
2400 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019

A Context-Aware Fog Enabled Scheme for
Real-Time Cross-Vertical IoT Applications

Diptendu Sinha Roy , Member, IEEE, Ranjit Kumar Behera, K. Hemant Kumar Reddy,

and Rajkumar Buyya , Fellow, IEEE

Abstract—As the Internet of Things (IoT) paradigm is
maturing, innovative, and novel services are being envisioned.
An upcoming trend is the depiction of services enacted through
seamless integration of multiple vertical IoT services, termed as
cross-vertical or unified IoT services in this paper. Traditional
Cloud-based centralized network architectures cannot cater to
real-time responses demanded by such unified IoT applications.
Moreover, introducing Fog nodes within the network architec-
ture, though a promising alternative, cannot sustain the burden
of a huge number of applications that culminates in massive
data handling. In this paper, we envision employing lessons
learned from context-aware computing, specifically context shar-
ing among interdependent vertical IoT applications to address
this delay requirement of such unified IoT applications by enact-
ing context sharing among Fog nodes for minimizing system
delay. The detailed network model and context sharing mecha-
nism have been presented and the service time minimization has
been framed as an optimization problem. Algorithms for context
sharing and delay tolerant load balancing have been presented
and simulation results carried out demonstrate the efficacy of
the proposed methodology.

Index Terms—Cloud computing, context sharing, cross-vertical
Internet of Things (IoT) applications, delay tolerant load bal-
ancer, fog computing, IoT, service delay.

I. INTRODUCTION

THE Internet of Things (IoT) is an emerging conglomera-
tion of information and communications technology and

related technologies, where billions of devices and things are
interconnected toward enabling a variety of intelligent applica-
tions, such as, smart city and homes, transportation, logistics,
healthcare, industries, and so on [1], [2]. However, the next
achievement in the landscape of IoT is the remarkable transfor-
mation of such applications to cross-vertical applications and
services [3]–[6]. Cross-vertical IoT applications are also term
as cross-domain IoT applications. Cross-vertical applications
are the integration of various solo IoT applications domains.

Manuscript received May 26, 2018; revised July 7, 2018 and July 28, 2018;
accepted August 28, 2018. Date of publication September 10, 2018; date of
current version May 8, 2019. (Corresponding author: Diptendu Sinha Roy.)

D. Sinha Roy is with the Department of Computer Science and Engineering,
National Institute of Technology Meghalaya, Shillong 793003, India (e-mail:
diptendu.sr@nitm.ac.in).

R. K. Behera and K. H. K. Reddy are with the School of
Computer Science and Engineering, National Institute of Science and
Technology, Berhampur 761008, India (e-mail: ranjit.behera@gmail.com;
khemant.reddy@gmail.com).

R. Buyya is with the School of Computing and Information Systems,
University of Melbourne, Melbourne, VIC 3010, Australia (e-mail:
rbuyya@unimelb.edu.au).

Digital Object Identifier 10.1109/JIOT.2018.2869323

For instance, collaboration of smart grid and intelligent home
can unlock new business models for IoT and transform IoT
business processes. In a smart city for instance, a full service
like traffic management is achieved by combining separate
vertical services, like parking monitoring, road status, traf-
fic guidance, and so forth. Similarly, the potential for energy
savings and optimization across a city can be realized by
aggregating and analyzing data across various buildings, heat-
ing ventilation and air conditioning, car charging stations, and
other lighting devices. Thus, the design of the cross-vertical
applications is needed to materialize such holistic smart IoT
systems.

A significant part in the realization of cross-vertical applica-
tions is interoperability between their discrete communication
protocols and network infrastructures [7] to share data and
their context. However, interoperability between different IoT
applications can be implemented at various levels of the pro-
tocol stack and at diverse places in an end-to-end solution.
For instance, at higher level of network, mainly semantic
ontologies can be implemented to transfer the requested data
across different applications and domains [8]. An alternative
approach is to implement data transfers at the network level,
at the point of data aggregation itself, like at the IoT gate-
ways or in the Cloud [5]. However, Soursos et al. [5] have
focused on interoperability at lower levels of network where
data are gathered. IoT devices transfer raw data to the Cloud
for their analyses and storage. Thus, the Cloud is a collec-
tion point of IoT data, irrespective of their communication
protocols. Cloud can derive meaningful insights from data as
well as from different context instances using context-aware
computing [9]. Additionally, the Cloud stores insights and con-
text instances for realization of cross-domain applications. For
instance, Feel@Home [8] is a project that employs context
management framework for enabling cross domain IoT appli-
cations by sharing context instances. Moreover, upon queries
from other applications in any domain, an application of other
domains can share its context instances. Context means the
information that can characterize different situations of an
entity with respect to their dependable entity. An entity can
be a person, place, or things that have relevant interaction and
dependency with other entity of different applications. This
definition is widely used by researchers to ascertain context
from IoT data. Each learned context or information can be
termed as a context instance. Context instances can be pro-
duced by processing of raw data. Interoperability issues are
not relevant here because data are at the same place and are

