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Volunteer computing which benefits from idle cycles of volunteer resources over the Internet can
integrate the power of hundreds to thousands of resources to achieve high computing power. In such
an environment the resources are heterogeneous in terms of CPU speed, RAM, disk capacity, and network
bandwidth. So finding a suitable resource to run a particular job becomes difficult. Resource discovery
architecture is a key factor for overall performance of peer-to-peer based volunteer computing systems.
The main contribution of this paper is to develop a proximity-aware resource discovery architecture for
peer-to-peer based volunteer computing systems. The proposed resource discovery algorithm consists of
two stages. In the first stage, it selects resources based on the requested quality of service and current load
of peers. In the second stage, a resource with higher priority to communication delay is selected among
the discovered resources. Communication delay between two peers is computed by a network model
based on queuing theory, taking into account the background traffic of the Internet. Simulation results
show that the proposed resource discovery algorithm improves the response time of user’s requests by a

factor of 4.04 under a moderate load.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Volunteer computing in which volunteers donate processing
and storage resources is an attractive cost efficient platform
for running scientific projects with significant computational
requirements (tens or hundreds of TeraFLOPs) [1]. Some of these
projects are the SETI@home [2], Folding@home [3], EDGeS [4],
DEGISCO [5] and EDGI [6] and Climate@home [7] projects.

Some of the popular volunteer computing systems are BOINC
[8,9], condor-like grid system [10], Entropia [ 11], XtremeWeb [12],
Aneka [13], and SZTAKI [14]. Peer-to-Peer (P2P) based volunteer
computing (VC) systems represent a decentralized, self-organized
and scalable environment for running applications such as
PastryGrid [15], BonjourGrid [16], ShareGrid [17], Condor-Flock
P2P [18], and Self-Gridron [19].

A fundamental challenge in this large, decentralized and dis-
tributed resource sharing environment is efficient discovery of
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resources described by a set of attributes such as CPU speed, mem-
ory, and operating system type. Another challenge comes from
these complex environments characterized by large scale and ge-
ographically scattered resources. In such an environment, millions
of heterogeneous resources are scattered across geographically
distributed nodes, therefore a resource discovery architecture with
proximity-aware features has great impact on overall performance
of the system [18]. There are many resource discovery algorithms
in P2P-based volunteer computing systems [20-24], but none of
them considers a model in computing communication overhead.

The main contribution of this work is to propose a proximity-
aware resource discovery architecture considering quality of ser-
vice (QoS) constraints of requests, and communication overhead
in P2P-based VC systems. In a previous work [25], we presented
an architecture for resource discovery in P2P-based VC systems.
This architecture is called CycloidGrid, and it distributes a load be-
tween peers based on QoS constraints of requests, round trip time
(RTT), and current load of resources (for more information refers
to Section 3). In this research we focus on a network model based
on queuing theory to compute more realistic communication over-
head considering the background traffic of the Internet.

The proposed resource discovery algorithm is composed of
two stages. In the first stage, resources are selected based on
QoS constraints of requests and current load of peers. The QoS
constraints can be selected from CPU speed, RAM requirements,
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hard disk requirements, operating system, and processor model.
In the second stage, the algorithm selects a resource with higher
priority to communication delay among the discovered resources
in the first stage. To compute the communication delay between
two peers in the system, each connection is modeled as a GI/GI/1
queue. Background traffic of the Internet is considered in the model
to generate a more realistic communication delay. In summary, we
have the following contributions in this paper:

e We provide a resource discovery architecture in P2P-based vol-
unteer computing systems considering QoS constraints of re-
quest and communication overhead.

e We adapt the analytical model for computing communication
delay between two peers. The background traffic of the Inter-
net is considered during computation of communication delay
between two peers.

e We evaluate the proposed resource discovery architecture un-
der realistic workload models and different numbers of peers to
show the scalability of the system.

The rest of this paper is organized as follows: Section 2 presents
related work. Section 3 discusses the CycloidGrid environment,
including the application model, architecture, and churn manage-
ment. Section 4 presents an analytical model for computing com-
munication delay in CycloidGrid and resource discovery policy in
this architecture. Section 5 describes the performance evaluation
of the proposed resource discovery architecture under a realistic
workload model. Conclusions and future directions are presented
in Section 6.

2. Related work

There are several research works that have investigated re-
source discovery based on load balancing, QoS constraints of
request, and proximity-aware features in P2P-based volunteer
computing systems. These research works can be divided into two
categories: in the first category, the resources discovery approach
focuses on load balancing and QoS constraints of requests. Some
works in this category consider load balancing and QoS constraints
of requests and some of them only consider one of them. The sec-
ond category focuses on proximity-aware features in resource dis-
covery algorithm. Some of the works on this category consider QoS
constraints of request too. In the first category, we highlight the
following works:

Kim et al. [20] proposed an approach for load balancing in a
resource discovery algorithm in P2P-based desktop grid systems.
The resource discovery algorithm has been considered as a routing
problem in the CAN [26] space. It searches for a node whose coor-
dinate in all dimensions satisfies or exceeds the QoS requirements
of the request. The matchmaking algorithm fairly distributes jobs
between capable resources based on aggregated load information
along each dimension of the CAN overlay network.

Abdullah et al. [21] suggested a dynamic, self-organizing model
for resource discovery in ad hoc grids. In this work, three types
of agent, named customer, producer, and matchmaker are intro-
duced. The whole identifier space has been divided into zones,
which have a dedicated matchmaker. The matchmaker uses a con-
tinuous double auction to perform resource allocation and looks
for matches among producers and consumers according to QoS re-
quirements of the request. Load balancing in this system is per-
formed between matchmakers. The authors defined a mechanism
to calculate the matchmaker workload (TCost) based on the num-
ber of request/offer messages to be processed in the ad hoc grid.
TCost with a threshold has been applied for dynamic segmenta-
tion and de-segmentation in the ad hoc grid and for balancing a
load between different matchmakers.

