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Summary

Most existing quality of service (QoS) control algorithms of Web applications take

into account Web Server or database connections which can be released immedi-

ately. However, many applications are deployed on virtual machines (VMs) or even

Spot VMs elastically rented from public Clouds. To save costs, interval-priced VMs

are not released until the ends of rented intervals. Such delays of control effects

make existing methods rent or release excess VMs leading to overcontrol. Fluctu-

ated prices make Spot VMs unreliable due to unexpected termination which makes

fault-tolerant strategies crucial. In this article, an unequal-interval-based loosely cou-

pled control method is proposed to improve the quality of service (QoS) control ability

of fault-tolerant strategies. A queuing model with arrival-rate-adjustment coefficient is

used to predict required capacity as a feedforward controller. Another two-threshold

and queuing-model-based method is applied to update the coefficient as a loosely

coupled feedback controller. Meanwhile, unequal-interval controller collaborating

method is proposed to avoid overcontrol and react quickly to workload changes. Our

approach is evaluated on both a simulation platform and a real Kubernetes Cluster.

Experimental results illustrate that our approach decreases the percentage of waiting

times larger than service level agreements with similar or lower rental costs compared

with existing algorithms.
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1 INTRODUCTION

Cloud computing offers subscription-oriented services and it is widespread to rent Cloud virtual machines (VMs) elastically to support the running

of Web applications.1,2 VMs are generally priced by time intervals and the hour-based pricing model is especially popular in modern commercial

public Clouds. Prices of On-demand VMs of Amazon EC2, Microsoft Azure, Aliyun, and so on are fixed. On the contrary, prices of Spot VMs of Ama-

zon EC23,4 are dynamic because Spot VMs are auctioned by public Clouds. Spot VMs are cheaper than On-demand VMs but unreliable due to lease

terminations when the current market price becomes higher than the bid. Most existing QoS control methods for Web applications only focus on

resources inside one server or On-demand VMs. However, it is beneficial to rent Spot VMs to decrease VM rental costs. The principal goal of this arti-

cle is to provision Spot and On-demand VMs elastically to minimize resource rental cost while guaranteeing the average waiting time of requests and
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the robustness. The main challenges of provisioning Spot VMs are interval-based pricing models, nonlinear system performances and unreliability

of Spot VMs.

Interval-based pricing models make resource provisioning complicated. Most feedback and feedforward control methods of Web applications

mainly focus on allocation of processes of servers,5,6 Web server sessions,7 or database connections8 which can be released quickly. However, Cloud

VMs are usually priced by hours, Cloud users need to pay for the whole rented hour even if only the first several minutes are used. Therefore, it wastes

costs to release rented VMs immediately after releasing decisions are made. VMs are really released at the ends of rented hours which delays the

appearance of control effects. Such delays are likely to mislead controllers to release more VMs leading to overcontrol. Meanwhile, in existing control

methods, the feedback controller is only used to amend the output of the feedforward controller which means feedback and feedforward controllers

should be invoked together every time. However, the interval-pricing models of VMs limit the frequency of invoking the feedback controller which

makes the algorithm react slowly to environment changes. Therefore, one of the challenges is to design appropriate feedback and feedforward

collaborating methods considering the unique interval-based pricing models.

Nonlinear system performances and unreliability of Spot VMs make the renting of Spot VMs complex too. The relationship between the sys-

tem performance and the amount of VM resources is nonlinear. Most existing feedback control methods are based on linear,5-7 inverse proportional

models,9 or M/M/1 model derived linear model10,11 which perform well in steady states but poorly confronted with large workload changes. Mean-

while, existing control methods for guaranteeing QoS usually focus on stable resources rather than unreliable Spot VMs. QoS control is not the main

focus of existing efficient fault-tolerant strategies12,13 for Spot VMs. Therefore, another challenge is to design algorithms combining appropriate

QoS feedback control and fault-tolerant methods.

In this article, an unequal-interval-based loosely coupled control method (UCM) is proposed which considers both fault-tolerant and QoS guar-

antees simultaneously. In UCM, the M/M/N queuing model with arrival-rate-adjustment coefficient is applied to predict required resource capacity

based on current workload as a feedforward controller. To amend the inaccuracy of the M/M/N queuing model, another M/M/1-model-based feed-

back controller is used to update the coefficient rather than the output of the feedforward control to minimize the output error. Meanwhile, based on

the loosely coupled feedforward and feedback structure, an unequal-interval feedforward-and-feedback collaborating method is proposed which

avoids overcontrol and reacts quickly to workload changes by the aid of VM releasing status checking and differentiated feedback-and-feedforward

invoking frequencies. At last, a two-threshold-based output error computing method is used to decrease fluctuations incurred by coarse-grained

VM capacities. Following are key contributions of this article:

1. A novel loosely coupled control method is proposed, which uses the feedback controller to amend the queuing-model-based feedforward

controller by adjusting the parameter of the queuing model rather than the output of the queuing model.

2. An unequal-interval collaborating method is developed to select suitable feedback-and-feedforward invoking frequencies considering the delay

of control effects and the quick response to workload changes.

3. The function of adjustment ratio to expected change of waiting time is established based on the M/M/1 queuing model to improve the accuracy

of feedback control and a two-threshold-based control error computing method is applied to decrease the instability of control.

Following is the structure of rest parts of this article. Section 2 consists of a brief review of related work. An existing group-based fault-tolerant

(GFT) Spot VM renting method is described in Section 3 followed by problem description in Section 4. Section 5 introduces the proposed loosely

coupled control method. Evaluation results are presented in Sections 6 and 7 is about conclusions and future work.

2 RELATED WORK

Methods for guaranteeing QoS of Web applications can be categorized into two types: proactive and reactive methods.14 For example, the queu-

ing theory15-19 and the reinforcement learning20-22 based feedforward controls are proactive methods. Linear or nonlinear performance model5,6,8

and threshold4 based feedback controls are reactive methods. It has been proved that using the threshold-based feedback controls and the

reinforcement-learning-based feedforward controls are both tricky and even fail without much care.14,23 For example, the threshold-based feed-

back controls always need users to manually set rules24 based on information of specific applications. Reinforcement leaning usually requires a very

long initialization and learning period which needs careful designing of convergence speed-up techniques.23 The queuing-model-based feedfor-

ward control is an effective and efficient method to predict the required resource capacity for scenarios with dynamic arrival rates.25,26 Jiang et al24

proposed a M/M/N-queuing-model-based feedforward VM provisioning method to guarantee QoS and to minimize the rental cost simultaneously.

