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SUMMARY

Metaschedulers can distribute parts of a Bag-of-Tasks (BoT) application among various
resource providers in order to speed up its execution. The expected completion time of
the user application is then calculated based on the run time estimates of all applications
running and waiting for resources. However, due to inaccurate run time estimates, initial
schedules are not those that provide users with the earliest completion time. These
estimates increase the time distance between the first and last tasks of a BoT application,
which increases average user response time, especially in multi-provider environments.
This paper proposes a coordinated rescheduling algorithm to handle inaccurate run
time estimates when executing BoT applications in multi-provider environments. The
coordinated rescheduling defines which tasks can have start time updated based on
the expected completion time of the entire BoT application. We have also evaluated
the impact of system-generated run time estimates to schedule BoT applications on
multiple providers. We performed experiments using simulations and a real distributed
platform, Grid’5000. From our experiments, we obtained reductions of up to 5% and 10%
for response time and slowdown metrics respectively by using coordinated rescheduling
over a traditional rescheduling solution. Moreover, coordinated rescheduling requires
little modification of existing scheduling systems. System-generated predictions, on the
other hand, are more complex to be deployed and may not reduce response times as
much as coordinated rescheduling.
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1. INTRODUCTION

Bag-of-Tasks (BoTs) are parallel applications with no inter-task communication. A variety
of problems in several fields, including computational biology [1], image processing [2], and
massive searches [3], have been modeled as BoT applications. In comparison to the message
passing model, BoT applications can be easily executed on multiple resource providers to
meet a user deadline or reduce the user response time. Although BoT applications comprise
independent tasks, the results produced by all tasks constitute the solution of a single problem.
In most cases, users need the entire set of tasks completed to be able to post-process or analyse
the results. Therefore, the optimization of the aggregate set of results is important, and not the
optimization of a particular task or group of tasks [4, 5]. Some examples of BoT applications
are a set of frames to render a movie or a set of biological experiments to understand how a
molecule works.

Metaschedulers can distribute parts of a Bag-of-Tasks (BoT) application among various
resource providers in order to speed up its execution. The expected completion time of the
user application is then calculated based on the run time estimates of all applications running
and waiting for resources. A common practice is to overestimate execution times in order to
avoid user applications to be aborted [6, 7]. Therefore, initial completion time promises are
usually not accurate. In addition, when a BoT application is executed across multiple providers,
inaccurate estimates increase the time difference between the start of the first task and the
completion of the last task of a BoT, which increases average user response time. This time
difference, which we call stretch factor, increases mainly because rescheduling is performed
independently by each provider.

System-generated predictions can reduce inaccurate run time estimates and avoid users
having to specify these values. Several techniques have been proposed to predict application
run times and queue wait times. One common approach is to analyze scheduling traces;
i.e. historical data [8, 9, 10]. Techniques based on trace analyses have the benefit of
being application independent, however may have limitations when workloads are highly
heterogeneous. Application profiling has also been vastly studied to predict execution
times [11, 12, 13, 14]. Application profiling can generate run time predictions for multiple
environments, but usually requires application source code access. Therefore, even though
techniques for generating predictions are available, they have limitations. One alternative
solution for reducing the stretch factor generated mainly by the inaccurate run time estimates,
and hence reduce user response time is through proper rescheduling of BoT tasks.

This paper proposes a coordinated rescheduling strategy for BoT applications running
across multiple resource providers. Rather than providers performing independent rescheduling
of tasks of a BoT application, the metascheduler tracks the expected completion time of
the last BoT task on all involved providers. This strategy minimizes the stretch factor and
reduces user response time, which is particularly important when it is not possible to obtain
accurate run time estimates of user applications. We also show that on-line system generated
predictions, even though require time to be obtained, can reduce user response time when
compared to user estimations. Moreover, with more accurate predictions, providers can offer
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tighter expected completion times, thus increasing system utilization by attracting more users.
We performed experiments comparing the benefits of using coordinated rescheduling over
uncoordinated rescheduling using both simulations and a real distributed platform, Grid’5000,
on homogeneous and heterogeneous resources. We obtained very positive results on user
response time that can be achieved with minor modification of a typical metascheduling system.

