Deadline-constrained coevolutionary genetic algorithm for scientific workflow scheduling in cloud computing

Li Liu1 | Miao Zhang2,1* | Rajkumar Buyya3 | Qi Fan1

School of Automation and Electrical Engineering, University of Science and Technology, Beijing, China

School of Information and Electronics, Beijing Institute of Technology, Beijing, China

The University of Melbourne, Parkville, VIC, Australia

Correspondence
Miao Zhang, School of Information and Electronics, Beijing Institute of Technology, Beijing, China.
Email: s20130926@ustb.edu.cn

Summary
The cloud infrastructures provide a suitable environment for the execution of large-scale scientific workflow application. However, it raises new challenges to efficiently allocate resources for the workflow application and also to meet the user’s quality of service requirements. In this paper, we propose an adaptive penalty function for the strict constraints compared with other genetic algorithms. Moreover, the coevolution approach is used to adjust the crossover and mutation probability, which is able to accelerate the convergence and prevent the prematurity. We also compare our algorithm with baselines such as Random, particle swarm optimization, Heterogeneous Earliest Finish Time, and genetic algorithm in a WorkflowSim simulator on 4 representative scientific workflows. The results show that it performs better than the other state-of-the-art algorithms in the criterion of both the deadline-constraint meeting probability and the total execution cost.

KEYWORDS
cloud computing, coevolutionary genetic algorithm, resource scheduling, scientific workflow

1 | INTRODUCTION

Scientific experiments are usually represented as workflows,1 where tasks are linked according to their data flow and compute dependencies. Such scientific workflows are data-intensive and compute-intensive applications; for example, Compact Muon Solenoid experiment for the Large Hadron Collider at CERN2 produces a huge amount of data to be analyzed, which are more than 5 peta-bytes per year when running at peak performance. The Human Genome Project is aimed at sequencing and identifying all 3 billion chemical units in the human genetic instruction set and discovering the genetic roots of disease to find treatments. These scientific workflows have tremendous data and computing requirements and need a high-performance computing environment for execution. Cloud computing is the latest development of distributed computing, grid computing, and parallel computing,3,4 which delivers the dynamically scaling computing resources as a utility, much like how water and electricity were delivered to households these days. The patterns that cloud computing provides resources contain the following: Infrastructure as a Service (IaaS), Platform as a Service, and Software as a Service.3,5 In this paper, we refer to IaaS cloud, which offers us a virtual pool to provide unlimited virtual machines (VMs).

The main character of cloud computing is virtualization. Cloud enables to provide computational resources in the form of VMs. A process that maps tasks in a workflow to compute resources (VMs) for execution (preserving dependencies between tasks) is called workflow scheduling. There are 2 layers for cloud workflow scheduling, which include VM-task mapping and the execution order for tasks in a single VM. In this paper, we just use the evolutionary approach to schedule VM-task mapping in the first layer, and the execution order in a single VM is set as that in paper,6 where the VM will schedule the task with the smallest end time. There are different optimization objectives for workflow scheduling in cloud, including makespan, cost, throughput, and load balancing. In this paper, the optimization objective is the cost of executing a scientific workflow and subject to a deadline constraint, which is to find a proper task-VM mapping strategy, which minimizes the total financial cost and the makespan satisfies the deadline constraint.

The context above is a constrained optimization problem, and to transform constrained problem into unconstrained one, most evolutionary algorithms usually use static penalty function to penalize infeasible solutions by reducing their fitness values in proportion to the degrees of constraint violation. However, it is difficult to set a suitable penalty factor. Another common method is to eliminate the infeasible individuals within their evolutionary process. However, some infeasible individuals usually hold very rare and excellent genes that are very valuable for the next generations and are unable to be eliminated. We...
propose a coevolutionary genetic algorithm (CGA) with adaptive penalty function for the constrained scientific workflow scheduling in clouds. We have considered the main features of cloud providers such as heterogeneous computing resources and dynamic provision. An adaptive penalty function is applied in the CGA, which will adjust itself automatically during the evolution. And we apply the notion of coevolution to adjust the crossover and mutation probability factors, which are helpful for the convergence. Our main contributions can be summarized as follows: (1) present the optimization model of scientific workflow scheduling in cloud environment, which is cost minimization and deadline constrained, and consider cloud resources’ dynamic provision pattern and heterogenetic character. (2) Propose a new CGA with adaptive penalty function approach CGA2, for deadline-constrained scientific workflow scheduling in clouds. It applies a self-adaptive penalty function into the CGA, which is able to efficiently prevent prematurity and uses the notion of coevolution to adjust the crossover and mutation probabilities, which can efficiently accelerate the convergence. (3) Unlike existing genetic approaches, we generate the initial population based on the critical path (CP),7 which can also efficiently prevent prematurity and improve deadline meeting for workflow scheduling. Simulation results demonstrate that our approach has high accuracy in terms of deadline-constraint satisfaction at lower costs.

