
Cost-effective Provisioning and Scheduling of
Deadline-constrained Applications in Hybrid

Clouds

Rodrigo N. Calheiros and Rajkumar Buyya

Cloud Computing and Distributed Systems (CLOUDS) Laboratory
Department of Computing and Information Systems

The University of Melbourne, Australia
{rnc, rbuyya}@unimelb.edu.au

Abstract. In order to meet distributed application deadlines, Resource
Management Systems (RMSs) have to utilize additional resources from
public Cloud providers when in-house resources cannot cope with the de-
mand of the applications. As a means to enable this feature, called Cloud
Bursting, the RMS has to be able to determine when, how many, and for
how long such resources are required and provision them dynamically.
The RMS has also to determine which tasks will be executed on them and
in which order they will be submitted (scheduling). Current approaches
for dynamic provisioning of Cloud resources operate at a per-job level,
ignoring characteristics of the whole organization workload, which leads
to inefficient utilization of Cloud resources. This paper presents an archi-
tecture for coordinated dynamic provisioning and scheduling that is able
to cost-effectively complete applications within their deadlines by con-
sidering the whole organization workload at individual tasks level when
making decisions and an accounting mechanism to determine the share
of the cost of utilization of public Cloud resources to be assigned to each
user. Experimental results show that the proposed strategy can reduce
the total utilization of public Cloud services by up to 20% without any
impact in the capacity of meeting application deadlines.

1 Introduction

Advances in Cloud computing made available a virtually infinite amount of re-
sources hosted by public Cloud providers that charge for resource utilization in
a pay-per-use model [1]. Public Cloud infrastructures can be combined with ex-
isting in-house resources from organizations in order to accelerate the execution
of their distributed applications. This technique is called Cloud bursting, and the
environment comprising such combined resources is termed Hybrid Cloud.

When Cloud bursting is applied, the Resource Management System (RMS)
coordinating the access to the resources has to determine when, how many, and
for how long such resources are required and provision them dynamically. The
RMS has also to determine which tasks will be executed on each resource and
in which order (scheduling). A common approach to manage such access is to



assign an allocation time where a user has exclusive access to a number of re-
sources. More sophisticated resource managers such as Oracle (former Sun) Grid
Engine [2] and Aneka [3] operate in a different mode where tasks that compose
the application are queued and executed whenever there are free resources in
the infrastructure. Priority of tasks are periodically recalculated, what enables
enforcement of organization-defined policies about access rights and Quality of
Service (QoS) in the form of deadlines for application completion.

Even though several research projects focus on each of these steps individu-
ally (see Section 2), there is a lack of research in approaches that combine both
activities in order to optimize resource utilization, minimize cost during provi-
sioning, decrease execution time of applications, and meet deadlines. Moreover,
most approaches for dynamic provisioning operate in a per-job level, and thus
they are inefficient because they fail in consider that other tasks could utilize
idle cycles of Cloud resources. The latter aspect is especially relevant in the con-
text of typical Infrastructure as a Service (IaaS) providers, which charge users
in specific time intervals (typically one hour) even if resources are utilized for
just a fraction of the period.

To counter such lack of solutions for cost-effective dynamic provisioning and
scheduling in hybrid Clouds, we present a coordinated dynamic provisioning and
scheduling approach that is able to cost-effectively complete applications within
their deadlines by considering the whole organization workload at individual
tasks level when making decisions. The approach also contains an advanced
accounting mechanism to determine the share of the cost of utilization of public
Cloud resources to be assigned to each user.

The key contributions of this paper are: (i) It proposes an architecture to en-
able coordinated dynamic provisioning of public Cloud resources and scheduling
of deadline-constrained applications; (ii) It proposes a strategy for combined dy-
namic provisioning and scheduling of tasks; and (iii) It proposes a novel approach
for billing users for the utilization of public Cloud resources. Experimental re-
sults show that the proposed strategy can reduce the total utilization of public
Cloud services by up to 20% without any impact on the capacity of meeting
application deadlines.