Lazaro et al. [22] proposed a decentralized resource discovery
algorithm that meets QoS constraints of request in P2P-based VC

systems. Three main agents (worker, client, and matchmaker) are
defined in the system. A worker sends advertisements to multiple
matchmakers in the system. When a client needs resources, it asks
the matchmaker, which searches among advertisements in order
to find possible matches. In this work only the QoS requirements
of a request are studied, but load balancing is not considered.

Di et al. [27] presented a decentralized scheduling algorithm
for dynamic load balancing in a self-organized desktop grid
environment. A dynamic Newscast model has been organized
in their work as an unstructured P2P overlay. In this research,
each peer gathers load information of its neighbors based on the
epidemic gossip protocol. The average load level on participating
nodes is used to distinguish overloaded and underloaded nodes in
the system. A node is in a load balanced state if its current load is
close to average load level, otherwise it is improved by migrating
any process into it or out of it. The autonomous scheduler
designed on each node performs process migration to balance the
workload in the system. The system decreases migration overhead
by considering process workload and bandwidth between two
relative nodes. The QoS constraints of a request are not considered
in their work.

Perez-Miguel et al. [28] suggested a decentralized computing
system based on a P2P network. Cassandra [29] is used as a P2P
storage system in their work. Cassandra keeps several values,
columns for each key. The columns are gathered into different
sets called ColumnFamily or SuperColumnFamily. A distributed
queue system is used to manage the execution of jobs over its
resource pool in a FCFS manner. When a node submits a new job
into the system, its related data is inserted into one ColumnFamily
called Works. The related files of this job are uploaded into another
ColumnFamily called FileStorage. After that, the job is queued into
the waiting queue of the Queues SuperColumnFamily. When the
job is completed, the results are stored in Cassandra. Each node
has a scheduling process to look for the jobs to run. The scheduling
process can look up the Queues SuperColumnFamily in time order
until it finds a desired job. In their research work, QoS constraints
of requests are considered in the resource discovery policy, but
load balancing and proximity-aware features are neglected. Also
the system is evaluated under a stable situation without any node
failures.

Ferretti [30] argued that a simple gossip protocol can be applied
as an efficient resource discovery policy on top of an unstructured
P2P overlay network. An analytical model based on complex
network theory is suggested in his work. Each peer stores local
knowledge about itself and its neighbors which are connected to
it directly. When a node receives a query, it takes into account
its neighbors and selects a subset of them. This subset is selected
with regard to their resource items. If their resource items satisfy
the query, they are selected. Also other neighbors are selected to
spread the query through the P2P overlay. The suggested analytical
model is capable of estimating the number of nodes receiving the
query, the number of query hits, and the number of resource items
can be discovered. QoS constraints of requests are considered in the
resource discovery algorithm, but load balancing and proximity-
aware features are ignored.

In the second category there are a few research works that
consider proximity-aware features in the resource discovery algo-
rithm. Some of these works are:

Mastroianni et al. [24] suggested a super-peer based resource
discovery algorithm for P2P-based volunteer computing systems.
Their algorithm consists of two phases: job-assignment and data-
download phase. In the job assignment, a job manager generates
a number of job’s adverts based on a job’s QoS requirements and
sends them to the local super-peer and some of the other super-
peers in the system. Workers generate a job query and this query
travels the network to find a matching job’s advert. In the data-
download phase, the worker sends a data query and downloads
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a data file from the data centre. In this work, the data file of
each job is downloaded taking into consideration the distance and
available bandwidth to decrease the communication delay in the
system.

Merz et al. [31] proposed a self-organizing super-peer overlay
network with a Chord [32] ring core that interconnects the
super-peers. Authors managed their proposed overlay with a
proximity-aware distributed algorithm. They improved Chord’s ID
assignment by allocating IDs to joining peers in a delay optimized
fashion. The Chord’s message routing scheme is modified to
reduce end-to-end delay for both uni-cast and broadcast messages.
A network coordinate is used for RTT estimates. The resource
discovery algorithm in this work is implemented based on routing
in the proposed P2P network and reduces the number of hops
required to deliver a message.

OurGrid [33] introduced a peer-to-peer based resource sharing
environment through which labs with idle resources donate them
to labs with computational demands. This system considered
the Bag of Tasks application. The scheduler of OurGrid considers
the QoS constraints of a task such as storage size requirements,
operating system, and architecture. A storage affinity metric is
used in this system for data reutilization. The storage affinity of
the task to a site is the number of bytes within the task input
dataset that are already stored in the site. By using the storage
affinity metric and replication, this system has tried to decrease
the communication overhead and turnaround time of the jobs in
the system.

Butt et al. [ 18] described a P2P-based flocking scheme that self-
organizes the distributed Condor pools into a Pastry [34] overlay
network. This architecture locates nearby resource pools in the
physical network for flocking. In this system, a locality-aware
routing table of Pastry is suggested. This system guarantees, if
willing Condor pools are available nearby, that jobs will not be
shipped across long distances in the network proximity space.

Chmaj et al. [35] proposed a P2P-based computing system. The
two types of element are defined in their system as node and
tracker. The nodes are regular machines that do computations on
data block and swap result blocks with another nodes. However,
the tracker is a central node that contains the source blocks and
the location of available result blocks in the system. Each node
sends a request to the tracker to get a data block, and then it can do
computation on it. After that, the availability of its result block is
informed to the tracker. When any node needs a result block, it can
send a request to the tracker and get the locations of the desired
result block. Then the node can download it from one of these,
based on a decision policy. Their system has a central resource
discovery mechanism, because the tracker has information of all
available nodes and sends the data block to them on its request.
All nodes get the source block from the tracker, but exchanging
the result block between them is done directly over the P2P
overlay. This system considers QoS constraints of requests such as
CPU speed. Also their system takes into account proximity-aware
features. Each node can download the desired result block based
on link speed or the number of hops. Load balancing is neglected
in their work.