The remainder of this paper is organized as follows: the following section introduces the related works. The context of our model is presented in Section 3. Section 4 presents the CGA2 approach and the adaptive penalty function. Section 5 applies the proposed approach (CGA2) to cloud scientific workflow scheduling problem. Section 6 evaluates the performance of the CGA2 and has made comparison with the existing algorithms and then gives the experimental results. We conclude the paper with a discussion and a description of future work in Section 6.1.

2 | RELATED WORK

To address the problem of constrained workflow scheduling in cloud computing, we have adopted some evolutionary algorithms to generate near-optimal solutions. Wang and Yeo et al8 presented a look-ahead GA, which used the reliability-driven reputation to evaluate the resource’s reliability. Moreover, the multiobjective model aiming to optimize both the makespan and the reliability of a workflow application was proposed. A particle swarm optimization (PSO)-based approach was proposed in 1 study,9 which aimed to minimize the execution cost of a workflow while balancing the task load on the available resources. Rodriguez and Buyya6 presented a cost-minimization and deadline-constrained PSO approach for cloud scientific workflow scheduling. It considered fundamental features of IaaS providers, like providing elastic and heterogeneous computing resources (VMs). A penalty function was used in their algorithms that the particles violating the constraints are inferior to the feasible particles. However, this method would lead a premature convergence, which is very common in the PSO algorithms.

Sawant10 used the GA for VMs configuration in cloud computing. He incorporated the constraints into the objective fitness function, so as to transform the constrained optimization problem to an unconstrained one. This is the most popular way to handle the constrained optimization problem and is particularly easy to implement. But it is very hard to set a suitable penalty factor to tradeoff between the global optimization searching and the constraints satisfaction. The coefficients they used have no physical meaning and were obtained through empirical evaluation. Huang11 proposed a new improved GA, where the chromosomes not only represent the computing resource-task assignment but also indicate the queue on the VMs’ task being executed. It first evolves individuals according to the optimization objective and changes the evolved population based on the constrained objective when the individuals violate the constraint. This approach releases the burden of devising an appropriate penalty function for constrained optimization problem. However, it needs to evolve for numerous generations, and a feasible solution may not be found.

The ant colony optimization approach was used for VMs configuration in cloud computing, which aimed to be energy efficient.12 The experiments showed that the proposed approach achieved superior energy gains through better server use and required less resource than the first-fit decreasing approach. A PSO for workflow scheduling in cloud computing was proposed in 1 study,13 which considered both the computation cost and the data transmission cost. The experiments showed that the PSO can achieve as much as 3 times of cost savings, and the workload is better than that of the existing best resource selection algorithm.

3 | PROBLEM FORMULATION

A workflow is depicted as \(G = (V, E) \), where \(V = \{t_1, t_2, \ldots, t_n\} \) and \(E \) is the vertices and edges of the graph, respectively. Each vertex represents a task \(t \), and there are \(n \) tasks in the workflow. The edges maintain execution precedence constraints. Having a directed edge \(e_{xy} \) from \(t_x \) to \(t_y \), \(x, y \in M \) means that \(t_y \) cannot start to execute until \(t_x \) is completed; task \(t_x \) is a parent task of \(t_y \), and \(t_x \) is a child task of \(t_y \). Tasks without parents are called the entry task \(t_{entry} \) and tasks without child tasks are called the exit task \(t_{exit} \). Each workflow has a deadline \(d_{Task} \) associated to what determines the allowed longest time to complete its execution. Figure 1 shows an example of workflow, in which each node represents a task and the arcs show the data transfer between nodes.

The IaaS cloud providers offer a range of VM types denoted by \(\mathcal{V} = \{VM_1, VM_2, \ldots, VM_n\} \). Different VM types provide different computing resources, and then we define VM type in terms of its processing capacity \(P_{VM} \) and cost per unit of time \(C_{VM} \). Virtual machines are charged per unit of time \(t \), if \(t = 60 \) minutes, use of VM for 61 minutes
would incur a payment of 2 hours (2 units of time). We assume that each task is executed by a single VM, and a VM can execute several tasks.