2327-4662 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-9731-2534
https://orcid.org/0000-0001-9754-6496

SINHA ROY et al.: CONTEXT-AWARE FOG ENABLED SCHEME FOR REAL-TIME CROSS-VERTICAL IoT APPLICATIONS 2401

already converted into a uniform format, which is needed to
be shared. However, sharing of insights or context information
should be achieved in real-time to meet the quality of service
(QoS) of cross-domain applications. Thus, Cloud computing
is not suitable for providing such services in real-time for
massive IoT data [11]. As a consequence, we focus on Fog
computing infrastructure for cross-vertical applications which
is expected as a next-generation technology to analyze IoT
data locally and provide real-time services efficiently.

For providing cross-domain services, Fog nodes can act as
an interface between discrete IoT applications where all data
are gathered and are orchestrated between different applica-
tions. Also, since Fog computing is a distributed network
infrastructure, the orchestrated system will expectedly be more
reliable and efficient in terms of QoS. Thus, Fog computing
offers a promising solution owing to its low latency for realiz-
ing interoperability between different applications in real-time
and at the very point of data accumulation, irrespective of
any communication protocols and format. The applications at
each Fog node can share the context instances among different
Fog nodes and applications upon request by other applications.
However, IoT devices delivering extensive data to Fog nodes
can increase the overhead at the Fog nodes, since Fog nodes
are limited by their computational capabilities. Therefore, an
efficient mechanism is necessary to control the massive data
flow and provide cross-domain applications. However, past
researchers have not addressed realization of cross-domain IoT
applications using Fog computing. Therefore, we present the
realization of cross-domain applications using Fog computing
in this paper. To the best of author’s knowledge, this is a first
of its kind work considering the implementation of the cross-
domain applications using Fog computing and context-aware
computing.

In this proposal, the Fog nodes receives data from any
applications as different contexts and sent to Cloud for
historical analyses and storage. Context generation handles
massive data challenges at Fog nodes by keeping only con-
text instances. Second, context instances can be of immense
help to realize cross-domain services. The point in realizing
cross-domain services is to share their different context infor-
mation periodically from sensors already set up for different
applications. Therefore, our proposed approach provides an
efficient methodology to achieve cross-domain services by
context sharing using Fog computing irrespective of com-
munication protocols. Additionally, we optimize the delay of
context sharing time among Fog nodes in this paper. Therefore,
our proposed method is a first-of-its-kind attempt to design
efficient cross-vertical IoT applications or unified IoT services
and minimize the delay for the operating time in the system.

The remainder of this paper is organized as follows.
Section II presents the related work with intuitive reasoning of
our proposal. The definition of cross-domain, unified services
and the role of context sharing are introduced in Section III
along with relevant examples and a generalized service model
for context sharing with Fog computing is also presented.
Section IV describes our proposed method for efficient sharing
of context instances between different applications and among
Fog nodes. Section V discusses the experiments carried out

with analyses of results attained thereof for the minimization
of operating time using context sharing among Fog nodes.
Finally, the concluding remarks are provided in Section VI.

II. RELATED WORK

This section provides a brief outline of the relevant techno-
logical developments in areas related to this paper. All such
background information have been organized in the subsequent
three sections.

