
1294 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 3, THIRD QUARTER 2013

A Review on Distributed Application Processing
Frameworks in Smart Mobile Devices for Mobile

Cloud Computing
Muhammad Shiraz, Abdullah Gani, Senior Member, IEEE, Rashid Hafeez Khokhar, Member, IEEE, and

Rajkumar Buyya, Senior Member, IEEE

Abstract—The latest developments in mobile devices technol-
ogy have made smartphones as the future computing and service
access devices. Users expect to run computational intensive
applications on Smart Mobile Devices (SMDs) in the same way
as powerful stationary computers. However in spite of all the
advancements in recent years, SMDs are still low potential com-
puting devices, which are constrained by CPU potentials, memory
capacity and battery life time. Mobile Cloud Computing (MCC)
is the latest practical solution for alleviating this incapacitation
by extending the services and resources of computational clouds
to SMDs on demand basis. In MCC, application offloading is
ascertained as a software level solution for augmenting appli-
cation processing capabilities of SMDs. The current offloading
algorithms offload computational intensive applications to remote
servers by employing different cloud models. A challenging
aspect of such algorithms is the establishment of distributed
application processing platform at runtime which requires addi-
tional computing resources on SMDs. This paper reviews existing
Distributed Application Processing Frameworks (DAPFs) for
SMDs in MCC domain. The objective is to highlight issues
and challenges to existing DAPFs in developing, implementing,
and executing computational intensive mobile applications within
MCC domain. It proposes thematic taxonomy of current DAPFs,
reviews current offloading frameworks by using thematic taxon-
omy and analyzes the implications and critical aspects of current
offloading frameworks. Further, it investigates commonalities and
deviations in such frameworks on the basis significant parameters
such as offloading scope, migration granularity, partitioning
approach, and migration pattern. Finally, we put forward open
research issues in distributed application processing for MCC
that remain to be addressed.

Index Terms—Mobile Cloud Computing, Application Offload-
ing, Elastic Applications, Distributed Systems

I. INTRODUCTION

THE MINIATURE nature, compact design, high qual-
ity graphics, customized user applications support and

multimodal connectivity features have made SMDs a spe-
cial choice of interest for mobile users. SMDs incorporate
the computing potentials of PDAs and voice communication

Manuscript received 7 March 2012; revised 4 June 2012 and 16 September
2012.

M. Shiraz, A. Gani, R. H. Khokhar are with Mobile Cloud Com-
puting Research Lab, Faculty of Computer Science and Information
Technology , University of Malaya, Kuala Lumpur, Malaysia (e-mail:
muh shiraz@siswa.um.edu.my, abdullah@um.edu.my, rkhokhar@ieee.org,
raj@csse.unimelb.edu.au).

R. Buyya is with Cloud Computing and Distributed Systems(CLOUDS)
Lab, Department of Computer Science and Information Systems , The
University of Melbourne, Australia.

Digital Object Identifier 10.1109/SURV.2012.111412.00045

capabilities of ordinary mobile devices by providing support
for customized user applications and multimodal connectivity
for accessing both cellular and data networks. SMDs employ
wireless network technologies for accessing the internet; such
as 3G connectivity, Wireless Fidelity (Wi-Fi), Wi-Max, or
Long Term Evaluation (LTE). SMDs are the dominant future
computing devices with high user expectations for accessing
computational intensive applications analogous to powerful
stationary computing machines. Examples of such applications
include natural language translators [1]-[2], speech recognizers
[1]-[3], optical character recognizers, image processors [4]-[5],
online games, video processing [6] and wearable devices for
patients such as wearable device with a head-up display in the
form of eyeglasses (a camera for scene capture and earphones)
is a useful application that helps Alzheimer patients in every-
day life [7]. Such applications necessitate higher computing
power, memory, and battery lifetime on resource constrained
SMDs [8]. On the other hand, SMDs are still low potential
computing devices having limitations in memory, CPU and
battery power. In spite of all the advancements in recent years,
SMDs are constrained by weight, size, and intrinsic limitations
in wireless medium and mobility.

A key area of mobile computing research focuses on the
application layer research for creating new software level
solutions. Application offloading is an application layer solu-
tion for alleviating resources limitations in SMDs. Successful
practices of cloud computing for stationary machines are the
motivating factors for leveraging cloud resources and services
for SMDs. Cloud computing employs different services provi-
sion models for the provision of cloud resources and services
to SMDs; such as Software as a Service, Infrastructure as a
Service, and Platform as a Service. Several online file storage
services are available on cloud server for augmenting storage
potentials of client devices; such as Amazon S3 [9], Google
Docs [10], MobileMe [11], and DropBox [12]. In the same
way, Amazon provides cloud computing services in the form
of Elastic Cloud Compute. The cloud revolution augments
the computing potentials of client devices; such as desktops,
laptops, PDAs and smartphones. The aim of MCC is to alle-
viate resources limitations of SMDs by leveraging computing
resources and services of cloud datacenters. MCC is deployed
in diverse manners to achieve the aforementioned objective.
MCC employs process offloading techniques [13], [14] for
augmenting application processing potentials of SMDs. In
application offloading intensive applications are offloaded to

1553-877X/13/$31.00 c© 2013 IEEE

SHIRAZ et al.: DISTRIBUTED APPLICATION PROCESSING FRAMEWORKS IN SMART MOBILE DEVICES FOR MOBILE CLOUD COMPUTING 1295

remote server nodes. Current offloading procedures employ
diverse strategies for the deployment of runtime distributed
application processing platform on SMDs. A challenging issue
in current DAPFs (Distributed Application Processing Frame-
works) is the additional computing overhead on SMDs in the
deployment and management of runtime distributed applica-
tion execution. This paper reviews current DAPFs in SMDs
within MCC domain and identifies challenges in the cloud
based processing of mobile applications. We classify existing
DAPFs by thematic taxonomy and investigate commonalities
and deviations in such frameworks on the basis of significant
parameters such as offloading scope, partitioning approach,
migration support, migration granularity, application developer
support, migration pattern and execution monitoring. The con-
tribution of the paper lies in the categorization of frameworks
on the basis of thematic taxonomy, analysis of current DAPFs
by discussing the implications and critical aspects, identifying
the issues in existing solutions for offload processing and
challenges to cloud based application processing of mobile
applications. The listing of challenges and open issues guide
researchers to select the appropriate domain for future research
and obtain ideas for further investigations.

The rest of the paper is organized as follows. Section 2
explains the fundamental concepts of MCC. It discusses the
concept of cloud computing, mobile cloud computing and
explains the different techniques to augment smart mobile de-
vices resources based on resources available within the cloud.
Section 3 presents thematic taxonomy of current DAPFs,
reviews current application offloading algorithms on the basis
of taxonomy and investigates the implications and critical
aspects of current DAPFs. Section 4 compares current DAPFs
by comparing the commonalities and deviations by using
significant parameters presented in the taxonomy. Section 5
highlights the issues in current DAPFs and discusses chal-
lenges to distributed application processing for MCC which
contributes toward the advancement of research and devel-
opment of optimal distributed applications for MCC. Finally,
section 6 draws concluding remarks with future directives.
Table 1 shows the list of acronyms used in the paper.

II. BACKGROUND

This section elaborates the concept of cloud computing and
mobile cloud computing. Further, it explains the mechanism
of augmenting smartphone through computational clouds.

A. Cloud Computing

Cloud computing is the latest distributed computing model
that implements the utility computing vision [15] wherein
computing services are provided on demand basis. Cloud ser-
vice models enable with new IT business models such as on-
demand, pay-as-you-go, and utility computing. The objective
of the cloud computing model is to increase the capacity and
capabilities of client devices by accessing leased infrastructure
and software applications instead of owning them. Cloud com-
puting has introduced new kind of information and services
and new ways of communication and collaboration. Cloud has
created online social networks in which scientists share data
and analysis tools to build research communities [16]-[17].

TABLE I
LIST OF ACRONYMS

Symbol Description
3G Third Generation
CC Cloud Computing
CPU Central Processing Unit
DEM Device Elasticity Manager
DAPFs Distributed Application Processing Frameworks
DISHES Distributed Shell System
DRAM Dynamic Random Access Memory
DS Developer Support
EM Execution Management
HTTP Hyper Text Transfer Protocol
IP Internet Protocol
LTE Long Term Evaluation
MAR Mobile Augmented Reality
MAUI Mobile Assistance Using Infrastructure
MCC Mobile Cloud Computing
MG Migration Granularity
MS Migration Support
MP Migration Pattern
OS Offloading Scope
PA Partitioning Approach
PDA Personal Digital Assistant
SOA Service Oriented Architecture
S3 Simple Storage Service
SD Service Directory
SMDs Smart Mobile Devices
SS Security Support
TSP Telecommunication Service Provider
UMSC Universal Mobile Service Cell
URL Uniform Resource Locator
VM Virtual Machine
Wi-Fi Wireless Fidelity
XML Extended Markup Language

In cloud computing, applications are delivered as services
over the internet and user access computing resources from
centralized cloud servers through service providers [18]. The
examples of public utility computing include Amazon Web
Services (AWS), Google AppEngine, Microsoft Azure and
Aneka. AWS offers infrastructure as a service and software
as service which enable to utilize the virtualize resources and
services in cloud datacenters. It reduces the cost and efforts
associated with the administration of computer hardware and
software for organizations [19]. AWS are utilized to store
personal data through its Simple Storage Service(S3) [20],
and computation is performed using elastic cloud compute.
Google App Engine provides application developmental and
deployment platform in Googles data centers. It uses powerful
infrastructure to provide services worldwide. App Engine
provides an application development environment which uses
well known application developmental tools (such as Java
and Python). It provides a rich set of APIs to users whereas
sustaining the security and isolation from other applications
running the cloud infrastructure [21].Windows Azure is an
extensible and open cloud computing platform which provides
the services to develop deploy and operate applications and
services in cloud datacenters. Windows Azure offers a simple,
widespread, and powerful cloud computing platform for the
creation of web applications and services [22]. Aneka offers
the platform as a services model for cloud computing. It
serves as an application development framework for building
customized applications and deploying them on either public
or private clouds [23].Computational clouds implement differ-
ent types of service models for implementing the on demand
computing vision [15]. Service providers provide services in

1296 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 3, THIRD QUARTER 2013

Fig. 1. Layered Cloud Computing Architecture

the form of various service models; Software as a Service
(SaaS), Infrastructure as a Service (IaaS), and Platform as a
Service (PaaS). Fig. 1 shows an abstract level layered cloud
computing architecture.

The hardware resources in the cloud datacenters are the
physical resources of computational clouds. Access to the
physical resources is provided in the form of virtual machines.
A middleware (hypervisor) masks access to the physical
resources and is responsible for the deployment and manage-
ment of virtual machines. The application hosting platform is
composed of cloud programming environments and tools and
monitoring tools such as QoS negotiation, admission control,
pricing and billing. The cloud applications run on the virtual
machine instances in complete isolation.

B. Mobile Cloud Computing

Mobile cloud computing is the latest practical computing
paradigm that extends utility computing vision of computa-
tional clouds to resources constrained SMDs. Aepona [24]
defines MCC as a new distributed computing paradigm for
mobile applications whereby the storage and the data pro-
cessing are migrated from the SMD to resources rich and
powerful centralized computing data centers in computational
clouds. The centralized applications, services and resources
are accessed over the wireless network technologies based on
web browser on the SMDs. Successful practices of accessing
computational clouds on demand for stationary computers mo-
tivate for leveraging cloud services and resources for SMDs.
MCC has been attracting the attentions of businesspersons as
a profitable business option that reduces the development and
execution cost of mobile applications and mobile users are
enabled to acquire new technology conveniently on demand
basis. MCC enables to achieve rich experience of a variety
of cloud services for SMD at low cost on the move. [25]-
[26]. MCC prolongs diverse services models of computational
clouds for mitigating computing resources (battery, CPU,
memory) limitations in SMDs. The objective of MCC is
to augment computing potentials of SMDs by employing
resources and services of computational clouds. MCC focuses
on alleviating resources limitations in SMDs by employing dif-
ferent augmentation strategies; such as screen augmentation,
energy augmentation, storage augmentation and application
processing augmentation of SMD. In [27], we study mobile

augmentation techniques and devise a taxonomy including
three main approaches, namely high-end resource production,
native resource conservation, and resource requirement reduc-
tion. We analyze a number of approaches and argue that MCC
lessens need to high-end hardware, reduces ownership and
maintenance cost, and alleviates data safety and user privacy.

