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Abstract—Modern computing paradigms, such as cloud com-
puting, are increasingly adopting GPUs to boost their comput-
ing capabilities primarily due to the heterogeneous nature of
AI/ML/deep learning workloads. However, the energy consump-
tion of GPUs is a critical problem. Dynamic Voltage Frequency
Scaling (DVFS) is a widely used technique to reduce the dynamic
power of GPUs. Yet, configuring the optimal clock frequency
for essential performance requirements is a non-trivial task due
to the complex nonlinear relationship between the application’s
runtime performance characteristics, energy, and execution time.
It becomes more challenging when different applications behave
distinctively with similar clock settings. Simple analytical so-
lutions and standard GPU frequency scaling heuristics fail to
capture these intricacies and scale the frequencies appropriately.
In this regard, we propose a data-driven frequency scaling
technique by predicting the power and execution time of a given
application over different clock settings. We collect the data from
application profiling and train the models to predict the outcome
accurately. The proposed solution is generic and can be easily
extended to different kinds of workloads and GPU architectures.
Furthermore, using this frequency scaling by prediction models,
we present a deadline-aware application scheduling algorithm to
reduce energy consumption while simultaneously meeting their
deadlines. We conduct real extensive experiments on NVIDIA
GPUs using several benchmark applications. The experiment
results have shown that our prediction models have high accuracy
with the average RMSE values of 0.38 and 0.05 for energy
and time prediction, respectively. Also, the scheduling algorithm
consumes 15.07% less energy as compared to the baseline policies.

Index Terms—GPU, Energy, Data-Driven, Scheduling, Ma-
chine Learning

I. INTRODUCTION

Graphics Processing Units (GPUs) have become ubiqui-

tous in modern computing paradigms and platforms, such

as Cloud computing and supercomputing environments, due

to their massive computational capabilities. Furthermore, the

Single Instruction Multiple Data (SIMD) architecture of GPUs

is ideally suitable for many parallel and compute-intensive

scientific and business workloads [1], [2]. These advantages

manifested into the deployment of a large number of GPU

clusters in many data centers, including Top500 supercomput-

ers and also in the public Clouds [3], [4], [5], [6]. In spite

of this increased usage, the power consumption of GPUs has

become a significant bottleneck for designing hyper-scale GPU

systems [7], [8]. On the other hand, GPU workloads are more

sensitive to their Quality of Service (QoS) constraints requiring

faster execution and thus spending more energy. Therefore,

energy-efficient workload management with QoS satisfaction

is exceedingly essential.

Dynamic Voltage Frequency Scaling (DVFS) is a popular

technique to reduce active power by varying the GPU fre-

quencies [9], [10], [11]. The modern GPUs have two fre-

quency domains, core, and memory, each with many numbers

of frequency ranges. While former regulates the Streaming

Multiprocessors (SM) (including register, texture cache, shared

memory, and l2 cache), and the latter governs bandwidth of

DRAM [11]. For instance, NVIDIA Tesla P100 GPU supports

one memory frequency (715 MHz) and 62 core frequencies

([544-1328] MHz), and NVIDIA GTX 980 supports four

memory frequencies ([3505-324] MHz) and 87 different core

frequencies( [135-1428] MHz ) with the total number of 267

possible frequency combinations. A particular combination of

memory and core frequency can be set using the NVIDIA

Management Library (NVML). However, the principle DVFS

notion- higher frequency range increases the performance

requiring more power, while lower frequency consumes less

power by decreasing the performance do not hold in all the

scenarios [12]. In addition, different GPU application kernels

behave differently concerning energy and performance with

the frequency settings due to their different resource footprints

and the intricate instruction execution patterns. Thus, due

to such non-linear dependencies, estimating and optimally

scaling the frequencies for a given application is non-trivial.

Furthermore, frequency scaling becomes more challenging

when a scheduler needs to schedule multiple applications with

their deadline requirements. In such a case, the scheduler

should not only identify the energy-efficient frequency com-

binations, but it also needs to take care of the application’s

execution time. Such scenarios are highly prevalent in real-

time HPC and cloud environments [13], [14]. However, exist-

ing analytical and heuristic-based GPU frequency scaling [15],

[16] methods are inefficient as they fail to capture the complex

non-linearity between the frequency settings, performance, and

power. To that end, data-driven DVFS scaling is a promising

technique that is built using actual measurements. Models

built using such methods can accurately scale the frequencies

based on application demands[17]. Moreover, once the model

is trained, the new applications can be scheduled on-the-fly

with minimum profiling data.
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In this paper, we present a data-driven approach for fre-