3. CycloidGrid: Proximity-aware resource discovery architec-
ture in peer-to-peer based volunteer computing systems

In this section CycloidGrid is discussed in detail. CycloidGrid
is an architecture for resource discovery in P2P-based volunteer
computing systems. Routing of requests in this architecture is done
by Cycloid [36] as the P2P overlay. This P2P network is discussed
in the following section briefly.

3.1. Cycloid

Cycloid [36] is a constant-degree structured P2P overlay with
n = d - 2% nodes, where d is a dimension. It takes a time
complexity O(d) hops for the lookup request with O(1) neighbors
per node. Each node in the Cycloid is presented by a pair of indices
(k, ag_1a4_> . ..ap), where k is a cyclicindex and ag_1aq_5 . . . ag is
a cubical index. The cyclic index is an integer number from 0 to
d — 1 and the cubical index is a binary number ranging from 0 to
2¢_1. All nodes are classified into some clusters in this P2P overlay.
However, all clusters are ordered by their cubical indices mod 2¢ on
a large cycle, while, inside each cluster, nodes are ordered by their
cyclic index mod d. The largest cyclic index in a local cycle is called
a primary node of the local cycle. For more detail on Cycloid readers
can refer to [36].

3.2. Resource and application models in CycloidGrid

Each resource in CycloidGrid refers to any volunteer resource in
VC systems (e.g. desktop, laptop, tablet computers, smart phones
and servers)[37]. These volunteer resources are connected through
the Internet and owned by public (volunteers). Also, they have
intermittent Internet connectivity or they are permanently con-
nected [38]. These resources are heterogeneous in terms of CPU
speed, RAM, hard disk size and network bandwidth. Resource and
peer are used interchangeably in this paper.

The Bag of Tasks (BoT) application model is used in this re-
search. So, each job consists of independent parallel tasks. Each
application is assigned to one resource (peer) in this research.
Because some of resources in VC systems have less connectivity
[38] (e.g. wireless connection), many tasks are assigned at once to
keep the resource busy until the next connection.

3.3. CycloidGrid architecture

Three types of node are defined in CycloidGrid. These nodes
are called reporting node, host node and client node. The reporting
node is responsible for keeping resource attributes of each peer
in the system. The host node has two roles in the system. It runs
associated jobs and acts as a scheduler when it receives a lookup
request. So each host node is a component of the distributed
scheduling system in CycloidGrid. The client node has a request
for running a job, and sends a lookup request for a BoT application
execution. This node keeps executable code of a BoT application,
input files and generated output files.

Each resource in the system is described by a set of attributes.
These attributes are CPU speed, the amount of RAM, available hard
disk size, operating system, and processor model. The classification
of resource attributes in this architecture is done by a decision tree
(DT). A decision tree is a tree-structured plan of a set of attributes
to test in order to predict the corresponding cluster. In the decision
tree, a non leaf node is labeled with an attribute and the arcs out
of a node are labeled with possible values for that attribute. The
leaves of the tree are labeled with the classification. The proposed
DT is illustrated in Fig. 1. These attributes are static and do not
change during the life time of a resource. Four attribute values are
selected in each level. This number of attribute values is a trade
off between the number of clusters and covers various values for
these attributes. Consequently, the number of clusters in the DT
is 4 = 1024 clusters. Information of all resources with similar
attribute values is gathered in the same cluster of the DT. The
clusters of DT occupy several clusters (the first 1024 clusters) in
CycloidGrid and are called reporting clusters.

The remaining clusters are called host clusters. Consequently,
we have two types of cluster in CycloidGrid: reporting clusters
and host clusters. CycloidGrid has a cluster-based structure, so
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Fig. 2. The organization of clusters in the 11 dimensional CycloidGrid.

the Cycloid P2P overlay with hierarchical structure is preferred to
other P2P systems in this research. Although, it is applicable on
other P2P overlays.

As we mentioned earlier, the system has three types of node
in the system. The reporting clusters keep reporting nodes and
the host clusters contain host/client nodes. Each reporting cluster
contains three reporting nodes with similar resource attributes. In
fact we have a replication factor 3 in each reporting cluster. The
authors in [23] showed that we can obtain 99.9% of data availability
using a replication factor of 3 in P2P based opportunistic grids.
One of these reporting nodes is called primary reporting node and
has the largest cyclic index in the corresponding cluster and the
other ones are called replica reporting nodes. Replica nodes have
a snapshot of the primary node’s resource attributes. When a
primary node leaves the system one of the replica nodes can take
the role of the primary node based on an election procedure. The
role of primary and replica nodes is discussed in detail in the
following section. The organization of clusters in CycloidGrid is
shown in Fig. 2.

3.4. Churn management in CycloidGrid

When a node joins the system, it can be used either as reporting
node or host node. At first the resource attribute values of a new
node are imported into the DT. The DT determines the responsible
reporting cluster to keep its resource information. If its reporting
cluster is empty (inactive reporting cluster) or the number of
reporting nodes in this cluster is lower than the replica factor, this
node joins as a reporting node; otherwise it joins the system as

5r

Percentage of active reporting nodes

1 r r r r r r r r r
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of peers

Fig. 3. The percentage of active reporting nodes versus number of peers in the
system.

a host node. The reporting cluster becomes active in the system
when there is related resource information to keep. Most of the
time the number of active reporting clusters in the system is very
much smaller than 1024 clusters. Fig. 3 shows the percentage of
active reporting nodes with increasing number of peers in the
system.

If a node joins as a reporting node and its reporting cluster is
empty, it will be a primary node in its reporting cluster; otherwise
it will be a replica node in its reporting cluster. If a node joins as
a host node, it will get a node identifier by consistent hashing of
its IP address. Then, it should report resource information to the
primary node of its reporting cluster.

The primary node of each reporting cluster periodically sends
a request to the host node belonging to its cluster. Those host
nodes respond to this request by sending the current queue
length. Then the primary node updates resource information with
the current queue length and deletes unavailable resources from
its resource information. After that, it sends a snapshot of the
resource information to the replica nodes. So the replica node
refreshes resource information with the last resource information
periodically.