The MCC model is composed of three major components;
SMDs, internet wireless technology and computational cloud.
SMDs use wireless network technology protocols such as 3G,
LTE, or Wi-Fi to access the services of computational cloud in
mobile environment. However, the connection is less reliable
due to mobility requirements such as handoff processes. As
SMD inherit its nature of mobility, it needs to execute location-
aware services which consume resources and turned it to be a
low-powered client. Fig. 2 shows a generic model of MCC in
which the cloud that provides off-device storage, processing,
queuing capabilities, and security mechanism is integrated
with SMD via wireless network technologies.

MCC utilizes cloud storage services [[9]-[12] for providing
online storage and cloud processing services for augmenting
processing capabilities of SMDs [14]. Processing capabili-
ties of SMDs are augmented by outsourcing computational
intensive components of the mobile applications to cloud
datacenters. The following section discusses the concept of
augmenting smartphones through computational clouds.

C. Augmenting Smartphones through Computational Clouds

MCC implements a number of augmentation procedures
for leveraging resources and services of cloud datacenters.
Examples of the augmentations strategies include; screen
augmentation, energy augmentation, storage augmentation and
application processing augmentation of SMD [27]. In MCC,
two categories of the cloud services are of special interest
to research community; cloud contents and computing power.
Cloud contents are provided in the form of centralized storage
centers or sharing online contents such as live video streams
from other mobile devices. A number of online file storage
services are available on cloud server which augments the
storage potentials by providing off-device storage services.
Examples of the cloud storage services include Amzon S3
[9] and DropBox [12]. Mobile users outsource data storage
by maintaining data storage on cloud server nodes. However,
ensuring the consistency of data on the cloud server nodes
and mobile devices is still a challenging research perspective.
SmartBox [28] is an online file storage and management
model which provides a constructive approach for online
cloud based storage and access management system. Similarly,
the computing power of the cloud datacenters is utilized
by outsourcing computational load to cloud server nodes.
The mechanism of outsourcing computational task to remote
server is called process offloading or cyber foraging. Smart
mobile devices implement process offloading to utilize the
computing power of the cloud. The term cyber foraging is
introduced by Satyanarayanan [29] to augment the computing
potentials of wireless mobile devices by exploiting available
stationary computers in the local environment. The mechanism
of outsourcing computational load to remote surrogates in
the close proximity is called cyber foraging [30]. Researchers

SHIRAZ et al.: DISTRIBUTED APPLICATION PROCESSING FRAMEWORKS IN SMART MOBILE DEVICES FOR MOBILE CLOUD COMPUTING 1297

Fig. 2. Model of Mobile Cloud Computing

extend process offloading algorithms for Pervasive Computing
[31], Grid Computing [32] and Cluster Computing [33]. In
recent years, a number of cloud server based application
offloading frameworks are introduced for outsourcing com-
putational intensive components of the mobile applications
partially or entirely to cloud datacenters. Mobile applications
which are attributed with the features of runtime partitioning
are called elastic mobile applications. Elastic applications are
partitioned at runtime for the establishment of distributed
processing platform.

Elastic mobile applications are attributed with the following
features [34]. a) Ad-hoc platform creation is an important
attribute of elastic mobile applications. Distributed application
processing platform is established on ad-hoc basis at runtime
in which elastic mobile application is partitioned dynamically
and computational intensive components are migrated to re-
mote server nodes. Mobile clients dynamically arbitrate with
cloud servers or surrogates to determine appropriate server
node for remote application processing. b) Elastic applications
are designed in such a manner so that computational intensive
components of the mobile application are separated dynami-
cally at runtime. Applications are partitioned at different gran-
ularity level depending upon the design and partitioning policy
of the offloading algorithm. c) Adaptive offloading of the in-
tensive components of the applications is a significant attribute
of elastic mobile applications. Partitions of the application
are offloaded to remote machines for remote execution which
augments the computing capabilities of SMDs. Application
offloading occurs whereas keeping in view different objective
functions; such as energy saving, processing power, memory
storage, and fast execution. d) Transparency in the distributed
execution platform is a significant attribute of elastic appli-
cations. Transparency assures that elastic mobile application
executes transparently on remote surrogates/server nodes. A
transparent distributed processing environment gives the no-
tion as entire application is being executed locally on SMD.
All the complexities of remote execution are concealed from
mobile users. Researchers determine applications offloading as
an appropriate software level solution for alleviating resources
limitations in SMDs.

Currently application offloading is implemented in a number
of ways. The application offloading frameworks outsource
computational load of SMD at different granularity levels.
The static application partitioning approach is used to sep-

arate the intensive components of mobile application only
once. The dynamic partitioning approach is implemented to
address the issue of dynamic application processing load
on SMDs at runtime. Dynamic partitioning of the intensive
mobile application at runtime is a robust technique for coping
with the dynamic processing loads on SMD. In dynamic
partitioning application is partitioned dynamically at runtime
casually or periodically. In casual partitioning runtime profil-
ing and solving mechanisms are activated in critical condi-
tions to offload intensive components of mobile application.
In periodic partitioning the runtime optimization mechanism
evaluates computing resources utilization on SMD periodi-
cally. Current dynamic partitioning approaches analyze the
resources utilization on SMDs, computational requirements
of the mobile application and search for runtime solving of
the problem of resource limitations on SMD. The profiling
mechanism evaluates computing resources requirements of
mobile application and the availability of resources on SMD.
In critical condition (the unavailability of sufficient resources
on SMD) elastic mobile application is partitioned and the
computational intensive components of the application are
offloaded dynamically at runtime. SMDs negotiate with cloud
servers for the selection of appropriate server node. At that
moment partitions of the application are migrated to remote
server node for remote processing. Upon successful execution
of the remote components of the application, result is returned
to main application running on SMD.

Empirical analysis ascertains the significance of distribut-
ing processing loads to remote server nodes [13], [35]-[14].
However, the deployment of distributed application processing
platform is obstructed by a number of unresolved challenges
for MCC. The latest offloading models [14] focus on the
establishment of dynamic distributed application processing
platform at runtime. For the selection of cloud server node,
SMDs arbitrate with cloud server node dynamically at run-
time. Therefore, the configuration of distributed processing
platform at runtime is a resources starving and energy hunting
mechanism. Dynamic runtime offloading involves the issues
of dynamic application profiling and solver on SMD, runtime
application partitioning, migration of intensive components
and continuous synchronization for the entire duration of
runtime execution platform. Therefore, the development and
deployment of intensive mobile applications on the basis of
current algorithms is still a challenging research issue. Fig.

1298 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 3, THIRD QUARTER 2013

Fig. 3. Sequence Diagram for Dynamic Application Offloading in MCC

II-C shows general sequence of flow for dynamic offloading
of intensive components of the mobile application.

III. DISTRIBUTED APPLICATION PROCESSING
FRAMEWORKS (DAPFS) FOR SMART MOBILE DEVICES

The current DAPFs for SMDs employ a number of strate-
gies for the establishment of runtime distributed application
execution platform. This section provides thematic taxonomy
for current DAPFs and reviews the traditional DAPFs on the
basis of framework nature attributes of the taxonomy. Further,
it investigates the advantages and critical aspects of current
DAPFs for SMDs.

A. Taxonomy of Distributed Application Processing Frame-
works

Fig. III-A shows the thematic taxonomy of DAPFs, which
are categorized on the basis of framework nature, migration
pattern, migration support, partitioning approach and objective
functions. The attribute of framework nature indicates the
main mechanism employed for application offloading. We
categorize current DAPFs on the basis of virtual machine
migration, entire application migration and application parti-
tioning. Virtual machine migration nature of DAPFs indicates
that SMD offload application by encapsulating the running
application in VM instance on SMD. The VM instance is

outsourced to cloud server nodes. A number of current DAPFs
employ VM migration based approach for offloading intensive
components of the application [6], [30], [36]-[37]. The entire
application migration nature of DAPFs indicates that SMDs
offload entire processing job to remote server nodes. Current
DAPFs offload entire application in two different manners.
a) Mobile application starts execution of the smart mobile
device and in critical condition the running instance of the
mobile application is offloaded to remote server node [38]. b)
The client component of the mobile application runs on the
SMD where the processing load of the application is offloaded
to cloud server for remote processing [39]. Application parti-
tioning nature of the framework indicates that computational
intensive components of the mobile are separated at runtime.
Partitions of the application are offloaded to remote server
nodes [14], [40]. The partitioning approach of a framework
indicates the mechanism of separating intensive components
of the application. Current DAPFs employ two different
strategies for separating computational intensive components
of the mobile application. In static application partitioning
the intensive components of the application are separated
either at compile time or runtime statically. Dynamic par-
titioning mechanism follows dynamic evaluation mechanism
for assessing the computational load on SMD. The attribute
of migration support indicates the level of support required
for migrating application or partitions of the application at

SHIRAZ et al.: DISTRIBUTED APPLICATION PROCESSING FRAMEWORKS IN SMART MOBILE DEVICES FOR MOBILE CLOUD COMPUTING 1299

Fig. 4. Taxonomy of Application Processing Frameworks for SMDs

runtime. Currently, migration support is provided either at
system level or application level. The attribute of migration
granularity indicates the granularity level at which application
is migrated. Current DAPFs offload intensive components
of the application at different granularity level. For exam-
ple thread level granularity indicates that running thread is
offloaded for remote processing. In the same way, method
level granularity indicates that methods of the application are
offloaded for remote processing. Migration pattern represents
the pattern or way by which application or partition of the
application is migrated to remote server. Current DAPFs
employ a number of migration patterns such as VM migration,
download using URL on remote host, mobile agent serving
as courier for application transfer, binary code transfer of
the application or copying entire proxy of the application on
distributed computing nodes. The objective function attribute
indicates the primary objective of a framework for application
offloading. Current DAPFs aim for a number of objective
functions such as saving energy on SMD, efficient bandwidth
utilization, saving processing power on SMD, user preferences
for fast application processing, or execution cost parameter.

B. Review on Application Offloading Frameworks by Using
Thematic Taxonomy

A classification of application offloading frameworks by
using their attributes is shown in Fig. 4. This section analyzes
current application offloading frameworks and investigates the
implications and critical aspects of current DAPFs.

1) VM Migration Based Application Offloading: In [30]
cyber foraging framework is employed to utilize computation
resources of computing devices (stationary or mobile) in close

proximity of SMD. The framework implements client/server
architecture. Mobile devices request for process offloading and
surrogate server provides the services on demand. The frame-
work supports configuration of multiple surrogate servers
simultaneously and employs virtual machine technology for
remote application processing. A single surrogate server is
capable to run a configurable number of independent virtual
servers with isolation, elasticity, resource control and simple
cleanup mechanism. Each offloaded application executes on
isolated virtual server. The framework ensures secure commu-
nication by deploying cryptographic measures for communi-
cation between SMD and surrogate server. The framework in-
cludes the benefits of low latency, local accessibility of remote
surrogates and fewer concerns of security and privacy. The
critical aspects of such approach is the deployment of template
based virtualization approach which is a highly time consum-
ing and resources starving mechanism for VM deployment
[41]. The framework requires the annotation of individual
components of the application as local or remote which is an
additional effort for application developers. Further, surrogate
based cyber foraging is restricted to the availability of services
and resources on local servers.