2. RELATED WORK

Extensive research has been done on the areas of performance prediction techniques [15, 12, 11,
13, 8, 9, 10, 16, 17], use of predictions for scheduling applications [18, 19, 17, 20], and scheduling
algorithms for BoT applications [21, 22, 23]. In this section, we present a few projects on use
of predictions for scheduling applications and scheduling of BoT applications, which are the
two main areas related to our work.

In order to use predictions for scheduling applications, scheduling systems can mostly rely
on techniques that use historical data of previous application executions [8, 9, 10, 16, 17]. For
instance, Tsafrir et al. [8] proposed the use of average time of the previous two executions
of jobs with same characteristics to calculate new estimation time to be used for backfilling,
whereas Smith et al. [10] use search for similar jobs of the entire historical data base of previous
executions. Run time predictions also assist scheduling systems to provide users with expected
waiting times [10] and to produce schedules that increase system utilization [16].

He et al. [18] addressed the problem of dynamic scheduling for parallel jobs in multi-
cluster systems using performance predictions. Their work considers applications with deadline
constraints and the performance predictions assist the scheduler to make decisions on
work distribution. Berman et al. [19] have also proposed the use predictions for scheduling
applications in the context of the AppLeS project. Tasks from “AppLeS-enabled applications”
are rescheduled during execution by analyzing predictions of availability and characteristics of
processors and network resources. Sonmez et al. [17] studied the use of time series prediction
methods for job run times and queue wait times in Grid environments. They have also evaluated
the impact of predictions when scheduling jobs in Grids. Their experiments consider schedulers
using FIFO without backfilling and tasks of a BoT application are submitted to a single cluster.

Existing work on BoT applications mostly focuses on the initial scheduling [24, 21, 25,
23, 26, 22]; tasks are scheduled without considering the dynamic behavior of resources and
applications. Researchers have also developed task replication techniques to reduce user
response time and handle the lack of information from resources and tasks [27]. Task replication
is a particular type of rescheduling, but with the drawback of wasting resources. Therefore, our
contribution is a coordinated rescheduling algorithm for BoT applications and an evaluation
of impact of run time estimates when scheduling these applications across multiple providers.

3. SCHEDULING ARCHITECTURE

A metascheduler receives user requests to schedule BoTs on multiple autonomous resource
providers in on-line mode. Providers have no knowledge about one another. Users provide the
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Figure 1. Components’ interaction to schedule a Bag-of-Tasks on multiple resource providers.

number of required processors along with either a run time estimation or an application profiler.
The application profiler is used by the scheduling architecture to automatically determine run
time estimations inside each provider. The run time estimation can be of either the entire
BoT or the tasks individually. The processors are available from space-shared machines such
as clusters and massively parallel processing machines. We define a BoT as job composed of
tasks. However, when a set of tasks from a BoT are submitted to a provider, we call this set
as a job as well; thus BoTs also comprise jobs that run on multiple providers.

As illustrated in Figure 1, the scheduling of a BoT application consists of 6 steps. In step 1,
the metascheduler exposes the application profiler or user estimations to the resource providers.
In step 2, resource providers execute the profiler (if available) and generate a list of offers that
can serve the entire BoT or only part of it. An offer consists of a number of tasks, and their
expected completion time. In this work, resource providers generate offers that do not violate
the expected completion time of already scheduled jobs. Once the resource providers generate
the offers, they send them to the metascheduler (step 3), which composes them according to
user requirements (step 4), and submits the tasks to resource providers (step 5). After the
tasks of a BoT are scheduled, resource providers contact the metascheduler whenever tasks
need to be rescheduled (step 6).

Due to the heterogeneity of processors, network, and size of scheduling queues in
each resource provider, offers may reach the metascheduler at different times. Once the
metascheduler receives all offers, some of them may no longer be valid since other users
submitted applications to the providers. To overcome this problem, we use a similar approach
developed by Haji et al. [28], who introduced a Three-Phase commit protocol for SNAP-
based brokers. Our protocol uses probes, which are signals sent from the providers to the
metaschedulers interested in the same processors to be aware of processor status’ changes.

The schedulers’ goal is to provide users with expected completion time and reduce such
a time as much as possible during rescheduling phases.
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(a) Sky Vase. (b) Box. (c) Fish.

Figure 2. Example of images for each of the three animations.
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(b) Box.
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(c) Fish.

Figure 3. Predicted execution time using most CPU consuming frame as base for estimations.