quency scaling by observing key architectural, power, and

performance counters and predicting the estimated application

power and execution time. In addition, guided by these pre-

diction models, we propose a deadline-aware energy-efficient

scheduling algorithm that accurately scales the GPU frequency

according to the application requirements. We use twelve

applications for evaluation from two standard GPU bench-

marking suites, Rodinia [18] and Polybench [19]. The training

data is generated from profiling the applications using nvprof,
a standard profiling tool from NVIDIA. Furthermore, several

machine learning models are explored to accurately predict

the energy and execution time of applications for the given

frequency domains. Based on the experimental results, Cat-

Boost, an ensemble-based gradient boosting learning model, is

chosen for prediction modeling. We implement the prototype

scheduling system and evaluate the proposed techniques on

real platforms. The experimental results conducted on the

NVIDIA GPU device, Tesla P100 (Pascal micro-architecture),

have shown that our prediction models have high accuracy

and the proposed scheduling algorithm consumes less energy

as compared to the baseline algorithms.

In summary, we make the following key contributions:

• We propose a data-driven prediction model to accurately

predict the energy and execution time of applications

to assist the efficient frequency scaling configuration

by observing key architectural, power, and performance

counters and metrics.

• We design and present a deadline-aware energy-efficient

application scheduling algorithm using the prediction

models.

• We implement a prototype system and evaluate the pro-

posed solution on a real platform using standard bench-

marking applications

• We show the efficiency and efficacy of our proposed solu-

tion with extensive experiments, and results are compared

and analyzed with the existing state-of-the-art solutions.

The remainder of the paper is organized as follows. Section

II describes the DVFS background, motivation of the work,

and system model. Section III presents the data-driven fre-

quency scaling techniques. Section IV shows our proposed

deadline aware energy-efficient scheduling algorithm. Section

V describes the performance evaluation with the analysis of the

results. The related work is explained in Section VI. Finally,

Section VII draws the conclusions and future work.

II. BACKGROUND MOTIVATION AND SYSTEM MODEL

A. GPU DVFS

The power consumption of a GPU (or any semiconduc-

tor logic block in general) is a combination of dynamic

(Pdynamic) and static power (Pstatic). The static power

(Pstatic) is related to the leakage and energy consumed when

the system is idle, and usually it is managed by hardware

and/or software using different sleep states [20]. However,

large amounts of energy is spent on the dynamic power

(a) lavaMD (b) CORR

(c) myocyte (d) SYR2K

Fig. 1: Power, time and clock relationship of different

applications

(Pdynamic) which is proportional to the run time of the

workload. Performance management of GPU typically rely

on the DVFS-based heuristics to regulate the dynamic power

to save the energy. The frequency is normally regulated

based on the application’s utilisation parameters or system’s

temperature threshold throttling mechanisms [17]. Thus, the

dynamic power can defined as below:

Pdynamic α V 2F (1)

In Equation 1, F denotes the operating frequency, while

V denotes the supply voltage. Based on the current oper-

ating frequency, a combination of hardware and software

changes the frequency (and thereby the underlying volt-

age); certain frequency ranges can share the same voltage

level. Furthermore, GPUs have multiple frequency domains

F = {fsmclock, fmemclock}, regulating hardware components

related to streaming multiprocessor or graphics processor and

the memory components, respectively [12]. Thus, considering

that, usually, hardware logic manages the voltage based on

operating frequency, we focus on benefiting from regulating

frequency and scaling it based on application behaviors.

B. Motivation

Estimating the optimal frequency is a non-trivial problem

due to the complex behaviors of applications regarding their

energy consumption and execution time. To analyze this

complexity, we plot the behavior of different applications

towards energy and execution time by changing the core

frequency of the GPU, as shown in Figure 1. These executions

are from NVIDIA Tesla P100 GPU that has one memory

frequency and 62 core frequencies. So we only vary the core

frequencies. In Figure 1, we can observe that when the core

frequency increases, energy consumption is not always linear.
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Fig. 2: System Model

And also, the lavaMD (Figure 1a) application has a completely

inconsistent response to frequency variations. Furthermore,

some application produces different functionalities between

certain frequency range, for application CORR (Figure 1b),

energy consumption has a non-convex curve between [730-

920] MHz. Similar nonlinear behavior is present in Figure 1c

and 1d, where execution time and energy consumption have

some unexpected spikes and dips in their energy response.

Moreover, optimising such non-linear non-convex functions

is an NP-hard problem [21]. Therefore, it is extremely chal-

lenging to find energy-efficient frequency combinations under

the application’s QoS constraints. Simple analytical models

that linearly regulate the core frequencies are inaccurate and

inefficient to reduce the energy or increase the performance

[17]. Motivated by these factors, we model the frequency

scaling problem based on the data-driven methods.