VM based cloudlets framework [7] differs from cyber
foraging [30] by migrating image of the running application
to the explicitly designated remote server. A cloudlet is a
trusted resource rich computer or cluster of computers that
is connected to internet and is accessible for SMDs. Mobile
device serve as a thin client providing only user interface
whereas actual application processing is performed on the
cloudlet in distributed environment. The proposed framework
is based upon transient customization of cloudlet infrastructure
using hardware VM technology in which VM encapsulates and

1300 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 3, THIRD QUARTER 2013

detaches the temporary guest software environment from the
cloudlet infrastructures permanent host software environment.
The framework employs variant procedures for VM migration.
The critical aspects are that the framework requires additional
hardware level support for the implementation of VM technol-
ogy and is based on cloning mobile device application pro-
cessing environment to remote host which involves the issues
of VM deployment and management on SMD, privacy and
access control in migrating the entire execution environment
and security threats in the transmission of VM.

Clone cloud based framework [6] is a significant approach
for offloading application of diverse nature in different man-
ners. Clone cloud differs from other approaches [7], [30] by
employing three different offloading algorithms for different
types of applications. However, the attribute of offloading
image of the running states of the application to remote
server resembles to the VM based Cloudlet [7] approach.
The framework reduces the dynamic transmission overhead
of application code by deploying a simple approach for
synchronization. Clone cloud employs Primary functionality
outsourcing by offloading computational intensive tasks to
remote host whereas simple tasks such as user interfaces are
executed on mobile devices. Examples of the applications
include speech recognition, image processing and video index-
ing. Background augmentation is implemented for applications
demanding no user interaction. Background augmentation of-
floads the entire application to remote host and communicates
results from background process to the mobile device. Exam-
ples of the applications include; antivirus and file indexing for
faster search. Mainline augmentation policy is deployed for
applications having mixed nature; having some computational
intensive computational load and need to interact with other
parts of the applications such as debugging applications. Clone
cloud [6] is a significant framework for offloaded processing
which includes a simple approach for synchronization between
SMD and remote server. The critical aspect of the Clone
cloud is the migration of execution environment to remote
server which involves the issues of security, privacy, access
control, VM deployment and management on SMD. The
deployment of variant strategies for application migration on
the basis of application nature results in enlarged overhead on
mobile devices. Clone cloud deploys a single thread approach
which increases jitter in the execution time of the application
components.

The elastic CloneCloud [36] extends the concept of local
Clone cloud [6] to remote cloud datacenters. The framework
is based on partitioning of the application on thread basis.
Partitioning and integration of the application occurs at appli-
cation level. The running states of the outsourcing components
of the mobile application are encapsulated in VM instance
and VM migration is employed for partition migration to
cloud node. The framework is implemented at application
level and centralized monitoring mechanism is used for the
establishment and management of distributed application ex-
ecution platform. CloneCloud [36] is a productive approach
for extending the concept of VM based offloading from
local distributed platform to centralized cloud servers. Offload
processing is monitored through a centralized mechanism. The
framework reflects on execution time and energy consumption

at mobile device for cost metrics. CloneCloud implements
a complicated architecture on SMD for the establishment
and management of distributed platform. The framework is
based on VM instance migration to the cloud node which
involves the concerns of secure communication of running
application states encapsulated in VM and privacy and access
on remote server node. A major limitation of the architecture
is that a single thread is migrated to the cloud at a time
which reduces concurrency of the execution of application
components. Virtualized execution environment for mobile
applications [42] is a VM migration based framework for
application offloading. The framework utilizes application
level process migration and employs android platform for
distributed application deployment. A running application is
encapsulated in VM on SMD and VM is migrated to remote
cloud computing environment. Cloud server creates fresh VM
instance, and the offloaded application VM is cloned into
the newly created VM instance on server. A synchronization
mechanism is provided between SMD and cloud server. A
middleware is placed between mobile device OS and hardware
to support runtime workload migration and to better utilize the
heterogeneous resources of mobile device and cloud servers.
The framework deploys pause and resume scheme of the
android platform for state transfer. The framework employs
application level process migration strategy for offload pro-
cessing and employs hardware base trusted platform module.
The framework provides mechanism for storing encryption
keys and performs cryptographic operations on sensitive data.
The critical aspects are that the framework requires heavy
and traffic intensive synchronization mechanism for ensuring
consistency between SMD and cloud server. The framework
entails a separate program called agent to be installed on
SMD and cloud server which results in additional overhead
on mobile device.

Mirror server [37] is a distinct augmentation framework
which employs Telecommunication Service Provider (TSP)
based remote services. A TSP is a type of communications
service provider which provides voice communication services
such as land line telephone and cellular phone call services.
A mirror server is a powerful server configured in TSP
backbone which maintains VM template for different mobile
devices platforms. The VM template for each mobile device
is kept with default settings. A new VM instance is created
for offloaded component of the mobile application. The VM
template for each mobile device is called its mirror and the
server responsible for the deployment and management of
the mirrors is called mirror server. The server creates fresh
VM instance as per the platform of the requesting SMD.
Mirror server is scalable and is capable to create hundreds
of mirrors at a time. Mirror server augments smartphones
by providing three different types of services; security (file
scanning), storage (file caching) and computation offloading.
The significant aspect of mirroring smartphone is that it
provides reliable services through 3G network and addresses
the challenging aspect of heterogeneity in SMDs platforms.
The framework provides a lightweight protocol for SMDs for
accessing remote services on mirror server and employs an
optimized mechanism for downloading and offloading. The
critical aspects of mirroring based DAPF is the deployment

SHIRAZ et al.: DISTRIBUTED APPLICATION PROCESSING FRAMEWORKS IN SMART MOBILE DEVICES FOR MOBILE CLOUD COMPUTING 1301

of TSP based mirror servers which are not basically designed
for data processing, for that reason limited services can be
acquired as compared to cloud datacenters.

The following section describes the generic sequence of
operations for VM migration based application offloading.
1) The first step for application offloading is to arbitrate for
appropriate surrogate or remote server host. Subsequently, the
running application is encapsulated in VM on SMD which
involves the creation of VM instance, VM configuration for
running application and encapsulating all the state information
of running application in VM instance. 2) VM instance is
migrated to the remote server through wireless medium.
VM encapsulates either entire application or partition of the
application. 3) A new VM instance is created on remote server
and the migrated VM is cloned onto the newly created VM
instance on remote server. Running states of the application
are resumed and application is executed on remote server
host. Finally, results are returned to the SMD. 4) Remote
server ensures complete isolation of guest VM which means
that the executing environment of guest VM is prevented
from interference. Fig.5 shows abstract level flowchart of VM
migration based application offloading.

2) Entire Application Migration Based Application Offload-
ing: Lightweight secure cyber foraging infrastructure [30] em-
ploys Virtual Server Manager (VSM) which handles requests
from SMDs for surrogate operations. SMD sends a request to
VSM which is composed of URL to the program to be exe-
cuted on surrogate. The entire program is downloaded on that
URL and executed remotely. The background augmentation
strategy of Clone cloud [6] employs entire application migra-
tion to remote host. The application is migrated to remote local
servers using VM instance migration and results are returned
from background process to the mobile device. Examples of
the applications include; antivirus and file indexing for faster
search. The virtual cloud computing provider solution for
mobile devices [13] is an ad-hoc cloud framework focuses
on the establishment of virtual cloud of SMDs. The virtual
cloud computing environment is composed of SMDs in the
proximity which are in the same locality and remain in stable
mode. Mobile devices in the proximity set up an ad-hoc or
virtual cloud environment and enables SMDs in the vicinity
to share computational load. The framework is composed
of different components. The context manager component
of the architecture maintains information regarding volunteer
SMDs for resource sharing. The offloading manger component
is responsible for sending and receiving entire applications,
management of runtime distributed environment and detecting
failure and failure management. Offload manager coordinates
with p2p component for application offloading and returning
results. Universal Mobile Service Cell (UMSC) based frame-
work is a unique mobile agent based optimization solution
which focuses on virtual cloud of mobile devices [38]. The
distinguishing features of the framework are the employment
of mobile agent (UMSC) for application offloading and virtual
cloud based service provision. The proposed architecture is
composed of mobile hosts, UMSC, and mobile cloud units.
Cloud unit support several services such as offload computing
and remote storage. The mobile cloud is composed of two
kinds of cloud units such as local cloud unit and remote cloud

Fig. 5. Flowchart for the VM Migration Based Application Offloading

unit. The framework uses UMSC for the offloading of entire
application to remote cloud unit. UMSC serves as a mobile
agent and works as a proxy for transmission between mobile
cloud and mobile host. UMSC is implemented as an intelligent
software module which carries the requests of users. UMSC
does not send request or responses to the network; instead
UMSC itself migrates into the cloud to search response. The
framework is composed of mobile agents in local mobile
cloud computing environment for mobile devices and uses a
genetic algorithm based scheduling policy for UMSC. The
mobile environment is divided into a large number of cell
regions. Each cell region is composed of several mobile cloud
units. The cloud units in the cloud regions collectively form
the virtual mobile cloud environment. Cloud units are the
mobile support stations for providing services. The framework
addresses the intrinsic issues associated with mobile com-
puting; mobility, heterogeneity, and low bandwidth. UMSC
based approach is a hybrid solution that combines mobile
agent technology with virtual cloud model composed of SMD.
UMSC employs mobile IP to compensate the problem of

1302 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 3, THIRD QUARTER 2013

mobility and provides a mechanism to overcome the problem
of mobile host disconnection. UMSC guarantees the quality
and stability of wireless connections. The critical aspects
are that distributed services are restricted to the availability
of mobile nodes in virtual distributed wireless environment.
The framework exploits localized approach for accessing
distributed resources and involves a decentralized monitoring
mechanism on SMDs which increase computing resources
demands on SMDs. The framework implements management
of mobile agents on mobile devices, which is a sophisticated
and resource consuming mechanism. Distributed Shell System
(DISHES) [43], is the extension of UNIX kernel shell to
support ubiquitous distributed computing platform for SMDs.
The architecture is composed of a centralized server, which
contains a Service Directory (SD). The ambient computers
register with the server which employs SD for maintaining
database of all the nodes willing for sharing resources. Mobile
clients make use of SD services for tracking appropriate
remote server. DISHES serves as an interface middleware
between a mobile user and network computers. SMD request
for the availability of remote host for application processing,
SD responds with the IP address of appropriate volunteer
remote host for application process. SMD offloads entire
application to remote host for remote processing and results
are returned to SMD on successful completion of the re-
mote processing. DISHES includes performance optimization
mechanism to monitor network traffic and provides remote
execution services in transparent manner. The critical aspects
of DISHES are the decentralized approach, unavailability of
centralized mechanism for the establishment and management
of distributed platform and entire application migration for
offload processing. DISHES imposes additional assistant pro-
cess creation on SMDs which involves intensive monitoring
overhead on SMDs.

Misco [35] is deployed for SMDs which extends the concept
of MapReduce to the distributed cloud environment which
is composed of centralized server and mobile worker nodes.
MapReduce is a flexible distributed data processing frame-
work which automatically parallelizes the processing of long
running applications in cluster environment [44]. In Misco,
master server is a centralized monitoring entity which is
responsible for the implementation of MapReduce framework.
A distinctive feature of the framework is that SMDs are the
worker nodes which serve as serving components for remote
application processing. All the worker nodes coordinate with
the master server for getting workload and returning result.
The communication between worker and master server occurs
through HTTP Server. All downloads and uploads between
master server and workers are performed in the form of
XML files. Map and reduce functions are identified by the
developers during the application development process. The
framework provides a distributed platform for mobile applica-
tions. Misco provides a centralized monitoring mechanism for
monitoring of the distributed execution platform. The critical
aspects are that the framework consists of worker mobile
nodes which are intrinsically resources poor and for that
reason the availability of computing services is restricted to the
computing potentials of SMDs. Misco requires the developers
to annotate the methods as map or reduce functions and does

not perform any centralized processing of application which
results in communication overhead repeatedly between worker
nodes and master server. Communication overhead increases
jitter in the process execution, bandwidth consumption and
energy consumption.