2 Related Work

The most of the existing scheduling policies for Clusters, Grids [4–10], and hy-
brid Clouds [11–13] either operate with user specification of allocation slots for
utilization of resources or make decisions for a single job without considering
jobs already queued. In the latter approach, decisions that optimize one job may
cause delays to other jobs or, when Cloud resources are provisioned to comple-
ment local resources, may lead to underutilization of the extra resources. In the
former approach, users are responsible for ensuring that the job can be executed
within the time slot. However, users typically overestimate their jobs’ needs,
what leads to inefficiencies in the scheduling process. Therefore, we apply a re-
quest model where users do not reserve resources during a time interval for job



execution. Instead, users submit jobs and specify their deadlines (if any), and
the scheduler submits tasks for execution on resources.

The above model is also adopted by the Sun Grid Engine (SGE) [2] and the
systems derived from it. Such systems offer a scheduling policy for distributed
jobs that allows priority to be assigned to users or groups. It also contains a model
of deadline for job execution. However, in such a system deadline is defined in
terms of start time of the job, whereas our model considers the completion time
of the job. UniCloud1 is a software that allows Univa Grid Engine (a derivative
from SGE) to provision resources from public Clouds. However, provision of
public Cloud resources is manually managed by system administrators.

Lee and Zomaya [14] propose an algorithm for scheduling of Bag of Tasks
applications on hybrid Grids and Clouds. This algorithm assigns tasks to Cloud
resources only for rescheduling purposes, whereas our approach deploys Cloud
resources to meet tight deadlines. Van den Bossche et al. [15] propose a heuristic
for cost-efficient scheduling of applications in hybrid Clouds. In such work, the
application model is similar to the application model addressed by our research.
However, their approach makes decision of whether using in-house resources or
Cloud resources at job level (i.e., all the tasks that compose the job either run
in-house or run on the Cloud) without reutilization of Cloud resources. Our
approach, on the other hand, schedules at task level. This has the advantage of
enabling a better utilization of Cloud resources by running tasks from other jobs
if the billing interval is not over and the job that requested the Cloud resources
finished.

Dynamic provisioning of Cloud resources has been explored with different
purposes. Vázquez et al. [16] present an architecture for dynamic provisioning
of Cloud resources to extend the capacity of a Grid in response to events in the
RMS. However, the paper does not present any method to determine when the
Cloud resources should be deployed or decommissioned. Therefore, the architec-
ture presented in this paper complement such previous work.

Mateescu et al. [17] propose a hybrid Cloud environment for HPC applica-
tions. Such a system manages requests at single task level. Therefore, deadlines
are determined for individual tasks, not for the whole job. It provisions resources
from public Clouds to increase probability that tasks start their execution within
the start deadline, oppositely to a completion deadline model used in this paper.

Mao et al. [18] proposes an auto-scaling mechanism for provisioning resources
to jobs in order to meet deadlines. The approach, however, only considers the
provisioning problem, while we adopt an integrated provisioning and scheduling
mechanism to meet application deadlines.

In our previous work [19], we investigated dynamic provisioning techniques
in hybrid Clouds and applied it in the Aneka Cloud platform. However, the ap-
proach is applied for individual jobs only and is not integrated with the sched-
uler; therefore it is not cost-effective in the presence of multiple simultaneous
jobs with deadlines.

1 http://www.univa.com/products/unicloud



Fig. 1. System and application models assumed in this paper. Jobs are composed of
independent tasks, and they can also contain deadline and budget specification. The
Resource Management System (RMS) deploys Hybrid Cloud resources to execute tasks
and meet deadlines. Decisions are made by the RMS with the support of information
about users, groups they belong to, and their access rights.

3 System and Application Models

The system model assumed in this paper is depicted in Figure 1. The central com-
ponent of the model is the Resource Management System (RMS) that manages
a number of local resources (private Cloud). The specific nature of the private
Cloud is irrelevant from the system perspective. It may be composed of desk-
top Grids, a HPC Cluster, or a virtualized data center. Examples of RMSs that
follow such a model are Oracle (former Sun) Grid Engine [2] and its derivatives
and Manjrasoft Aneka [3].

The RMS has access to one or more public Cloud providers that lease re-
sources in a pay-per use manner. Resources are leased by the RMS via a specific
provisioning request sent to the Cloud provider. In such a request, the RMS
specifies characteristics of the resources and number of resources required. When
Cloud resources are no longer required by the RMS, a decommission request is
sent to the public Cloud provider, which releases the resources. Use of Cloud
resources is charged in time intervals whose durations are defined by Cloud
providers (typically, one hour). Use of a fraction of the time interval incurs in
the payment of the whole interval.