C. System Model

A high-level system model of the proposed framework is

shown in Figure 2. It is broadly classified into two parts,

predictive modeling and data-driven scheduler. In the first part,

we collect the training data that consists of three parts, pro-

filing information, energy-time measurements, and respective

frequency configurations. We then predict two entities for a

given application and frequency configuration, i.e., energy con-

sumption and execution time. Afterward, in the second part,

the new applications arrive with the deadline requirements and

minimal profiling data from a default clock frequency exe-

cution. The scheduler finds correlated application data using

the clustering technique, and this data is used for predicting

the energy and execution time over all frequencies. Finally,

based on the deadline requirements and energy efficiency, the

scheduler scales the frequencies and executes the applications.

The important components of this framework are explained in

the following sections.

III. DATA-DRIVEN FREQUENCY SCALING FOR GPUS

In this section, we discuss the prediction models in detail,

which include data collection, training, and model evaluation.

A. Feature Collections

ML-based models are trained using real-time measurement

data from the environment, and these models are used in

the run time to predict the outcomes. In the case of GPU

energy and performance prediction, several existing studies

rely either on static source code metrics [16], [22], or on run

time traces and profiling data [23]. The profiling based method

is most suitable due to its ability to gather the real resource

footprints and hardware counters of applications on particular

GPU architectures, which is crucial to estimate energy and

time accurately.

The input to our training model consists of (1) applications

profiled features F = {f1, f2, f3...fn}, (2) respective GPU

frequency pair {fsmclock, fmemclock}, and (3) energy and ex-

ecution time measurements. The profiling features contain the

information of an application’s run time metrics related to its

different hardware components utilization values, instruction

counts, communication, and cache metrics, etc.

Applications: We have considered twelve different appli-

cations from two heterogeneous computing benchmark suites,

Polybench [19] and Rodinia [18]. These two benchmark suites

cover a wide range of applications. The Polybench suit covers

many linear algebraic applications while the Rodinia suit

covers different scientific applications. The details of these

applications, including their domain and input specifications,

are shown in Table I.

Profiling: For profiling the applications, we use nvprof, a

standard profiling tool by NVIDIA for CUDA applications.

Although NVIDIA has recently released new nsigh-systems
tool kits for monitoring and profiling, they do not support

many existing GPU architectures and CUDA versions, so we

use nvprof. We have also used the nvidia-smi toolkit, which

is built on top of nvml library, a C-based API for monitoring

and managing various states of the NVIDIA GPU devices.

This tool allows application users to set the supported GPU

application clocks and also to measure the energy consumption

metrics.

We have developed Python scripts to collect the profiling

metrics that runs all the applications iteratively on different

frequency domains supported by GPU. Initially, we collect all

the available metrics provided by nvprof using –metrics all
argument and export the output in csv format. The energy and

execution time are gathered by running applications separately

to avoid the effect of profiling on these metrics.

We collect metrics from every alternative clock pair of the

Tesla P100 GPU from its supporting 62 combinations of core

and memory frequencies to reduce the data collection time.

It is important to note that, some applications take up to

ten minutes for each profiling session as nvprof replays the

application kernels over several passes to collect the metrics.

The nvprof provides more than 120 metrics of GPU counters

for each execution. For the sake of brevity, we list the top

twenty features that dominate in energy and execution time

prediction in Table II. The details about selecting these features

are explained in feature analysis Section III-C. Here, the

features sm (SM’s utilisation level) is collected from nvidia-
smi dmon API and remaining all are from nvprof.

These collected application profiling metrics, along with the

frequency configuration, energy, and time metrics, constitute
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Application Domain/Description Suite Input
particlefilter naive Medical Imaging Rodinia -x 128 -y 128 -z 10 -np 1000
particlefilter float Medical Imaging Rodinia -x 128 -y 128 -z 10 -np 1000
myocyte Biological Simulation Rodinia 10000, 1000, 1
lavaMD Molecular Dynamics Rodinia -boxes1d 50
Backprop Pattern Recognition Rodinia 983040
SYRK Symmetric rankk operations Polybench M 1024, N 1024
SYR2K Symmetric rank2k operations Polybench M 2048, N 2048

GEMM
Matrix Multiply C = A x B +
C

Polybench NI 2048, NJ 2048, NK 2048

COVAR Covariance Computation Polybench M 2048, N 2048
CORR Correlation Computation Polybench M 2048, N 2048