The next section presents an example of an application profiler that can be incorporated
into the scheduling architecture.

3.1. Example of Application Profiler

In environments where resource providers work with precise run time estimates, metaschedulers
can better distribute the tasks, thus reducing applications’ response time, and resource
providers can publish offers with tighter response times, thus increasing system utilization
by attracting more users. This happens because the metascheduler knows the exact load in
each provider. One approach to generate run time estimations is through application profiling
via sampling execution. As prediction techniques are application dependent, this section just
exemplifies the feasibility of obtaining run time predictions, since techniques to obtain them
is out of the scope of this paper.
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Table I. Time to generate execution time estimates.

Animation Resolution Exec. Time Perc. of Accuracy
(min) total time

Sky Vase 640x480 223 10.3 0.1% underest.
320x240 64 2.9 1.3% underest.
160x120 27 1.2 0.2% underest.

Box 640x480 18.4 12.3 7.30% overest.
320x240 6.8 4.5 14.00% overest.
160x120 4.0 2.6 64.90% overest.

Fish 640x480 53.1 11.0 3.03% overest.
320x240 18.57 3.9 10.47% overest.
160x120 9.90 2.0 37.64% overest.
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(c) Fish.

Figure 4. Predicted execution time using partial sampling of 320x240 frames.

POV-Ray† is a ray-tracer tool for generation of three dimensional images—a set of images
can thus be used to create animations. We used POV-Ray to create three short animations
containing 200 frames each, with a resolution of 2048x1536 pixels (Quad eXtended Graphics
Array). The animations are based on image specifications that come with the POV-Ray
package, namely Sky Vase, Box, and Fish. Sky Vase consists of a Vase with a sky texture
on a table with two mirrors next to it. To generate the animation for Sky Vase, we included
360-degree rotation of the vase. Box consists of a chess floor with a box containing a few objects
with mirrors inside. We therefore included a camera that gets closer to the box and crosses it
on the other side. Fish consists of a fish over water that rotates 360 degrees. Different from
Sky Vase, Fish has a more heterogeneous animation due to the shape of the fish. An example
of images for each of the three animations is illustrated in Figure 2.

†POV-Ray project: http://www.povray.org

Copyright c© 00 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 00; 00:1–7
Prepared using cpeauth.cls



COORDINATED RESCHEDULING OF BAG-OF-TASKS 7

One technique to obtain the run time estimations is to render the animation in a much
lower resolution and render a base frame in the actual resolution. Using the execution time of
the base frame of the actual and the reduced animation, it is possible to generate a factor to
be multiplied on the lower resolution animation to predict the execution actual time of each
frame. Figure 3 presents predictions using the maximum and execution time frame as base
frame. For this experiment, we used 640x480, 320x240, and 160x120 as lower resolutions for
generating predictions. We also observe that both 640x480 and 320x240 resolutions provided
much better predictions than 160x120. For the Box animation using the base frame with
minimum execution time, all resolutions provided inaccurate predictions for long execution
time frames. This happens because the base frame is too small to capture the differences
between the resolutions. Table I summarizes the execution times to generate the predictions
and their accuracies using the base frame with maximum execution time. The results show
that good predictions are time consuming since we are using the entire animation.

It is also possible to reduce the profiling time by sampling a set of frames with a lower
resolution rather than using the entire animation. Figure 4 shows the execution time and the
prediction accuracy as a function of the number of frames sampled using resolution 320x240,
using the maximum execution time as base frame. This technique is feasible because in an
animation, neighbor frames have similar content and, depending on the case, the variation is
minimum during the entire animation, such as for Sky Vase. Note that for some cases, there
are negative overestimations, i.e. the execution times are underestimated. When allocating
resources in clusters, a common practice is to kill applications when the actual execution time
exceeds estimation execution time. Therefore, rescheduling happens only for overestimations;
and for this reason, from now on, in this paper we use the term inaccurate estimation for
overestimations only.

3.2. Where to Generate the Estimations

Either users or resource providers can generate run time estimates. If users know the exact
resource configuration for each provider, users can execute the application profiler to obtain
the run time estimations. Also, even if users do not know the configuration, providers that work
with virtual machines can make them available to users. In this case, the users can run the
generator through virtual machines in their local machines. Another option is to allow providers
to generate run time estimates at the moment users submit their application requirements to
the metascheduler. In this case, providers can have a dedicated set of processors to generate
run time estimates, or providers can generate them by placing estimator jobs in their shared
processors for actual executions. All these options depend on the application, environment
settings, and user needs.