The running time \(RT_{VM_i} \) of task \(t_i \) executed by VM\(_i\) is calculated in Equation 1, where \(s_i \) is the size of task \(t_i \) and \(P_{VM_i} \) is the processing capacity of VM\(_i\). The transfer time \(T_{Tei,j} \) between a parent task \(t_i \) and its child task \(t_j \) is depicted in Equation 2, where \(d_{ij}^{out} \) is the output data size produced by task \(t_i \), \(\beta \) is the bandwidth between each VM, and the bandwidth for all VMs is roughly same. If 2 tasks are executed in the same VM, the transfer time is 0.

\[
RT_{VM_i} = s_i / P_{VM_i} \quad (1)
\]

\[
T_{Tei,j} = d_{ij}^{out} / \beta \quad (2)
\]

There are many different optimization objectives for workflow scheduling in clouds. In this paper, we focus on finding the optimization solution for workflow scheduling, which can minimize the total execution cost and satisfy the deadline constraint. We define a scheduling vector \(S = (M, TEC, TET) \) in terms of tasks to resources matching \(M \), the total execution cost TEC, and the total execution time TET. \(M \) is the task-VMs matching, which is composed of VM types, start time, and end time for all tasks, \(M = \left(m_{V1}^{M}, m_{V2}^{M}, ..., m_{VM_i}^{M} \right) \), \(m_{V_i}^{M} = (t_i, VM_i, ST_i, ET_i) \), which means task \(t_i \) is associated with VM\(_i\), and the start time and the end time for task \(t_i \) are calculated by the following equations:

\[
ST_{V_i} = \begin{cases}
 LET_{VM_i}, & \text{if } t_i \text{ is an entry task} \\
 \max_{t_i \in \text{parent}(t_i)} \left(ET_{V_i} + T_{Tei,j} \right), & \text{otherwise}
\end{cases} \quad (3)
\]

\[
ET_{V_i} = ST_{V_i} + RT_{VM_i}, \quad (4)
\]

where \(LET_{VM_i} \) is the lease end time of VM\(_i\), which is also the time when VM\(_i\) becomes idle. There will be no charge for data transfers within the same data center, and we do not consider this fee when calculating the workflow total cost. The total execution cost TEC and the total execution time TET are calculated as in the following equations:

\[
TEC = \sum_{i=1}^{|V|} C_{VM_i} \times \left[\frac{RT_{VM_i}}{P_{VM_i}} \right] + \sum_{i=1}^{|V|} \sum_{j=1}^{TET} T_{Tei,j} \times TC_{VM_i}; \quad (5)
\]

\[
TET = \max(ET_{V_i} : t_i \in V), \quad (6)
\]

where \(C_{VM_i} \) is the processing cost for VM\(_i\), and \(TC_{VM_i} \) is the data transfer cost for VM\(_i\).

The problem in this paper can be described as finding a scheme \(S \) with the minimum TEC, and the TET does not exceed the workflow’s deadline constraint \(d_W \), as shown in the following equation.

\[
\begin{align*}
\text{Minimize} & \quad TEC \\
\text{Subject to:} & \quad TET \leq d_W
\end{align*} \quad (7)
\]

In this paper, we use a CGA with adaptive penalty function approach (CGA\(^2\)) to solve this optimization problem. Table 1 gives the description of notations used in our paper.

Notations

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(VM_i)</td>
<td>Virtual machine (i)</td>
</tr>
<tr>
<td>(P_{VM_i})</td>
<td>Processing capacity for (VM_i)</td>
</tr>
<tr>
<td>(C_{VM_i})</td>
<td>Cost per unit of time for (VM_i)</td>
</tr>
<tr>
<td>(RT_{VM_i})</td>
<td>Running time of task (t_i) executed by (VM_i)</td>
</tr>
<tr>
<td>(s_i)</td>
<td>The size of task (t_i)</td>
</tr>
<tr>
<td>(\beta)</td>
<td>The bandwidth between each VM</td>
</tr>
<tr>
<td>(TET)</td>
<td>The total execution cost</td>
</tr>
<tr>
<td>(TET)</td>
<td>The total execution time</td>
</tr>
<tr>
<td>(d_W)</td>
<td>The workflow’s deadline constraint</td>
</tr>
<tr>
<td>(ST_i)</td>
<td>The starting time of task (t_i)</td>
</tr>
<tr>
<td>(ET_i)</td>
<td>The ending time of task (t_i)</td>
</tr>
<tr>
<td>(LET_{VM_i})</td>
<td>The lease ending time of (VM_i), also the time that (VM_i) is idle</td>
</tr>
</tbody>
</table>

4 COEVOlUTIONARY GA WITH ADAPTIVE PENALTY FUNCTION

In this section, we have described a CGA with adaptive penalty function approach (CGA\(^2\)) to solve constrained optimization problem.

4.1 Mechanism of the CGA

Coevolution is the process of mutual adaptation of two or more populations. The key issue in the coevolutionary algorithms is that the evolution of a population depends on another population.

In 1994, Paredis\(^3\) introduced CGA. Coello\(^\text{15}\) incorporated the notion of coevolution into a GA to adapt genetic coefficients and to solve constrained optimization problems. In this work, we will use the notion of coevolution to adjust the crossover and mutation probabilities and apply an adaptive penalty function coefficients scheme in the GA.

