates whether the first op-
erator, CDNumber, is turned off or on. Similarly, the second
”F” or ”T” signifies whether CDRatio is turned off or on,
and the third ”F” or ”T” indicates whether IsFluctuating is
turned off or on. Because CDNumber and CDRatio need
to work collaboratively, they need to be turned on or off
together. In this experiment, reference times are set to be
0.21s.

In table 3, DNN-FC-TTF’s SVRs are lower than those
of DNN-FC-FFF, which depicts that the CD operators are
helpful to decreasing SVRs. The reason is that CD operators
are able to avoid releasing containers too frequently. When
the arrival rate only decrease temporarily, the algorithms
without CD operators are likely to release containers too
hastily. If the arrival rate restore to original high values
suddenly, the remaining containers are not able to cope with
them leading to high SVRs. Similarly, DNN-FC-FFT is able
to decrease the SVR compared with DNN-FC-FFF because
IsFluctuating is able to supress the switching between states
with excess and insufficient resources repeatedly. Finally,
DNN-FC-TTT gets the best performance than all other
methods which proves that using CD and FS operators
collaboratively is able to improve the performance further.
In the following sections, all of our approaches and QFC
contain CD and FS operators and ”TTT” is omitted.

The Mean Absolute Error (MAE) has been employed to
evaluate how well the DNN-based performance model fits
the sample data under different network parameters. For
example, for hidden-layer sizes of (30, 30), (60, 60), (120,
120), and (240, 240), MAEs are 28.80 ms, 28.26 ms, 27.99 ms,
and 29.53 ms, respectively, while the training times are 26.6s,
28.3s, 37.2s, and 46.6s (offline training). Longer training
durations typically necessitate larger training datasets to
achieve model convergence. Therefore, the (60, 60) hidden-
layer size is selected as it optimally balances the trade-off
between MAE performance and computational efficiency.

5.2 Performance of HPA with different CPU limitations
In this experiment, the performance of HPA with different
CPU-utilization limitations (HPA-CPU-x%, x is the limita-
tion value) is evaluated. Table 4 and 5 show the SVRs of
Kubernetes’s HPA [28] with different CPU-limitation and
W r

i = 0.20s, 0.21s, 0.22s or 0.23s. A larger CPU-limitation
means allowing more requests processed on each container
per second leading to longer average response times. HPA-
CPU-40%, HPA-CPU-50% and HPA-CPU-60% obtain grad-
ually higher SVRs. When a lower CPU-limitation is set,
it usually needs to allocate more containers to the micro-
service incurring a higher resource cost. On Wiki trace, the
costs of HPA-CPU-40% are 33041 which is higher than those
of HPA-CPU-50% and HPA-CPU-60% greatly. For the same
CPU-limitation, the SVR increases as W r

i decrease from
0.23s to 0.20s. It is much harder to guarantee W r

i of micro-
services with calls to others. For example, SVRs of S1 and
S3 are much higher than those of S2 and S4 under the
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TABLE 4: SVRs and costs of Kubernetes’s HPA with different limitations of CPU-usage percentage on the Wiki workload trace

Service
HPA-CPU-40% HPA-CPU-50% HPA-CPU-60%

0.20 0.21 0.22 0.23 0.20 0.21 0.22 0.23 0.20 0.21 0.22 0.23

S1 65.25% 14.97% 1.98% 1.55% 95.34 % 74.01% 35.17% 10.73% 98.59% 92.09% 73.73% 47.32%

S2 0.71% 0.0 % 0.0% 0.0% 0.85% 0.14% 0.0% 0.0% 9.04% 1.27% 0.56% 0.14%

S3 12.57% 0.99% 0.0% 0.0% 74.15% 32.49% 9.75% 1.41% 79.8% 51.55% 24.86% 9.46%

S4 1.98% 0.0 % 0.0 % 0.0% 21.89% 1.98% 0.0% 0.0% 26.27% 5.65% 0.85% 0.0%

Total costs 33041 27346 22724

TABLE 5: SVRs and costs of Kubernetes’s HPA with different limitations of CPU-usage percentage on the Nasa workload trace

Service
HPA-CPU-40% HPA-CPU-50% HPA-CPU-60%

0.20 0.21 0.22 0.23 0.20 0.21 0.22 0.23 0.20 0.21 0.22 0.23

S1 82.77% 32.91% 6.36% 1.55% 98.03% 83.5% 48.66% 16.5% 99.15% 92.23% 76.84% 49.29%

S2 27.93 % 5.22% 1.41% 1.27% 3.67% 0.85% 0.56% 0.56% 31.36% 7.77% 3.81% 1.84%

S3 24.82% 3.53% 1.41% 1.41% 70.52% 31.31% 9.87% 2.68% 93.36% 67.51% 28.53% 12.57%

S4 1.55% 0.85% 0.7% 0.42% 4.8% 0.71% 0.28% 0.14% 5.93% 2.4% 1.55% 0.99%

Total costs 43978 35479 29676

TABLE 6: Response time violation ratio of path-SLAs obtained based on 210 ms reference times