Wang et al27 developed an unequal-server-based queuing model to allocate resources of a data center to different applications. However, there

are unavoidable deviations between queuing models and the real environment. Feedforward-based methods lack the ability to react to real-time

performance.

Linear5-8,28 or inverse proportional9 performance-model-based feedback control methods have been widely used in traditional computing

systems to adjust provisioned resources according to real-time performance. However, there are many challenges when feedback control is
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applied to Cloud computing applications.31 Most existing feedback control methods are based on fine-grained resources such as Web Server

processes or database connections rather than coarse-grained VMs with fixed capacities, and these fine-grained resources can be allocated

and released quickly which are quite different with interval-charged Cloud VMs. Linear-model or multilinear-model-switching-based feedback

control was applied by Lu et al5,6 and Patikirikorala et al7 to allocate processes or sessions of Web Servers to different classes of requests

for providing differentiated services. Pan et al8 and Karlsson et al29 developed linear-model-based feedback control methods to distribute

limited database connections with fixed or on-line estimated gain parameters. Padala et al28 applied online parameter estimating techniques

to increase the robustness of linear-model-based feedback control for distributing CPU and disk of physical machines to different applica-

tions. However, linear or inverse proportional performance models cannot describe the system accurately which make the feedback control

response to environment changes inaccurately because computing systems usually have complex nonlinear performance characteristics. Mean-

while, because of the delay of control effect resulted from interval-based pricing models of Cloud VMs, existing feedback control methods are

likely to rent or release excess VMs. There are also some existing algorithms designed for provisioning VMs elastically. Lim et al31 proposed a

linear-model-based feedback control method to control the CPU utilization by adjusting the amount of VMs. Al-Shishtawy and Vlassov32 applied

a linear-model-based feedback control method using the ratio of throughput and the number of VMs as control input for online store system. In

order to describe the system more accurately, Baresi et al9 developed an inverse-proportional-performance-model-based proportional-integral

(PI) controller to allocate containers to Cloud applications. However, these methods do not take into account Spot VMs or the VM releasing

delay.

To guarantee Web application QoS, there is a trend of using feedback-control to compensate the inaccuracies of queuing models10,11,30 or

other proactive methods.33 The combining of queuing-models and feedback controls is an effective and fast method to make the system follow

a referenced average waiting time.34 However, in existing feedback and feedforward hybrid control algorithms for QoS control of Web applica-

tions, the feedback controller is usually only used to amend the output of the feedforward controller (called parallel connection) which is not

suitable for interval-charged Cloud VMs. Sha et al10 applied a first-order linear-model-based PI controller to amend the queuing model. Sim-

ilarly, the linear-model-based feedback control was used by Lu et al11 to adjust the output of a queuing-model-based feedforward controller.

Xu et al30 developed a hybrid control method which also uses the proportional-integral derivative controller to correct inaccuracies of queuing

models. The interval-based pricing model limits the frequency of invoking feedback controllers to avoid overcontrol. For example, feedback con-

trollers cannot be invoked within at most 1 hour waiting for VMs to be really released at the ends of rented hours. However, the structure of

traditional parallel connection limit that feedback and feedforward controllers must be invoked together which delays the response to workload

changes.

There are already some fault-tolerant scheduling methods for Cloud Web applications. A GFT Spot VM renting method for Web applica-

tions was investigated by Qu et al12 which rents multiple groups of different types of Spot VMs to increase the robustness of the system. Then,

Liu et al13 extended the group-based method by applying price forecasting and setting minimum VM renting durations to decrease the rental

cost further. These two methods mainly focus on the fault-tolerant strategies without taking into account QoS control. It is beneficial to com-

bine fault-tolerant strategies and interval-pricing-model-aware QoS control methods to improve robustness, decrease rental costs and guarantee

the QoS.

A comparison between our approach UCM and existing algorithms is shown in Table 1. UCM consists of both interval-pricing-model-aware

QoS control and fault-tolerant methods. In UCM, the feedback and feedforward controllers are loosely coupled rather than connected

in parallel. The feedback controller is used to update the parameter of the M/M/N-based feedforward controller. The loosely coupled

structure makes it possible to invoke feedback and feedforward controllers with unequal time intervals separately. For example, the feed-

forward controller can be invoked separately and more frequently than the feedback controller to react to workload changes quickly.

Meanwhile, the feedback controller applies a M/M/1-based arrival rate coefficient adjustment model to improve the accuracy of feedback

control.

3 BACKGROUND-EXISTING GFT VM RENTING METHOD

An existing GFT Spot VM renting method12 is extended by adding Spot price prediction and setting minimum renting duration limitations to

decrease rental cost further by Liu et al.13 The main idea is as follows and details of extended GFT can be found in the reference.13 Multi-

ple groups of Spot VMs are rented simultaneously to increase the robustness. Each group has the same capacity and consists of the same

type of VMs. For a required resource capacity R in the unit of million instructions, On-demand VMs with capacity Ro =Co ×No is rented

first where Co is the capacity of each On-demand VM and No is the number of rented On-demand VMs. Then, Ns groups of Spot VMs are

rented and each group has the subcapacity of Q= (R−Ro)/Ns. In order to increase the fault-tolerant ability, f groups of additional Spot VMs

are rented and each group has the capacity of Q too. f is called fault-tolerant level.12 Therefore, the total capacity of rented Spot VM is

[(R−Ro)/Ns]× (Ns + f).
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Algorithm 1. Group-based fault-tolerant VM renting method (GFT)

Input: required capacity R, last required VM capacity Rc, threshold of plan lasting time Tu, lasting time of current plan Tp, number of existing Spot

VM groups Ne

1: if R > Rc then

2: if Tp > Tu then

3: for No ∈ [0,No_max] do

4: Ro ← Co × No, Nmin ← max{Ne, f + 1}, Nmax ← min{Nsp,Nal}
5: for Ns ∈ [Nmin,Nmax] do

6: Calculate Q ← (R − Ro)∕Ns of each Spot group

7: Calculate the rental cost of existing Ne groups with new capacity Q

8: Compute rental cost of each unrented Spot type to fulfill the capacity Q using Spot price predicting