Tradeoff between energy savings and privacy protection
[45] addresses the issue of data privacy in offloading pro-
cessing. The focus of research is on the privacy of data sent
to the grid powered server. Stenographic techniques [46]-[47]
are exploited for disguising actual image from grid powered
servers. The authors focus on the fact privacy based offloading
in which the contents of the offloaded components are hidden
from the cloud node. The authors investigate the tradeoff
between energy consumption and privacy of offloading and
performed analysis of different execution patterns of the
applications. Different parameters are involved in the energy
consumption of mobile application processing; computation
power of mobile, network power, idle power of mobile device,
the speed of mobile system, speed of server, and bandwidth
of network. Cogniserve [39] is an optimized architecture for
the cloud server. The framework focuses on the processing
of recognition applications such as speech recognition and
image processing applications of mobile phones. Cogniserve
addresses the evolving feature of Mobile Augmented Reality
(MAR) for MCC. Cogniserve architecture is composed of
three main components: Application cores for processing over
cloud server; Application specific recognition accelerators for
performance improvement and decreasing latency; Architec-
tural support for general purpose programming and efficient
communication between small cores and accelerators. The
recognition server is composed of small cores connected via
interconnect to an integrated memory controller for attach-
ing it to DRAM. The design is composed of simple chip
multi-processor. Application specific accelerators are used to
further enhance the recognition execution time. Three types
of accelerators are deployed in the architecture; Gaussian
mixture model for speech recognition, match accelerator and
interest point detection for image recognition. The resulting
architecture is heterogeneous by integrating small cores. In
traditional models accelerators are treated such as input/output
devices, and are configured with drivers. Accelerators are
programmed using physical addresses in memory. For this
reason accelerators are difficult to program and the architec-
ture becomes inefficient for the reason that of the overhead
involved in user space and kernel space memory transitions.
CogniServe deploys the concept of instruction set architecture,
in which there is direct user access from the small core to
accelerator. For that reason the user to kernel mode transi-
tions has been eliminated. The architecture also utilizes the
concept of common memory management units which lead
the accelerator share virtual memory space with the core, as a
result of this it eliminated data movement overhead with the
kernel to user mode transition. CogniServe is an optimized
architecture for the processing of recognition applications
such as speech recognition and image processing applica-
tions of SMDs. The framework deploys heterogeneous server
architecture for recognition applications of mobile devices.
CogniServe provides direct access between server cores and
accelerators instead of kernel to user space transition which

SHIRAZ et al.: DISTRIBUTED APPLICATION PROCESSING FRAMEWORKS IN SMART MOBILE DEVICES FOR MOBILE CLOUD COMPUTING 1303

Fig. 6. Flowchart for Entire Application Migration Based DAPFs

eradicates address space transition and results in a low cost
and energy efficient architecture. The critical aspects are that
the framework requires special hardware level support for
the implementation and is specially designed for recognition
applications such as image processing and speech recognition
applications.

In [42] the framework employs application level process
migration and uses android platform for the deployment. A
running application is encapsulated in VM on SMD and VM is
migrated to remote cloud computing environment for remote
processing. Mirror server based approach [37] involves the
migration of the state of the entire running application on the
smartphone device to mirror instance on server. Application
is executed in the mirror VM instance and result is return
to the smart mobile device. Fig. 6 shows the abstract level
flow of offloading entire application/job to remote server node.
SMD arbitrate with cloud server nodes for the selection of
remote server node, at that moment entire application or
job is migrated to remote server node. Upon the successful
execution of the application on remote server ultimate results
are returned to SMD.

Virtual machines lead to high CPU utilization. VMs share
the same CPU/core which increases the CPU scheduling
latency for each VM significantly [41]. VM migration based

offloading requires additional computing resources and time
for the deployment and management of VM on SMD. Con-
sequently such approaches increase the execution cost and
time of the application. Migration of running application along
with its data and states is susceptible to security breaches and
attacks. Further, a number of other research challenges [48]
such as privacy and access control are still addressable which
obstruct the goals of optimal VM based migration algorithms
for MCC.

3) Application Partitioning Based Application Offloading:
Partitioning of the mobile application at runtime is a prominent
approach for outsourcing the intensive components of mobile
applications. Elastic mobile applications are capable to be
partitioned at runtime for coping with the resources constraint
on SMD. Elastic applications are partitioned either statically
or dynamically at runtime. The following section classifies and
reviews existing approaches on the basis of static or dynamic
offloading.

Static Partitioning Based Application Offloading: In static
application partitioning the application is partitioned in fixed
number of partitions either at compile time or runtime. The
computational intensive partitions of the applications are out-
sourced to remote servers for offload processing. Current
DAPFs deploy a number of approaches for making the de-
cision of partitions outsourcing. In the primary functionality
offloading [7]; application is statically partitioned in two major
partitions. Such applications involve two types of processing;
user interface required on mobile device; and computational
intensive parts of the application are offloaded to remote
surrogates or cloud servers. In MISCO [35] the application
is statically partitioned into two types of functions; map and
reduce. Map function is applied on the set of input data
and produces intermediary ¡key, value¿ pairs; such pairs are
grouped into a number of partitions. All pairs in the same
partition are passed to a reduce function which produces
the final results. Application developers are responsible for
implementing the map and reduce functions and the system
handles all the remaining mechanism. The worker nodes
process map and reduce functions and results are returned to
master server.

Dynamic Partitioning Based Application Offloading: Dy-
namic partitioning of the intensive mobile application at
runtime is a robust technique for coping with the dynamic
processing loads on SMD. Current dynamic partitioning ap-
proaches analyze the resources consumption of SMDs, com-
putational requirements of the mobile application and search
for runtime solving of the problem of resource limitations
on SMD. In [49] a middleware framework is introduced for
sharing the application processing load on SMD dynamically
between cloud server node and mobile client. Objective of
the framework is to deploy the application in optimal mode
by automatically and dynamically determining the execution
location for modules of an application. Application profiling
component of the architecture partitions the application in
modules on the basis of its behavior and represents modules
in the form of data flow graph known as consumption graph.
The framework exercises existent module management such as
R-OSGi [48] and deployment tool such as AlfredO [50]. The
framework implements both static partitioning and dynamic

1304 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 3, THIRD QUARTER 2013

partitioning strategies. K-Step and ALL algorithms are used
for application partitioning. K-Step is deployed for dynamic
partition at runtime whereas ALL is employed for static
partitioning of the application. Preprocessing of the con-
sumption graph is performed before running the algorithm to
reduce search space. Preprocessing separates local and remote
bundles of the application. It looks for the bundles (application
modules) that produce a very high cost in offloading and for
that reason are not feasible for offloading. The framework
employs both static and dynamic partitioning algorithms for
the establishment of runtime distributed platform between
SMDs and cloud datacenters. A significant aspect of the
framework is that SMDs are assigned application processing
load on the basis of the availability of memory and pro-
cessing capacity. The framework derives optimal solution for
optimization problem in order to optimize different objective
functions such as interaction time, communication cost, and
memory consumption. The critical aspect of the framework
is the runtime partitioning strategy which obliges SMDs for
additional computing resources consumption in the dynamic
analysis, profiling, synthesizing, partitioning and migration.
The framework requires SMD to continuously synchronize
with the cloud server node which requires maintaining SMD
in active state for the entire duration of distributed platform.
Active state of mobile device for a longer period of time results
in high energy consumption [51]-[52].

AIDE [34] establishes distributed platform composed of
different computing devices such as laptops, PCs, PDAs,
and smartphones. The framework is composed of surrogate
server and mobile device client. SMD searches for suitable
surrogate to share application processing load. The parti-
tioning component of the AIDE partitions the application
by following a partitioning policy. The framework exercises
class level granularity for partitioning of application. An
application profiling component establishes the feasibility of
offloading. Application profiler reflects on two parameters,
the execution history of the application and prediction of
the future resources required for the application. Profiler
aims for offloading the components that could improve the
performance of the system. Partitions are offloaded to the
remote surrogates. AIDE provides a transparent distributed ap-
plication deployment framework for mobile applications. The
sophistication of application migration and remote execution
are masked from mobile users. AIDE employs a dynamic
partitioning and migration approach for offload processing
and employs computing services of the remote hosts in the
local distributed environment. AIDE implements distributed
execution platform in transparent manner to give the user the
notion of application being executed on local device. AIDE
incorporates the option to use multiple surrogates for remote
execution. The critical aspects of AIDE are that the runtime
partitioning of the application requires additional computing
resources exploitation for the establishment of distributed
platform. AIDE is a decentralized distributed platform for
dynamic partitioning and migration; for that reason SMDs
need to monitor the execution environment which imposes
heavy monitoring overhead on SMD.

Mobile Assistance Using Infrastructure (MAUI) [40] is a
dynamic partitioning framework which focuses on energy

saving for SMD. MAUI partitions the application dynamically
at runtime in which the computational intensive components
of the application are offloaded to the cloud server nodes.
Programmers annotate the individual methods of the applica-
tion as local or remote. MAUI profiler determines the remote
methods of application to be offloaded to cloud server. Each
time a method is called, the profiler component assesses it for
energy saving which exploits additional computing resources
(CPU, energy) on SMD. MAUI solver decides the destination
of execution for the method annotated as remote. The decision
of MAUI Solver is based upon the input of MAUI profiler.
Proxies of the application are created for execution on both
cloud server node and mobile device for communication be-
tween local methods and remotely executable methods. MAUI
generates a wrapper for each method marked as remote at
compile time. The wrapper has similar method type signature,
however with two changes; one additional input argument,
and one additional return type. Input argument is required
for the state transfer of smartphone to MAUI Server through
client application proxy. The additional return value is used
to transfer the application state back from the server to smart
mobile device using server proxy. State of the method is
transferred in serialized form.

MAUI is a cloud server based dynamic partitioning frame-
work which considers energy saving on SMD as the main
objective function for offload processing. MAUI masks the
complexity of remote execution from mobile user and gives
the notion as the entire application is being executed on SMD.
The framework is based upon method state migration as a
substitute of method code migration. MAUI copes with the
mobility of the mobile user and provides optimized solution
periodically to adapt to the changes in network and user loca-
tion. The critical aspect of MAUI is the dynamic partitioning
of the application at runtime which activates the profiler and
solver component dynamically to determine execution point
for application partitions. Development of the applications on
the basis of MAUI requires additional developmental efforts
for annotating the execution pattern of each individual method
the application. MAUI deploys full proxies of the application
on both SMD and cloud datacenter. MAUI obliges the over-
head of dynamic application profiling, solving, partitioning,
migration, and reintegration on SMD.

CloneCloud [36] employs dynamic partitioning of the ap-
plication at runtime. Partitioning and integration of the ap-
plication occurs at application level dynamically. Partitioning
phase of the framework involves; static analysis, application
dynamic profiling, and optimization solution. Mobile device
uses preprocess migratory thread to assist a process with
suspending, packaging, resuming and merging thread states.
In [39] the issue of application partitioning between mobile
devices and clouds is addressed. Authors model the parti-
tion optimization problem through a mathematical expression,
which includes cost of execution of each module on mobile
device, cost of execution of each module on cloud, and the
cost of communication between the two modules. Variant
objective functions are considered for partitioning; minimize
execution time, minimize battery power consumption or cost
of execution of the application. Elastic application model
for augmenting the computing capabilities of mobile devices

SHIRAZ et al.: DISTRIBUTED APPLICATION PROCESSING FRAMEWORKS IN SMART MOBILE DEVICES FOR MOBILE CLOUD COMPUTING 1305

[14] provides a middleware framework for elastic mobile
applications. Application is partitioned into weblets and mi-
grated dynamically between mobile device and remote cloud
server. Variant elastic patterns are used for the replication of
weblets on the remote cloud. The execution destination for the
weblet is determined dynamically at runtime. The framework
considers different parameters for offload processing of the
weblets such as status of the mobile device, cloud, application
performance measures and user preferences which comprise
power saving mode, high speed mode, low cost mode and
offload mode. The framework considers an optimal cost model
for the execution configuration of the weblets. The cost model
considers different costing factors such as power consump-
tion, monetary cost, performance attributes and security and
privacy.