4. COORDINATED RESCHEDULING

Once the metascheduler provides the user with an expected completion time of a BoT
application, tasks can start execution either immediately or after processors become available.

Copyright c© 00 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 00; 00:1–7
Prepared using cpeauth.cls



8 MARCO A. S. NETTO & RAJKUMAR BUYYA

re
s
o
u
rc

e
s

time

re
s
o
u
rc

e
s

time

Site 1

Site 2

re
s
o
u
rc

e
s

time

re
s
o
u
rc

e
s

time

Site 1

Site 2

re
s
o
u
rc

e
s

re
s
o
u
rc

e
s

time

Site 1

Site 2

Original schedule Uncoordinated reschedule Coordinated reschedule

reschedule requests

independently

rescheduling using last task or

group of tasks as reference

last

group

of tasks

fragment created

due to inaccurate

run time estimationcurrent

time

time

A

BoT application

A A

stretch distance stretch distance

Figure 5. Example of schedule using coordinated rescheduling.

For the second case, it means tasks are placed in a waiting queue and can be rescheduled to
start before expected when tasks from other applications have inaccurate run time estimates.

Figure 5 illustrates the difference between the traditional rescheduling strategy, which
considers all tasks independently, and the coordinated rescheduling, which considers the tasks
of a BoT as being part of a single application. In this example, by using uncoordinated
rescheduling the BoT application tasks in Site 1 are rescheduled without considering the tasks
from Site 2; which increases stretch factor of this BoT, and delays the completion time of
application A. By using the coordinated rescheduling approach, application A is rescheduled
first since its earlier start time does not increase the overall completion time of the BoT
application. A formal definition of the stretch factor of a BoT application k composed of n

tasks is:

SFactor(BoTk) = n

(

T
c

n
−T

s

1
∑

n

i=1 T
e

i

)

Where, T c

n
is the completion time of the last task, T s

1
is the initial time of the first task, and

T e

i
is the execution time of task i of a BoT with n tasks.

4.1. Rescheduling Algorithm

Whenever a job completes before the expected time, local schedulers execute Algorithm 1
to reschedule the waiting queue. The first step is to sort the jobs in the waiting queue by
increasing order of their expected completion times (Line 1). Tasks from the same BoT are
sorted by increasing order of expected start time individually. Later, tasks (or jobs, i.e. groups
of tasks) are rescheduled one by one (Lines 2-9). For each job ji being part of a BoT, the
scheduler verifies whether ji holds the expected completion time of the entire BoT. Both BoT
jobs and other type of jobs are then rescheduled using FIFO with conservative backfilling

Copyright c© 00 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 00; 00:1–7
Prepared using cpeauth.cls



COORDINATED RESCHEDULING OF BAG-OF-TASKS 9

Algorithm 1: Pseudo-code for rescheduling jobs, which is executed on the local schedulers
when a job completes before the expected time.

Sort jobs by expected completion time. BoT tasks are sorted by expected completion of1

the entire BoT. Tasks from the same BoT are sorted by expected start time
for ∀ji ∈ waiting queue do2

isLastTask ← false3

previousCompletionT ime ← ji’s completion time4

if ji is part of a BoT then5

isLastTask ← holds the last expected completion time6

Reschedule ji using FIFO with conservative backfilling7

if previousCompletionT ime 6= newCompletionT ime and isLastTask = true then8

add task to possible new completion time list9

Check new completion times10

Send new completion times11

(Line 7). If a BoT job holds the expected completion time of the entire BoT and received a
new completion time due to rescheduling, the algorithm keeps this job in a structure called
newCompletionTimes, which contains the job id and the new completion time (Line 8-9).
After all jobs are rescheduled, the algorithm analyses the last completion time for each BoT
in the newCompletionTimes structure (Line 10). The local scheduler sends this structure to
the metaschedulers holding the respective BoTs (Line 11).

From the metascheduler side, each time it receives the newCompletionT imes structure, it
verifies whether the new completion times are local or global. If they are global (i.e. for the
entire BoT), the metascheduler sends the new global completion time to the resource providers
holding the respective BoT tasks.