Primary or replica nodes can respond to the lookup request
sent by host nodes. In the time-interval between two consecutive
updates, a replica node responds based on the last snapshot of its
cluster.

When a node leaves the system, the behavior of the system is
different for a host node from a reporting node. If a host node leaves
the system, all the waiting jobs in its queue should be rerun by
another active host node in the system. This situation is recognized
by the client nodes of these failed jobs, since a client node sends
heartbeat messages to the host node running its job.

If a reporting node leaves the system, the behavior of a system
depends on the reporting node type (primary node or replica
node). If a replica node leaves the system, the primary node of
its reporting cluster recognizes this situation. The primary node
sends a snapshot of its resource information to the replica nodes
periodically. If it gets no acknowledgment from the replica node,
it selects an active host node randomly. The host node changes its
role from host node to reporting node. All of the waiting jobs on
this new reporting node will run, but it will accept no new jobs
from now on. The new replica node gets a snapshot of the primary
node and acts as a replica node after that.

If a primary node leaves the system, replica nodes of this
cluster can discover it, because replica nodes periodically receive
a snapshot from primary node. If a replica node recognizes this
situation, it will start an election. The election procedure is
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discussed in the following section. After an election is finished,
the winner among the replica nodes accepts the primary node’s
role. The system is recovered from primary node disappearing by
two time-intervals between getting two consecutive snapshots. In
the first time-interval, any replica node waits for next snapshot.
When the first time-interval is over and the replica node has not
got any snapshot, an election is started in the second time-interval.
So, at the end of second time-interval, the system is recovered. The
system can guarantee that reporting clusters always have primary
and replica nodes, because the leaving of these nodes from the
system is replaced by the leaving of an active host node as soon
as this situation is recognized.

3.4.1. Election procedure

Distributed election runs in each replica node in two steps.
In the first step, a replica node sends an election start message
to other replica nodes in its reporting cluster. Each election start
message has a timestamp with the cyclic index of its replica node.
In the second step of the distributed election, each replica node
receives some election start messages. If a replica node gets the
election start message with a timestamp higher than its cyclic
index, it leaves the election and waits for the election end message
from a new primary node. However, if a replica node receives
election start messages with a lower timestamp of its cyclic index,
it will be a winner of the election and will send an election end
message to other replica nodes. In other words, a replica node
with higher cyclic index always wins the election. The election
procedure is done in the time-interval between two consecutive
updates of the primary node’s resource information.

3.5. Security issues

Reporting clusters contain a primary node and replica nodes.
These nodes keep resource information and their corresponding
identifier in their index. So, each reporting cluster is susceptible to
an index poisoning attack [39] in P2P systems. This kind of attack
can be done by inserting a massive number of bogus records into
the index of reporting nodes. In such an attack an attacker can have
two roles in CycloidGrid. If it is a host node, it can send its resource
information with a non-existent identifier to the primary node
of its corresponding reporting cluster. Its corresponding reporting
cluster is determined by the decision tree. The inserted bogus
record will be removed from the primary node index after the
first update, because the primary node checks the availability of
each resource along with the current queue length in its index
periodically and it removes unavailable resources from that.

If an attacker gets the reporting node role, it can be the replica or
primary node of its reporting cluster. In the case of a replica node,
it can respond to the lookup request with the dummy identifier of
a non-existent resource. Replication with majority voting policy,
widely used in BOINC [8], can be applied to overcome this situation.
In this policy, a lookup request is sent to two replicas in each
reporting cluster. If the results of them are the same it is accepted,
otherwise the lookup request is sent to a third replica. This is
repeated until two results are the same or some limit number of
lookup requests is reached.

An attacker can get primary node role if it is the first node in
its reporting cluster or wins the election. In this case a modified
version of policy proposed by Liang et al. [39] can be used. In this
policy, it is assumed that each replica node keeps a reputation
value for its primary node. The reputation is initialized to zero, and
increased during the lifetime of the primary node. As we discussed
in Section 3.4, the primary node sends a snapshot of its resource
information to replica nodes periodically. This snapshot includes
any update on its index, such as new added resources or removed
resources from its index. When a replica node gets the snapshot,

it checks the validity of this snapshot. So it selects a subset of
newly added resources based on the reputation value of its primary
node and checks their availability. If the reputation value is zero
(new primary node), all of new added resources are checked for
availability. The size of this subset is decreased with increasing
reputation value of the primary node. Then, for the selected subset
of resources a poison level is computed. The poison level of any
snapshot is defined as the fraction of unavailable newly added
resources to all of the new resources in the selected subset of this
snapshot. If the poison level is higher than a threshold, the replica
node determines the primary node as an attacker. The high poison
level shows that there are a massive number of bogus records in
the received snapshot. This threshold is determined based on the
churn rate in the system, because after primary node updates its
index, some of nodes may leave the system and are unavailable.
If the replica node recognizes a primary node as an attacker, it
sends a deny message to all of the remaining replica nodes in its
cluster. If any replica node gets two or more deny messages, a new
election is started and the previous primary node is blacklisted. The
reputation of the primary node is increased in each replica node
with the inverse of its poison level after getting each snapshot. This
policy can be applied for a non-colluding attacker.

If an attacker submits bad results after running its job, some
kind of sabotage-tolerance mechanism [40,41] in volunteer com-
puting systems can be used in the client nodes. The implementa-
tion of this security issue is left for the future.

4. Resource discovery algorithm in CycloidGrid

In CycloidGrid, each request (job) containing some tasks is
executed within a single peer. Each request has the following
characteristics:

o Number of independent tasks

e Estimated duration of each task

e QoS constraints of this job in terms of minimum CPU speed,
RAM, hard disk requirements, operating system, and processor
model. The number of QoS constraints varies between zero to
five.

Each request is served in the system within two stages.
During the first stage, a subset of resources is advertised by the
reporting nodes. In this stage, each queried reporting node selects
a resource with shorter queue length and more CPU speed within
a subset of resources satisfied the QoS constraints of this request.
In the second stage, the proximity of advertised resources in
the previous stage to the requester is considered. So, the final
resource for running the request is selected with higher priority
to communication overhead and lower priority to the criteria
considered in the first stage. The computation of a communication
delay and resource discovery algorithm is discussed in detail in the
following sections.