The framework proposes a security mechanism for ensuring
the integrity of communication between SMD and Cloud
server [53]. Upon downloading weblet on SMD, the integrity
of each weblets is ensured by the installer of the device by re-
computing hash value for each weblet and comparing it with
the hash value stored in the weblet. The installer registers the
application with Device Elasticity Manager (DEM). The DEM
maintains a table of installed applications on the device which
need elasticity manager support. The table maintains detailed
information about weblets such as signed hashed values and
migration settings. Several parts of the elastic application are
installed on Cloud Elasticity Service (CES). CES maintains
installed applications for users. For this purpose users register
with CES and authenticate with CES during installation. The
cloud based application manager is able to download the
application code from an application store instead of uploading
from mobile device. The node manager executes the weblet
binary provided by application manger. The local weblet can
query DEM to obtain the list of all active weblets in the same
session. The local weblet can broadcast the URLs returned by
DEM to any other weblet that needs to communicate.

The implications of elastic application model [14] are that
the framework accomplishes application level partitioning and
migration of applications. The framework employs a compre-
hensive cost model to dynamically adjust execution configura-
tions and optimizes application performance in terms of a set
of objectives and user preferences. The framework provides
a security mechanism for the authentication and authorization
of weblets migration and reintegration and provides support
for synchronization between application on mobile device and
weblets running on cloud node. The critical aspect is the
establishment of runtime distributed platform for SMD which
necessitates additional computing resources exploitation for
the establishment and management of distribute platform. The
framework deploys replication of the application both on the
mobile device and application manager of the cloud server.
The framework implements a sophisticated mechanism for
the migration of weblets between SMD and remote cloud
nodes. The framework imposes extensive overhead of ap-
plication profiling, dynamic runtime partitioning, migration,
reintegration, and rigorous synchronization on mobile devices
for offload processing. Fig. 7 shows a generic flowchart
for application partitioning based offloading frameworks. The
profiling mechanism evaluates computing resources require-

Fig. 7. Flowchart Partitioning Migration Based DAPFs

ments of mobile application and the availability of resources
on SMD. Profiling mechanism works differently in different
frameworks. The critical situation indicates the unavailability
of sufficient computing resources on SMD. Therefore, the
computational intensive components of the application are
separated at runtime. SMD negotiate with cloud servers for
the selection of appropriate server node. At that moment
partitions of the application are migrated to remote server
node for remote processing. Upon successful execution of the
remote components of the application, result is returned to
main application running on SMD.

IV. COMPARISON OF APPLICATION OFFLOADING
FRAMEWORKS BY USING THEMATIC TAXONOMY

This section compares current DAPFs on the basis of
taxonomy presented in Fig. 4. We classify application of-
floading frameworks in two categories: (1) local resources
utilization frameworks and (2) centralized server resources
utilization model for application offloading. It investigates
commonalities and deviations in such frameworks on the
basis parameters presented in the taxonomy. The comparison
parameters considered are: Offloading Scope (OS), Parti-
tioning Approach (PA), Migration Support (MS), Migration
Granularity (MG), Developer Support (DS), Migration Pattern
(MP) and Execution Monitoring (EM). Table 2 compares local
application offloading frameworks, whereas table 3 compares
server based application offloading frameworks on the basis
of such parameters.

1306 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 3, THIRD QUARTER 2013

TABLE II
COMPARISON OF LOCAL RESOURCE SHARING BASED APPLICATION OFFLOADING FRAMEWORKS

Framework OS PA MG MS MP SS DS EM
Distributed
Platform for
Resources
Constrained
Devices [34]

Local Distributed
Environment

Dynamic Class Level Application
Level

Application
Transfer

No Not
Required

Decentralized

Secure Cyber
Foraging [30]

Local Distributed
Environment

n/a Entire
Application

System
Level for
VM

Binary File
Download

Yes Required Centralized

Clone cloud [6] Local Distributed
Environment

Static Entire
Application/
Partitioning

System level VM Instance No Required Decentralized

Optimized Solu-
tion for Mobile
Devices [38]

Ad-Hoc Cloud of
Mobile devices

n/a Entire
Application

Application
Level

UMSC No Not
Required

Decentralized

VM-Based
Cloudlets [7]

Local Distributed
Environment

n/a Entire
Application

System
Level

VM Instance No Not
Required

Decentralized

DISHES [43] Local Distributed
Environment

n/a Entire
Application
offloading

System
Level

Binary File
Download

No Not required Centralized

Virtual Cloud
Computing [13]

Ad-hoc Mobile
Cloud

n/a Entire
Application

Application
Level

Application
Transfer

Yes Not required Decentralized

MISCO [35] Cloud of mobile
nodes

Static Method level Application
Level

Binary File
Download

No Required Centralized

The offloading scope a application offloading framework
indicates the scope of distributed platform established at
runtime. Current DAPFs implement application offloading by
accessing the services of local computing devices or remote
cloud server nodes. In the local resources utilization model
the services and resources of the local computing nodes are
utilized. The traditional local DAPFs implement application
offloading by employing the following three different types
of decentralized local computing resources utilization ap-
proaches. a) Surrogate based distributed model is composed of
remote servers which are accessible in the local environment.
The surrogate servers can be stationary or mobile remote
computer which is accessible in the local environment of
SMD. Mobile device is enabled to select an appropriate
surrogate at runtime for application offloading. In such model
a centralized monitors the establishment of distributed plat-
form and provision of computing resources [30]. b) Mobile
devices based distributed platform is a virtual or ad-hoc cloud
computing model in which distributed SMDs in the close
proximity participate in resources sharing [13], [38]. The
peer SMDs are enabled to share computing resources and
provide remote services. In such an environment, sharing
of the computing resources and services is restricted to the
computing capabilities mobile devices and services shared
by SMDs involved in the virtual cloud environment. The
unavailability of centralized mechanism for the establishment
and management of virtual cloud is a challenging aspect
of virtual cloud model. c) In centralized server based mo-
bile devices distributed platform, the computing services are
provided by mobile worker nodes. However, a centralized
server monitors the established and management of distributed
application execution platform [35]. In such a distributed
computing model, distributed resources and services provision
are restricted to the computing potentials and services of
worker nodes (SMDs). Fig. 8 highlights different models

employed for the distributed application processing platforms
in application offloading.

The partitioning approach attribute of the DAPF represents
the partitioning strategy of the framework. Current DAPFs
implement application partitioning in two different ways; static
partitioning and dynamic partitioning. a) In static partitioning
the application is partitioned in fixed number of partitions only
once [6], [35], [49]. Static application partitioning is a simple
and lightweight approach for application offloading; however
it lacks the features of addressing the issue of dynamic work-
load on SMDs. b) In dynamic partitioning the elastic mobile
application is partitioned dynamically at runtime. The dynamic
portioning approach is implemented to cope with the issue
of dynamic application processing load on SMDs at runtime.
Dynamic partitioning of the intensive mobile application at
runtime is a robust technique for coping with the dynamic
processing loads on SMD [14], [34], [36], [49], [40]. The
entire application migration frameworks which do not involve
application partitioning are represented as n/a in PA column
of Table 3 and Table 4.

The attribute of migration granularity represents the level of
granularity of offloading intensive components of the mobile
application. The finer granularity level results in outsourcing
computational load at refined level. However, refined level
granularity requires highly intensive monitoring mechanism
on SMD at runtime [6], [7], [38], [35], [14], [34], [36],
[40]. The refined level granularity requires resources intensive
synchronization mechanism between SMD and cloud server
node. Further, finer granularity level has the issue of ensuring
consistency in the distributed execution of mobile application.
On the other side, the abstract level of granularity results
in simple offloading mechanism and requires low monitor-
ing overhead on SMD [6], [13], [30], [42]-[37], [43], [45],
[39], [40]. However, abstract level of granularity results in
increased data transmission overhead and therefore increases

SHIRAZ et al.: DISTRIBUTED APPLICATION PROCESSING FRAMEWORKS IN SMART MOBILE DEVICES FOR MOBILE CLOUD COMPUTING 1307

Fig. 8. Local Application Offloading Models

security threats of the outsourcing components of the mobile
application. For example, migration of an entire application
[7], module or component [49], [54] of the mobile applica-
tion is more vulnerable to network threats as compared to
the outsourcing thread [36] or method [40] of the mobile
application. For the reason that eavesdropping of finer level
code is less meaningful to the attackers as compared to
the entire module or component of the mobile application.
Current DAPFs implement the following granularity levels for
application offloading. a) Module level migration represents
that entire module or bundle of the application is migrated
to remote environment [49], [54]. b) Method level migration
represents that partitioning occurs at the method level and
intensive methods of the application are migrated to remote
server [40]. c) Object level migration represents that entire
object is migrated to remote environment for outsourced
processing [45], [39]. d) Thread level migration represents
thread level partitioning and migration of the application to
remote environment [36]. e) Entire application migration in
which case entire application is offloaded to remote server
[6], [7], [13], [30], [42], [37], [38]. The attribute of migra-
tion support represents the level of support required for the
migration of application. The mechanism of application of-
floading increases resources utilization on SMD. Specifically,
the resources utilization for the operating system increases
in application offloading mechanism. Currently, a number of
application offloading frameworks require additional support
from the operating system; such as VM deployment and man-
agement [6], [7], [30], [43], [36]. Such offloading frameworks
are represented as System Level in Table 3 and Table 4. On
the other hand, the latest application offloading frameworks
implement component offloading at application level and do
not require additional support for component outsourcing [13],
[35], [14], [34], [42]-[37], [38], [45], [39], [49], [55], [47]].
Such frameworks are repressed as Application Level in Table
3 and Table 4.

The attribute of migration pattern represents the mechanism
of transfer intensive applications to remote server nodes at
runtime. Current DAPFs implement the mechanism of applica-
tion offloading in a number of ways. The following migration
patterns are practiced for traditional application offloading
frameworks. a) Application transfer is a migration pattern
in which the binary code of the application is outsourced
to remote server [13], [34], [40]. b) URL download based
migration pattern represents a migration pattern in which a
URL is provided to remote host and application is downloaded
from that URL as a substitute of transferring the application
directly from SMD [35], [14], [30]. c) VM Instance represents

a migration pattern in which the application is encapsulated
in VM instance (partially or entirely) and the VM instance
is migrated to remote server. A fresh VM instance is created
on the remote server and guest VM instance is copied to the
freshly created VM on remote server [6], [7], [36], [42], [37].
d) UMSC is a migration pattern in which mobile agent is
employed for the migration of outsourcing application [38].
UMSC serves as a courier for the migration of the application
between SMD and remote server. e) Module/Bundle transfer
represents a migration pattern in which binary files of the
modules of the application are migrated to remote servers
[49]. f) Application proxy is a migration pattern in which
entire proxies of the application are maintained on the local
SMD and remote cloud server node [40]. g) Object transfer
is a migration pattern in which entire object is outsourced to
remote server at application level [45], [39]. The attribute of
security support represents the security provision attribute of
the DAPFs. Security is an important parameter for application
offloading frameworks. Current DAPFs which implement se-
curity mechanisms for application offloading are represented
with the value Yes, whereas the frameworks which lack in the
provision of security mechanism for application offloading are
represented with the value No. A number of current DAPFs
required developers support for defining execution scope of
the components of application at different granularity level.
Such approaches restrict application developers to classify
and annotate the components of mobile application as local
or remote. The attribute of DS shows the requirement of
additional support required for the development of the applica-
tion. Therefore, the traditional application offloading models
which require developer support [6], [35], [14], [30], [40]
are represented as required, whereas the frameworks which
do not require developers support [7], [13], [30], [33], [36],
[38]-[43], [49], [40] are represented as Not required. The
attribute of execution management shows the management
policy for the deployment and management of runtime dis-
tributed application platform. Current DAPFs are classified
in two categories from the perspective of execution manage-
ment. Decentralized management represents the deficiency of
centralized mechanism for the deployment and management
of distributed platform [6]-[7], [13], [30], [38]. Therefore,
SMDs are responsible for monitoring distributed platform
and distributed application execution. Therefore such frame-
works results in larger overhead of the distributed application
deployment at runtime. Centralized management represents
that a centralized management and monitoring mechanism
is provided for the establishment of distributed platform and
monitoring of application execution [35]-[14], [36], [42], [37],