The RMS is accessed by users who want to submit loosely-coupled distributed
applications in the resources managed by the system. The user request (job)
contains (i) description of each task that composes the job, including required
files, estimated runtime; and (ii) optional QoS attributes in the form of deadline
for job completion and budget to be spent to meet the deadline.

The proposed model does not require that tasks have homogeneous execution
time. Therefore, it suits both Bag of Tasks and Parameter Sweep applications.



Fig. 2. Proposed Resource Management System architecture for integrated dynamic
provisioning and scheduling of applications in hybrid Clouds.

Support for dependencies among tasks that constitute a job (which enables sup-
port for Workflow applications) is the subject of future work. Furthermore, we
assume that files required by tasks are stored in the in-house infrastructure.
Therefore, file transferring is required only in the case of Cloud execution.

Tasks from different users compete for resources, and the RMS determines
which tasks execute in a given moment and where. However, this has to be done
without causing starvation to any job in the waiting queue (i.e., the RMS has to
guarantee that each job will eventually complete). Furthermore, the organization
can enforce policies about access rights of users and groups, which have to be
taken into account by the RMS.

When the RMS detects that one or more jobs are risking missing their dead-
lines, provisioning policies are applied so that resources are acquired and de-
ployed to speed up such jobs. However, because charge for public Cloud resource
utilization is made by a time slot that can be bigger than the runtime of the
tasks of the job that required it, the RMS has to apply a reuse policy in order
to improve the utilization of the public Cloud resources.

4 Proposed Architecture

Our proposed RMS architecture is depicted in Figure 2. Requests for job execu-
tion are received by the Admission Control component. Accepted requests are
received by the Scheduler component. Based on information about job queues,
jobs’ deadlines, and amount of available resources, requests for extra resources
are sent from the Scheduler to the Provisioner. The Provisioner is responsible
for acquiring resources from public Clouds and making them available to the
Scheduler. Finally, the Accounting module interacts with the Scheduler to deter-
mine whether users have credit and authorization to request and use resources
from public Clouds, and also to keep track of utilization of external resources so
groups and users can be properly charged for public Cloud utilization.



Fig. 3. Organization of resource pools and scheduling queues.

The Admission Control accepts all the requests that do not have a deadline
constraint. For requests with deadlines, it makes the decision whether the job
can be accepted and completed within the deadline or the job must be rejected
because it is unfeasible. To determine whether a request can be accepted, the
Scheduler module is queried by the Admission Control module. The Scheduler
than, considering user estimation, available resources, Cloud resources in use,
and user access rights, replies to the Admission Control whether the user has
permission and credit to run the job and whether the deadline is feasible or not.
The Scheduler’s reply is used as the final decision about job acceptance.

4.1 Scheduler

Jobs that are accepted by the Admission Control are received by the Scheduler
module, which makes decisions based on a number of factors such as the pool to
which the idle resources belongs to and job priority and ownership.

In order to prevent starvation of regular jobs, a minimum amount of resources
to be made available for regular tasks can be defined. These resources compose
the regular pool and its access is coordinated via a regular queue. The rest of the
local machines belong to the deadline pool, whose accesses are coordinated via
deadline queues. Finally, dynamically provisioned machines belong to external
pools and are coordinated by external queues. Figure 3 depicts the organization
of the resource pools and queues in the Scheduler.

Tasks that compose submitted jobs are forwarded either to the regular queue
or to one of the deadline queues (there is one of such queues for each resource that
belongs to the deadline pool). They respectively store tasks without deadline-
constraints and tasks with such constraints. Tasks on each queue are rearranged



every time a new job is received by the Scheduler and every time a task com-
pletes. A third set of queues, external is also present in the Scheduler. There is
one of such queues for each user and it contains tasks that belong to jobs that re-
quire dynamic provisioning to complete before the deadline. Tasks on this queue
execute preferentially in dynamically provisioned resources, as detailed later in
this section.

Algorithm 1 details the procedure for building the regular queue. This pro-
cedure runs every time a new job is received and every time a new resource is
added to this pool. The total time of each resource used by jobs from a group is
summed up to give the total work wg of group g (Lines 2 to 5). Groups are sorted
in ascending order of wi (Line 6), and each group receives a share of resources
Ni that respects the amount of resources assigned to each group defined in the
Scheduler (Line 8). The value Ng is the number of tasks from the group g that
go to the top of the queue. Ng tasks from the group with the lowest wi go to the
top of the queue, followed by Nh tasks from the group with the second lowest
wi and so on, until all the shares are defined. The rest of the tasks are put in
the end of the queue in arrival order (Line 11).