4.1. Analytical queuing model to compute communication delay in
P2P-based volunteer computing systems

Since the interconnection network plays a critical role in the
overall performance of P2P-based volunteer computing systems,
a more realistic approximation of communication delay in these
systems is very important. In this section, each connection
between two peers is modeled by a network model based on
queuing theory. The store & forward flow control mechanism is
considered for each connection. With store & forward flow control,
each peer along a route between two peers waits until a packet has
been completely received (stored) and then forwards the packet to
the next peer. The distributed hash table (DHT) of Cycloid is used
for routing a request between two peers.
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Fig. 4. Queuing model for computing communication delay.

In this analytical model each connection between two peers is
modeled by a GI/GI/1 queue. According to [42] the average message
latency or communication delay (L) between two peers consists of
three parts; the average waiting time at the source peer’s queue
(W), the average network latency (T) and the average time for a
request to reach the destination peer (R)

L=W+T+R (1)

In this model, we assume each peer in the P2P-based VC systems
receives two types of traffic, as shown in Fig. 4. The first part
of traffic is the background traffic of the Internet in volunteer
computing systems. The second part of traffic is some portion
of traffic loaded to the system by client nodes (workload). The
background traffic of the Internet is assumed to have Weibull
distribution [43] with inter-arrival rate Ay and variance 012. In
this model, BoT requests arrive into the system from the client
nodes with inter-arrival rate A and variance 2. These requests are
redirected to the host nodes. The host node is selected among the
active host nodes randomly; however the probability of receiving
any of these requests by any host node (peer) in the system is P— %
with N equal to the number of peers in the system. Therefore each
peer receives BoT requests by inter-arrival rate Ap as follows:

hy=Ph=2 2)
PTETN

and its variance can be computed by Wald’s equation [44]:

. OofP+()7*(1—P)
UIB = (P)2 .
As we discussed earlier the input traffic at each peer is composed of

two parts. The inter-arrival rate Ap and variance a,i of a compound
distribution at each peer can be computed as follows [45]:

ArAp
Ap= ———— (4)
wrAp + WeAr

(3)

2
g

— 2 2
p = Wrop + WO,

A — Ar\° Ap — g\ 2
w _— w Ee— . 5
* T( XP}»T>+ B( AMB) ®)

where wr, wg are mixing parameter and wr + wp = 1.

We consider the following service time for each connection
between two peers based on the store & forward flow control
mechanism [42].

SP = O.Sanet + Fﬁnets (6)

where ay; is the network latency, and By is the inverse of
bandwidth along the link between two adjacent peers based on the
routing algorithm in the P2P network. F is a flow size transmitted
between two peers.

In Eq. (1), the average of network latency [42] is equal to:

T =Sp. (7)

The average waiting time at the source peer’s queue can be com-
puted by the following equation [46]:

_ -G,
W=+ 1"

2((Sp)~1 = 2p)
where Cﬁ, and CSZP is the squared coefficient of variance for inter-
arrival time and service time at the source peer’s queue. The vari-
ance and coefficient of variance for service time equal to zero based
on [42].

(8)

Gl =oph 9)
_ G,i)\lz,
2T — ) (10)
and
d
R= ) RIT, (11)
i=s+1

Eq. (11) estimates the average time for the flow to reach the
destination peer as a summation of RTTs along the route between
peers next to the source node and destination peer based on the
routing algorithm in the P2P overlay. The Vivaldi algorithm [47] is
used to predict the RTT between two peers in the system. Vivaldi
is a simple, adaptive, and decentralized algorithm which computes
a synthetic coordinate for the Internet host. In this algorithm, the
synthetic coordinate is computed in some coordinate space for
each Internet host. The Euclidean distance between two hosts’
synthetic coordinates is used to predict the RTT between them in
the Internet. In this algorithm, each node i adjusts its coordinate
after getting some RTT samples of remote nodes in the network. At
firstitinitializes its coordinate (x;) at the origin of coordinate space.
Whenever a node i communicates with a remote node j, it adjusts
its coordinate in a few steps. First of all, this node measures the
actual RTT (rtt) to the remote node j and gets the remote node’s
current coordinates x;. The error in its current prediction to the
remote node j is calculated based on Eq. (12).

e=rtt — |xi — x| . (12)

This node moves toward or away from a remote node j based
on the magnitude of error e. So, node i adjusts its coordinate by
moving a fraction of distance to the remote node j based on the
following equation.

X=X +8 x exu—x). (13)

u(x; — x;) is a unit vector and determines the direction of move-
ment. § is a time-step and it is controlled the rate of convergence.
Each node movement decreases the node’s error with respect to
one remote node in the system. Little by little, the nodes converge
to the coordinates that predict RTT well by communicating with
other nodes in the system continually. In fact, each new node can
find a good coordinate for itself after getting a small number of RTT
samples from remote nodes.

If the flow size between two peers is small, such as sending
a lookup request, the Euclidean distance between two synthetic
coordinates will be a good estimate with low overhead for the
average communication time for the flow between two peers. In
the case of a large flow size (input/output dataset), RTT in Eq. (11)
is replaced with Sp as is shown in Eq. (14) to give a more realistic
estimate along the route between peers next to the source node
and destination peer.

d
R=>"Sp. (14)
i=s+1
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4.2. Proposed resource discovery algorithm in CycloidGrid

Fig. 5 illustrates a scenario in which a peer is selected for run-
ning a BoT request. Resource discovery in the proposed architec-
ture is done in two stages. The first stage includes the following
steps:

A client node sends a lookup request for its request to an active
host node in the system (1). The active host node is selected
randomly. The selected host node is called the injection node, and
acts as a scheduler for this request. In fact, the injection node has
two queues. One queue belongs to the lookup request and another
one belongs to the jobs which should be executed on this node.
The analytical model discussed in Section 4.1 is applied on the first
queue. Each injection node has a copy of the decision tree discussed
in Section 3.3 and uses it to find which reporting clusters can be
useful to search according to the QoS constraints of this request. In
this phase, reporting clusters with attribute values higher than the
minimum QoS requirements (such as a reporting cluster with more
speed and RAM) will be found in addition to reporting cluster with
the minimum QoS constraints. This is done since host nodes with
the minimum QoS requirements may be overloaded, while the host
nodes with higher values may be underloaded.