ATAX
Matrix Transpose and Vector
Multiplication

Polybench NX 16384, NY 16384

2MM 2 Matrix Multiplications (D=A.B; E=C.D) Polybench NI 4096, NJ 4096, NK 4096, NL 4096

TABLE I: Description of applications

Power Time
sm sm
sm clock l2 tex read hit rate
l2 tex read hit rate l2 tex read transactions
tex cache throughput tex cache transactions
ipc dram write transactions
flop dp efficiency ipc
shared load throughput inst executed shared loads
stall exec dependency gst efficiency
stall inst fetch inst replay overhead
eligible warps per cycle inst executed shared stores
stall constant memory dependency l2 read throughput
pcie total data transmitted gst throughput
dram read transactions warp execution efficiency
dram read bytes dram read bytes
issue slots local store throughput
l2 tex write throughput gld efficiency
inst bit convert global store requests
l2 global load bytes stall memory throttle
gld requested throughput dram utilisation
pcie total data received inst fp 32

TABLE II: Features used in energy and time prediction (top

20)

the total training data, which are then used to build predictive

models.

B. Prediction Models

When building any predictive models, it is often required to

test the suitable candidate algorithms and adopt the model that

works best for the given input training data and the problem

domain. In this regard, the prediction of energy and execu-

tion time requires regression-based machine learning (ML)

models. We have investigated several suitable candidate ML

algorithms, including Linear Regression (LR), lasso-linear re-

gression (Lasso), and Support Vector Regression (SVR). Also,

we explored ensemble-based gradient boosting techniques,

eXtreme Gradient Boosting (XGBoost), and CatBoost. The

goal is to build energy and execution time prediction models

for each GPU device to assist the frequency configuration. To

that end, prediction models are trained for two outputs, i.e.,

energy (E) and execution time(T ). The profiling data from

all the applications are partitioned into training and testing

datasets with 70% and 30%, respectively.

The input feature set now includes a set of tuples with each

tuple having profiled features and frequency combination i.e,

F = {f1, f2, f3, ...fn} ∪ {fsmclock, fmemclock} while the two

models output predicted energy consumption P and execution

time T .

We use the sci-kit learn package [22] to implement the

LR, Lasso, and SVR. For XGBoost and CatBoost, the stan-

dard python packages are used that are publicly available
1 2. A few of the profiling parameters from nvprof are

categorical, representing different components utilization as

low,mid, and high. Among a total of 120 features collected,

15 features were categorical including dram utilisation,

double precision fu utilisation. Only numerical features

are used in the models except for CatBoost. However, Cat-

Boost is specifically designed to work with the categorical

or mixed data, and it has an efficient way of representing

the categorical variables. Here, the categorical features are

transformed into numerical features by the technique of order

target statistics.

The parameters for each of the algorithms are the default

and self-explanatory in our implementation. To avoid over-

fitting of the models, we adopt the leave-one-out cross-

validation, where we exclude the data from a particular appli-

cation in training and evaluate this model with the excluded

application’s test data. This helps to assess the robustness of

models, and proven efficiency will help to use these offline

trained models for new applications without retraining the

models.

The goodness of fit is measured using the Root Mean Square

Error (RMSE) metric, which is a standard evaluation metric

in regression-based problems [23]. The RMSE is defined as:

RMSE =

√√√√ 1

n

n∑
i=0

(yi − yi)
2 (2)

In Equation 2, yi is the observed value, yi is the predicted

output variable by prediction model, and n is the total number

of predictions. The value of RMSE represents the standard

deviation of the residuals or prediction errors. It also indicates

how far are the data points from the model fitted line. Thus,

lower RMSE values are preferred.

1https://catboost.ai/
2https://github.com/dmlc/xgboost
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(a) Energy prediction

(b) Time prediction

Fig. 3: Performance of different models for energy and

execution time prediction (lower RMSE value is preferred)

The performance of different algorithms is shown in Figure

3. Here, we can observe that the CatBoost has the lowest

RMSE value of 0.38 in energy prediction, indicating residuals

or prediction errors are less, and its predictions are more

accurate. We observed that linear models like LR, SVR, and

Lasso perform worst in estimating energy and slightly better

in predicting the execution time. It is because energy con-

sumption has more non-linearity with the input features than

the execution time, and simple linear models do not perform

well at it. While in execution time prediction (Figure 3b), both

XGBoost and CatBoost has equal performance (RMSE value

of 0.05). As the performance of the CatBoost is promising in

both models, we choose it as our prediction algorithm.