In the case of the deadline pool, whenever a new job is received, tasks are
scheduled to different resource queues following a policy such as Round Robin,
Worst Fit, Best Fit, and HEFT [20]. We do not apply backfilling techniques to
prioritize tasks with closer deadlines because it may motivate users to make late
submission of jobs or to overestimate execution time of tasks (both situations
that would increase priority of their jobs over others).

Dispatching of tasks for execution depends on the pool that the idle resource
belongs to. When a resource from the regular pool becomes idle, the task on
top of the regular queue is dispatched for execution in such resource. If the
regular queue is empty, the waiting task from deadline queues with the smallest
lag time (which we define as the difference between the time to the deadline
and the estimated execution time) is removed from its queue and dispatched
for execution. Finally, if the deadline queue is also empty, the first task on the
external queue is dispatched for execution.

When a resource from the deadline pool becomes idle, the next task on its
queue is dispatched. If the queue is empty, the task from other queues with
the smallest lag time is removed from its original queue and dispatched. If the
deadline queue is empty, the first task in the external queue is dispatched or, if
the queue is empty, the first task in the regular queue is dispatched.

Whenever a resource from the external queue becomes available, the first
task on the external queue that belongs to the user that required the resource
is dispatched to the resource. If there is no such a task, a task from the user
is sought in the deadline queue. The first task from the user whose estimated
execution time is smaller than the time left before the end of the resource’s
billing period is dispatched. If no task from the user meets this condition, the
first task from the user in the regular queue is dispatched.

When the user that requested the resources does not have tasks to execute,
the Scheduler applies the same procedure discussed in the previous paragraph



Algorithm 1: Regular scheduler queue build up procedure.

Data: res: number of resources in the regular pool.
Data: maxi: maximum number of resources allowed for the group i.
empty regular queue;1

foreach group gi do2

wi ← wi/
∑

j
wj , the proportional resource utilization by group gi during3

the current time window;
utilizationList ← wi;4

end5

sort utilizationList in ascending order of wi;6

foreach wi in utilizationList do7

sharei ← min(maxi, d(1− wi) ∗ rese);8

add sharei tasks from group gi to the regular queue;9

end10

add remaining tasks in FIFO order to the regular queue;11

for tasks from the group that required the Cloud resources. If no other task from
the same group is found, the procedure is applied for tasks from other groups.

4.2 Provisioner

The Provisioner makes decisions about utilization of public Cloud resources. It
calculates the number of extra resources required to execute a job within its
deadline and also decides if machines whose billing periods are finishing will be
kept for another period or not. The required number of resources is defined at
task level: tasks that belong to an accepted job that can run in the deadline
pool before the deadline are scheduled locally. Tasks that cannot be completed
on time are put in the external queue by the scheduler, and provisioning decision
is made based only on such tasks. Currently, the provisioner assumes a single
type of VM to be provisioned. This increases the chance of successful allocation
of Cloud resources because it enables acquisition of “reserved” or “pre-paid”
resources. Most IaaS offer such type of resource, which guarantees that, whenever
resources are required, they will be available, as users paid for them upfront or
via a premium plus discounted rates for utilization. Alternatively, the provisioner
can register multiple providers, and use resources from another provider when
the preferable one cannot supply the required resources.

When a virtual machine is reaching the end of its billing period, the Provi-
sioner decides whether the resource should be kept for the next billing period or
if it should be decommissioned. This decision is based on the states of external
deadline queues. The simplest case is when the external resource is idle or it
is running a regular task. It happens when the other queues are empty. In this
case, the resource is decommissioned by the Provisioner. A regular task running
on the resource is rescheduled in the regular queue. If the provisioned resource
is executing a deadline or external task, the resource is kept for the next billing
period to avoid risk of missing the job’s deadline.



In the case that the resource is no more necessary for the user that originally
requested it, and there are still external tasks in the queue, the resource is reas-
signed for the user that needs the resource (providing it has authorization and
credit to use them). In this case, accounting responsibilities for the reassigned
resource is also changed, as detailed next.