The structure of coevolution model in CGA\(^2\) is shown in Figure 2. In CGA\(^2\), 2 types of populations are used. In particular, 1 type of a single population (denoted by Population\(_1\)) with size \(M_1 \) is used to adapt suitable crossover and mutation probability factors, and another kind of multiple populations (denoted by Population\(_1, 1\), Population\(_1, 2\), ..., Population\(_1, M_2\)) in that each of them is with size \(M_2 \) that evolves in parallel with different crossover and mutation schemes to search good

![FIGURE 2 Coevolution model](Image)
decision solutions. Each individual B_j in Population 2 represents a set of crossover and mutation probability factors for individuals in Population 1, where each individual represents a decision solution.

In every generation of coevolution process, each Population 1, j will evolve by the GA for a certain number of generations (G) with crossover and mutation probability factors obtained from individual B_j in Population 2. Then the fitness of each individual B_j in Population 2 will be determined. After all individuals in Population 2 are evaluated, Population 2 will also evolve by using GA. The above coevolution process will repeat until a predefined stopping criterion is satisfied (e.g., a maximum number of coevolution generation G_2 is reached).

In short, 2 types of populations evolve interactively, where Population 1, j with an adaptive penalty function scheme is used to evolve decision solutions, while Population 2 is used to adapt crossover and mutation probabilities for solution evaluation. Owing to the coevolution, not only decision solutions are explored evolutionary but also crossover and mutation probabilities are adjusted in a self-tuning way to avoid the difficulty of setting suitable factors by trial and error.16

4.2 Adaptive crossover and mutation probabilities

In GA, the bigger the crossover probability p_c and mutation probability p_m are, the more new individuals will be generated along with the diversity of population. But if the probabilities are too big, good genes will be destroyed easily; otherwise, if the probabilities are too small, it is not conducive to generate new individuals, and the search speed will slow down.17

According to Zhang et al.,18 the evolutionary process in GA can be depicted as 4 states, including initial state, submature state, maturing state, and matured state. The crossover probability p_c and mutation probability p_m are adjusted differently based on population states. For example, if there are almost inferior individuals with extremely poor fitness, we should increase p_m and decrease p_c, like in the initial state.

If the span of fitness values in a population is very large, the crossover probability p_c should be increased, like submaturing state and maturing state. If there are almost excellent individual with good fitness, we could decrease p_c and p_m in the matured state. According to these rules and inspired by the idea in the literature,19,20 a self-adaptive crossover and mutation operator is described as in the following equations:

$$p_c(i) = \omega_1 \times \cos \left(\frac{\pi}{2} \times \frac{1}{e^{\sigma_0(f_i) + \sigma_2(f_i) + \ldots + \sigma_n(f_i)}} \right),$$

$$p_m(i) = \omega_2 \times f_i / f_p,$$

where $p_c(i)$ is the crossover probability for ith individual and $p_m(i)$ is the mutation probability. $\sigma_n(i) = |f_i - f(m)|/f_i$, $f(m)$ is the mth closest individual to individual i in terms of fitness value. f_i is the fitness value of individual i, and f_p is the individual with biggest fitness value in the population. ω_1 and ω_2 are the crossover and mutation probability factors, which are adapted through coevolution.

4.3 Fitness calculation with adaptive penalty function

A suitable penalty function plays an important role in the performance of GAs, and it becomes more important when the constraints are stricter, which means that the optimal solution is nearing the boundary between the feasible and infeasible search space.21,22 The most common form of the penalized fitness function is depicted as follows:

$$F^p_i = F(x_i) - P(x_i) = F(x_i) + \sum_{j=1}^{m} \lambda_j \times E_j(x_i),$$

where $F(x_i)$ is the fitness function of ith individual after penalty, $F(x_i)$ is the fitness value for the optimizing objective, λ_j is the penalty factor for the jth constraints violation, m is the number of constraints, and $E_j(x_i)$ is the jth constraint violation for ith individual.

Inspired by Nanakorn et al.,23 the penalty function should be suitable for all infeasible individuals. If it is too small, many infeasible individuals may have higher penalized fitness value, and the population would move toward a false direction to the infeasible region. Otherwise, if it is too large, some individuals with good genes will be eliminated, which may lead to premature convergence. According to Tessema et al.,24 an adaptive penalty function strategy is applied to keep track of the number of feasible individuals in the population to determine the amount of penalty added to the infeasible individuals.

First, each individual's fitness value and constraint violation will be normalized by Equations 11 and 12.

$$\tilde{F}(x_i) = \frac{F(x_i) - F_{\min}}{F_{\max} - F_{\min}},$$

where $\tilde{F}(x_i)$ is the normalized fitness value, and F_{\min} and F_{\max} are the smallest and largest fitness values for all individuals in the current population. In this way, each individual's fitness will lie between 0 and 1. And the normalized constraint violation $\tilde{E}(x_i)$ of each infeasible individual is calculated as follows:

$$\tilde{E}(x_i) = \frac{1}{m} \sum_{j=1}^{m} \tilde{E}_j(x_i)$$

where m is the number of constraints and \tilde{E}_j^{\max} is the maximum violation for jth constraints for all infeasible individuals.