4.2. Implementation

Figure 6 represents a simplified version of the class diagram for the metascheduler. There
are four main components: the metascheduler main class, scheduler, rescheduler, and a list
of scheduled jobs. The main responsibilities of the metascheduler class are to submit jobs to
resource providers, and keep a table with the expected completion time of the BoTs. The
complexity of implementing the scheduler lies on composing the offers. The rescheduler is
responsible for updating BoT completion times in the scheduling queues of resource providers.

Existing local schedulers require an extension of the data structure that keeps the jobs in
the system. This extension is the global completion time of the entire BoT that may have tasks
managed by local schedulers from other resource providers. Local schedulers also contact the
metascheduler to inform about new completion times. Therefore, minor changes are required
to implement the coordinated rescheduling technique into existing scheduling systems.
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5. EVALUATION

This section evaluates the coordinated rescheduling algorithm and the impact of inaccurate run
time estimates when scheduling BoT applications on multiple resource providers. We performed
experiments using both a simulator and a real testbed. Simulations have allowed us to perform
repeatable and controllable experiments using various parameters. The experiments in a real
testbed allow us to verify how the scheduler architecture can be used in practice. We have used
our event-driven simulator, named PaJFit (Parallel Job Fit), and workloads produced by the
Lublin-Feitelson model [29]. For the real experiments, we used an extended version of PaJFit
[5], which works with sockets for communication between modules on Grid’5000. Following we
describe the experiment configuration and the analysis of the results.

5.1. Experimental Configuration

We have set up a computing environment with a metascheduler and four clusters, C1−4, with
300 processors each. From this environment, we have explored a set of scenarios as described
in Table II. The set of experiments with all clusters with the same configuration helps us to
analyze the differences between system and user generated estimations and the rescheduling
algorithm. The experiment with all clusters with the same configuration but using different
policies for run time estimates helps us to understand which resource provider would benefit
more from each approach. We also analyze the impact of heterogeneity for scheduling and
rescheduling of bag-of-tasks across multiple providers. Note that although there are larger
systems available nowadays, by increasing the number of cores in the systems, the tasks to
be processed would require to be more complex to explore those cores, for instance, by using
multiple threads. Therefore, for this reason we adopted this scale, i.e. to make compatible the
computing environment and the workload used for the experiments.

Availability and research on real workloads and workload models for BoT applications in
Grid environments are in their early stages [23]. Several recent Grid studies utilize workload
models using various statistical distributions to evaluate scheduling policies [30, 31]. We
therefore preferred to rely on a well-established workload model for cluster-based parallel
applications, proposed by Lublin and Feitelson [29], to generate traces for both the simulations
and the experiments in Grid’5000. Note that the model is for parallel applications, and Bag-
of-Tasks are a common type of parallel application highly used in the scientific community.
Therefore, the workloads used in the paper represent any type of application that can run in

Metascheduler

+ResourceProvidersList

+ExpectedCompletionTimes

+submitJobs(jobs)

Scheduler

+scheduleMetaJob(metaJob)

+composeOffers(offers,metaJob)

+getOffers(metaJob,resourceProviders,strategy)

Rescheduler

+updateExpectedCompletionTime(metaJob)

ScheduledJobs

+getMetaJob(jobId)

Figure 6. Class diagram for the metascheduler of BoT applications.
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Table II. Main scenarios for the experiments.

Hardware Estimation Type and rescheduling
C1=C2=C3=C4 UE with independent rescheduling
C1=C2=C3=C4 SE 50% and 80% more accurate than UEs with

uncoordinated rescheduling and
5-30min generation time

C1=C2=C3=C4 UE with coordinated rescheduling
C1=C2=C3=C4 C1 and C2 with UEs and C3 and C4 with SEs
C1=C2 20 % and 50% faster than C3=C4 UEs
C1=C2 20 % and 50% faster than C3=C4 SEs
C1=C2 20 % and 50% faster than C3=C4 UEs with coordinated rescheduling

those requests, which can be Bag-of-tasks or not. In addition, we found reliable to use the
workload model as it represents workloads that have been highly used in literature, especially
to develop scheduling policies [8].