We perform hyperparameter tuning to further optimize the

CatBoost model; we use the grid search technique over the

parameter space. The results of the grid search are shown in

Table III. Here, the parameters iterations and depth decides

the number and size of the decision trees while learning rate
is used for reducing the gradient step. The l2 leaf reg
represents the coefficient at the L2 regularisation term of the

cost function.

C. Feature Analysis

We carry feature analysis to understand the importance of

individual features towards the performance of the prediction

model. It also represents the features that are highly influential

on the prediction output.

Figure 4 indicates the Feature Importance (F.I) score of

different features. We plot the twenty most significant features

sorted in descending order of their score. Here, F.I value

represents the difference between the loss value of the model

with and without that feature. The model without this feature

is similar to the one that would have been trained if this

Catboost model depth l2 leaf reg iterations learning rate
Power 4 5 1200 0.1
Time 4 3 1200 0.03

TABLE III: Optimal parameters obtained for CatBoost from

grid search technique

feature was excluded from the data set. Since, RMSE is our

loss function, the F.I score on y axis shows change in RMSE
value.

We can observe from Figure 4a and Figure 4b, different

types of features contribute to different magnitude while

predicting energy and time of application, respectively. In

both cases, feature sm, which represents the streaming multi-

processor’s utilization, has the highest F.I score showing its

high impact on the energy and time. Furthermore, sm clock
is the second most important feature in predicting energy,

reflecting a direct correlation between energy and frequency

clock settings. Please note, since our testbed GPUs (Tesla-

P100) have only one memory frequency (fmemclock), it does

not feature in the top twenty features as there is no variation

introduced by it in the data set. For the system with multiple

fmemclock, it is expected that it would have a significant effect

on the model’s performance. We can also observe from time

model in Figure 4b, different features present when compared

to the energy model (Figure 4a). A total of 5 features are

in common between two models. The features related to

l2 cache and stall dependencies have more impact in the

energy model, while in time prediction, separate features like

inst executed shared stores, inst fp 32 have occurred

in top 20 features showing the higher co-relation between

execution time and the metrics related to instruction count.

To further analyze the impact of the number of features

on the prediction model’s performance, we carry a threshold

analysis. Here, features are sorted based on their F.I score,

and recursively added to the training data set, and resulting

loss value (RMSE) is calculated accordingly. As shown in

the Figure 5, for both the power and time model, the top

20 features are sufficient enough to achieve the reasonable

performance with excellent RMSE value and further inclusion

of features do not yield much improvement in the result

without increasing the training cost.

D. Feature Correlation with Clustering

The prediction models need exhaustive application profiling

data from multiple frequency combinations. However, profil-

ing every new application is tedious and infeasible in real-time.

Thus, using the existing data and correlating with the new

application is a common practice in profiling-based predictive

modeling scenarios [24]. In such a case, a new application

should have at least one set of profiling data of one frequency

combination; we take the default clock as a reference for this.

We generate the clusters based on already collected exhaustive

data and predict the cluster label for a new application.

Furthermore, a highly correlated application within the cluster

is chosen from simple heuristic, i.e., application with the
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(a) Energy prediction model (b) Time prediction model

Fig. 4: Top 20 features sorted based on Feature Importance (F.I) score (difference in loss value with and without the feature)

Fig. 5: Threshold analysis of features

lowest absolute difference in execution time is selected to

further match the application performance-similarity.

We use the same set of twelve applications to perform

this analysis. To generate the clusters, we use K-means. We

found that an optimal number of clusters is five based on

the weighted sum of the squared error metric. Applications

belonging to a different group and their correlated application

can be seen in Table IV. The cluster-3 has only one appli-

cation, i.e., 2MM, suggesting the essence of having a still

more number of applications in the sample space to have at

least two or more applications in each cluster. The robustness

of this method is evaluated by predicting the execution time

and energy for all the applications using the profile data

of corresponding correlated applications. The average RMSE

value of 3.19 and 1.11 is achieved for energy and time

prediction, respectively, proving the feasibility of this method.

IV. DEADLINE AWARE APPLICATION SCHEDULING BY

DATA-DRIVEN DVFS

The advantages of power and performance estimations of

GPU workloads are manifold. It is used in resource manage-

ment techniques like scheduling [14], power capping[25], and

also in the analysis of performance bottlenecks of workloads

[10]. In this work, we propose deadline aware energy-efficient

application scheduling guided by the data-driven DVFS.