4.3 Accounting

When Cloud resources are deployed, users and/or groups have to be made ac-
countable for the extra cost incurred by such resources. This is required for
reducing the operational costs of the organization. Furthermore, even though
accounting is made at user and group level, the system has to apply policies to
keep utilization of such external resources as high as possible, so the investment
in Cloud resources can be justifiable.

In order to achieve such goals, we propose the Reassignable Ownership Policy
that operates as follows. Each Cloud resource is associated to an owner. Resource
ownership is determined by the Provisioner. The resource owner is accountable
for any period of idleness of the machine, as well all the period when it was
running its tasks on the resource. However, during the period where deadline
or external tasks from other users are executed, the corresponding period is
assigned to task owners. Moreover, any time a regular task belonging to a user
that is not the resource owner is running in Cloud resources, the corresponding
period is excluded from the usage period of the owner.

The actual debt the user or group has with the organization corresponds
to the fraction of the price per billing period that the user/group was made
accountable for. The corresponding fraction of the resource cost is then charged
by the accounting module. This enables users to amortize part of the cost related
to use Cloud resources and also allows the whole organization to fully utilize
Cloud provisioned resources.

5 Performance Evaluation

In this section, we present experiments aiming at evaluating the proposed inte-
grated dynamic provisioning and scheduling technique and its impact in terms
of QoS and overall cost of utilization of public Cloud infrastructures.

5.1 Experiment Setup and Workload

Experiments were conducted using the CloudSim toolkit [21] for discrete event
simulation. The simulated hybrid Cloud is composed of a local infrastructure
managed by a RMS and a public Cloud used for Cloud bursting purposes. The
local infrastructure contains 100 virtual machines (VMs). Each machine has 4GB
of RAM and a single core processor. The public Cloud accepts requests for up
to 100 single core virtual machines from the RMS. Each VM in the public Cloud
has the same capacity than the in-house VMs. We assume a negligible latency



for communication between the RMS and the in-house infrastructure, and 500
ms latency between the RMS and the public Cloud.

CloudSim applies a “relative” measurement of CPU power, defined as mil-
lion instructions per second (MIPS), whereas tasks are described in millions of
instructions (MIs). Therefore, tasks are defined in terms of how much CPU time
is required for its execution assuming no time-sharing of resources. Throughout
this section, we refer to this relative time to determine task characteristics.

The RMS is subject to a 24-hours long sequence of job submissions following
an adapted version of the BoT workload model proposed by Iosup et al. [22],
which was derived from the analysis of utilization traces of seven Grids world-
wide. According to this workload model, the interarrival time of a BoT job in
peak time follows a Weibull distribution with parameters (4.25, 7.86). However,
for this experiment purposes, we assume that during the 24 hours period sub-
mission of jobs follows the peak time pattern. Furthermore, we varied the arrival
rate of jobs by modifying the parameters of the Weibull distribution. This al-
lowed us to evaluate the system performance subject to different load conditions:
we run experiments using two different values for the scale of the distribution
(first parameter of the distribution: 4.25 and 8.5) and three different values for
the shape (second parameter of the distribution: 7.86, 3.93, 15.72).

The number of tasks of each job request is defined in the workload model
as 2x, where x follows a Weibull distribution with parameters (1.76, 2.11). We
assume that tasks that compose a job are homogeneous regarding execution time.
The runtime of tasks, as defined by the aforementioned workload model, is 2x

minutes, where x follows a normal distribution with average 2.73 and standard
deviation 6.1.

Finally, Iosup’s workload model does not contain a description on how to
assign deadlines for the each job. Therefore, deadlines for each job were assigned
following a method proposed by Garg et al. [23]. Such a method divides jobs
in two urgency classes, namely low-urgency and high-urgency jobs. Jobs are
assigned to each class uniformly according to a defined share. We evaluated two
different shares of high-urgency jobs: 20% and 50%.

Deadlines of jobs on each class vary in the ratio deadline/runtime, as follows.
High-urgency jobs have such a rate sampled from a uniform distribution with
average 3 and standard deviation 1.4 (i.e, in average the deadline is 3 times of
the estimated runtime), whereas low-urgency jobs have such a rate sampled from
a uniform distribution with average 8 and standard deviation 3. The obtained
value for deadline is counted from the moment the job is submitted for execution
to the RMS. Finally, ownership of jobs was assigned to 10 groups, each one with
1 user, following a uniform distribution.