9: Choose Ns − Ne unrented Spot types with cheapest rental costs

10: Compute renting costs of Ns groups

11: end for

12: end for

13: Select the lowest cost plan (No, Ns, Spot types) as current plan

14: else

15: Increase the capacity of each group by Q ← (R − Ro)∕Ns

16: end if

17: else if R < Rc then

18: Decrease the capacity of each group by Q ← (R − Ro)∕Ns

19: end if

20: Rc ← R

For given R and f, selecting appropriate No, Ns and Spot VM types of different groups has a great impact on the final rental cost. Different com-

binations of these values lead to different plans. The formal description of extended GFT is shown in Algorithm 1. Let Rc and Ne be the last required

VM capacity used to generate the current plan and the number of existing groups. When the required capacity R is larger than Rc, more resources

are needed. When the lasting time Tp of the current plan is shorter than a threshold Tu, only capacity of each group is increased based on the new

R. Otherwise, a much cheaper plan is selected as follows. Let No_max be the largest number of VMs if only On-demand VMs are rented. For each can-

didate No ≤ No_max, different numbers of Spot groups Ns are evaluated. Ns is set to be larger than Ne which means that only plans with more groups

of Spot VMs are considered to avoid large fluctuations. Ns should also be smaller than Nsp (the number of all available Spot VM types in the system)

and Nal (the maximum number of allowed to rent Spot VM types). For each Spot type, prices of future h hours are first predicted by a time series

analysis method.13 Nal is usually set to be smaller than Nsp to increase the possibility of selecting stable Spot types by forecasting because the GFT

always tends to rent all available groups to save cost if Nal limitation is not set. The rental costs of existing Ne groups with new capacity Q are calcu-

lated based on predicted Spot prices first. Then, for each unrented Spot type, the number of required VMs is ⌈Q/[MIPS× (1− dmargin])⌉ where MIPS

is the number of instructions performed by the VM type per second and dmargin is the percentage of margin resources for sudden burst of workloads.

And, the rental cost of each unrented Spot type is obtained based on the predicted Spot prices too. Next, Ns −Ne unrented Spot types with cheapest

rental costs are selected. The total cost of all Ns groups are obtained by summing the rental costs of Ne existing groups and selected Ns −Ne unrented

Spot types. The process iterates and the cheapest plan is chosen at last. On the contrary, when the required capacity R is smaller than Rc, the plan

is kept unchanged and only the capacity of each group is decreased using the new capacity R. When a Spot VM is at a pricing point (the end of the

rented interval), it is released only when the capacity of left Spot VMs of its group is still not lower than Q.

4 PROBLEM DESCRIPTION

The considered Web application consists of one or multiple tiers such as graphic interface tier, business logic tier and database tier. Multiple types of

Cloud VMs are rented elastically from public Clouds to establish a virtual data center to support the running of each tier. Each tier is deployed in the

form of multiple containers in different types and numbers of rented VMs. These containers are organized by Kubernetes35 to implement automatic

request forwarding and life cycle management. To minimize VM renting costs while guaranteeing the average waiting time, a Resource Scheduler

is designed to rent or release VMs dynamically according to real-time workloads for each tier. Service level agreements (SLA) of Web applications

usually specify a distribution of average waiting times, for example, 𝜅% of waiting time of the requests should be no more than an upper limit WSLA.15

Although the resource provisioning of different tiers has impact on each other, it is still general to break the overall WSLA of the application into WSLA
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of each tier and design the auto-scaling method for each tier separately for simplification.26 In this article, a hybrid control method is designed for

the Resource Scheduler to adjust the VM capacity of each single tier separately considering both VM renting costs and average waiting times. This

control method can be used as resource auto-scaler of single-tier Web applications directly or each single tier of multitier applications.

5 PROPOSED CONTROL METHOD

In this section, an unequal-interval-based loosely coupled feedforward and feedback control method (UCM) is proposed to adjust the required

resource capacity R of the GFT increasing GFT’s ability of QoS control. At first, architecture of the hybrid control method is described, followed by

introduction to the feedforward and feedback controllers, respectively. Then, the collaborating method of two controllers is presented. Finally, the

formal description of UCM is given.

5.1 Architecture of the loosely coupled control method

The structure of proposed loosely coupled controllers is shown in Figure 1. The M/M/N queuing model is applied to predict the resource require-

ment based on current request arrival rate and maximum expected waiting time. The output of the feedforward controller is the required resource

capacity R which will be used to update VMs of a Web application tier using GFT. In order to amend the inaccuracies of M/M/N model, the arrival

rate of the feedforward queuing model is adjusted by multiplying a coefficient 𝜑 which is learned dynamically by another queuing-model-based

feedback controller. In other words, the feedback controller is in charge of learning the parameter of the queuing-model-based feedforward con-

troller. Then, the feedforward controller can be invoked separately and more frequently than the feedback controller based on learned parameters.

In order to make the average waiting time smaller than WSLA, the reference waiting time Wr of the feedback controller should be smaller than WSLA.

To be consistent with the feedback controller, the maximum expected waiting time of the feedforward queuing model is set to be Wr too.

5.2 Queuing model with adjustable-arrival-rate-based feedforward controller

Each Web application tier usually consists of multiple VMs with different processing rates. It is very complex to establish a performance model for a

cluster with heterogeneous VMs regarding average waiting times, request arrival rates and VM capacities. For simplification, it is assumed that the

cluster only consists of identical VMs of the lowest configuration. And time intervals between arrivals of two requests and the request processing

times have negative exponential distributions with parameters 𝜆 (arrival rate) and 𝜇 (processing rate), respectively. Then, the M/M/N model with

identical servers are used to describe the heterogeneous system approximately. In M/M/N, each server is a VM with the lowest configuration and

there are N identical servers. Based on given arrival rate 𝜆, processing rate 𝜇 of each server and reference waiting time Wr , the minimum number of

N can be obtained through queuing theories as follow.

For M/M/N, the probability of no waiting request in the queue is

P0 =
⎡⎢⎢⎢⎣

N−1∑
k=0

1
k!