1308 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 3, THIRD QUARTER 2013

TABLE III
COMPARISON OF SERVER BASED APPLICATION OFFLOADING FRAMEWORKS

Framework OS PA MG MS MP SS DS EM
Calling the Cloud
[49]

Cloud Server Static/
Dynamic

Modules
(Bundle)

Application
Level

Bundles
Transfer

No Not
Required

Centralized

MAUI [40] Cloud Server Dynamic Method
Level

Application
Level

Application
Proxy

No Required Centralized

Dynamically
Partitioning
Applications [54]

Cloud Server Dynamic Module level Application
level

Application
Transfer

No Not
Required

Centralized

Energy Savings
and Privacy
Protection [45]

Grid Server n/a Image
Object

Application
Level

Object
Migration

No Not
Required

Centralized

CloneCloud [36] Cloud Server Dynamic Thread System
Level

VM Instance No Not
Required

Centralized

COGNISERVE
[39]

Cloud Server n/a Entire Job Application
Level

Object
Migration

No Not
Required

Centralized

Elastic Applica-
tion Model [14]

Cloud Server Dynamic Bundles
(Weblets)

Application
level

URL down-
load

Yes Required Centralized

Mirroring Smart-
phones [37]

TSP Based
Server

n/a Entire Appli-
cation

Application
Level

VM Instance Yes Not
Required

Centralized

Virtualized
Execution
Environment
[42]

Cloud Server n/a Entire Appli-
cation

Application
Level

VM Instance No Not
Required

Centralized

[43], [45], [39], [49], [40]. The following Table shows the
comparison of local DAPFs for smart mobile devices.

Localized application offloading frameworks employ de-
centralized monitoring approach for process offloading which
results in the extensive involvement of SMDs for the man-
agement of distributed processing. Further, local offloading
frameworks are deficient in the centralized management and
the availability of resources for the provision of remote
services. In the scenario of unavailability of local remote
service provider, remote services become inaccessible which
hinders the objectives of availability and scalability of services
in distributed computing paradigm. To cope with the issues
of decentralized DAPFs centralized server based solutions
are exercised. The server based resources utilization models
utilize computing resources and services of centralized servers.
The availability of centralized servers lessens the monitoring
overhead on SMD in the deployment and management of run-
time distributed platform. Further, centralized servers assist in
ensuring the availability of resources and services. The server
based DAPFs implement application offloading by employing
the following three different types of centralized computing re-
sources utilization approaches. a) Grid server based distributed
platform in which remote services are provided by Grid servers
[45]. b) Telecommunication Service Provider (TSP) based
distributed platform in which remote services are configured
at TSP servers [37]. c) A cloud datacenter based distributed
platform is established by leveraging computing power poten-
tials of cloud datacenters. Distributed computing services are
provided through service providers by employing the vision of
utility computing paradigm [14], [36], [42], [39], [49], [40].
Server based application offloading frameworks accomplish
outsourced application processing in diverse modes. Several
approaches exploit VM cloning; others focus on part(s) of
the application to be offloaded. A number of approaches
implement dynamic application partitioning whereas other
focus on entire job migration. Diverse objective functions
are considered; saving processing power, efficient bandwidth

utilization, saving energy consumption, user preferences, and
execution cost. Table 3 compares server based offloading
frameworks in which centralized resources are available for
the provision of remote services.

Server based DAPFs provide centralized management and
ensure availability of remote services. However, a number of
obstacles obstruct optimization goals of server based remote
application processing. In the following section, we discuss
issues in current DAPFs and identify challenges for leveraging
the application processing services of computational clouds.

V. CHALLENGES AND ISSUES FOR DISTRIBUTED
APPLICATION DEPLOYMENT

Table 4 summarizes challenges to current DAPFs and open
research issues in cloud datacenters based distributed appli-
cation processing. Issues indicate the unresolved problems
in current DAPFs whereas challenges indicate the issues of
research in distributed application processing for MCC that
remain to be addressed. The following section discusses issues
in current offloading frameworks and identifies challenges to
the cloud based application processing of resources intensive
mobile applications.

A. Scalability and Availability of Services and Resources

Scalability of services is a challenging aspect of distributed
application processing in mobile cloud computing. The tradi-
tional local DAPFs [6], [7], [13], [16], [35], [34] for remote
application processing are deficient in centralized management
of the distributed platform. A challenging issue in local DAPFs
is the unavailability of centralized resources. For example;
in the scenario of unavailability of remote service provider,
remote services become inaccessible which hinders the ob-
jectives of availability of services in distributed computing
paradigm. Similarly, local resources are accessible to limited
number of mobile devices in the local environment. Therefore,

SHIRAZ et al.: DISTRIBUTED APPLICATION PROCESSING FRAMEWORKS IN SMART MOBILE DEVICES FOR MOBILE CLOUD COMPUTING 1309

TABLE IV
CHALLENGES AND ISSUES IN DISTRIBUTED APPLICATION PROCESSING FOR MCC

Challenge to
Current DAPFs

Open Issues in Distributed Pro-
cessing for MCC

Unavailability of centralized resources and services in local distributed models. Yes
Successful execution of remote processing and returning result to SMD in ad-hoc/ virtual
distributed models.

Yes Yes

Optimal operating procedure with minimum possible computing resources utilization
on SMD for the establishment and management of distributed Platform.

Yes Yes

Scalability of Services and resources. Yes Yes
Minimum resources exploitation on SMD while sustaining elasticity of mobile applica-
tions.

Yes

Minimum dynamic runtime profiling and solving overhead on SMD for the establish-
ment of runtime distributed processing platform.

Yes Yes

Lightweight distributed management mechanism on SMD. Yes Yes
Ensuring trustworthy remote processing environment. Yes Yes
Providing authorized access to legitimate mobile users. Yes
Integrity of offloading components of the application. Yes
Convenient developmental and deployment procedures. Yes
Deficiency of design level support for distributed processing of mobile application. Yes
Analogous extension of cyber foraging to centralized cloud based remote processing Yes
Transparent distributed platform. Yes Yes
Coping with intrinsic limitations of wireless medium. Yes
Seamless Connectivity to cloud servers. Yes
Heterogeneity of mobile device architecture and operating system platforms. Yes Yes

the possibility of inaccessibility of the remote services al-
ways remains associated in local distributed models. Whereas,
scalable systems ensure the provision of services irrespective
of the number of clients accessing the services. Therefore,
unavailability of centralized resources and services and scala-
bility of services is a challenging research issue for ad-hoc and
virtual distributed models of MCC [13], [38]. It is challenging
to implement peaceful degradation policy on SMDs in the
critical conditions of unavailability of remote services. Scal-
able systems sustain the provision of services and resources
for large number of clients whereas availability of services
ensures the provision of remote services. It is imperative to
ensure the scalability of services in cloud datacenters so that
SMDs are enabled to access centralized services for distributed
application deployment with high aim of scalable remote
services. In centralized datacenter based computational cloud
are resources rich and computational resources and services
are provided on demand basis. Cloud resources and services
are accessible to both stationary computer clients and SMDs.
However, the unique architecture, compact design, operating
platforms, low computing potentials, and portable mobile
nature of smart mobile devices require special services for
ensuring the availability of cloud services. The mobile nature
and the intrinsic limitations associated with the wireless access
medium of SMD necessitate availability of cloud services
and resources homogeneously worldwide. It is challenging in
cloud based processing of mobile applications to ensure the
availability of services and identical access to cloud services
over different types of wireless network technologies (Wi-Fi,
3G and LTE). Therefore, sustaining uninterrupted provision
of cloud services and resources to SMDs is a challenging
research perspective of mobile cloud computing.

B. Distributed Application Deployment

In current DAPFs, resources intensive distributed platform is
established at runtime. Mobile applications offloading frame-

works are developed on the basis of standalone application ar-
chitecture, whereas the processing of application is performed
in the distributed fashion. As a result, current DAPFs establish
a resources intensive and complex computing environment
at runtime. Application offloading techniques are primarily
based on either entire application/job migration or application
partition migration to remote servers. The implementation of
distributed architecture for virtual mobile cloud is hindered
by the following obstructs. a) Local distributed processing
models lack in the availability of centralized management;
for that reason it is difficult to configure explicitly defined
client and server components for the mobile applications.
b) Virtual clouds necessitate special requirements for the
establishment of distributed platform which is challenging to
maintain for mobile devices which are participating in ad-
hoc cloud. The special requirements include; SMDs remain
in the close proximity, follow the same movement patterns,
voluntariness for service and provision, implementation of
specific service architecture [13]. SMDs in the virtual cloud
exploit additional computing resources for the configuration of
distributed platform and management of distributed services
provision to the requesting client devices. Further, shorter
battery life time of SMDs is major challenge in virtual/ad-
hoc distributed application processing models. Therefore, the
ad-hoc and virtualized nature of local distributed platform
is another obstacle in explicitly defining client and server
components of the mobile application. However, the avail-
ability of centralized resources and services and central-
ized management mechanism in cloud datacenters are the
motivating factors for incorporating distributed architecture
for the intensive mobile applications. The implementation
of client/server model can be a potential alternative for the
traditional standalone intensive mobile applications for mobile
cloud computing. On the other hand, traditional client/server
model has the limitations of reliability of client application
on server application. Applications are configured in such a
manner so that client applications remain dependent on the

1310 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 3, THIRD QUARTER 2013

server application. Whereas, the wireless access medium is
the main inhibiting factor for implementing highly dependent
client/server model for intensive mobile applications in MCC.
Hence, it is challenging for distributed mobile application
to incorporate the principles of distributed applications in
such a manner so that mobile applications can operate in the
situations of inaccessibility of cloud server nodes.

C. Seamless Connectivity and Consistent Distributed Platform

Mobility is an important attribute of SMDs. Mobile users
enjoy the freedom of computing and communication on
move. However, a number of obstacles hinder the goals of
seamless connectivity and consistency in the distributed plat-
form of mobile applications; for example handoffs, traveling
with high speed, diverse geographical locations and different
environmental conditions. As a result, providing seamless
connectivity and uninterrupted access to the centralized cloud
datacenters in distributed application processing is a serious
research issue for MCC. It is important that distributed ap-
plication model provide versatile access to cloud resources
and services on move with ubiquitous attributes and high
degree of transparency. However, it is challenging to ensure
the transparency of distributed environment. In particular to
SMD, the issues and limitations in wireless medium hinder
the transparency goals of distributed processing of mobile
application. The seamless and transparent deployment of
distributed platform for computational intensive applications
is a challenging aspect for mobile cloud computing. It is
mandatory for distributed model to mask the complexities of
distributed environment from mobile user and give the notion
as the entire application is being processed locally on SMD.
Similarly, it is important to ensure successful execution of
remote processing and returning results to SMD. Sustaining
consistency of the offloaded components of the application
with lightweight implementation procedures is a challenging
aspect of DAPFs. Consistency is an issue for the components
offloaded at runtime [14], the replicated applications using
proxies [40], and transactions involving related updates to
different objects. It is important that the distribution and
replication of intensive mobile applications and data should
be transparent to the mobile users and application running
client device. Cloud based distributed processing of mobile
application are required to fulfill Atomic, Concurrency, Iso-
lation and Durability (ACID) properties of the distributed
systems. It is challenging to provide location transparency,
replica transparency, concurrency transparency, and failure
transparency in cloud based application processing of mobile
applications.