Furthermore, for different evolutionary states in GA, the penalty rule should be adapted accordingly. For example, if there are few feasible individuals in the population, the infeasible individuals with lower constraint violation will be less penalized than those with higher constraint violation. On the other hand, if there are many feasible individuals in the population, the infeasible individual with lower normalized fitness should be less penalized. According to literature,21,24 the final fitness value is formulated in the following.

1. If there is at least 1 feasible individual in the current population, the fitness function is as shown in the following equation:

$$F^{1\text{a}}(x_i) = \begin{cases} \tilde{F}(x_i) \text{ for feasible individual} \\ \sqrt{\tilde{F}(x_i)^2 + \tilde{E}(x_i)^2 + (1-\tau)\tilde{E}(x_i) + \tau\tilde{F}(x_i)} \text{ otherwise} \end{cases}$$
where $r_f = \text{number of feasible individuals}$. In this way, the individuals with both low fitness value and low constraint violation will be considered better than those with high fitness value or high constraint violation. And if the feasibility ratio (r_f) in the population is small, then the individual that is closer to the feasible space will be considered better. Otherwise, the individual with lower normalized fitness value will be better.

1. If there is no feasible individual in the current population, the fitness function is calculated as in the following equation.

$$F_1^o(x_i) = E(x_i)$$

(14)

Obviously, the individuals with smaller constraints violation are considered better. Consequently, the search will move to the region where the sum of constraints violation is small (i.e., the boundary of the feasible region).

The fitness value for ith individual in $Population_{1,j}$ in CGA is evaluated based on Equations 13 and 14.

Each individual in $Population_2$ represents a set of factors (ω_1 and ω_2). After $Population_{1,j}$ evolves for G_1 generations, the jth individual B_j in $Population_2$ is evaluated by the following equation:

$$F_2(B_j) = -\min(F_1_j) + \frac{\text{numinfeasible}}{M_1}$$

where F_1_j is the fitness values for all individuals in $Population_{1,j}$, numinfeasible is the number of infeasible individuals in $Population_{1,j}$, and M_1 is the size of $Population_{1,j}$.

5.2 | TEC and TET calculation

To address the workflow scheduling problem, we need to estimate the running time of workflow application with a specific task-VM mapping schedule first and calculate the cost accordingly. The total execution cost TEC and the total execution time TET of a chromosome i,j in $Population_{1,j}$ are shown in Algorithm 1. The kth position value of chromosome i,j,k represents that task k is associated with VM $VM_{i,j,k}$. In $Population_{1,j}$, a chromosome is a task-resource match.

First, we initialize the VMs state matrix VS and the task state matrix TS. A set of workflow tasks T and a set of VMs \overline{VM} are inputted. Then we estimate the execution time $RT_{i,j}^{VM}$ of each workflow task $t(t_i \in T)$ on every type of VM $VM/(VM_{i,j} \overline{VM})$ according to Equation 1, and transfer time $TT_{el,j}$ between tasks is calculated according to Equation 2.

The starting time value ST_{i} has 2 cases. If the task has no parent tasks, it can start as soon as the VM assigned to the task is idle. Otherwise, the task starts after the parent tasks finished and the output data are transferred. Furthermore, if the VM is still busy, the starting time has to be delayed until the VM is enabled. And in our algorithm, if 2 tasks allocated on the same VM have the same start time, the VM will process the task with smaller size. The ending time value ET_{i} is
calculated by Equation 4 based on the starting time and execution time RT_{vi}. After a task has been scheduled, we need to update the VS and the TS to set the task t_i as scheduled and the time period between ST_{ti} and ET_{ti} as busy for VM$_i$. The process continues until all tasks having been scheduled.

Algorithm 1 TEC and TET Estimation

Input: a set of workflow tasks T, a set of VMs VM, and a chromosome c in population$_1, j$

Output: TEC and TET

1. Initialize VMs state matrix VS and task state matrix TS.
2. Calculate execution time $RT[T] \times |VM|$; Calculate transfer time $TT[T] \times |T|$;
3. For $i=1:|T|
 If $TS(T(i))$ is unscheduled
 3.1. $t_i = T(i), VM_{i} = VM_{chromsome(i,j)}$
 3.2. If t_i has no parents
 $ST_{ti} = LET_{VM_i}$
 Else
 $ST_{ti} = \max \left(\frac{\max (t_{o \text{parent}(t_i)}(ET_{to} + TT_{eo}), LET_{VM_i})}{t_{o \text{parent}(t_i)}}, TET_{VM_i} \right)$;
 End
3.3. For each task child t_c of t_i
 If t_c is mapped to a VM different to VM$_i$
 $TT(i) = TT(i) + TT(i, c)$
 End
End
3.4. $RT_{vi} = RT(t_i, VM_i)$;
3.5. $ET_{vi} = RT_{vi} + TT(i)$
3.6. update VS, and TS, set the time period $[ST_{ti}, ET_{ti}]$ for VM$_i$ is busy, set TS(T(i)) as scheduled.
End
4. Calculate TEC according Equation 5;
5. Calculate TET according Equation 6;

5.3 Initial population

For a scientific workflow, the execution time of the tasks in the CP makes more influence on the total execution time of a workflow, while the financial execution cost of these tasks is a small part of the total execution cost. So allocating these tasks to the high-performance VMs will decrease the total execution time greatly while having just a little impact on the total financial execution cost.