Because the proposed method operates with reservation of resources for com-
posing the regular pool responding to execute regular tasks, and because regular
tasks are not subject to QoS metrics, we ignore regular jobs and the regular re-
source pool for the purpose of these experiments. 24 hours-long workloads with
different arrival rates generate according to the above method were submitted
for execution in the simulated hybrid Cloud. Experiments for each combination



of arrival rates (six different combinations of shape and scale) and urgency (two
different rates), which resulted in 12 different scenarios, were repeated 30 times.

For performing the scheduling of the tasks on the deadline queues, we applied
the Heterogeneous Earliest Finish Time (HEFT) algorithm [20]. This is a well-
known and efficient algorithm for scheduling of applications on heterogeneous
environments. Its main advantages are its low complexity and high performance
in terms of reducing application execution time.

The HEFT algorithm was used together with two different dynamic provi-
sioning techniques. The first is a job-level provisioning similar to several previous
works in the area. When this technique is applied, all the tasks that belong to the
new job are removed from the deadline queues and moved to the external queue.
Dynamically provisioned resources for the job are decommissioned when the job
completes. This technique is labeled as job-based in the experiment results. The
second technique is the integrated dynamic provisioning and scheduling operat-
ing at task-level proposed in this paper: only tasks whose deadline cannot be met
with in-house resources are executed in the public Cloud. This technique is ap-
plied together with the proposed Reassignable Ownership Policy and is labeled
as Integrated in the experiment results.

The two strategies of provisioning and scheduling are evaluated with each one
of the workloads generated as discussed previously. We report for each combina-
tion provisioning-scheduling the amount of jobs whose deadline was missed and
the total utilization of public Clouds in terms of number of hours of instances
allocated (a metric we call VM-hours).

Finally, it worth noting that, to allow evaluation of a scenario with minimal
influence of other types of limitations caused by specific policies, the admission
control mechanism was modified to accept all the jobs generated by the workload.

5.2 Results and Discussion

Figure 4 presents results for utilization of public Clouds. The unit used is VM-
hours, which we define as the sum of the wall clock time of each dynamically
provisioned VM, from its creation to its destruction. Results show that our
integrated provisioning approach was able to successfully reduce the utilization
of public Cloud resources as a whole. Utilization of public Cloud resources was
reduced to up to 20%. The smallest improvement generated by our integrated
strategy was 5.2%, and the average reduction in public Cloud utilization was
10.24%. It represents a significant reduction in costs for organizations considering
that our experiment simulated 1 day of resources utilization for 10 users. Because
typical utilization scenarios are likely to be scaled to a bigger number of users for
longer periods of time, the application of our approach can help organizations
to significatively reduce their budget of Cloud bursting.

Paired t-tests on the Cloud utilization reported by different policies showed
that task-level scheduling and provisioning caused 1% increase in the utilization
of local resources (because of tasks that were kept locally instead of being sent to
the Cloud). Because the total number of hours of the workload is the same, and
the increased local load was smaller, we conclude that the significant reduction



0

10

20

30

40

50

U
ti
liz

a
ti
o
n
 (

V
M

 h
o
u

rs
)

(a) u=0.2 α=4.25 β=7.86

0

20

40

60

80

100

U
ti
liz

a
ti
o
n
 (

V
M

 h
o
u

rs
)

(b) u=0.2 α=4.25 β=3.93

0

5

10

15

20

25

U
ti
liz

a
ti
o
n
 (

V
M

 h
o
u

rs
)

(c) u=0.2 α=4.25 β=15.72

0

5

10

15

20

25

30

35

40

45

U
ti
liz

a
ti
o
n
 (

V
M

 h
o
u

rs
)

(d) u=0.2 α=8.5 β=7.86

0

10

20

30

40

50

60

70

80

U
ti
liz

a
ti
o
n
 (

V
M

 h
o
u

rs
)

(e) u=0.2 α=8.5 β=3.93

0

5

10

15

20

25

U
ti
liz

a
ti
o
n
 (

V
M

 h
o
u

rs
)

(f) u=0.2 α=8.5 β=15.72

0

5

10

15

20

25

30

35

40

U
ti
liz

a
ti
o
n
 (

V
M

 h
o
u

rs
)