As mentioned in Section 3.3, each reporting cluster has one
primary and two replica nodes with the same resource attributes.
In this phase, the injection node selects closer nodes among
the reporting nodes in each selected reporting cluster. In fact
the injection node computes a communication delay based on
Eq. (1) between itself and reporting nodes in each selected
reporting cluster and selects two closer ones. To consider security
issues the lookup request is sent to these two reporting nodes (2).
It is sent to the third one if the results of these reporting nodes are
different. Finally, in the case of inconsistent results, this reporting
cluster is discarded.

Each reporting node searches in its index to find a resource
to satisfy the QoS constraints of this request. The reporting node
balances a load among its resources. A ranking algorithm is done
in each reporting node. In this ranking algorithm, resources get
a rank based on the current queue length, CPU speed and ticket
parameter. Ticket is a parameter assigned to each resource in
the reporting node locally. When a resource is selected for any
request, the ticket parameter is incremented. In fact, the role of this
parameter is controlling a convergence to the lowest load resource
in the time slice between two consecutive update of queue length.
Ticket is reinitialized to zero after each update. The rank of each
resource (1;) is computed by a weighting function as follows:

= w1l+w25+w3t. (15)
w1 + wy + w3

l is a current queue length, s is a scaled value of inverse CPU
speed and t is the ticket value for this resource. wq, w,, w3 are
weighting coefficients and are selected with respect to the impor-
tance of these factors. After computing the rank of each resource,
a resource with the lowest rank is selected (3) and the address
of selected resource along with its rank are sent to the injection
node (4).

The second stage of resource discovery algorithm is done at the
injection node, based on Algorithm 1. The injection node selects a
resource with lower priority to minimum rank and higher priority
to minimum communication delay. In order to optimize these two
parameters, Algorithm 1 is used. In this algorithm in Step 1-3 the
communication delay (L;) is computed for each resource j based on
Eq. (1). L;j equals the communication delay between the injection
node and a resource j and L; equals the communication delay
between the client node and the resource j. In Step 4-10, the
resource with minimum communication delay is selected and in
Step 11-17 the resource with minimum rank is selected. If the

selected resource in these two stages is the same, the algorithm
returns this resource. Otherwise the resource with next minimum
rank is selected until half of the resources are chosen. If half of
the resources are selected and none of them is the same as the
resource with minimum delay, the resource with next minimum
communication delay is selected and this process continues until
these two minimums overlap.

The selected resource in the injection node (5) is called the run
node and the job’s profile is sent to the run node. The job is added
to the run node’s queue in FIFO order and waits for execution (6).
When a job is finished, its result is returned back to the client
node (7).

Algorithm 1: second stage of resource discovery algorithm in CycloidGrid

Input: T rank of all recommended resource j at the first phase, 1< j<N

(N=number of peers)

Output: index of selected resource (1 <k < N)
1. foreach resourcej do
2 — =
L =L +L;
3 end
4 min <— max Value
5. foreach resource j do
6 if (L <min) then
1
7 min <« I:‘
8. min Delay « j
9. end
10. end

11, min < max Value
12.  foreach resource j do

13. if (r‘ <min) then

14. min < r;

15. min Rank < j

16. end

17.  end

18. if (minDelay==minRank) then

19. k= mindelay

20. return k

21. end

22. else

23. if half of resources are not selected then
24. find next minimum rank and goto 11
25. else find next minimum communication delay and goto 4
26. end

5. Performance evaluation

In order to evaluate the performance of the proposed resource
discovery algorithm, we implemented CycloidGrid simulator as a
discrete event simulator. CycloidGrid is written in Java and it is
an extended version of Cycloid simulator [36] to emulate the P2P-
based volunteer computing systems.

The physical network in CycloidGrid is emulated by the Brite
topology generator [48]. A physical network with n computers,
which are connected by the Waxman model and different link
bandwidth, are generated by the Brite topology generator. The
bandwidth between two nodes is 10 Mbps to 1 Gbps with uniform
distribution [49,9]. The Vivaldi algorithm [47] is used to compute
the synthetic coordinate of each node in the physical network to
predict RTT between them. A 2-dimensional Euclidean model with
height vector is used in the Vivaldi algorithm in this research.

Xtremlab trace [50] is used to emulate resources in the
CycloidGrid simulator. The trace is exported from the BOINC
database, and its information is collected by a client or server in
BOINC.

Two performance metrics are considered in this research. The
first one, related to the overhead of the system, is the average
number of messages exchanged in the system per each job. The
second one, related to the response time of requests, is the average
response time (ART). As we mentioned in Section 3.2, each BoT
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application is assigned to one resource. The ART of R given requests
is defined as follows:

i
<U)j + Z dkj>
j=1 k=1

R

where wj is the waiting time of request j, [; is the number of tasks in
request j and dy; is the weighted run time of each task k in request
Jj. The weighted run time of each task is a scaled down value of run
time on a computer with higher speed. The waiting time of request
j is computed by the following equation:

=

ART = , (16)

wj = L + max(Ly) + Ly + max (im > dz) - (17)
1

In the above equation Liisa communication delay between a
client node and an injection node. L; is the communication delay
between the injection node and each of the selected reporting
nodes in step (2) of Fig. 5. The maximum communication delay
Ly is added to the wait time of the job because the injection
node contacts selected reporting nodes in parallel. L; is the
communication delay between the injection node and a run node,
and L., is the communication delay between the client node and
the run node for sending the input data. Therefore, in the last term,
the maximum of the communication delay between the client node
and the run node and summation of the run time for the waiting
tasks in the run node’s queue is added to the wait time of the
request j. All communication delays are computed based on Eq. (1).