The diversity of initial population impacts the performance of GA greatly, but most GAs generate the initial population randomly. To improve the solution quality and convergence speed, we generate one-fifth of the initial population based on CP and assign these tasks in CP to the VMs with high processing capacity. The tasks in the other one-fifth of the initial population are allocated to the VMs, which have the lowest price. The rest of the population is produced in random.

Figure 4 shows the framework of CGA. We first initialize 2 types of populations, where Population$_2$ is used to adapt crossover and mutation probabilities for Population$_1$ to find decision solutions.

In this paper, the evolution of Population$_2$ is an unconstrained optimization problem, which does need penalty function, while Population$_1$ uses an adaptive penalty function to transform the constrained workflow scheduling problem as an unconstrained optimization one. The initial population scheme used in Population$_1$ is depicted in Section 5.3, and Population$_2$ adopts the random method. Each subpopulation Population$_{1, j}$ in Population$_1$ will evolve for G_1 iterations simultaneously, and the best M_2 individuals from the M_2 subpopulations will be used to assess the corresponding individual in Population$_2$. Population$_2$ will evolve for G_2 iterations to find the best crossover and mutation probability factor and the best decision-making solution.

6 PERFORMANCE EVALUATION

To evaluate the performance of CGA in addressing the problem of scientific workflow scheduling in clouds, we use the WorkflowSim framework supported by CloudSim to simulate a cloud environment. The simulated workflows are 4 famous scientific workflows—Epigenomics, Montage, Inspiral, and CyberShake—which are widely applied for performance measurement of scheduling algorithms in the WorkflowSim. Each of these workflows has different structures as seen in Figure 5.

We use related approaches for constrained optimization problem, such as the Random, Heterogeneous Earliest Finish Time (HEFT) as a baseline to evaluate our approach.

The Random is an algorithm that assigns the ready tasks to an idle VM randomly. The HEFT is a scheduling algorithm that gives higher priority to the workflow task, which has a higher rank value. This rank value is calculated by using average execution time for each task and average communication time between resources of 2 successive tasks, where the tasks in the CP have higher rank values. Then, it sorts the tasks in a decreasing order of their rank values, and the task with a higher rank value is given higher priority. In the resource selection phase, tasks are scheduled in the order of their priorities, and each task is assigned to the resource that can complete the task at the earliest time. We set $|T_d|$ as the size of task T_d and R as the set of resources (VMs) available with average processing power $|R| = \sum_{i=1}^{R} |R_i|/n$, and the average execution time of the task is defined as $E(T_d) = \frac{T_d}{|R|}$.

Let T_x be the size of data to be transferred between task T_x and T_y and β be the bandwidth between each VM. Thus, the average data transfer time for the task is defined as $TT_x, y = T_y/\beta$. $E(T_d)$ and TT_x, y are used to calculate the rank of a task. Rank value is calculated as follows:

$$\text{rank}(T_x) = \begin{cases} E(T_x)T_x & \text{is an exit task} \\ E(T_x) + \max_{T_y \in \text{child}(T_x)} \left(TT_{x, y} + \text{rank}(T_y) \right) & \text{otherwise} \end{cases}$$ (16)

A workflow is represented as directed acyclic graph, and the rank values of the tasks in HEFT are calculated by traversing the task graph in a breadth-first search manner in the reverse direction of task
dependencies (i.e., starting from the exit tasks). The HEFT algorithm generates schedules based on VMs and tasks and does not vary with constraints.

In our experiments, we model an IaaS provider offering a single data center and 5 types of VMs. The VM configurations are based on current Amazon EC2 offerings and are presented in Table 2. We set processing capacity of each type of VMs based on the work of Ostermann et al.30

The experiments are conducted by using 4 different deadlines. These deadlines lie between the slowest and fastest runtimes. The slowest runtime is obtained by using a single VM with the average processing capacity of all VMs to execute all tasks. And the fastest runtimes are obtained by assigning the highest processing capacity VM to the ready tasks. To estimate each of the 4 deadlines, we divide the difference between the fastest and slowest times by 10 to get an interval size. The first deadline is the slowest runtime minus 1 interval size to the fastest deadline, as to the second one, we minus 4 interval sizes. The third is the fastest runtime adding 2 interval sizes to the slowest deadline, and the last one is the fastest runtime adding 1 interval size.