For each job produced by the model, we considered it as a BoT application, and its number
of requested processors is the number of tasks in the BoT. From the model, we also used the
submission and execution times. We simulated 15 days of the workload and used 10 workloads
for each experiment in order to have a comprehensive set of data points. We also considered
10 overestimation percentages; from 0% to 200%, where 0% means the estimation is the exact
execution time. We chose 200% as a limit because after this value, the chances of rescheduling
becomes minimal in our experiments. Therefore, for each scenario described in Table II, we
have a total of 100 simulations. For all experiments we set up the system load as 70% by
changing the job arrival times due to the difference of the original load for each workload
generated by the model. To achieve this load we used a strategy similar to that described by
Shmueli and Feitelson to evaluate their backfilling strategy [32], but we fixed the time interval
and brought more jobs from the same traces that would be out of the interval.

We performed our experiments in Grid’5000 by placing a local scheduler in four clusters
with access to 300 processors. Figure 7 illustrates the location of the resource providers. Table
III presents an overview of the node configurations in which we deployed the local schedulers
and the metascheduler.‡

5.2. Results and Analysis

There are two factors related to the reduction of user response times: work distribution and
backfilling. Work distribution can be improved by having better run time estimates, since
the metascheduler can decide the right amount of work to send to each provider, whereas
backfilling can fill queue fragments generated by earlier completion times of user requests.
These fragments, which are idle spaces in the schedules, can be filled as long as estimations
are smaller or the same size as the fragments. By increasing inaccuracy, more fragments are

‡More details about the machines in Grid’5000 can be found at https://www.grid5000.fr
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Table III. Overview of the node configurations for the experiments in Grid’5000. Sites are
interconnected inside the same VLAN at 10Gbps.

Scheduler Cluster Location CPUs’ Configuration
Metascheduler sol Sophia AMD Opteron 2.0 GHz
Provider 1 paradent Rennes Intel Xeon 2.5 Ghz
Provider 2 bordemer Bordeaux AMD Opteron 2.2 GHz
Provider 3 grelon Lille AMD Opteron 2.6 GHz
Provider 4 chicon Nancy Intel Xeon 1.6 GHz

Figure 7. Location of processors in Grid’5000.

created and therefore more jobs can be backfilled. However, there is a limit in which backfilling
can be explored. Figures 8 and 9 show the requested run times, fragment lengths, and number
of jobs that would fit into the fragments for run time estimates with accuracy of 85% and
50%, respectively. We observe that the higher the accuracy the smaller is the number of jobs
that have changes of being backfilled. For the examples of Figures 8, 9, and 10, we are not
considering the submission time of the jobs. By plotting the total number of jobs that would
have chances to be backfilling as a function of run time accuracy, we notice that there is a limit
on the backfilling chances. Figure 10 shows that after an overestimation of 200%, the chances
of backfilling become steady.

The main motivation for developing the coordinated rescheduling for BoT applications is the
observation that stretch factor increases with the run time overestimations. Figure 11 presents
the stretch factor for applications scheduled in multiple clusters as a function of run time
overestimation for homogeneous and heterogeneous environments. Until 30% of overestimation,
there is no difference between the rescheduling strategies. This happens because by this value,
just a few jobs have chances of backfilling. However, after 30%, tasks of BoT applications
spread over the scheduling queues due to the backfilling, thus increasing the stretch factor. The
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Figure 8. Requested run times and fragment lengths of the workloads for accuracy of 85%.
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(b) Fragment lengths.
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Figure 9. Requested run times and fragment lengths of the workloads for accuracy of 50%.
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Figure 10. Backfilling limit as a function of run time overestimations.

coordinated rescheduling minimizes this effect in approximately 20% and 10% for homogeneous
and heterogeneous environments respectively. For the heterogeneous environment, although
stretch factor is reduced using coordinated rescheduling over the uncoordinated one, this
improvement is lower than in homogeneous environments (Figure 11). The reason is that
applications tend to be executed in fewer clusters as the metascheduler places tasks on the
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14 MARCO A. S. NETTO & RAJKUMAR BUYYA

fastest cluster in order to reduce completion time). Therefore, the importance for coordinated
rescheduling among providers is reduced. As showed in Figure 12, the number of clusters per
job is reduced in the heterogeneous environment. Most of the applications are scheduled to
one or two clusters, whereas for the homogeneous environment similar number of applications
access two, three, and four clusters.
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(a) Homogeneous environment.
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Figure 11. Stretch factor as a function of the run time estimation accuracy and rescheduling schema.
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Figure 12. Number of clusters per job.