(g) u=0.5 α=4.25 β=7.86

0

10

20

30

40

50

60

70

80

U
ti
liz

a
ti
o
n
 (

V
M

 h
o
u

rs
)

(h) u=0.5 α=4.25 β=3.93

0

5

10

15

20

25

U
ti
liz

a
ti
o
n
 (

V
M

 h
o
u

rs
)

(i) u=0.5 α=4.25 β=15.72

0

5

10

15

20

25

30

35

40

45

U
ti
liz

a
ti
o
n
 (

V
M

 h
o
u

rs
)

(j) u=0.5 α=8.5 β=7.86

0

10

20

30

40

50

60

70

80

U
ti
liz

a
ti
o
n
 (

V
M

 h
o
u

rs
)

(k) u=0.5 α=8.5 β=3.93

0

5

10

15

20

25
U

ti
liz

a
ti
o
n
 (

V
M

 h
o
u

rs
)

(l) u=0.5 α=8.5 β=15.72

Fig. 4. Public Cloud utilization in VM-hours for a 1-day load workload for different
simulation scenarios. Job-based: traditional provisioning techniques applied at job-
level. Integrated: our integrated policy with task-level provisioning and reassignment
of public resources. α and β denote the scale and shape of the job arrival distribution
and u denotes the rate of urgent requests. The scheduling algorithm used in all scenarios
is the HEFT algorithm. Note that different plots have different scales.

in the number of Cloud resources is caused by a more effective utilization of such
resources. This reduction in Cloud utilization happened without any impact in
the capacity of our mechanism in meeting job deadlines. In fact, all the policies
were able to meet deadline of 100% of jobs by applying a provisioning strategy.
This is an expected effect as, because the system is able to provisioning as many
public Cloud resources as necessary, and no unfeasible jobs were submitted,
deadlines could always be met with a sufficiently large amount of public Cloud
resources.



6 Conclusions and Future Work

Cloud computing transformed the way that distributed applications are executed
by making possible to complement in-house resources with pay-per use public
Cloud resources. This makes possible for users to define a deadline for application
execution and the budget to be spent, if necessary, for the deadline to be met.

In this paper, we presented an architecture that enables Resource Manage-
ment Systems to support the aforementioned tasks. We describe the architecture,
a combined provisioning and scheduling strategy, and an approach for billing
users for utilization of Cloud resources that compensates resources reallocated
to other users when the deadline application completes before the end of re-
source billing period. Simulation experiments show that our approach makes an
efficient utilization of public Cloud resources and enables deadlines to be met
with reduced expenditure with public Cloud resources by organizations.

As future research, we will investigate optimization strategies in order to
enable better utilization of multicore resources, when they are available. We will
also extend the algorithms to support workflows and other applications where
the RMS has to consider dependencies between tasks during the scheduling.

References

1. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing
and emerging IT platforms: Vision, hype, and reality for delivering computing as
the 5th utility. Future Generation Computer Systems 25(6) (Jun. 2009) 599–616

2. Gentzsch, W.: Sun Grid Engine: towards creating a compute power grid. In:
Proceedings of the 1st International Symposium on Cluster Computing and the
Grid (CCGrid’01), Brisbane, Australia (May 2001) 35–36

3. Vecchiola, C., Chu, X., Buyya, R.: Aneka: A software platform for .NET-based
cloud computing. In Gentzsch, W., Grandinetti, L., Joubert, G., eds.: High Speed
and Large Scale Scientific Computing. IOS Press, Amsterdam, The Netherlands
(2009) 267–295

4. Feitelson, D.G.: Scheduling parallel jobs on clusters. In Buyya, R., ed.: High
Performance Cluster Computing. Volume 1. Prentice-Hall, Upper Saddle River
(1999)

5. Braun, T.D., et al.: A comparison of eleven static heuristics for mapping a class
of independent tasks onto heterogeneous distributed computing systems. Journal
of Parallel and Distributed Computing 61(6) (Jun. 2001) 810–837

6. Silva, D., Cirne, W., Brasileiro, F.: Trading cycles for information: Using replica-
tion to schedule bag-of-tasks applications on computational grids. In Kosch, H.,
Böszörményi, L., Hellwagner, H., eds.: Euro-Par 2003 Parallel Processing. Volume
2790 of Lecture Notes in Computer Science., Springer (Aug. 2003) 169–180