5.1. Workload model

The workload model for experiments is based on Grid Workload
Archive [51]. Based on this model, a number of BoT requests
are generated. The inter-arrival time and request size have a
Weibull distribution while the request duration follows a Normal
distribution. These distributions with their parameters are listed in
Table 1. As in the volunteer computing systems the task duration
is large, the power of two for task duration is considered.

Each BoT request may have some QoS constraints in terms of
minimum CPU speed, RAM, hard disk size, operating system, and
processor model. Some requests have no QoS constraints while
some of them have one or five constraints. These QoS constraints
are different for each request.

Table 1

Input parameters for the workload model.
Parameters Distribution/value Reference
BoT inter-arrival time Weibull (5 <o <9, 8 =4.25) [51]
No. of tasks Weibull (¢ = 2.11, 8 = 1.76) [51]

Task duration
Inter-arrival time of peer
churn

Normal (2.73 <m <9.5,0 =6.1) [51]
Poisson (0.66 < t < 4.83)

Internet inter-arrival Weibull (¢ = 0.3, 8 = 0.15) [43]
time (heavy traffic)

Internet Inter-arrival Weibull (¢ = 0.06, 8 = 0.15) [43]
time (medium traffic)

Internet flow size Pareto (¢ = 3, B = 1.05) [43]

We generate the workload for 1 day, where 2.5 h is considered
as a warm-up phase to avoid bias before the system reaches
the steady-state. Each experiment is performed on each of these
workloads separately. For the sake of accuracy, each experiment
is carried out several times by using different workloads, and
the average of results is reported. In all the reported results the
coefficient of variance is less than 0.05(CV < 0.05). The number
of resources is equal to 1000 and 3000 peers with heterogeneous
computing speeds.

In order to generate different workloads, we modified two
parameters one at a time. So to change the inter-arrival time,
we modified the first parameter of the Weibull distribution (the
scale parameter «) as shown in Table 1. So, the number of jobs
increases from 10000 (i.e. « = 9) to 19000 (i.e. « = 5). Also
to have requests with different duration, the mean of the normal
distribution changes from 2.73 to 9.5, as mentioned in Table 1. The
average task duration in the BoT application changes from 44.71 to
126.35s.

Peer churn is modeled with a Poisson distribution [20] with the
average inter-arrival time (7) varying from 0.66 min to 4.83 min,
as presented in Table 1. However, when the average inter-arrival
time is 4.83 min or 0.66 min, respectively, 10% or 70% of peers leave
the system, while some nodes join the system.

We consider the background traffic of the Internet follows the
Weibull distribution [43], as shown in Table 1. The background
traffic is considered in two modes: heavy traffic for the working
hours and medium traffic for non-working hours. Also the Internet
flow size follows the Pareto distribution according to [43]. The
mean of the Pareto distribution is considered as the flow size for
the Internet traffic.

We assume that each BoT request has an input file. Various
studies on scheduling BoT requests adopt a measure to express the
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Fig. 6. Average response time resulting from different policies with 1000 peers and heavy background traffic of the Internet. The simulations are carried out by modifying
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ratio between the communication and computation costs [52]. It is
called communication-to-computation ratio (CCR). So, the file size
of each BoT request is considered as CCR times the computation
time. It is worth noting that in this study, we concentrate on a BoT
application in which both the execution time and communication
time are important factors for the job response time. We do not
consider the case of negligible communication time (CCR very close
to zero). So, balanced BoT requests with computation time and
communication time by CCR = 2 are considered.

5.2. Baseline policies

We evaluate the proposed policy against two other policies as
follows:

e Round-Robin (RR): The round-robin strategy is used as bench-
mark strategy for scheduling BoT request in similar studies
[52].In this policy, each reporting node in the system selects re-
sources with a round-robin strategy based on QoS of requests
(stage 1 of resource discovery algorithm Section 4.2). If a re-
source does not satisfy the QoS constraints, the next resource is
examined in the deterministic sequence. Also, we consider that
the injection node selects the target run node randomly among
selected host nodes in stage 1 (stage 2 of resource discovery al-
gorithm in Section 4.2).

e CycloidGridMR : in this policy, we consider that resources are
selected in each reporting node with the same ranking algo-
rithm of CycloidGrid (stage 1 of resource discovery algorithm in
Section 4.2), but in stage 2 of the resource discovery algorithm,
the resource with minimum rank is selected.

5.3. Simulation results

The simulation results for ART versus arrival rate and average
task duration are shown in Figs. 6-10 for different policies. In
these figures, the average task duration is kept in the medium size
(66.55 s) for ART versus arrival rate. Also, the inter-arrival time is
kept in the medium size (i.e.« = 7.86) for ART versus average task
duration.

In Fig. 6, there are 1000 peers in the system and the system
is relatively static and no peer joins or leaves during the
simulation. The background traffic of the Internet is considered
heavy according to Table 1. As we expected, by increasing the
arrival rate, the ART dramatically increases. CycloidGrid and
CycloidGridMR strategies can control the ART by distributing
the load evenly in the system. Meanwhile, RR approaches the
saturation point exponentially. CycloidGrid marginally surpasses
the CycloidGridMR with an improvement factor of 9%, 8% in
Fig. 6(a) and (b), respectively. The improvement of CycloidGrid in
Fig. 6(a) and (b) with respect to RR is 46% and 37%, respectively.

In Fig. 7, we decrease the background traffic of the Internet
to medium traffic according to Table 1. The system is kept in the
static state. The improvement factors of CycloidGrid with respect
to CycloidGridMR and RR are 6% and 46% in Fig. 7(a) and 4%, 36% in
Fig. 7(b).