𝜆

𝜇
+ 𝜆N

N!
(

1 − 𝜆

N×𝜇

)
𝜇N

⎤⎥⎥⎥⎦
−1

. (1)

F I G U R E 1 Architecture of the loosely coupled control system
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The expectation of request number in the queue is

Lq =

(
𝜆

𝜇

)N
𝜆

N×𝜇

N!
(

1 − 𝜆

N×𝜇

)2
P0. (2)

The expectation of waiting time is

Wq =
Lq

𝜆
. (3)

Algorithm 2. Queuing model with adjustable-arrival-rate-based feedforward control (QFC)

Input: measured arrival rate 𝜆m, processing rate of the lowest configuration VM 𝜇, capacity of the lowest configuration VM Cl, current arrival rate

adjust coefficient 𝜑(t), reference waiting time Wr

1: 𝜆 ← 𝜆m × 𝜑(t) and N ← ⌈ 𝜆

𝜇
⌉

2: while True do

3: Calculate Wq based on Equation (3).

4: if Wq ≤ Wr then

5: return R ← N × Cl

6: else

7: N ← N + 1

8: end if

9: end while

A smallest number of N is found to satisfy Wq ≤Wr to guarantee Wr . Because it is complex to deduce the inverse function of the original function

of Wq to N, an exhausted search method24 is proposed to find the smallest number of servers fulfilling Wr as shown in Algorithm 2. To fix the inaccu-

racies of queuing model, the measured arrival rate 𝜆m is multiplied by a coefficient 𝜑(t) to generate an adjusted arrival rate 𝜆, that is, 𝜆 = 𝜆m × 𝜑(t).
Then, the basic number of VMs is generated by N = ⌈ 𝜆

𝜇
⌉ because the processing rate cannot be smaller than the arrival rate. Next, the number of

VMs are increased one by one until the expected waiting time of the queuing model is not larger than Wr . Finally, the required capacity R=N×Cl is

obtained which will be used as the input of the GFT. Figure 2 shows the structure of the feedforward controller.

5.3 Two-threshold and queuing-model-based feedback controller

Because of the inaccuracies of queuing models and system workload changes, the average waiting time y(t) may deviate from the reference waiting

time Wr . The coefficient 𝜑(t) should be updated to cope with the current deviation between Wr and y(t). If y(t) > Wr , the system is at low-provision

state and 𝜑(t) should be enlarged to increase R. Otherwise, the system is at overprovision state and 𝜑(t) should be shrunk to decrease R. If too much

of 𝜑(t) is adjusted, the system may skip the normal state and fluctuate between overprovision and low-provision states. Therefore, it is crucial to

determine how much to adjust the coefficient𝜑(t) to make the system return back to the normal state. In this article,𝜑(t) is updated by an adjustment

ratio 𝜔 every time, that is, 𝜑(t) = 𝜑(t − 1) × 𝜔. Making y(t) follow Wr as much as possible can be modeled as a feedback control problem. 𝜔 and y(t)

are the input and output of the system, respectively. And the control error is e(t)=Wq − y(t). Because the relationship of y(t) to 𝜑(t) is described by

a M/M/N-based feedforward controller which is nonlinear, it is very complex to design a feedback controller to transform e(t) to an appropriate

control input 𝜑(t) directly.

5.3.1 Linear-model-based abstraction

An abstract linear model is investigated to simplify the analysis in this article. As shown in Figure 3, if the function of adjustment ratio 𝜔 to expected

change of the waiting time can be established, an𝜔 can be obtained by the function given an expected change of average waiting time u(t). Then,𝜑(t)

F I G U R E 2 Queuing model with adjustable-arrival-rate-based
feedforward controller
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F I G U R E 3 Two-threshold
and queuing-model-based
feedback controller

can be updated by 𝜔 based on which resources are updated by the feedforward controller. The real average waiting time of the Web application will

change by u(t) if the established function of adjustment ratio 𝜔 to changed waiting time is accurate. Therefore, the system can be abstracted into a

simple linear model

y(t + 1) = y(t) + u(t), (4)

where u(t) is the expected change of average waiting time as the control input. Then, feedback controllers can be built based on this linear model. In

the following sections, the function of 𝜔 to changed waiting time and a Proportional controller are proposed.

5.3.2 Function of adjustment ratio 𝜔 to expected change of waiting time u(t)

Given a real-time average waiting time y(t) and the current resource capacity, a real arrival rate 𝜆real can be obtained based on queuing mod-

els. Meanwhile, given a targeted waiting time Wd = y(t)+ u(t) (u(t) is the expected change of waiting time) and the current resource capacity,

a targeted arrival rate 𝜆dest can be generated using queuing models too. The ratio 𝜔 = 𝜆real∕𝜆dest describes how much should the real arrival

rate be adjusted to change the waiting time from y(t) to Wd under the current resource capacity. In this article, the ratio 𝜔 is used to approxi-

mately describe how much should the measured arrival rate be adjusted to change the rented amount of resource to catch a targeted waiting

time Wd.

However, given y(t) and R, it is complex to calculate the 𝜆real using the M/M/N queuing model because it is much complex to deduce the inverse

function of the original function from 𝜆 to Wq described in Equations (1), (2), and (3) directly. On the contrary, the similar inverse function of M/M/1

can be deduced easily as follows. The function of expected waiting time Wq to 𝜆 of M/M/1 is

Wq = f(𝜆) = 𝜆

𝜇t(𝜇t − 𝜆)
, (5)

where 𝜇t is the total processing rate of all VMs. The inverse function of f is

𝜆 = f−1(Wq) =
𝜇2

t Wq

1 + 𝜇tWq
. (6)

Therefore, for simplification, the ratio 𝜔 is computed using M/M/1 rather than M/M/N as follows establishing the function of adjustment ratio

𝜔 to the expected change of waiting time u(t) by substituting Wd = y(t)+ u(t).