D. Homogenous and Optimal Distributed Platform

Homogenous and optimal cloud based application process-
ing is an important research perspective in mobile cloud
computing. Heterogeneity of SMD architecture and operating
platform is challenging for distributed application processing
in MCC. Mobile device vendors employ different hardware
architecture and operating system platforms for the specific
mobile product. Traditional application offloading frameworks
focus on the implementation of platform dependent procedures

for outsourcing computational intensive loads. For example,
Weblets [14] and MAUI [40] are application offloading frame-
works which are applicable for .Net framework, whereas
virtualized execution framework [42] and mirror server [37]
are suitable frameworks for android platform. Therefore,
homogenous access to cloud services are highly expected
wherein SMD are enabled to access widespread computing
services of computational clouds irrespective of the concerns
about operating hardware architecture and operating system
platform. A homogenous distributed application deployment
solution for the heterogeneous available SMDs platforms is a
challenging issue for MCC. In [56], we propose a tripod of
requirements with three legs of trust, energy efficiency, and
ubiquity. It describes important metrics such as heterogeneity,
under this tripod which are crucial for the success of cloud-
mobile applications. Similarly, the deployment of distributed
application processing platform at runtime [13], [14], [30],
[41], [40] is a resources intensive mechanism. It uses com-
puting resources on SMDs for the evaluation of computing
resources utilization on SMDs and partitioning of intensive
mobile applications at runtime. Current, DAPFs necessitate
continuous assessment of application execution requirements
on SMD which is a resource intensive operation. DAPFs
employ runtime profiling and solving mechanism on SMDs
periodically or casually to evaluate application processing
requirements and the availability of computing resources on
SMD [14], [40]. The centralized distributed application de-
ployment models require arbitration of SMD with centralized
server for the selection of appropriate server node. As a
result, computing resources (CPU, battery power) of SMD
are exploited abundantly for the entire process of application
profiling and solving. The deployment of distributed platform,
management and operation of remote application processing
in the optimal possible fashion is an important perspective of
cloud based application processing. It is challenging to provide
homogenous solution for heterogeneous devices, operating
platforms and network technologies with minimum possible
resources utilization on the SMDs.

E. Security and Privacy in Cloud Based Application Process-
ing

Privacy in the distributed platform and security of data
transmission between mobile device and cloud server node
are important concerns in cloud based application processing.
Privacy measures are required to ensure the execution of
mobile application in isolated and trustworthy environment,
whereas security procedures are required to protect against
network threats. Security and privacy are very important
aspects for the establishing and maintaining the trust of mobile
users in cloud based application processing. Security in MCC
is important from three different perspectives: security for
mobile devices, security for data transmission over the wireless
medium and security in the cloud datacenter nodes. SMDs are
subjected to a number of security threats such as viruses and
worms. SMDs are the attractive targets for attacker. According
to a report [57] the number of new susceptibilities in mobile
operating systems increased 42 percent from 2009 to 2010.
The number and sophistication of attacks on mobile phones is

SHIRAZ et al.: DISTRIBUTED APPLICATION PROCESSING FRAMEWORKS IN SMART MOBILE DEVICES FOR MOBILE CLOUD COMPUTING 1311

increasing speedily as compared to the countermeasures. Data
transmission over the wireless networks is highly vulnerable to
network security threats. For example, using radio frequencies,
the risk of interruption is higher than with wired networks
therefore attacker can easily compromise confidentiality [58].
Similarly, in cloud datacenters the security threats are asso-
ciated with the transmission between physical elements on
the network, and traffic between the virtual elements in the
network, such as between virtual machines within a single
physical server. Therefore, in order to leverage the application
processing services of computational clouds, a highly secure
environment is expected at all the three entities of MCC
model. In current DAPFs, transmission of the running states of
mobile application which is encapsulated in VM [6], [7], [49],
[42] or binary transfer of the application code at runtime [35],
[30], [43], [49] is continuously subjected to security threats
at mobile device, wireless medium and cloud datacenters.
Therefore, secure transmission of the entire components of the
application is a challenging issue for MCC. It is imperative to
implement reliable security measures for the data transmission,
and synchronization between SMD and cloud datacenters in
distributed processing platform. Similarly, access control, fi-
delity and privacy of distributed application components in the
remote cloud datacenters is an important consideration for the
distributed application processing in MCC. Cloud datacenters
provide augmentation services which are unapproachable to
mobile users. Therefore, it is highly demanding to ensure the
privacy of data and computing operations in remote server
nodes. A trustworthy distributed application model is highly
expected to cope with such important issues and ensure the
trustworthiness of remote computing environment. A reliable
distributed environment is expected to provide authentic access
to authorized mobile user for legitimate operations on cloud
server nodes. Considering the aforementioned research issues
and challenges for distributed application deployment in MCC,
lightweight and optimal distributed application deployment so-
lution is extremely important. Such a solution should incorpo-
rate optimal procedures for the development, deployment and
management of runtime distributed platform for MCC. In [59]
we propose a lightweight distributed model for computational
intensive mobile applications.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

The paper discusses the concept of cloud computing, mobile
cloud computing and explains the different techniques to
augment smart mobile devices resources based on resources
available within the cloud. It analyzes current DAPFs by
using thematic taxonomy and highlights the commonalties
and deviations in such frameworks on the basis of signif-
icant parameters. It discusses issues in current DAPFs and
highlights challenges to optimal and lightweight distributed
application frameworks for MCC. Current DAPFs accomplish
process offloading in diverse modes. Several approaches ex-
ploit entire application migration; others focus on part(s) of
the application to be offloaded. A number of approaches em-
ploy static partitioning, others exercise dynamic partitioning.
Variant migration patterns are used; downloading application
by providing URL to remote host, VM cloning, Mobile agent
such as USMC, application binary transfer and use of proxies.

Diverse objective functions are considered; saving processing
power, efficient bandwidth utilization, saving energy con-
sumption, user preferences, and execution cost. Objective
of all approaches is to augment the application processing
potentials of resources constrained SMDs. We conclude that
current DAPFs for MCC are the analogous extensions of
traditional cyber foraging frameworks for pervasive computing
or local distributed platforms. Hence, current DAPFs are
deficient in the deployment of distributed system standard
architectures. As a result, additional complications arise in
the development, deployment and management of distributed
platform. Current frameworks focus on the establishment of
runtime distributed platform which results in the resources
intensive management overheads on SMDs for the entire
duration of distributed platform. SMDs exploit computing
resources in arbitration with cloud servers for the selection
of appropriate remote node, dynamic assessment of SMDs
resources consumption and application execution requirements
at runtime, dynamic application profiling, synthesizing and
solving for application outsourcing, application migration and
reintegration and rigorous synchronization with cloud servers
for the entire duration of distributed platform. As a result,
additional computing resources of the SMDs are exploited for
the runtime orchestration of distributed platform. Therefore,
current distributed application deployment algorithms employ
heavyweight procedures for distributed application deploy-
ment and management.

The mobile nature, compact design, limited computing
potential and wireless medium attributes of SMDs necessitate
for optimal, lightweight and rich local services procedures
for distributed application deployment in MCC. The incor-
poration of standardized design and development principles
of distributed systems seem to be an optimal solution for
coping with the challenges of lightweight distributed appli-
cation deployment for MCC. The incorporation of distributed
client/server architecture of distributed applications with the
elastic features of the traditional offloading frameworks ap-
pears to be an appropriate optimal solution for addressing
the issues of current DAPFs for MCC. The development of
such lightweight model will result in reducing developmental
efforts and enhancement in overall performance of application
deployment, management and processing in mobile cloud
computing.

ACKNOWLEDGMENT

This work is carried out as part of the Mobile Cloud Com-
puting research project funded by the Malaysian Ministry of
Higher Education under the University of Malaya High Impact
Research Grant with reference UM.C/HIR/MOHE/FCSIT/03.
A research in CLOUDS Lab at the University of Melbourne
is funded by the Australian Research Council (ARC) under its
Discovery and Linkage Projects programs.

REFERENCES

[1] R. Balan, D. Gergle, M. Satyanarayanan, and J. Herbsleb, “Simplifying
cyber foraging for mobile devices,” in Proc. 5th international conference
on Mobile systems, applications and services. ACM, 2007, pp. 272–
285.

1312 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 3, THIRD QUARTER 2013

[2] J. Flinn, S. Park, and M. Satyanarayanan, “Balancing performance,
energy, and quality in pervasive computing,” in Distributed Computing
Systems, Proceedings. 22nd International Conference on. IEEE, 2002,
pp. 217–226.

[3] Y. Su and J. Flinn, “Slingshot: Deploying stateful services in wireless
hotspots,” in Proc. 3rd international conference on Mobile systems,
applications, and services. ACM, 2005, pp. 79–92.

[4] M. Kristensen and N. Bouvin, “Developing cyber foraging applications
for portable devices,” in Portable Information Devices, 2008 and the
2008 7th IEEE Conference on Polymers and Adhesives in Micro-
electronics and Photonics. PORTABLE-POLYTRONIC 2008. 2nd IEEE
International Interdisciplinary Conference on. IEEE, 2008, pp. 1–6.

[5] J. Porras, O. Riva, and M. Kristensen, “Dynamic resource management
and cyber foraging,” Middleware for Network Eccentric and Mobile
Applications, vol. 1, p. 349, 2009.

[6] B. Chun and P. Maniatis, “Augmented smartphone applications through
clone cloud execution,” in Proc. 8th Workshop on Hot Topics in
Operating Systems (HotOS), Monte Verita, Switzerland, 2009.

[7] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. 8, no. 4, pp. 14–23, 2009.

[8] M. Sharifi, S. Kafaie, and O. Kashefi, “A survey and taxonomy of cyber
foraging of mobile devices,” IEEE Commun. Surveys Tuts., 2011.

[9] (Accessed on 20th July 2011) Amazon s3. [Online]. Available:
http://status.aws.amazon.com/s3-20080720.html

[10] (Accessed on 15th July 2011) Google docs. [Online]. Available:
http://docs.google.com

[11] (Accessed on 15th June 2011.) Mobileme. [Online]. Available:
http://en.wikipedia.org/wiki/MobileMe

[12] (Accessed on 15th July 2011.) Dropbox. [Online]. Available:
http://www.dropbox.com

[13] G. Huerta-Canepa and D. Lee, “A virtual cloud computing provider
for mobile devices,” in Proc. 1st ACM Workshop on Mobile Cloud
Computing & Services: Social Networks and Beyond. ACM, 2010,
p. 6.

[14] X. Zhang, A. Kunjithapatham, S. Jeong, and S. Gibbs, “Towards an
elastic application model for augmenting the computing capabilities of
mobile devices with cloud computing,” Mobile Networks and Applica-
tions, vol. 16, no. 3, pp. 270–284, 2011.

[15] R. Buyya, C. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud
computing and emerging it platforms: Vision, hype, and reality for
delivering computing as the 5th utility,” Future Generation computer
systems, vol. 25, no. 6, pp. 599–616, 2009.

[16] K. Kumar and Y. Lu, “Cloud computing for mobile users: Can offloading
computation save energy?” Computer, vol. 43, no. 4, pp. 51–56, 2010.

[17] R. Barga, D. Gannon, and D. Reed, “The client and the cloud: Democ-
ratizing research computing,” IEEE Internet Computing, vol. 15, no. 1,
pp. 72–75, 2011.

[18] A. Fox, R. Griffith et al., “Above the clouds: A berkeley view of cloud
computing,” Dept. Electrical Eng. and Comput. Sciences, University of
California, Berkeley, Tech. Rep. UCB/EECS, vol. 28, 2009.

[19] (Accessed on 15th September 2012.) What is aws. [Online]. Available:
http://aws.amazon.com/

[20] M. Kristensen, “Enabling cyber foraging for mobile devices,” in Proc.
5th MiNEMA Workshop: Middleware for Network Eccentric and Mobile
Applications. Citeseer, 2007, pp. 32–36.

[21] C. Wesley. (Accessed on 15th September, 2012)
What is google app engine? [Online]. Avail-
able: https://ep2012.europython.eu/conference/talks/google-app-engine-
best-practices-latest-features

[22] (Accessed on 15th September, 2012) What is windows azure? [Online].
Available: http://www.microsoft.com/bizspark/azure/

[23] R. Calheiros, C. Vecchiola, D. Karunamoorthy, and R. Buyya, “The
aneka platform and qos-driven resource provisioning for elastic applica-
tions on hybrid clouds,” Future Generation Computer Systems, vol. 28,
no. 6, pp. 861–870, 2012.