Applications Cluster label Correlated application
particlefilter naive 0 particlefilter float
particlefilter float 0 particlefilter naive
myocyte 1 lavaMD
lavaMD 1 myocyte
Backprop 2 ATAX
SYRK 0 particlefilter float
SYR2K 0 particlefilter naive
GEMM 4 CORR
COVAR 4 CORR
CORR 4 COVAR
ATAX 2 Backprop
2MM 3 2MM

TABLE IV: Cluster labels and correlated app

The workload model of our scheduling is shown in Figure

6a. It consists of a set of applications represented as a vector

W = {A1, A2, A3..An}, with their own arrival and deadline

times, represented as vectors A = {a1, a2, a3, ..., an} and D =
{d1, d2, d3, ..., dn} where ∀ai ∈ A and ∀di ∈ D, respectively.

As illustrated in Figure 6, the power curve for individual

applications are non-linear with their execution time. The

objective is to configure the frequency that meets application

Ai’s deadline di and also has the lowest energy consumption

according to it’s power curve. Therefore, considering the

energy consumption of application i is Pi, then reducing

the overall GPU energy consumption is formulated as a

minimisation problem as below:

minimize Ptotal =

n∑
i

Pi

subject to ∀Ti ≤ di

(3)

In the above Equation 3, Ti is application’s execution time.

The objective function minimises the total GPU energy con-

sumption and the constraint makes sure that application is

executed within the deadline. However, solving Equation 3

is equivalent to constrained global optimization which is an

NP-hard problem [26]. As it is impractical to find an optimal

solution in real-time, we present a heuristic algorithm in

order to reduce the problem complexity suitable for on-line
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(a) Workload Model (b) Power and Execution time

Fig. 6: Workload and Power-Execution time models

Algorithm 1 Deadline-aware Scheduling by Data-Driven

DVFS

Inputs:
1: W : list of applications to be executed (workload)

2: D : list of application’s deadline (d)

Output: GPU application clock and schedule

3: while true do
4: jobQue ← GETCURRENTARRIVALJOBS(W )

5: jobQue ← SORT(jobQue, key= D, order= asc)

6: clockList ← GETGPUSUPPORTEDCLOKS(deviceID)

7: for each job in jobQue do
8: predictionInput ← GETCORRELATEDDATA(job)
9: minPower ← MAX

10: maxTime ← job.d
11: (fsmclock, fmemclock) ← NULL

12: for each clockSet in clockList do
13: ˆPjob ← PREDICTPWR(predictionInput.clockSet)
14: ˆTjob ← PREDICTTIME(predictionInput.clockSet)
15: if ˆPjob < minPower and ˆTjob < maxTime then
16: minPower ← ˆPjob

17: maxTime ← ˆTjob

18: (fsmclock, fmemclock) ← clockSet
19: end if
20: end for
21: SETGPUAPPLICATIONCLOCK(fsmclock, fmemclock)

22: if not (fsmclock, fmemclock) NULL then
23: EXECUTE(job)

24: end if
25: end for
26: end while

End

scheduling and find a near-optimal solution within reasonable

amount of time.

The Algorithm 1 shows the proposed scheduling algorithm

for deadline-aware application scheduling with the data-driven

DVFS. Its objective is to reduce the energy while meeting

the application’s deadline and it is achieved by generating

an efficient schedule sequence and also suitably scaling the

GPU frequencies. The algorithm takes the application list, and

their corresponding deadlines as an input and outputs suitable

predicted clock and scheduling sequence for applications.

First, according to application arrival time, the available jobs

are sorted based on the deadlines in ascending order (line 4,5)

to make sure the jobs with the earliest deadline are executed

first. Considering the new arrived application has only default

clock input profile data, we find its correlated application and

use it’s exhaustive profile data for prediction (as explained

in Section III-D). Furthermore, the power and execution time

is predicted for all the supported GPU frequency clock sets

(lines 12-14) using the prediction models proposed in Section

IV. For a given job, the clocks which have the lowest power

consumption and also the predicted execution time less than its

deadline is selected (15-18). Finally, the selected application

clock is configured, and the application is executed.

The time complexity of Algorithm 1 is polynomial. As-

suming we have n jobs to be scheduled on a GPU with c
number of clocks. The sorting of jobs requires a worst-case

time complexity of n log n (line 5). Furthermore, each job has

to be evaluated on all clock-sets and executed, which has a

time complexity of nc (line 7-20). Hence, the total complexity

will be (n log n + nc). Considering c is a constant for any

given GPU, the Algorithm 1 has polynomial time complexity

of O(nlogn).

V. PERFORMANCE EVALUATION

We discuss the implementation of our proposed algorithm

integrated with the prediction models. We also analyze and

discuss the results compared to baseline algorithms.