𝜔 = 𝜆real

𝜆dest
= f−1(y(t))

f−1(Wd)
=

𝜇2
t y(t)

1 + 𝜇ty(t)
∕

𝜇2
t Wd

1 + 𝜇tWd
= y(t)(1 + 𝜇t(y(t) + u(t)))

(y(t) + u(t))(1 + 𝜇ty(t))
. (7)

5.3.3 Two-threshold-based proportional controller design

In most existing methods, the output error is the deviation between the real-time waiting time and the reference waiting time. However, because

VMs can only be rented or released in discrete numbers, the total capacity of a virtual Cloud data center can only change in coarse-grained

scales and output errors may always exist. The traditional computing method of the output error usually leads to system fluctuations. Therefore,

a two-threshold-based output error computing method is applied.31 The output error e(t) is defined to be the difference between yt and the lower

or upper threshold of the interval from Wr × lower_thr to Wr ×upper_thr. When yt is inside the interval, e(t) is defined to be zero to avoid a further

control which may lead to a bigger output error.
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e(t) =

⎧⎪⎪⎨⎪⎪⎩
Wr × lower_thr − y(t) y(t) < Wr × lower_thr

Wr × upper_thr − y(t) y(t) > Wr × upper_thr

0 Otherwise.

The proposed abstract linear model assumes that the control input u(t) will have direct addition impact on the output which simplifies the con-

troller design. Based on the two-threshold-based output error computing method, a proportional controller is applied, that is, u(t)=Kp × e(t) where

Kp is the control gain. The transfer function of the linear-model is

Y
U

= 1
z − 1

. (9)

The transfer function of the proportional controller is

U
E

= Kp. (10)

The transfer function of the whole system with feedback control is

Y
W

=
Kp

1

z−1

1 + Kp
1

z−1

=
Kp

z − 1 + Kp
. (11)

The pole of the whole feedback control system is 1−Kp. According to the settle time and overshoot requirements, Kp will be selected based on

the pole placement method (PPM)36 and experiments in the parameter tuning Section.

5.3.4 Description of the two-threshold and queuing-model-based feedback controller

Algorithm 3 is the formal description of the proposed two-threshold and queuing-model-based feedback control method (TFBC). At first, e(t) is

obtained by Equation (8). Then, u(t) is the expected change of waiting time which is the product of e(t) and control gain Kp. The targeted average

waiting time Wd after adjustment is the sum of y(t) and u(t). The adjustment ratio 𝜔 required to obtain the targeted average waiting time Wd is

computed using Equation (7). 𝜔 is limited within the interval [𝜔upper, 𝜔lower] to avoid too large-scale adjustments incurring fluctuations. At last, 𝜑(t)

is updated by multiplying the ratio 𝜔.

Algorithm 3. Two-threshold and queuing-model-based feedback control (TFBC)

Input: current arrival rate adjust coefficient 𝜑(t − 1), reference waiting time Wr , average waiting time y(t), lower_thr, upper_thr, control gain Kp, last

required VM capacity Rc, capacity of the lowest configuration VM Cl

1: e(t) ← Equation (10), u(t) ← Kp × e(t) and 𝜇t ←
Rc×𝜇

Cl

2: 𝜔 ← Calculate adjustment ratio by Equation (5)

3: 𝜔 ← max(min(𝜔,𝜔upper), 𝜔lower)
4: 𝜑(t) ← 𝜑(t − 1) × 𝜔

5: return 𝜑(t)

5.4 Unequal-interval collaborating strategy

For control problems, frequent adjustments on the input are required to cope with output errors incurred by dynamic workloads. However, input

adjustments usually have delays to take effect, for example, it takes about 1 to 2 minutes for newly requested VMs to become available and at most

1 hour for VMs to be really released. Too frequent adjustments on the input are likely to lead to overcontrol, for example, renting or releasing excess

VMs before adjustments take effect. Therefore, it is crucial to determine the time interval between two control actions (called control interval).

An unequal-interval feedforward-and-feedback collaborating method is proposed based on the loosely coupled structure of two controllers. This

collaborating method assigns different control intervals to feedback and feedforward controllers considering the renting and releasing delays of

Cloud VMs, respectively. The time intervals of invoking feedback controllers should be longer than the VM preparation time to make the newly

rented VM take effect. Meanwhile, before the feedback controller can be invoked, it should be checked whether the last VM releasing action has

taken effect, that is, VMs determined to be released are really released. The VM releasing status checking method (RC) is as follows. For a VM group,



10 of 16 CAI ET AL.

if the releasing of any VM at its end of rented hour makes the group capacity lower than Q, it means no VMs can be released anymore for fulfilling

the capacity Q. If VMs of all groups cannot be released, it means that the VMs required to be released determined by previous control actions are all

really released. On the contrary, the feedforward controller can be invoked more frequently than the feedback controller to response to workload

changes quickly since two controllers are loosely coupled and the feedforward controller can work temporarily well separately.

5.5 Description of unequal-interval loosely coupled control method

Based on the proposed loosely coupled feedforward and feedback controllers and unequal-interval collaborating strategy, the proposed

unequal-interval-based loosely coupled control method (UCM) is formally described in Algorithm 4. The main goal of feedforward controller is to

adjust the required VM capacity to cope with the changes of workloads. Therefore, when Bs =TRUE (the fast feedforward is enabled), the feed-

forward controller is invoked at every workload sampling interval 𝛼 (eg, 1 minute) to response to workload changes quickly. The minute-based fast

feedforward (𝛼 = 60 seconds) is called MF. Every 𝛽 (eg, 300) seconds, it is checked whether the feedback controller can be invoked. 𝛽 should be larger

than the VM preparation time and is usually much longer than 𝛼. When the system is under-provisioning (y(t) > Wr), the feedback controller TFBC

is called directly. Otherwise, the VM releasing status Br is checked by RC when Bc =TRUE. Then, if Bc =FALSE (not to check VM releasing status) or

Br =TRUE (VMs are already released), the feedback controller is invoked. Otherwise, the feedback controller is not called. Finally, because the pro-

posed feedback and feedforward controller are loosely coupled, the feedforward controller QFC and group-based resource renting method GFT

are called no matter whether the feedback controller has been invoked.