Reducing the stretch factor may have an impact on the user response time. Figure 13 presents
the response time reduction of coordinated rescheduling and system-generated predictions in
comparison to user run time estimates with uncoordinated rescheduling. We observe that
the difference between the policies is higher for the homogeneous environment, since jobs are
more distributed to multiple providers than in the heterogeneous environment. In addition,
system-generated predictions have better improvements in the heterogeneous environment than
in the homogeneous one. The reason is that incorrect work distribution in a heterogeneous
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environment causes more negative effects than in a homogeneous one. We also observe that
system-generated prediction policies have a similar curve shape that perfect user estimation
until a certain threshold (60% for homogeneous and 70% for heterogeneous environment). After
this threshold the advantage of using system-generated predictions is reduced. This happens
because there is a benefit limit in backfilling (as illustrated in Figure 10) and it becomes lower
than the cost paid to obtain better estimations.
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(a) Homogeneous environment.
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(b) Heterogeneous environment.

Figure 13. Global user response time reduction in comparison to uncoordinated rescheduling.

We also analyzed the user response time separately for multi- and single-provider jobs.
Figure 15 presents the results for single-provider jobs. We observed that the increase of user
overestimations actually reduces user response time for these jobs, which corroborates with
previous studies on effects of run time estimates for job scheduling [33]. User response time for
coordinated rescheduling produces an improvement of up to 5% in relation to uncoordinated
rescheduling for these jobs. The main benefits of higher run time accuracy and coordinated
rescheduling come from multi-provider jobs, as illustrated in Figure 16. It is worth noting
that scheduling algorithms and techniques for reducing response time and increasing system
utilization are getting more complex and every gain is important, especially if we consider a
global scenario where machines are consuming a considerable amount of electricity and users
are demanding higher Quality-of-Service levels.

We have also analyzed the slowdown (with 10 minutes bound), which is the response
time divided by the application run time. Figure 14 presents the slowdown for homogeneous
and heterogeneous environments. We observe that for this metric, coordinated rescheduling
presents even better results than using perfect run time estimations. This happens because
this metric highlights the improvements of smaller jobs in relation to big ones—smaller jobs
have more chances of backfilling than the big ones.

We have also calculated system utilization for user and system-generated estimations and
uncoordinated/coordinated rescheduling algorithms. The results are similar with a difference of
less than 1%. This difference may increase if we consider a competition scenario with providers
offering different completion time guarantees. In this scenario, users will tend to execute their
applications on providers offering shorter completion times. Figure 17 illustrates the average
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Figure 14. Global slowdown reduction in comparison to uncoordinated rescheduling.
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Figure 15. Single-cluster job response time reduction in comparison to uncoordinated rescheduling.

system utilization of providers with different run time estimation schemas; the higher the
accuracy of run time predictions the higher the chances of attracting more users. System
utilization is the percentage of the resources that have been used over time.

We have also performed experiments in Grid’5000 to evaluate possible technical difficulties
to deploy the coordinated rescheduling. We selected a few workloads and compared the results
from simulations and executions in the real environment. Table IV presents the scenarios and
obtained results. We observed that for these experiments, both simulations and executions in
the real environment provided similar results, showing the practical benefits of coordinated
rescheduling. As we described in the section on coordinated rescheduling implementation, the
required modification in an existing scheduling architecture is minimal. The execution time for
rescheduling tasks is less than a second, since just a few bytes that specify task IDs, completion
times, and IP addresses are required to be transferred over the network.
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Figure 16. Multi-cluster job response time reduction in comparison to uncoordinated rescheduling.

(a) SE = 0.5 UE (b) SE = 0.2 UE

Figure 17. Impact of estimations on the system utilization by attracting more users through more
optimized completion time guarantees.

6. CONCLUSIONS

This paper presented a coordinated rescheduling algorithm for BoT applications executing
across multiple providers and the impact of run time estimates for these applications. Due
to inaccurate run time estimates, initial schedules have to be updated, and therefore, when
each provider reschedules tasks of a BoT application independently, other applications may
not have chances of reducing their response time.