For the testing, the parameters of CGA^2 are set as follows: M_1 = 200, G_1 = 100, M_2 = 50, and G_2 = 20. To compare the results, we consider the average workflow total execution cost and total execution time after running each experiment 30 times. All the experiments are performed on computers with Inter Core i5-45705 CPU (2.9 GHz and 8-GB RAM).

6.1 Deadline Constraint Evaluation

In this section, we analyze the algorithms in terms of meeting the user's defined deadlines. We have compared the deadline meeting percentages for each scientific workflow under different deadlines as shown in Figure 6.

For the Epigenomics workflow, HEFT meets all of the deadlines. Random algorithm meets deadlines 1 and 2 at 10% and 3.3%, respectively, and completely fails to meet deadlines 3 and 4. The GA and PSO meet deadlines 1 and 2 at 100%, but when the constraints become strict, the rates become less and less. For deadline 3, the constraint meeting rates for the 2 evolutionary algorithms are 93% and 73.3%, respectively, and for deadline 4, the rates are 26.7% and 13.3%. As to our proposed CGA^2 algorithm, when the constraints become stricter, CGA^2 algorithm can still find excellent solutions in terms of constraints meeting. The deadline meeting rates for first 3 deadlines are 100%, and the deadline meeting rate is 60% for the last deadline constraint. The results for Montage application again show that HEFT meets all of the deadlines, and it is much better than that of other algorithms. In Montage, Random algorithm obtains results similar to those obtained in Epigenomics, and it meets all deadline constraints in the lowest rates. And the GA- and PSO-based algorithms perform well just when the deadline is relaxed like in deadlines 1 and 2. CGA^2 can still find excellent solutions in terms of constraints meeting when the constraints become stricter. The meeting rates in different constraints are 100%, 100%, 100%, and 60%.
The results of meeting rate for Inspiral and CyberShake are much like those of the above 2 workflows. The Random algorithm could hardly get feasible solutions under all constraints, while the HEFT gets 100% meeting rates under all constraints. As to the 3 evolutionary approaches, they perform similarly under the first 2 relaxed constraints, while our proposed algorithm obviously performs much better than the other 2 evolutionary algorithms. A possible explanation for these results revolves around the following: HEFT always assigns tasks with VMs that make the end time at a minimum level, and it considers the entire workflow rather than focusing on only unmapped independent tasks at each step to assign priorities to tasks. But it gives no concern to the cost and constraints. Random algorithm assigns tasks with VMs randomly, which is very hard to satisfy user's constraints. As to 2 evolutionary algorithms GA and PSO, they simply handle the constrained optimization problem, which just gives a static penalty function or even excludes the solutions that violate the constraints in the evolutionary process, and it would lead to a premature convergence or a false direction to the infeasible region.

6.2 TET Evaluation

As shown in Figure 7, we measured the average of total execution time TET (also called as makespan) for each workflow under different constraints (red line is the TET constraint). We can see that in the Epigenomics workflow, the HEFT approach has the lowest average makespan under every deadline constraints, and the Random has the worst performance. The GA and the PSO have a good performance in the relaxed constraints like deadlines 1 and 2. And when the constraints become stricter, they perform poorly. As to our proposed CGA^2, it shows a better performance than both the GA and the PSO, especially in the strict constraints. In the Montage workflow case, the HEFT still has the best average makespan value while the Random is the worst in terms of total execution time. In deadlines 1 and 2, the mean of total execution time (TET) for the GA, PSO, and CGA^2 is less than deadlines, while the average TET for these algorithms in the last constraints is above the deadline values.

In the Inspiral and CyberShake workflows, our proposed algorithm CGA^2 still has better TET results than the other 2 evolutionary algorithms. These results are in line with those analyzed in the deadline-constraint evaluation section, from which we were able to conclude that HEFT algorithm can obtain the lowest total execution time value.

Table 2

<table>
<thead>
<tr>
<th>Name</th>
<th>EC2 Units</th>
<th>Processing Capacity</th>
<th>Cost per Hour ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>m1.small</td>
<td>1</td>
<td>44</td>
<td>0.03</td>
</tr>
<tr>
<td>m1.large</td>
<td>4</td>
<td>176</td>
<td>0.12</td>
</tr>
<tr>
<td>m1.xlarge</td>
<td>8</td>
<td>352</td>
<td>0.24</td>
</tr>
<tr>
<td>c1.medium</td>
<td>5</td>
<td>220</td>
<td>0.06</td>
</tr>
<tr>
<td>c1.xlarge</td>
<td>20</td>
<td>880</td>
<td>0.44</td>
</tr>
</tbody>
</table>

FIGURE 7 Average of TET (dash line) under different constraints (solid line) for 4 workflows. A, Epigenomics. B, Montage. C, Inspiral. D, CyberShake. GA indicates genetic algorithm; HEFT, Heterogeneous Earliest Finish Time; PSO, particle swarm optimization
for workflows, that Random algorithm is not efficient in meeting the deadlines, and that the normal GA and PSO cannot find excellent solutions when the constraints become stricter. On the contrary, CGA2 exhibits a larger makespan variation, which is expected as it can find an excellent solution for constrained optimization problem in a very large and chaotic search space.