SLA
HPA-CPU-40% HPA-CPU-50% HPA-CPU-60% QFC DNN-FC

Wiki NASA Wiki NASA Wiki NASA Wiki NASA Wiki NASA

PVR for Path 1-2 1.41% 12.29% 10.17% 16.93% 44.92% 58.19% 1.55% 1.13% 2.82% 2.12%

95th PVR for Path 1-2 0.14% 1.84% 0.85% 3.81% 11.44% 17.8% 0.0% 0.0% 0.85% 0.0%

PVR for Path 1-3-4 0.71% 2.4% 20.76% 14.81% 44.77% 38.56% 1.55% 1.55% 1.97% 1.98%

95th PVR for Path 1-3-4 0.14% 0.71% 0.71% 1.97% 3.53% 5.79% 0.71% 0.71% 1.41% 0.14%

Cost 33041 43978 27346 35479 22724 29676 30142 38675 29453 37496

same CPU-limitation. For HPA-CPU, the allocated number
of containers is purely adjusted based on the CPU utilization
without considering W r

i . Because there is no explicit and
constant relationship between the response time and the
CPU utilization, it is hard to satisfy W r

i by setting CPU-
utilization limitations.

5.3 Results under different reference times
Different from HPA-CPU which only focuses on CPU-
utilization, QFC and DNN-FC adjust resources based on
allocatedW r

i directly. In other words, QFC and DNN-FC are
able to adjust resources to follow the given W r

i . One of the
main objectives of experiments in this section is to compare
the ability of satisfying diverse given reference times and
minimizing costs.

Table 6 shows PVRs and 95th PVRs for different paths
when reference times are set to be W r

1 = W r
2 = W r

3 =
W r

4 = 0.21s. As a whole, PVRs of QFC and DNN-FC are
similar and all below the threshold 5%, and the costs of our
approach DNN-FC are 2.29% and 3.05% lower than those
of QFC on Wiki and NASA, respectively. HPA algorithms
are all not able to fulfill the threshold 5% of PVRs. To
find the reason of above results, SVRs of each micro-service
are compared separately. Table 7 and 8 show SVRs under
different W r

i from {0.20s, 0.21s, 0.22s, 0.23s}. DNN-FC is

TABLE 7: SVRs and costs of QFC and DNN-FC on Wiki

Service
QFC DNN-FC

0.20 0.21 0.22 0.23 0.20 0.21 0.22 0.23

S1 - 26.66% 31.59% 11.85% 25.53% 7.9% 4.51% 4.94%

S2 - 0.0% 1.97% 0.14% 2.4% 2.82% 4.23% 5.5%

S3 - 0.0% 4.37% 0.28% 14.95% 3.39% 1.27% 1.41%

S4 - 0.0% 1.41% 0.0% 1.27% 2.12% 4.09% 2.96%

Cost - 30142 32414 25628 35166 29453 26996 24728

TABLE 8: SVRs and costs of QFC and DNN-FC on Nasa

Service
QFC DNN-FC

0.20 0.21 0.22 0.23 0.20 0.21 0.22 0.23

S1 - 18.36% 14.25% 8.33% 52.89% 9.04% 4.51% 2.82%

S2 - 0.0% 0.0% 0.14% 0.85% 1.27% 1.69% 3.1%

S3 - 0.0% 0.85% 0.99% 12.98% 0.85% 1.41% 2.12%

S4 - 0.14% 0.0% 0.0% 0.28% 2.68% 1.41% 0.71%

Cost - 38675 34892 32986 42130 37496 35279 31791
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Figure 6: Service times of HPA, QFC and DNN-FC on NASA trace with reference times of 0.21s
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Figure 7: Container numbers of HPA, QFC and DNN-FC on NASA trace with reference times of 0.21s

able to follow W r
i more closely. Compared with QFC, DNN-

FC is able to decrease the SVR of S1 greatly which is
the most hard micro-service to control. Figure 6 denotes
that QFC’s average response times of S2 and S4 are more
far from the reference times (dotted black horizontal lines)
than the DNN-FC’s. At the same time, a large part of
QFC’s average response times of S1 are higher than the
reference times. As shown in Figure 7, the reason is that
excess amount of containers are allocated to S2 and S4

while insufficient amount of containers are assigned to S1 by
QFC because of inaccurate queuing models. QFC consumes
significantly more resources across the majority of services,
resulting in service completion times that are substantially
lower than the reference times. Consequently, QFC is more
robust to abrupt workload spikes, resulting in lower service
violation ratios compared to DNN-FC across most services.
However, this enhanced robustness is achieved at the ex-
pense of higher cost. Meanwhile, QFC does not work when

W r
i = 0.20s (labeled ’-’) because the theoretical response

time of M/M/N in QFC cannot be below 0.20s. As a whole,
DNN-FC is able to follow the given reference times more
closely by the aid of the DNN-based performance model.