A. Context-Aware Cross-Domain IoT Applications

IoT is a paradigm where things like, any objects or devices,
besides the users, can also be connected to the Internet,
and they can communicate with each other seamlessly using
any communication platform. The vision of IoT is interdis-
ciplinary in nature and hence while defining IoT, authors
have given utmost emphasis to realization of cross domain
interactions of IoT applications. Cross-domain IoT applica-
tions is an essential concept for realization of IoT. Besides,
it is one of the foremost differences between wireless sen-
sor networks and the IoT. Wireless sensor networks generally
deal only with a fixed domain. However, IoT requires the
capability to work with multiple domains. Interoperability is
the main issue in realizing cross domain IoT applications.
Interoperability issue can be overcome by sharing of con-
text in Cloud computing [5]. Context-aware computing has
played a major role over the last decade in ubiquitous com-
puting domain and is expected to play a significant role for
IoT paradigm as well [9]. Perera et al. [9] have presented a
large majority of research and commercial solutions proposed
in the field of context-aware computing conducted over the
last decade by considering 50 different projects. Most of
these projects are modeled with context-aware middleware
containing different modules for context management, and
these modules follow a general rule which is the context
lifecycle. Li et al. [12] presented a general context lifecy-
cle (which defines the time period from its obtainment to
destruction) that is demarcated by six major events, includ-
ing context acquisition, context modeling, context reasoning,
context distribution, context repository, and context visual-
ization. Kamienski et al. [13] developed a project, namely
IMPReSS for context-aware energy efficiency management
for smart buildings. Very recently Fallahzadeh et al. [14]
proposed a context-aware system design for remote health
monitoring.

All such solutions have employed middleware to enable
context sharing for realization of cross domain IoT applica-
tions. However, such solutions are applicable for a limited
number of applications and not for holistic systems such as
IoT. Therefore, there is need of context sharing at lower level
of network where data are gathered. So, any applications from
any domain can query for context instances. Such holistic
systems can be enabled by emerging Cloud computing.

However, another challenge is the number of IoT devices.
As per a data given from CISCO, by 2020, 50 billion devices
will be connected to the Internet [15], which in turn will
generate humongous amount of data. To store and process

2402 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019

those data, to provide services and to cater to the needs of
people in real life, industrialists, entrepreneurs, and individu-
als primarily rely on the advancement of Cloud computing
paradigm. Some researchers have already proposed models
for integrating Cloud and IoT to address computation and
storage related deficiencies [16]. But for latency sensitive
IoT applications, use of Cloud becomes a problem [17]. Fog
computing is promising for the realization of cross-domain
IoT applications [18]. Therefore, this paper proposes a model
for cross-domain IoT applications by using context sharing
and Fog computing. However, Fog computing suffers from
many inherent challenges, such as limited network availabil-
ity, network bandwidth, storage capacity, etc. The work related
to the limitation of Fog computing is provided in the following
section.

B. Fog Computing

Fog computing, a revolutionary concept, acts as an
intermediate layer between end devices and traditional Cloud
computing offers highly virtualized platforms [19], [20]. Fog
was introduced as an infrastructure for distributed comput-
ing in order to handle millions of Internet-connected devices
and was proposed using principles of edge computing, where
services are hosted within edge devices, such as switches,
routers, and access points. Chang et al. [17] proposed a
hierarchical distributed architecture that extends from-the-
edge-of-the-network to the core and illustrated a few real life
applications of Fog computing with distinct role of Fog for IoT
and with insights of Fog–Cloud interactions. Sanaei et al. [21]
presented a mobile Fog computing-based programming model
that supports large-scale IoT applications for provisioning of
latency-sensitive and geographically dispersed applications.
Similarly, Bonomi et al. [19] highlighted the importance of
Fog computing and its role for IoT and analytics. Recently,
some research has assessed the use of Fog computing in dif-
ferent domains and its importance [22]–[24]. Lv et al. [22]
presented a detailed report on most promising and challeng-
ing scenarios in IoT, particularly focusing on three interrelated
obligations, namely, mobility, reliability, and scalability for
IoT scenarios. In [23], various different approaches for data-to-
decision with Fog computing paradigm at a superficial level.
Tang et al. [24] investigated different computing platforms for
the feasibility of building a highly reliable and fault-tolerant
Fog computing platform. Recently, researchers have focused
on resource allocation in Fog computing platforms and suffi-
cient amount of work has also been presented in [25]–[27]. A
few researchers have also explored security and privacy aspects
of Fog computing [28]–[30]. Yousefpour et al. [31], [32] have
proposed models for minimization of service delay. However,
they provide only a general framework for IoT applications
through Cloud and Fog collaboration by means of offloding
tasks from Fog to Cloud had been provided. Sharing of con-
text instances among the Fog nodes was not dealt with in
those studies. Most of the works proposed on Fog computing
have primarily focused on the principles, basic notions, and
the doctrines of it and not much research has contributed to
more intricate aspects, like service delay of the Fog paradigm

for context sharing among different domain or applications in
real time. Therefore, this paper focuses on the service delay
problem in Fog computing from the view point of context
sharing for the realization of cross-domain IoT applications.