Algorithm 4. Unequal-interval-based loosely coupled control method (UCM)

Input: Measured arrival rate 𝜆m, reference waiting time Wr , current average waiting time y(t), is release status checking enabled Bc, is fast

feedforward enabled Bs, lasting time of current plan Tp, Ne, Rc, Cl, Tu, 𝜑(t − 1), 𝜇
1: while True do

2: if Tc − Tf ≥ 𝛼 and Bs = TRUE then

3: Tf ← Tc

4: R ←Call QFC(𝜆m, 𝜇, Cl, 𝜑(t), Wr)

5: Call GFT(R, Rc, Tu, Tp, Ne)

6: else if Tc − Tb ≥ 𝛽 then

7: Tb ← Tc, lower_thr ← 0.75 and , upper_thr ← 1.25

8: if y(t) > Wr then

9: 𝜑(t) ← TFBC(𝜑(t − 1), Wr , y(t), lower_thr, upper_thr, Kp, Rc, Cl)

10: else

11: if Bc = TRUE then

12: Br ← Check VM releasing Status using RC

13: end if

14: if Bc = FALSE or Br = TRUE then

15: 𝜑(t) ← TFBC(𝜑(t − 1), Wr , y(t), lower_thr, upper_thr, Kp, Rc, Cl)

16: end if

17: end if

18: R ←Call QFC(𝜆m, 𝜇, Cl, 𝜑(t), Wr)

19: Call GFT(R, Rc, Tu, Tp, Ne)

20: end if

21: end while

6 PERFORMANCE EVALUATION

UCM and existing algorithms are first evaluated in a simulation environment, created using CloudSim37 which supports the modeling of Spot

VMs. Meanwhile, algorithms are also compared in a real cluster consisting of six VMs which are organized by Kubernetes35 to implement elas-

tic resource provisioning by the aid of container and request automatic forwarding techniques. One VM with four 2.6 GHz Intel i7-9750H virtual

processors and 2 GB of Memory is the master node. Four VMs with three Intel 2.4 GHz i5-6300 or 2.6 GHz i7-9750H virtual processors and

1 GB Memory are worker nodes. A Web application for calculating Fibonacci numbers is deployed in worker nodes in the form of containers.

Since creating more containers in one VM will not increase the total capacity, each VM is limited to accommodate only one application container.
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Worker VMs are dynamically allocated to (deallocated from) the Web application through creating (or deleting) containers of the application on

VMs.35 The ingress-nginx-controller38 in the master node is used to forward requests to containers belonging to the application currently. The

Kubernetes-based resource management method can be used to manage VMs rented from public Clouds too.39 JMeter40 serves as a concurrent

request generator.

Because the Wikipedia user access traces41,42 have common fluctuation characteristics, user access traces during September and October in

2007 are used as workloads. Since the original trace data contains 1500 to 3500 requests every second, about 5% of the original requests are

sampled randomly to speed up the simulation. Because the Wikipedia trace has a significant weekly seasonal pattern, 2 weeks of nonoverlapping

traces are used, called Workload 1 and 2 for CloudSim evaluation. Eight types of Amazon EC2 Spot and On-demand VMs as shown in Table 2 with

different configurations and prices are simulated in CloudSim. Real prices of Spot VMs are obtained by the interface of Amazon EC2 and used to

evaluate rental costs. For experiments on the real Kubernetes Cluster, access traces of each hour are compressed into 10 minutes to accelerate the

evaluation by sampling. And the experiment on the Kubernetes cluster lasted 12 hours for each algorithm. JMeter generates requests according to

the number of requests of each minute in the access traces. For simplification, prices of two types of VMs in the Kubernetes Cluster are set to be 1

and 2 per 10 minutes, respectively.

The UCM is first compared with the GFT method12,13 which is one of the few works considering the heterogeneous Spot VMs. The total

required resource capacity R of GFT is the multiplication of the last 𝜆m and the average request length (million instructions). GFT mainly focuses on

fault-tolerant strategies without considering the prediction of required VM capacity to control the average waiting time in a given interval. There-

fore, UCM is then compared with QT24 which use a M/M/N-model-based feedforward controller to predict required VM capacities. Because QT

is not tailored for Spot VMs, it is extended by adding GFT as a fault-tolerant strategy and the extended QT is called GFT-FF. Next, UCM is com-

pared with another unequal-M/M/N-queuing-model-based feedforward method UQueuing proposed by Wang et al.27 UCM is also compared with

EcoWare9 which is one of the classical simple nonlinear-model-based feedback control methods. At last, UCM is compared with HC-FFB proposed

by Sha et al10 which obtains well performance in the control of traditional server processes. HC-FFB applies a G/G/N model as feedforward control

and a queuing-model-derived-linear-model-based PI controller as feedback control. Since the comparison of feedforward-control-based on differ-

ent queuing models is not the main concern of this article, G/G/N model of HC-FFB is replaced by M/M/N used in QT24 for fair comparison. Because

HC-FFB is designed to control the response time rather than waiting time, the first-order linear model10 established based on M/M/1 that describe

the effect of the amount of increased (decreased) processing rate to the reduction (increase) in output response time cannot be used directly. In this

article, a similar first-order linear model is built to describe the effect of changes in processing rate to changes in average waiting time as follows.

The average waiting time of M/M/1 is

Wq = 𝜆

𝜇2
t − 𝜇t𝜆

, (12)

where 𝜇t and 𝜆 are processing and arrival rate, respectively. Because 𝜇t is similar with 𝜆 in stable state, the first derivative of the waiting time vs 𝜇t is

dWq

d𝜇t
= −𝜆

(
1

𝜇2
t − 𝜇t𝜆

)2

(2𝜇t − 𝜆) ≈ −𝜆

(
1

𝜇2
t − 𝜇t𝜆

)2

(2𝜆 − 𝜆) = −

(
𝜆

𝜇2
t − 𝜇t𝜆

)2

= −(Wq)2. (13)

Then, the linear model dWq = −(Wq)2 × d𝜇t is used to build a PI feedback controller. The HC-FFB extended with GFT and the new

linear-model-based PI feedback controller is called HC-GFT-FFB. To evaluate the performance of the proposed VM RC and minute-based fast feed-

forward (MF), the variants of UCM, HC-GFT-FFB, GFT, UQueuing, and EcoWare shown in Table 3 are compared. The parameters of existing GFT are

set with f =1, dmargin =0.2, Nal =3, and h=4 consistent with existing work.13

TA B L E 2 Simulated virtual machine types of Amazon EC2
VM type MIPS On-demand Price

c4.L 4000 0.1

c4.l-linux-unix 4000 0.1

c4.xl-linux-unix 8000 0.21

c4.2xl-linux-unix 15 500 0.419

c4.4xl-linux-unix 32 000 0.838

m4.xl-linux-unix 6500 0.2

m4.2xl-linux-unix 13 000 0.4

m4.4xl-linux-unix 26 750 0.8

Abbreviation: VM, virtual machine.
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TA B L E 3 Details of compared algorithms

Name Feedforward control Feedback control Release status check Fast feedforward

GFT12,13 × × × ×

GFT-FF (GFT and QT24) M/M/N × × ×

UQueuing-RC27 unequal M/M/N × RC ×

EcoWare-RC9 × Inverse proportional model RC ×

HC-GFT-FFB-NRC10 M/M/N M/M/1 derived linear model (Equation (13)) × ×

HC-GFT-FFB-RC10 M/M/N M/M/1 derived linear model (Equation (13)) RC ×

UCM-NRC QFC TFBC × ×

UCM-RC QFC TFBC RC ×

UCM-RC-M QFC TFBC RC MF

Abbreviation: GFT, group-based fault-tolerant.