Different micro-services require diverse amount of con-
trol effort. For example, we need allocate more containers to
S3 than to S4 given the same W r

i because each request of S3

need to invoke S4 and wait for the return consuming more
resources. Therefore, it is critical to find an appropriate path-
SLA division which minimize the total cost while satisfying
the path-SLA constraint. For example, Table 9 denotes PVRs
when the reference times are set to be W r

1 = W r
3 = 0.245s,

W r
2 = W r

4 = 0.205s. For our approach DNN-FC, the costs
of containers are decreased from 29453 to 25248 and 37496 to
31563 for Wiki and Nasa compared to costs when all refer-
ence times are set to be 0.21s in Table 6, separately. The main
reason is that when larger reference times are allocated to
services S1 and S3 which are hard to control, fewer number
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TABLE 9: Response time violation ratio of path-SLAs obtained based on 245 and 205 ms reference times

SLA
HPA-CPU-40% HPA-CPU-50% HPA-CPU-60% QFC DNN-FC C-DQN

Wiki NASA Wiki NASA Wiki NASA Wiki NASA Wiki NASA Wiki NASA

PVR for Path 1-2 1.41 % 1.69% 1.13% 2.54% 9.04% 12.57% 1.13% 1.83% 2.54% 2.82% 38.08% 15.54%

95th PVR for Path 1-2 0.14 % 1.84% 0.85% 3.81% 11.44% 17.8% 0.85% 1.83% 1.69% 2.54% 39.35% 15.68%

PVR for Path 1-3-4 0.71% 1.13% 0.85% 1.41% 2.68% 4.8% 1.27% 1.83% 1.98% 2.4% 33.29% 4.94%

95th PVR for Path 1-3-4 0.14% 0.71% 0.71% 1.97% 3.53% 5.79% 0.56% 1.41% 1.55% 1.83% 30.18% 5.08%

Cost 33041 43978 27346 35479 22724 29676 28483 35440 25248 31563 20387 28573

of containers are required. Meanwhile, under the new ref-
erence time division combination, the costs of DNN-FC are
11.36% and 10.94% lower than those of QFC, while PVRs of
QFC and DNN-FC are all smaller than the threshold 5%. In
other words, with the assistance of its precise response time
control capability, DNN-FC is capable of achieving greater
cost savings when service reference times are set more
appropriately. After undergoing training for over 24 hours,
C-DQN still fails to achieve highly satisfactory performance.
The primary cause is that reinforcement learning requires
a very long sampling time for initialization and can only
gradually enhance its performance after an extended period
of sampling. Our approach can function as a lightweight
initialization protocol to accelerate the convergence of C-
DQN during the bootstrapping phase.

When a new micro-service is deployed on a Kubernetes-
based cluster, JProfiling usually takes about 21 hours to
collect performance data automatically. The data sampling
process can be shortened to about 5 hours by decreasing
the number of samples. Experimental results show that the
performance is not greatly impacted. For example, the 95th

PVR for path 1-3-4 is increased from 1.55% to 2.68%, but
the cost is decreased from 25248 to 24867. Meanwhile, if
JProfiling is allocated a shorter startup time, the DNN model
can conduct online training as a compensatory mechanism.
After that, the average training time for the DNN model is
approximately 48 seconds. Additionally, the execution times
for container auto-scaling using the trained model range
from 0.2 seconds to 0.45 seconds which is able to fulfill the
requirement of quick response for Cloud Native platforms.

6 CONCLUSIONS AND FUTURE WORK

To address the challenges of container elastic provisioning
in Kubernetes like systems, a container provisioning al-
gorithm (DNN-FC) that integrates deep learning, Jackson
Queuing Networks (JQN), and feedback control is pro-
posed. Experimental results prove that lightweight neural
network based performance model is able to accommodate
complex nonlinear performance models better than existing
queuing models. Furthermore, feedback control based on
deep neural networks enhances the real-time adaptabil-
ity of the JQN-based scheduling framework to fluctuating
workloads. Additionally, tailored cooling-down strategies
for feedback control can further stabilize performance. De-
veloping faster profiling data collection methods and path-
SLA division techniques for Cloud Native applications rep-
resents a promising direction for future work.
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