[24] “White paper, mobile cloud computing solution brief, aepona,” Novem-
ber 2010.

[25] M. Ali, “Green cloud on the horizon,” pp. 451–459, 2009.
[26] H. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile

cloud computing: architecture, applications, and approaches,” Wireless
Communications and Mobile Computing, 2011.

[27] S. Abolfazli, Z. Sanaei, and A. Gani, “Mobile cloud computing: A
review on smartphone augmentation approaches,” in Proc. 1st Inter-
national Conference on Computing, Information Systems and Commu-
nications, 2012.

[28] W. Zheng, P. Xu, X. Huang, and N. Wu, “Design a cloud storage
platform for pervasive computing environments,” Cluster Computing,
vol. 13, pp. 141–151, 2010.

[29] M. Satyanarayanan, “Pervasive computing: Vision and challenges,”
IEEE Pers. Commun., vol. 8, no. 4, pp. 10–17, 2001.

[30] S. Goyal and J. Carter, “A lightweight secure cyber foraging infrastruc-
ture for resource-constrained devices,” in Mobile Computing Systems
and Applications, 2004. WMCSA 2004. Sixth IEEE Workshop on. IEEE,
2004, pp. 186–195.

[31] J. Oh, S. Lee, and E. Lee, “An adaptive mobile system using mobile
grid computing in wireless network,” Computational Science and Its
Applications-ICCSA 2006, pp. 49–57, 2006.

[32] C. Li and L. Li, “Energy constrained resource allocation optimization for
mobile grids,” Journal of Parallel and Distributed Computing, vol. 70,
no. 3, pp. 245–258, 2010.

[33] Y. Begum and M. Mohamed, “A dht-based process migration policy for
mobile clusters,” in Information Technology: New Generations (ITNG),
2010 Seventh International Conference on. IEEE, 2010, pp. 934–938.

[34] A. Messer, I. Greenberg, P. Bernadat, D. Milojicic, D. Chen, T. Giuli,
and X. Gu, “Towards a distributed platform for resource-constrained
devices,” in Distributed Computing Systems, 2002. Proceedings. 22nd
International Conference on. IEEE, 2002, pp. 43–51.

[35] A. Dou, V. Kalogeraki, D. Gunopulos, T. Mielikainen, and V. Tuulos,
“Misco: a mapreduce framework for mobile systems,” in Proc. 3rd
International Conference on PErvasive Technologies Related to Assistive
Environments. ACM, 2010, p. 32.

[36] B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud: elastic
execution between mobile device and cloud,” in Proc. sixth conference
on Computer systems, 2011, pp. 301–314.

[37] B. Zhao, Z. Xu, C. Chi, S. Zhu, and G. Cao, “Mirroring smartphones for
good: A feasibility study,” Mobile and Ubiquitous Systems: Computing,
Networking, and Services, pp. 26–38, 2012.

[38] Q. Liu, X. Jian, J. Hu, H. Zhao, and S. Zhang, “An optimized solution
for mobile environment using mobile cloud computing,” in Wireless
Communications, Networking and Mobile Computing, 2009. WiCom’09.
5th International Conference on. IEEE, 2009, pp. 1–5.

[39] R. Iyer, S. Srinivasan, O. Tickoo, Z. Fang, R. Illikkal, S. Zhang,
V. Chadha, P. Stillwell, and S. Lee, “Cogniserve: Heterogeneous server
architecture for large-scale recognition,” IEEE Micro, vol. 31, no. 3, pp.
20–31, 2011.

[40] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in Proc. 8th international conference on Mobile systems,
applications, and services. ACM, 2010, pp. 49–62.

[41] K. Wang, J. Rao, and C. Xu, “Rethink the virtual machine template,”
in ACM SIGPLAN Notices, vol. 46, no. 7. ACM, 2011, pp. 39–50.

[42] S. Hung, T. Kuo, C. Shih, J. Shieh, C. Lee, C. Chang, and J. Wei, “A
cloud-based virtualized execution environment for mobile applications,”
ZTE Communications, vol. 9, no. 1, pp. 15–21, 2011.

[43] C. Lai and R. Ko, “Dishes: A distributed shell system designed for
ubiquitous computing environment,” International Journal of Computer
Networks & Communications, vol. 2, no. 1, pp. 66–83, 2010.

[44] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–
113, 2008.

[45] J. Liu, K. Kumar, and Y. Lu, “Tradeoff between energy savings and
privacy protection in computation offloading,” in Proc. 16th ACM/IEEE
international symposium on Low power electronics and design. ACM,
2010, pp. 213–218.

[46] D. Wu and W. Tsai, “A steganographic method for images by pixel-value
differencing,” Pattern Recognition Letters, vol. 24, no. 9, pp. 1613–1626,
2003.

[47] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi,
G. Pelosi, and P. Samarati, “Preserving confidentiality of security
policies in data outsourcing,” in Proc. 7th ACM workshop on Privacy
in the electronic society. ACM, 2008, pp. 75–84.

[48] J. Rellermeyer, O. Riva, and G. Alonso, “Alfredo: an architec-
ture for flexible interaction with electronic devices,” in Proc. 9th
ACM/IFIP/USENIX International Conference on Middleware. Springer-
Verlag New York, Inc., 2008, pp. 22–41.

[49] I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and G. Alonso, “Calling
the cloud: Enabling mobile phones as interfaces to cloud applications,”
Middleware 2009, pp. 83–102, 2009.

[50] O. Alliance, “Osgi service platform, core specification, release 4, version
4.1,” OSGi Specification, 2007.

[51] I. Kelényi and J. Nurminen, “Bursty content sharing mechanism for
energy-limited mobile devices,” in Proc. 4th ACM workshop on Per-

SHIRAZ et al.: DISTRIBUTED APPLICATION PROCESSING FRAMEWORKS IN SMART MOBILE DEVICES FOR MOBILE CLOUD COMPUTING 1313

formance monitoring and measurement of heterogeneous wireless and
wired networks. ACM, 2009, pp. 216–223.

[52] M. Pedersen and F. Fitzek, “Implementation and performance evaluation
of network coding for cooperative mobile devices,” in Communications
Workshops, 2008. ICC Workshops’ 08. IEEE International Conference
on. IEEE, 2008, pp. 91–96.

[53] X. Zhang, J. Schiffman, S. Gibbs, A. Kunjithapatham, and S. Jeong,
“Securing elastic applications on mobile devices for cloud computing,”
in Proc. 2009 ACM workshop on Cloud computing security. ACM,
2009, pp. 127–134.

[54] B. Chun and P. Maniatis, “Dynamically partitioning applications be-
tween weak devices and clouds,” in Proc. 1st ACM Workshop on Mobile
Cloud Computing & Services: Social Networks and Beyond. ACM,
2010, p. 7.

[55] B. Nguyen, S. Yoon, and H. Lee, “Multi bit plane image steganography,”
Digital Watermarking, pp. 61–70, 2006.

[56] Z. Sanaei, S. Abolfazli, A. Gani, and R. Khokhar, “Tripod of require-
ments in horizontal heterogeneous mobile cloud computing,” 2012.

[57] (Accessed on 15th September,2012) Protecting portable devices: Phys-
ical security. [Online]. Available: http://www.us-cert.gov/cas/tips/ST04-
017.html

[58] M. Choi, R. Robles, C. Hong, and T. Kim, “Wireless network security:
Vulnerabilities, threats and countermeasures,” International journal of
Multimedia and Ubiquitous Engineering, vol. 3, no. 3, 2008.

[59] M. Shiraz, A. Gani, and R. Khokhar, “Towards lightweight distributed
applications for mobile cloud computing,” in Computer Science and
Automation Engineering (CSAE), 2012 IEEE International Conference
on, vol. 1. IEEE, 2012, pp. 89–93.

Muhammad Shiraz is an Assistant Professor at
Department of Computer Science, Federal Urdu
University of Arts, Sciences and Technology Is-
lamabad, Pakistan. He completed under graduation
from CECOS University Peshawar Pakistan with
the distinction of Gold medal. He has Completed
Masters in Computer Science from Allama Iqbal
Open University Islamabad Pakistan in 2007. Cur-
rently, he is pursuing his PhD Candidature under
Commonwealth Scholarship Program at Faculty of
Computer and Information Technology University of

Malaya, Malaysia. He is an active researcher in the Mobile Cloud Computing
Research Group at Faculty Computer Science and Information Technology
University Malay Kuala Lumpur. His areas of interest include distributed ap-
plications design for Ubiquitous Networks, Distributed Systems, Lightweight
Applications, Smart Client Applications and Optimization Strategies, Mobile
Cloud Computing.

Abdullah Gani is an Assoc. Prof. at the Dept
of Computer System and Technology, University
of Malaya, Malaysia. His academic qualifications
were obtained from UK’s universities - bachelor
and master degrees from the University of Hull,
and Ph.D from the University of Sheffield. He has
vast teaching experience due to having worked in
various educational institutions locally and abroad -
schools, teaching college, ministry of education, and
universities. His interest in research started in 1983
when he was chosen to attend Scientific Research

course in RECSAM by the Ministry of Education, Malaysia. More than
100 academic papers have been published in conferences and respectable
journals. He actively supervises many students at all level of study - Bachelor,
Master and PhD. His interest of research includes self-organized system,
reinforcement learning and wireless-related networks. He is now working on
mobile cloud computing with High Impact Research Grant of 1.5 M for the
period of 2011-2016.

Rashid Hafeez Khokhar did his M.S (Statistics)
and M.S (Information Technology) from University
of the Punjab (Pakistan) and Preston University
(Pakistan) respectively. He received his M.S (by
research) and PhD in Computer Sciences from Uni-
versiti Teknologi Malaysia (Malaysia). Currently,
he is working as Senior Lecturer in the Faculty
of Computer Science and Information Technology,
University of Malaya. His areas of interest are
Mobile Cloud Computing, Vehicular & Mobile Ad
Hoc Network (Architectures, Protocols, Security,

and Algorithms), Artificial Intelligence and Real-Time Communications, and
High Performance Computing.

Rajkumar Buyya is Professor of Computer Science
and Software Engineering; and Director of the Cloud
Computing and Distributed Systems (CLOUDS)
Laboratory at the University of Melbourne, Aus-
tralia. He is also serving as the founding CEO
of Manjrasoft Pty Ltd., a spin-off company of
the University, commercialising its innovations in
Grid and Cloud Computing. He received B.E and
M.E in Computer Science and Engineering from
Mysore and Bangalore Universities in 1992 and
1995 respectively; and Doctor of Philosophy (PhD)

in Computer Science and Software Engineering from Monash University,
Melbourne, Australia in 2002. He was awarded Dharma Ratnakara Memorial
Trust Gold Medal in 1992 for his academic excellence at the University of
Mysore, India. He received Richard Merwin Award from the IEEE Computer
Society (USA) for excellence in academic achievement and professional
efforts in 1999. He received Leadership and Service Excellence Awards from
the IEEE/ACM International Conference on High Performance Computing
in 2000 and 2003. He received ”Research Excellence Awards” from the
University of Melbourne for productive and quality research in computer
science and software engineering in 2005 and 2008. He is one of the highly
cited authors in computer science and software engineering worldwide (h-
index=57, g-index=124, 17000+ citations). The Journal of Information and
Software Technology in Jan 2007 issue, based on an analysis of ISI citations,
ranked Dr. Buyya’s work (published in Software: Practice and Experience
Journal in 2002) as one among the ”Top 20 cited Software Engineering
Articles in 1986-2005”. He received the Chris Wallace Award for Outstanding
Research Contribution 2008 from the Computing Research and Education
Association of Australasia, CORE, which is an association of university
departments of computer science in Australia and New Zealand. Dr. Buyya
received the ”2009 IEEE Medal for Excellence in Scalable Computing” for
pioneering the economic paradigm for utility-oriented distributed computing
platforms such as Grids and Clouds.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