Because of the complexity of Web applications, the real average waiting time always fluctuates around the given reference waiting time Wr .

Therefore, appropriate reference waiting time Wr should be selected to avoid violating SLA which is usually smaller than WSLA.9 In CloudSim, it is

assumed that WSLA =0.1 second and 𝜅 = 95 are defined in the SLA, that is, 95% of waiting times should be smaller than 0.1 second. A larger Wr

increases the ability of SLA violation while a smaller Wr increases the rental cost of VMs. Wr with different values from {0.005,0.01,0.02,0.04,0.08}

are tested by experiments and Wr =0.02 second with appropriate cost and waiting times is selected. Lengths of requests are randomly gener-

ated following an exponential distribution with a mean of 2000 MI, which means it takes 0.5 second to process on the smallest VM c4.L with

the processing rate of 4000 MIPS. The VM preparation time including requesting time to public Clouds is set to be 150 seconds.9 The arrival

rate sampling interval and the fast feedforward invoking interval is 𝛼 = 60 seconds and the feedback control interval is 𝛽 = 300 seconds. For

experiments on the real Kubernetes Cluster, WSLA =0.045 s and Wr =0.03 s are selected based on the characteristics of the Fibonacci Web appli-

cation and experiments. The processing rates of requests on the two types of Kubernetes Cluster’s VMs are about 20 /s and 40 /s, respectively

obtained by experiments. And the average processing time of one request on the fastest VM is about 0.02 s. For fair comparison, the average

waiting time is obtained by subtracting 0.02 s from the average response time of ingress-nginx-controller38 for all algorithms. Because containers

can be allocated to the application within half minute, the control interval is shortened to 𝛽 = 180 s and fast feedforward is disabled by setting

Bs =FALSE.

6.1 Parameter tuning

The control gains of UCM’s P controller and HC-GFT-FFB’s PI controller are determined by the PPM36 and experimental evaluations together.

According to PPM, poles of control systems have a great impact on stability, settle times and maximum overshoots. Poles should be within the unit

circle to make the system stable and positive for first-order systems to avoid overshoots. Because of the coarse-grained capacity adjustment scale

and complexity of Web systems, the real performance of candidate poles {0.9,0.7,0.5,0.3,0.1,0} fulfilling the above PPM’s criteria is evaluated by

experiments. For UCM, the control gain is generated by Kp =1− pole, that is, Kp∈ {0.1,0.3,0.5,0.7,0.9,1}. Similarly, the control gains of HC-GFT-FFB’s

PI controllers can be obtained.

When the percentages of average waiting times (PAWT) larger than 0.1 second (denoted by PAWT[0.1,∞] for brief) is larger than 95%, it means

that the SLA is violated for the CloudSim simulation. A larger PAWT[0.05,0.1] means a higher possibility of SLA violation when there are sudden

burst of requests. A larger PAWT[0,0.005] means that more resources are rented incurring higher rental costs. Therefore, this article aims to con-

trol the waiting time in a desired interval such as [0.005,0.05]s to save the renal cost and guarantee the SLA simultaneously. Figure 4A shows the

PAWT of our approach UCM-RC-M with different Kp on CloudSim. In total, UCM-RC-M with Kp =1 obtains the minimum PAWT[0.05,∞]=10.4%

(the sum of 6.3% and 4.1%) and the costs of all UCM-RC-M are similar. The PAWTs of the existing algorithm HC-GFT-FFB with different poles

are shown in Figure 4B which shows that HC-GFT-FFB with pole=0.9 gets the minimum PAWT[0.05,∞] which is 17% (the sum of 8.3% and

8.7%). Therefore, Kp =1 and pole=0.9 are selected for UCM and HC-GFT-FFB, respectively. Although, the pole 𝛼 of EcoWare-RC9 is equal to 0.95

originally, in this article, 𝛼 is set to be 0.9 consistent with HC-GFT-FFB. Based on experimental comparison, for the CloudSim, lower_thr=0.75,

upper_thr=1.25, 𝜔lower = 0.95 and 𝜔upper = 1.05 are chose. For the Kubernetes Cluster, lower_thr=0.5, upper_thr=1, 𝜔lower = 0.95 and 𝜔upper = 2

are selected.
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(A) (B)

F I G U R E 4 The distribution of average waiting times and rental costs of UCM-RC-M and HC-GFT-FFB

6.2 Results on CloudSim

Figure 5A-C show PAWTs and rental costs of compared algorithms on CloudSim using Workload 1 and 2. Experimental results show that exist-

ing GFT and GFT-FF usually rent too much resource with highest VM rental costs and more than 99.9% average waiting times are smaller than

0.005 s. The reason is that the total capacities of GFT and GFT-FF are determined only according to historical workloads or queuing model-based

(A) (B)

(C) (D)

F I G U R E 5 The distribution of average waiting times and rental costs of compared algorithms on CloudSim and the Kubernetes Cluster
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feedforward controllers without reacting to output errors. On the contrary, all the other methods with feedback controllers can decrease rental

costs greatly by trying to rent appropriate amounts of resources to keep more average waiting times in the desired interval [0.005,0.05]s. The

PAWT[0.05,∞] of UCM-RC and HC-GFT-FFB-RC are much smaller than those of UCM-NRC and HC-GFT-FFB-NRC. For example, the PAWT[0.05,∞]

of HC-GFT-FFB-RC is 17% (the sum of 8.3% and 8.7%) which is much smaller than 31.6% (the sum of 6.8% and 24.8%) of the traditional

HC-GFT-FFB-NRC on Workload 1. This illustrates that the traditional HC-GFT-FFB-NRC has violated the SLA (95% no larger than 0.1 second)

greatly and is not suitable for controlling scenarios with hourly priced VMs although HC-GFT-FFB-NRC has both feedback and feedforward con-

trollers. And the VM RC improves the performance of existing HC-GFT-FFB-NRC greatly. Similarly, PAWT[0.05,∞] of our approach UCM-RC is

decreased greatly compared with UCM-NRC by applying RC. For instance, PAWT[0.05,∞] is decreased from 28.5% of UCM-NRC (the sum of 8.4%

and 20.1%) to 11.7% of UCM-RC (the sum of 7.5% and 4.2%) on Workload 2.