6.3 | TEC Evaluation

The average total execution costs generated from the above algorithms for each of the workflows are displayed in Figure 8. We also give the mean of TET and deadlines meeting rates obtained in the former section, as the algorithms should be able to generate a cost-efficient scheme but not at the expense of a long execution time. It is unavailable for an algorithm to run on the lower cost without meeting the deadlines. The mean of TEC, the mean of TET, and the meeting rate for each workflow under different constraints are presented in Table 3.

For the Epigenomics workflow, HEFT total execution time is still the lowest of the 4 different constraints, but its total execution cost is higher than that of evolutionary algorithms. In these experiments, CGA2 gets the lowest cost under each deadline, which shows that the optimizing capacity of our proposed algorithm is better than that of other previous evolutionary algorithms especially under the strict deadlines. From the table, we can also find that when the constraints become stricter, the solutions obtained by the GA and PSO not only fail to meet deadlines but also become much more costly. It shows that an inferior penalty function would lead the populations to premature and infeasible sections.

In the Montage workflow, HEFT total execution time is still the lowest for the 4 different constraints, but its total execution cost is higher than that of evolutionary algorithms. A possible explanation for this might be that evolutionary algorithms lease VMs with lower price so as to minimize the total execution cost. What is more, the tasks are relatively small in Montage workflow, which means that the machines in the HEFT scheme are only running for a small amount of time but are charged for the full billing period, and choosing a higher processing capacity VM means much more cost.

Among the above algorithms complying with the deadline constraint, GA and PSO can obtain the low cost schedules on relaxed deadline, but when the constraints become strict, the solutions generated by them are very poor, while the CGA2 can still get excellent solutions in terms of the TEC meeting deadlines under strict constraints. From the results, it is clear that the evolutionary algorithms based approaches perform better than HEFT in terms of cost. And the CGA2 can get an excellent solution without violating the constraints when the deadline becomes strict.

The TEC results of 5 algorithms in the Inspiral and CyberShake workflows are similar to those of the previous workflows, which again show that CGA2 could always find the best solutions in terms of TEC, especially under the strict constraints. We can observe from Figure 8C and D that the GA and PSO with static penalty
function have a rapid increase in terms of TEC when the constraints get stricter, while our algorithm is able to maintain a similar level. What is more, even though the PSO with static penalty function could get better TEC results than CGA\(^2\) in the relaxed constraints, it still could not get satisfactory solutions in the strict constraints.

From the above discussion, the following conclusions can be drawn from the experiments: the Random algorithm fails to meet deadlines in most cases, whereas HEFT could get the lowest makespan, which always assigns the highest processing capacity VMs to ready tasks. While comparing with HEFT, the evolutionary algorithms are capable of generating cheaper schedules and hence outperform HEFT in terms of cost optimization. And compared with GA and PSO with static penalty functions, our proposed algorithm CGA\(^2\) can handle better the constrained optimization problem of scientific workflow scheduling in clouds and is still able to find feasible solutions under strict user's deadline requirements.

7 Conclusion and Future Work

In this paper, a CGA with adaptive penalty function (CGA\(^2\)) for constrained scientific workflow scheduling in clouds is proposed. The common drawback of existing evolutionary algorithms is the necessity of defining problem-specific parameters of penalty function for constrained optimization problems. And these algorithms are also static and lead to premature convergence. To address these problems, our proposed algorithm designs an adaptive penalty function without any parameter tuning and is easy to implement.

This approach could effectively exploit the information hidden in infeasible individuals, which sets the proper penalty rule for these problems, our proposed algorithm designs an adaptive penalty function without any parameter tuning and is easy to implement.
preventing premature and improving deadline meeting for workflow scheduling. Experiments demonstrate that our solution has an overall better performance than the state-of-the-art algorithms Random, HEFT, GA, and PSO. The CGA^2 succeeds with high rate as HEFT, which aims to minimize the makespan without considering the cost. Furthermore, CGA^2 could produce schedules with lower total executing cost and meets the deadlines under strict constraints, while GA and PSO could not succeed easily.

Our future work will use multiobjective evolutionary algorithm to solve the cloud resource scheduling problem and will take into account the load balance and task failures. Meanwhile, we will extend the resource model to consider the data transfer cost between data centers.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (grant nos. 61370132, 61472033, and 61272432) and Beijing Natural Science Foundation (no. 4152034).

REFERENCES