III. CROSS-DOMAIN IOT APPLICATION AND

ROLE OF CONTEXT SHARING

In this section, we present those aspects considered crucial
for the sustainable evolution of IoT landscape toward cross-
domain interoperability, i.e., unified services of IoT. Later, we
shall present some application scenarios of unified IoT ser-
vices. Additionally, this section discusses the role of context
sharing to realize unified IoT services.

A. Convergence of Vertical IoT Solutions

The current landscape of IoT is evolving around a plethora
of vertical solutions, each separately suited to a specific
scenario and development of specific protocol as required.
However, recent studies show the need for cross-domain or
cross-vertical IoT applications that can cover broader aspects
of our daily lives and provide more innovative services. Cross-
domain or cross-vertical applications are seamless integration
of discrete vertical IoT solutions, such as smart homes, intel-
ligent transport systems, smart grid, and so forth. We use the
term unified IoT services in this paper to convey such services
that are enacted through seamless integration of many vertical
IoT services. For example, the integration of smart grid and
intelligent transportation with devices in a smart home can
provide efficient energy management services. An innovative
unified IoT service can be developed such that a smart home
can estimate the arrival time of a user from office, thus adjust
the room temperature based on current weather conditions at
the user’s home upon his arrival and thus save energy for the
rest of the time. This service seamlessly integrates smart home
data, traffic data, weather data, and smart grid data. Similarly,
there can be other innovative examples of unified services like
smart mobility and urban ecological routing [3]–[6] and so on.

The development of unified IoT services highlight the
need for interoperability between communication and network
infrastructure of different IoT applications for efficient shar-
ing of their sensing and actuation resources and data. The
first challenge in the realization of unified services is interop-
erability among discrete communication protocols of vertical
IoT applications. A standard communication protocol for the
entire IoT system is not feasible simply because of differ-
ent characteristics of sensing environment and their respective
data formats. However, the accomplishment of cross-vertical
applications can occur at network level like data aggregation
point of IoT, such as the Cloud, which hosts all IoT applica-
tions. Devices transmit data to their respective IoT application
at the Cloud. The applications analyze the data and respond
back with appropriate control signals for actuation. However,
Cloud stores data from different IoT applications. So, it can
be possible that an application requests data from other IoT
applications in Cloud and Cloud network shares much of the
requested data to the application from storage. Further, the
application analyzes all the received data and can provide

SINHA ROY et al.: CONTEXT-AWARE FOG ENABLED SCHEME FOR REAL-TIME CROSS-VERTICAL IoT APPLICATIONS 2403

innovative unified IoT services. So, the Cloud can solve inter-
operability issues by sharing data among different applications.
However, sharing all the raw data among IoT applications can
be a burgeoning overhead in terms of communication and
computation required. Moreover, IoT applications need the
context and reasoning of IoT data for the realization of
cross-domain applications [3]. Therefore, IoT applications
can share the context of data among themselves. Recent
works [8], [9], [11] have discussed context-aware computing
in IoT which helps to characterize IoT data into different
events according to instantaneous environment conditions and
can help us to understand the raw sensor data through reason-
ing. It also helps in making a scalable and automatic decision
without human intervention. Thus, context-aware computing
generates different context instances. Context instances are the
detected events of an IoT application which occurs at specific
locations and at certain time instants. So, this paper has con-
sidered the sharing of context instances in spite of raw data
among the IoT applications. To the best of the author’s knowl-
edge, this paper is first to use context instances sharing for the
realization of cross-domain IoT applications.

Moreover, the convergence and analysis of IoT data and
context instances for cross-domain applications need to be pro-
cessed in real-time to obtain quality and reliable services. The
massive amount of IoT data at analytics network, i.e., at the
Cloud can increase service delay [33]. Thus, the Cloud cannot
provide real-time services and can degrade the QoS. Therefore,
this paper has considered Fog computing as a convergence
point for cross-domain applications. The Fog computing is a
distributed computing paradigm, unlike the centralized Cloud
computing, which makes it fault tolerant. Moreover, Fog com-
puting holds promise of analyzing data locally and delivery
services in real-time. Hence, the emergence of Fog computing
paves the path for cross-domain IoT applications.