Experimental results also show that UCM-RC has lower PAWT[0.05,∞] than that of HC-GFT-FFB-RC. For example, on Workload 1, the

PAWT[0.05,∞] of UCM-RC is 11.7% (the sum of 7% and 4.7%) which is smaller than 17% (the sum of 8.3% and 8.7%) of HC-GFT-FFB-RC, that

is, UCM-RC is more powerful at avoiding SLA violation. Furthermore, UCM-RC-M has a much smaller PAWT[0.05,∞] than UCM-RC. For example,

PAWT[0.05,∞] of UCM-RC-M is 10.4% (the sum of 6.3% and 4.1%) which is smaller than 11.7% (the sum of 7% and 4.7%) of UCM-RC on Workload 1.

It proves that the fast feedforward (MF) is helpful to decrease PAWT[0.05,∞]. Meanwhile, HC-GFT-FFB-RC has a much more larger PAWT[0,0.005]

compared with UCM-RC and UCM-RC-M, that is, HC-GFT-FFB-RC wastes more resources sometimes. On the contrary, UCM-RC and UCM-RC-M

make more average waiting times cluster in the desired interval [0.005,0.05]s with a percentage of 74.1% and 69.4%, respectively, which are larger

than the 56.5% of HC-GFT-FFB-RC on Workload 1. Meanwhile, UCM-RC, UCM-RC-M, and HC-GFT-FFB-RC have similar rental costs finally. These

illustrate that our approach UCM-RC and UCM-RC-M control the system more stably than HC-GFT-FFB-RC with similar rental costs. For example,

Figure 6A shows the workloads and VM capacities of 700 control steps which denote the total VM capacity of UCM-RC-M changes more stably

compared with HC-GFT-FFB-RC as the workload changes. Therefore, as shown in Figure 6B,C, there are many successive average waiting times of

HC-GFT-FFB-RC smaller than 0.005 second while the average waiting times of UCM-RC-M are nearly uniformly distributed around the reference

point 0.02 second. The reason is that the proposed M/M/1-based TFBC can update the arrival rate adjustment coefficient appropriately to cope with

environment and workload changes more stably than the existing M/M/1-derived-linear-model-based feedback controller. Figure 6 also denotes

that the total VM capacity of UCM-RC-M updates not only stably but frequently. This is because the loosely coupled feedforward and feedback

architecture allows the feedforward controller be called separately and more frequently to react to workload changes more quickly.

6.3 Results on real Kubernetes Cluster

Figure 5D shows PAWTs and rental costs of compared algorithms on a real Kubernetes Cluster. GFT and GFT-FF are not evaluated on the real

Cluster because of poor performance on the CloudSim. UCM-RC’s PAWT[0,0.045] is 91.75% (sum of 81.82% and 9.93%) larger than those of all
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other algorithms, that is, UCM-RC gets the minimum percentage of average waiting times larger than WSLA =0.045 s. Meanwhile, the rental cost of

UCM-RC is the lowest one except that of HC-GFT-FFB-RC. These prove that UCM-RC can adjust resources appropriately by the aid of TFBC- based

coefficient adjustment on the real Cluster. The comparison result between UCM-RC and HC-GFT-FFB-RC on the real Cluster is consistent with that

on CloudSim. Although EcoWare-RC’s PAWT[0,0.045] is 91.37% close to that of UCM-RC, EcoWare-RC’s rental cost is 374 which is 31% higher than

UCM-RC’s cost. The reason is that EcoWare-RC reacts to waiting times smaller than Wr too quickly leading to more larger SLA violations and higher

rental costs because of the characteristic of the inverse-proportional-performance model. Uqueuing-RC’s PAWT[0,0.045] is 90.38% which denotes

that more average waiting times are larger than WSLA compared with UCM-RC and EcoWare-RC, and the rental cost of Uqueuing-RC is 337 which

is much higher than 284 of UCM-RC. The reason is that there is unavoidable deviation between the unequal M/M/N model of Uqueuing-RC and the

real system because of the complexity of the system and inaccurate estimations of VM’s processing rates. Although Uqueuing-RC reacts quickly by

estimating waiting times considering the real-time queuing length when the system becomes unstable, Uqueuing-RC cannot amend the deviation

between the estimated and real waiting times if the deviation is the reason of model inaccuracy when the system is stable.

7 CONCLUSIONS AND FUTURE WORK

In order to decrease the VM rental cost while guaranteeing the SLA and robustness, a hybrid control method UCM is proposed which takes advan-

tages of queuing-model-based loosely coupled controllers, unequal-interval-based collaborating method and an existing GFT strategy. Experimental

results show that feedback controls make more average waiting times stay in a reasonable interval to save rental cost. And our approach decreases

the percentage of waiting times larger than the SLA from about 24.7%-24.8% and 23.2% to 4.1%-4.2% and 9.6% compared with HC-GFT-FFB-NRC

and HC-GFT-FFB-RC, respectively, on CloudSim and the Kubernetes Cluster with similar rental costs. Our approach obtains lower SLA violation and

18.6% to 31% lower rental costs compared with EcoWare-RC and Uqueuing-RC. These experimental results prove that the proposed VM releas-

ing status checking is helpful to avoid overcontrol for Web applications with interval-priced Cloud VMs. The proposed function of the adjustment

ratio to expected change of the waiting time describes the Web system more accurately than the existing queuing model derived linear model. The

loosely coupled structure of feedforward and feedback controllers allowing the feedforward controller to be called separately and frequently is

helpful to react to workload changes quickly. The promising future work is to apply the interval-pricing-model aware feedback methods to control

QoS of other complex Cloud applications with MapReduce or Directed-Acyclic-Graph-based tasks.
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