A. Implementation

We implemented the proposed scheduling framework using

Python language. We developed a multithreaded application

where the main thread executes the algorithm 1’s logic and

invokes the application execution files. Additionally, it also

launches two other background threads, one to collect the

GPU data related to energy metrics (by running bash scripts

with nvidia − smi dmon) and other kills the background

thread once the application execution is done. Furthermore,

the application clocks are predicted based on the proposed

model in Section IV, and these predicted clocks are set

before executing the scheduled application using the NVML’s

nvidia− smi’s API.

B. Experimental Setup

We use Grid’5000 testbed [27] for our experiments. It is

a large-scale flexible testbed for experiment-driven research,

specifically, designed for experimental evaluations of the

energy-efficient techniques [27]. We have used Tesla-P100

GPUs for our experiments. This machine has a dual CPU Intel

Xeon Gold 6126 processor with 12 cores per CPU and 192 GB

of primary memory. The GPU itself has 3584 cores with 16

GB primary memory. The machines are deployed with Debian

10 as the operating system installed with CUDA 10.1 drivers.

C. Benchmarking Applications

We have used twelve applications from two bench-marking

suits (PolyBench and Rodinia), which are also part of our pre-

dictive modeling (Table I). To formally produce the workload
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Fig. 7: Average energy consumption of applications

Fig. 8: Average total energy consumption of GPU

model described in Figure 6a, initially, we use GPU default

application clocks run time ([715, 1189] MHz for Tesla-P100)

as a reference to our application’s execution time. Also, the

application’s arrival time and deadline are calculated based on

the normal distribution. For the arrival time, the minimum and

maximum value range of distribution are set to (1, 50), and

for the deadline, it is set to (1, 2× execution time). This is to

make sure that the application’s deadline can have a maximum

value of twice their execution time. All these applications are

CUDA-based implementation, and configurations are shown

in Table I.

D. Analysis of Results

We evaluate the proposed algorithm 1 against two baselines.

(1): Default Clock (DC): GPU frequencies are set to default

application clocks. The applications usually run on default

clocks under normal conditions (2): Max Clock (MC): GPU

frequencies are set to maximum possible frequency domains.

This is a widely used technique in the form of near-threshold

computation or computational sprinting to finish the execution

as fast as possible under strict performance requirements [28].

We represent our proposed policy as D-DVFS, data-driven

DVFS.

Figure 7 depicts energy consumption of various applications

by different policies. Both the MC and DC policies consume

a much higher amount of energy as compared to our proposed

data-driven frequency scaling (D-DVFS). Particularly, the MC

consumes more energy than the other two policies. Since D-

DVFS sensibly configures the clocks to the lowest possible

Fig. 9: Application arrival and deadline times

Fig. 10: Normalised application completion time compared to

deadline

energy consumption, it leads to significant energy savings for

the application.

The total average GPU energy consumption can be seen

in Figure 8. MC, DC, and D-DVFS have an average of

452.06 (W.S), 392.02 (W.S), and 338.01 (W.S), respectively. In

other words, D-DVFS consumes 15.07% and 25.3% less than

MC and DC policies, respectively. The results confirm that

D-DVFS selects energy-efficient frequencies for application

execution.

The application’s arrival and deadline time generated us-

ing distribution are shown in Figure 9. Accordingly, the

normalized application completion time achieved using our

scheduling and baseline policies is shown in Figure 10. The

D-DVFS policy meets all the deadlines. It tends to execute

near to the deadline requirement of applications as it scales

to the frequency that has high energy efficiency and predicted

execution time that meets the deadline. Although DC and MC

policies execute faster, their deadline-agnostic nature tends to

run the applications with high frequency and thus spending

more energy. Furthermore, D-DVFS with much lower fre-

quency executes faster in a few scenarios (for application

backprop and particle float, refer Figure 10), which represents,

faster execution of applications do not have high frequency all

the time. Such condition usually happens when the application

has significant I/O wait or dependency stalls and setting

the higher frequency in such scenarios wastes more power.

Nevertheless, our approach inherently learns such behavior and

adapts accordingly.

The GPU frequency scaling behavior for different applica-

tions is depicted in Figure 11. Here, MC and DC always oper-

ate statically with the highest possible and default frequencies

of the GPU. However, D-DVFS selects much lower frequen-
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Fig. 11: Frequency Scaling by different policies

(a) Power (b) Time

Fig. 12: Actual and prediction values in scheduling

cies for most of the applications, which are sufficient enough

to meet the deadlines. Moreover, for applications that demand

faster execution to meet their deadlines, it appropriately scales

the frequency and chooses the efficient higher frequency range,

this can be evidenced in Figure 11 for the applications lavaMD
and myocyte.

The accuracy of prediction models in the scheduler is

vital for achieving the stated objective. The performance of

energy and time prediction models is shown in Figure 12.