In Fig. 8, we increase the number of peers to 3000 in the
system, while the system is kept in the static state. The background
traffic of the Internet is considered heavy in this figure. As
is shown, CycloidGrid still achieves a better performance with
respect to CycloidGridMR and RR, with improvement factors of
18%, 43% in Fig. 8(a) and 13%, 29% in Fig. 8(b). Fig. 9 shows the
simulation results for 3000 peers, in a static environment with
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medium background traffic. The CycloidGrid improvement factor
is 13%, 48% in Fig. 9(a) and 10%, 34% in Fig. 9(b) with respect to
CycloidGridMR and RR, respectively.

In Fig. 10, the number of peers is the same as the previous
simulation, but peers join or depart from the system with the
average inter-arrival time r = 2.38 min. In this scenario, after
the initial joining of 3000 peers into the system, some peers
leave while some peers join the system. The departure rate of
peers is 20% of all peers in the system. When a peer leaves the
system, all the assigned jobs on the leaving node are reassigned to
another peer. CycloidGrid surpasses CycloidGridMR and RR, with

the improvement factor of 10%, 49% in Fig. 10(a) and 13%, 36% in
Fig. 10(b). In this scenario, the performance of CycloidGridMR and
RR decrease more than CycloidGrid compared to the same scenario
with a static environment. When a peer leaves the system, some
of the jobs on this node should be reassigned. If the system is in
the balanced state, the leaving peer does not have a noticeable
impact on the average response time. However, in the system with
an unbalanced state, a leaving busy node has more influence on
the average response time. CycloidGrid selects resources by taking
into account the communication overhead and current queue
length. The communication overhead parameter gives a kind of
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randomness to this policy, and avoids the orientation of the system
to the lower queue length resources. This leads to a more balanced
system compared to other policies.

CycloidGrid has better performance than CycloidGridMR, es-
pecially in heavy background traffic. According to Algorithm 1,
CycloidGrid gives a higher priority to communication overhead
than resource’s queue length to select the run node, while
CycloidGridMR only decides based on the resource’s queue length.
Heavy background traffic decreases Ap (based on Eq. (4)), and in-
creases the impact of the communication delay in comparison with
medium background traffic.

If the number of peers is increased and the background traffic
of the Internet remains unchanged, according to Eq. (2), (4)
Mg, Ap decreases. This reduction has a positive impact on the
communication delay. So, CycloidGrid with a higher priority to
communication delay has better performance in comparison to
CycloidGridMR. RR selects a run node in the second stage of
resource discovery randomly, so an increase in the number of peers
or background traffic of the Internet does not have a great impact
on its performance.

Fig. 11 presents ART for 3000 peers with medium background
traffic. The average inter-arrival time of peer churn varies from
0.66 min to 4.83 min. However, from 10% (r = 4.83 min) to
70% (t = 0.66 min) of all peers (with step of 5%) leave the
system while some nodes join the system. In this figure, the inter-
arrival time and average task duration of BoT job are kept in
the medium size (@ = 7.86, avg. task duration = 66.55 s).
As illustrated in this figure, CycloidGrid has stable behavior with
decreasing average inter-arrival time till 0.88 min. At this point,
55% of peers leave the system. After that, it slowly approaches the
saturation point. In fact CycloidGrid works well under moderate
churn. CycloidGridMR starts to oscillate when the average inter-
arrival time equals 1.41 min, with 35% leaving of peers, and then
increases exponentially. RR tends to oscillate when the average
inter-arrival time is 1.98 min, with 25% leaving of peers, and
approaches the saturation point exponentially.

Fig. 12 shows the overhead of CycloidGrid through the average
number of messages exchanged in the system per each job versus
number of peers. These messages are measured in the dynamic
environment with the average inter-arrival time t = 1.63 min
in such a way that 30% of peers leave the system while some
nodes join the system. The average number of messages per job
includes the quota of a job from all of the messages exchanged
between primary reporting nodes and host nodes for updating the
queue length, the quota of a job from total messages exchanged
for election, and the messages are exchanged among client node,
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Fig. 12. Average number of messages exchanged in the system per job.

injection node, reporting nodes and run node to find a suitable
resource for this job. As shown in this figure, the number of
messages increases linearly with increasing number of peers in the
system.

Dynamism of the system can affect the performance of Cycloid-
Grid and CycloidGridMR, because when nodes depart the system,
the information used for load balancing would be stale during
two consecutive update of the resource’s queue length. It affects
CycloidGridMR more than CycloidGrid, since CycloidGridMR re-
lies on queue length for load balancing, whereas CycloidGrid uses
proximity in addition to queue length. The effect of proximity on
randomness in resource discovery policy causes CycloidGrid to be
more resistant to churn than CycloidGridMR.

6. Conclusion

In this paper, we propose a proximity-aware resource discovery
architecture in P2P-based volunteer computing systems. We
consider a request arriving into the system as the Bag of Tasks,
where each request may have QoS constraints such as minimum
CPU speed, RAM, hard disk requirements, operating system, and
processor model. The resource discovery algorithm has two phases.
In the first phase, it takes into account the load balancing and QoS
constraints of requests, whereas in the second phase, proximity-
aware features are considered and the resource is selected with
higher priority to the communication delay. Each connection
between two peers is modeled with a network queuing model, and
a more realistic communication delay is computed with respect to
background traffic of the Internet. We compare the performance of
the proposed resource discovery algorithm with two other baseline
policies. The results of the experiments indicate that CycloidGrid
significantly decreases the average response time of the system
with improvement factors of 10.4% and 40.4% on average with
respect to CycloidGridMR and RR. The proposed resource discovery
architecture is scalable and can tolerate an increasing number of
peers without decreasing the performance.

As part of future work, we intend to consider distributed par-
allel queues and a knowledge-free approach for implementing the
load balancing policy instead of getting the current queue length of
each peer. A knowledge-free approach does not need any informa-
tion about the current peer’s status, and can decrease the overhead
of the system. Another interesting extension would be using Cloud
resources in some of the peers. Some jobs have QoS requirements
that could not be satisfied by the available resources of the VC sys-
tems, thus Cloud resources can be used in order to handle the QoS
requirements of these applications.
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