7. Cooper, K., et al.: New grid scheduling and rescheduling methods in the GrADS
project. In: Proceedings of the 18th International Parallel and Distributed Pro-
cessing Symposium (IPDPS’04), Santa Fe, USA (Apr. 2004)

8. Weng, C., Lu, X.: Heuristic scheduling for bag-of-tasks applications in combination
with QoS in the computational grid. Future Generation Computer Systems 21(2)
(Feb. 2005) 271–280



9. Dong, F.: A taxonomy of task scheduling algorithms in the grid. Parallel Processing
Letters 17(4) (Dec. 2007) 439–454

10. Salehi, M.A., Javadi, B., Buyya, R.: Resource provisioning based on lease pre-
emption in InterGrid. In: Proceedings of the 34th Australasian Computer Science
Conference (ACSC’11), Perth, Australia (Jan. 2011)

11. Assunção, M.D., di Costanzo, A., Buyya, R.: Evaluating the cost-benefit of using
cloud computing to extend the capacity of clusters. In: Proceedings of the 18th In-
ternational Symposium on High Performance Distributed Computing (HPDC’09),
Munich, Germany (Jun. 2009) 141–150

12. Salehi, M., Buyya, R.: Adapting market-oriented scheduling policies for cloud
computing. In Hsu, C.H., Yang, L., Park, J., Yeo, S.S., eds.: Proceedings of the 10th
International Conference on Algorithms and Architectures for Parallel Processing
(ICA3PP’10). Volume 6081 of Lecture Notes in Computer Science., Busan, South
Korea, Springer (May 2010) 351–362

13. Moreno-Vozmediano, R., Montero, R.S., Llorente, I.M.: Multicloud deployment of
computing clusters for loosely coupled MTC applications. IEEE Transactions on
Parallel and Distributed Systems 22(6) (Jun. 2011) 924–930

14. Lee, Y.C., Zomaya, A.: Rescheduling for reliable job completion with the support
of clouds. Future Generation Computer Systems 26(8) (Oct. 2010) 1192–1199

15. den Bossche, R.V., Vanmechelen, K., Broeckhove, J.: Cost-efficient scheduling
heuristics for deadline constrained workloads on hybrid clouds. In: Proceedings
of the 3rd IEEE International Conference on Cloud Computing Technology and
Science (CloudCom’11), Athens, Greece (Dec. 2011) 320–327

16. Vázquez, C., Huedo, E., Montero, R.S., Llorente, I.M.: Dynamic provision of com-
puting resources from grid infrastructures and cloud providers. In: Proceedings of
the Workshops at the Grid and Pervasive Computing Conference, Geneva, Switzer-
land (May 2009) 113–120

17. Mateescu, G., Gentzsch, W., Ribbens, C.J.: Hybrid computing–where HPC meets
grid and cloud computing. Future Generation Computer Systems 7(5) (May 2011)
440–453

18. Mao, M., Li, J., Humphrey, M.: Cloud auto-scaling with deadline and budget con-
straints. In: Proceedings of the 11th International Conference on Grid Computing
(GRID’10), Brussels, Belgium (Oct. 2010) 41–48

19. Calheiros, R.N., Vecchiola, C., Karunamoorthy, D., Buyya, R.: The Aneka platform
and QoS-driven resource provisioning for elastic applications on hybrid clouds.
Future Generation Computer Systems 28(6) (Jun. 2012) 861–870

20. Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Transactions on Parallel and
Distributed Systems 13(3) (Mar. 2002) 260–274

21. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.:
CloudSim: A toolkit for modeling and simulation of cloud computing environ-
ments and evaluation of resource provisioning algorithms. Software: Practice and
Experience 41(1) (2011) 23–50

22. Iosup, A., Sonmez, O., Anoep, S., Epema, D.: The performance of bags-of-tasks
in large-scale distributed systems. In: Proceedings of the 17th International Sym-
posium on High Performance Distributed Computing (HPDC’08), Boston, USA
(Jun. 2008) 97–108

23. Garg, S.K., Yeo, C.S., Anandasivam, A., Buyya, R.: Environment-conscious
scheduling of HPC applications on distributed cloud-oriented data centers. Journal
of Parallel and Distributed Computing 71(6) (Jun. 2011) 732–749