The predicted values closely follow the actual measurements

from the executions showing the accuracy of predictions and

thus assisting the scheduler efficiently for frequency scaling.

Therefore, the optimal configuration of frequencies is vital

to reduce GPU energy consumption. It is more necessary

when different applications have different deadlines. This is

the most real case where multiple users submit parallel GPU

jobs with their expected deadlines (in the form of wall-time

in HPC environments). Employing such techniques, provided

they have single execution profiled data, will benefit primarily

to save the system energy and also provide better service for

application users.

VI. RELATED WORK

Several researchers have studied a different aspect of GPU

DVFS optimization. The existing GPU frequency and perfor-

mance estimation models can be classified into three types.

First, the analytical models [29] [22], [30], which uses the

mathematical relationships between different system compo-

nents and workload characteristics. Second, static models [15],

[16], usually constructed using source code level metrics or

static hardware specifications. Finally, machine learning mod-

els [23], [12], where different predictive models are employed

to estimate the required parameters accurately.

Losch et al. [31] present an accurate analytical energy

model for a task execution on heterogeneous nodes by char-

acterizing the application execution and energy model. Some

works have also explored techniques like power capping and

scheduling [25], [22] for energy optimization using DVFS

and task mapping. The authors in [25] have used empirical,

analytical models to configure the CPU-GPU frequency to

execute applications within a power budget. Chau et al.

[22] have studied energy-efficient job scheduling in CPU-

GPU systems by regulating the DVFS. The authors proposed

analytical approximation algorithms with linear programming

(ILP) model and introduced a heuristic algorithm to solve

this problem. Although analytical models are fast, they fail to

accurately estimate the intended metrics due to their sensitivity

to different parameters involved in the modeling.

The static models rely mostly on the source-code or com-

piler level metrics to build the models. Wang et al. [15]

proposed a hybrid framework for fast and accurate GPU

performance estimation through source-level analysis. They

used a total of 23 parameters collected from the hardware

specifications, simulation traces, and the source code. Fan et

al. [16] also studied predicting the energy and performance

using the static source code features from several real and

synthetic open-CL kernels. Although their prediction model

relies on ML techniques (Support vector regression- SVR), the

training data is collected from the static source code features.

They use Pareto-set of frequency configurations to find the

optimal scaling values between speedup and energy further.

However, models built using static features perform poorly

when applied to different GPU architectures as each device

has a different response to the energy and execution time.

Therefore, it is beneficial to build models with actual data

from the real-platforms.

Machine Learning (ML) models have been used by re-

searchers recently in GPUs DVFS management. Wu et al.

[23] proposed a neural network model to estimate the scaling

curve of application with different hardware configurations.

While their objective is tuning different hardware parameters,

we instead focus more on configuring the frequency domains

to facilitate the efficient DVFS for application execution.

Similarly, Guerreiro et al. [12], investigated the DVFS-aware

application classification to improve GPU efficiency. They

characterize the applications using the nine different appli-

cation profiling features and classify the workloads based on

the hierarchical clustering and neural network classifier. Our

approach is different where we predict the energy and time

with varying settings of the clock while this method classifies

application into different domains and optimize accordingly.

Furthermore, Tang et al. [32] carried out an empirical study

of GPU DVFS on energy and performance of deep learning

workloads. They analyze the effect of DVFS with different

core frequencies while training the deep neural networks
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on NVIDIA GTX2080Ti. The empirical results have shown

that optimal frequency settings can significantly save energy

consumption. Most of these works focus on a single objective.

However, in this work, we propose a data-driven frequency

scaling approach for the deadline-aware scheduling algorithm.

VII. CONCLUSIONS AND FUTURE WORK

Optimal configurations of GPU frequencies can significantly

reduce energy consumption. However, identifying the suitable

frequencies that result in lower energy consumption with the

strict application’s deadline requirement is extremely challeng-

ing. This is mainly due to the complexity induced by the

application’s response to energy, execution time, and clock

settings. To that end, we present a framework that selects suit-

able GPU frequencies for a given application using the data-

driven techniques and accordingly schedule the applications

while reducing energy consumption and meeting deadline. Our

model achieves high accuracy with average RMSE values of

0.38 and 0.05 for energy and time, respectively, indicating

that predicting the energy is quite difficult as compared to

the execution time. Additionally, our proposed scheduling

algorithm consumes 15.07% less energy as compared to the

baselines while satisfying the deadline requirements.

In the future, we plan to extend this framework to multi-

GPU platforms. We also intend to consider deep learning

workloads where frequency tuning can achieve more benefits

due to their long-running nature.
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