The main finding is that tasks of the same BoT can have considerably different completion
times due to inaccurate run time estimates and environment heterogeneity. Coordinated
rescheduling of these tasks can hence reduce user response time for both single- and multi-
provider applications in approximately 5%; and slowdown reduction of up to 10%. This
improvement comes from the observation that reducing the expected completion time of tasks
from the same BoT independently prevents backfilling of other tasks. Moreover, in order to
deploy coordinated rescheduling, metaschedulers and resource providers only require a simple
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Table IV. Comparison of results from Grid’5000 and simulations.

Metric and From From
Overestimation (%) simulation (%) real system (%)

SFactor for uncoordinated rescheduling - 50 2.92 ± 0.08 3.05
SFactor for uncoordinated rescheduling - 100 2.86 ± 0.07 2.81
SFactor for uncoordinated rescheduling - 150 2.81 ± 0.04 2.69

SFactor for coordinated rescheduling - 50 2.59 ± 0.05 2.65
SFactor for coordinated rescheduling - 100 2.53 ± 0.07 2.42
SFactor for coordinated rescheduling - 150 2.49 ± 0.04 2.56

Response time reduction - 50 3.14 ± 0.55 3.84
Response time reduction - 100 4.95 ± 0.74 6.94
Response time reduction - 150 5.68 ± 0.74 5.99

Slowdown reduction - 50 6.66 ± 0.79 6.74
Slowdown reduction - 100 8.48 ± 0.92 10.4
Slowdown reduction - 150 8.88 ± 1.29 10.07

data structure and protocol to keep track of the expected completion time of the last task of
each BoT applications. System-generated predictions can serve as an alternative to coordinated
rescheduling but require more effort for deployment and may not reduce user response times
as much as when using coordinated rescheduling.
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C. Running bag-of-tasks applications on computational grids: The MyGrid approach. Proceedings of the
32nd International Conference on Parallel Processing (ICPP’03), IEEE Computer Society, 2003; 407–.

23. Iosup A, Sonmez OO, Anoep S, Epema DHJ. The performance of bags-of-tasks in large-scale distributed
systems. Proceedings of the 17th International Symposium on High-Performance Distributed Computing
(HPDC’08), ACM, 2008; 97–108.

24. Benoit A, Marchal L, Pineau JF, Robert Y, Vivien F. Offline and online master-worker scheduling
of concurrent bags-of-tasks on heterogeneous platforms. Proceedings of the 22nd IEEE International
Symposium on Parallel and Distributed Processing (IPDPS’00), IEEE Computer Society, 2008.

25. Kim JK, Shivle S, Siegel HJ, Maciejewski AA, Braun TD, Schneider M, Tideman S, Chitta R, Dilmaghani
RB, Joshi R. Dynamically mapping tasks with priorities and multiple deadlines in a heterogeneous
environment. Journal of Parallel and Distributed Computing 2007; 67(2):154–169.

26. Beaumont O, Carter L, Ferrante J, Legrand A, Marchal L, Robert Y. Centralized versus distributed
schedulers for bag-of-tasks applications. IEEE Transactions on Parallel and Distributed Systems 2008;

Copyright c© 00 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 00; 00:1–7
Prepared using cpeauth.cls



20 MARCO A. S. NETTO & RAJKUMAR BUYYA

19(5):698–709.
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30. Maćıas M, Rana OF, Smith G, Guitart J, Torres J. Maximizing revenue in grid markets using an

economically enhanced resource manager. Concurrency and Computation: Practice and Experience 2010;
22(14):1990–2011.

31. Bruneo D, Longo F, Scarpa M, Puliafito A. Performance analysis of job dissemination techniques in grid
systems. Concurrency and Computation: Practice and Experience 2011; 23(11):1213–1235.

32. Shmueli E, Feitelson DG. Backfilling with lookahead to optimize the packing of parallel jobs. Journal of
Parallel Distributed Computing 2005; 65(9):1090–1107.

33. Tsafrir D, Feitelson DG. The dynamics of backfilling: Solving the mystery of why increased inaccuracy may
help. Proceedings of the 2006 IEEE International Symposium on Workload Characterization (IISWC’06),
IEEE Computer Society, 2006; 131–141.

Copyright c© 00 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 00; 00:1–7
Prepared using cpeauth.cls