However, IoT devices may still deliver an enormous amount
of data to Fog nodes but from a confined locality only. The
analysis of massive amount of incoming data at a Fog node can
also lead to high latency. Additionally, moving an enormous
amount of IoT data between different vertical applications can
be another challenge for realizing the cross-domain applica-
tions. Therefore, the next section discusses the network model
of cross-domain applications using context sharing and Fog
computing. The following sections explain research challenges
in implementation of context sharing at Fog nodes.

B. Context Sharing

Schilit et al. [34] had coined the term context-awareness
in 1994, in connection with ubiquitous computing. Recently
a few researchers [35], [36] have considered context-aware
services for IoT and it is expected to play a significant role
in IoT as well. However, the definition of context is in itself
a research question. It has been defined in several ways but
we in this paper, define it for the purpose of this paper. This
paper has used the most comprehensive definition of context
as provided by Abowd et al. [37] and Dey et al. [38]. Context
is information that can characterize the different situations of
an entity with respect to their dependable entity. An entity
can be a person, place or things that have relevant interaction

and dependency with other entity of different applications.
This definition is widely used by researchers to ascertain
context from IoT data. Each learned context or information
can be termed as a context instance. Context instances can
be produced by processing of raw data. Examples of context
instances include things state, profile, climate, taken actions,
etc. However, generation of context information is a well-
addressed research problem; therefore, in this paper, we have
not included context instance generation in details. The con-
text instances are used for providing unified IoT services
by sharing relevant data with services from other domains.
Applications provide services to actuators after analyzing dif-
ferent context instances from their dependent applications. In
this paper, Fog computing and context instance sharing are
applied for realizing unified IoT services. Before, discussing
our efficient method for realization of unified IoT services, the
assumed network model for unified services is introduced in
the following section.

IV. ASSUMED NETWORK MODEL AND

PROBLEM STATEMENT

In this section, we introduce the network configuration of
unified IoT services. In this model, Fog computing and context
instance sharing is employed for realizing efficient unified IoT
services with QoS. In addition, a few examples are discussed
to demonstrate the functioning of the given model and also to
highlight a few challenges for context-aware Fog computing.

A. Network Model for Unified IoT Services

We focus on efficient context sharing among Fog nodes,
in order to realize the cross-domain or unified IoT services.
The assumed network model comprises of numerous sen-
sors attached to various things and a few Fog nodes that
collect data from these sensors. Additionally, Fog nodes are
also interconnected to each other through a cellular network.
Hence, Fog computing can also be termed as mobile edge
computing in this paper where such nodes can also be con-
sidered as base stations. However, this paper has used the
term Fog node throughout this paper to mean the same. The
system architecture is shown in Fig. 1. Fog nodes collect data
simultaneously from these devices within their locality using
their respective communication protocols. Data are delivered
to their respective applications deployed at Fog nodes. Each
application processes these raw data through several levels in
order to produce a high-level description of the environment
with discrete semantic states, known as contexts [39]. These
discrete states are termed as context instances in this paper.
Each Fog node is endowed with context management capa-
bility and comprises of different context engines associated
with each application. However, current context management
engines and in Iot are implemented within their own domain
and maintains its own user data and users, which does not pro-
mote the unified IoT services. Therefore, our proposed method
considers context sharing between different vertical IoT appli-
cations such that it can realize scalable and innovative services.
The context management unit is responsible for sharing the
context instances. Context instances can be shared between

2404 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019

Fig. 1. Cross-domain system architecture.

Fig. 2. Network model for context management.

dependent applications only. The dependent applications can
reside in same Fog node or at different Fog nodes, thus making
context instances sharable. Without loss generality, we con-
sider that all Fog nodes are reachable from each other. Context
manager broadcasts the request of each application to other
Fog nodes periodically. Each context manager has knowledge

about dependent applications. The dependent applications at
each Fog node respond back with their generated context
instances within a predefined time interval. After analyzing
all context instances, the applications deliver services to
actuators and users. Fig. 2 shows the aforesaid network
model.

SINHA ROY et al.: CONTEXT-AWARE FOG ENABLED SCHEME FOR REAL-TIME CROSS-VERTICAL IoT APPLICATIONS 2405

In this network model, we consider the connected cellular
network of Fog nodes as shown in Fig. 2, as an undirected
graph G = (k, L) where k is the set of connected Fog nodes
and L represents the links between those nodes. Each Fog node
has a set of applications which are denoted by A. An appli-
cation j ∈ A generates a set of context instances periodically.
The set of such context instances is denoted as C. The details
pertaining to context switching and management is explained
in Section V. For sharing of context between Fog nodes, we
assume that the number of subcarriers is fixed, say Sn. We fix
the number of the subcarriers in order to maintain the qual-
ity of other services, like data delivery or sending a control
signal to actuators. Without loss of generality, all Fog nodes
have the same number of subcarriers with the same bandwidth
and same data rate. Moreover, it is assumed that the arrival
of context happens randomly as a Poisson process [40]. For
the convenience of readers, the major notations mentioned till
now and to be used later are listed in Table I.

Our assumed network model utilizes Fog computing as a
promising technology for realizing the cross-domain appli-
cations through context sharing. However, the main service
requirement of Fog computing is to share context in real-time
with allowable delay while having limited computation capa-
bilities, unlike Cloud computing. The dynamic behavior of
IoT applications and devices can create the delay problem.
For example, the accumulation of IoT devices at a single
Fog node can overload the resources at that node. Hence,
such issues faced by context sharing approach in Fog node
should be focused upon. Therefore, the next section intro-
duces the problem statement related to context sharing in Fog
computing.

B. Problem Statement

The service requirement of context sharing in Fog is to pro-
vide with low service delay. It can be more challenging for
real-time IoT applications. However, Fog computing has low
latency since it brings the Cloud capabilities at the edge of
the network. Nevertheless, Fog is not always delay-aware or
latency-aware because of the dynamic behavior of IoT devices.
For example, many devices data may be aggregated within a
Fog node thus overloading the resources therein. However,
another Fog node might not be as stressed at that instant.
The congested node can thus deliver delayed services and
can worsen its situation further. Therefore, context sharing
should be effectively designed to reduce such kind of delays.
Low service delay can be achieved if the delay in commu-
nication (transmission delay) amongst sharing Fog nodes are
reduced and also if the time taken for processing these con-
text instances from different Fog nodes (processing delay) is
minimized. Existing literature have neither considered con-
text sharing in IoT devices nor have they studied context
sharing using Fog computing. The objective of this paper is
to minimize overall service delay for deployment of unified
IoT services by context sharing using Fog computing. Our
proposed approach is reducing transmission delay and pro-
cessing delay simultaneously rather than focusing on them
separately.

TABLE I
LIST OF NOTATIONS

The transmission and processing delay can be reduced by
limiting the maximum number of context instances residing at
each Fog node. Cmax denotes the maximum number of con-
text instances at a Fog node. Limiting the number of context
instances can have two advantages: first, it minimizes the pro-
cessing delay by limiting the number of context instances as
per computation capability (servicing rate); second, it can man-
age the storage capacity of Fog node which is also limited.
However, this paper does not focus on minimization of stor-
age capacity. An efficient algorithm for context sharing and
balancing the number of context instances if it crosses the
maximum number of context instances can minimize the trans-
mission delay. Such an efficient method for context sharing
across Fog nodes while considering its limitations is proposed
in the next section.

2406 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019

V. SMART CONTEXT SHARING MODEL FOR

ENABLING UNIFIED IOT SERVICES

To solve the aforesaid problem, a new and efficient method
is needed to enable unified IoT services by sharing contexts
of different applications using Fog computing. In this vein,
this section presents a smart context sharing (SCS) algorithm.
Furthermore, our algorithm improves the service delay during
context sharing among Fog nodes, which helps in realiza-
tion of real-time,cross-domain IoT services. The details of our
proposal are explained in the next section.

A. Proposed Smart Context Sharing Model

The proposed model aims at transmitting context instances
from different applications residing at various Fog nodes to
requested applications in another Fog node. In our proposed
approach, applications at each Fog node generate context
instances periodically. Generation of context instances is a
well-known approach; whereas sharing the context of the het-
erogeneous IoT applications is yet a novel one. Therefore, we
have not focused on the generation of context instances. Let
the context instances generated by Fog node k and applica-
tion j is Ck

ij. The context manager will prioritize all context
instances of different IoT applications as per their QoS require-
ment such as delay criticality or delay tolerance. Without loss
of generality, we are presenting the algorithm of our approach
from the viewpoint of a Fog node. It can be a model for other
Fog nodes similarly. A Fog node broadcasts context requests
for instances by an application periodically. After receiving
the broadcast message, each Fog node within the range of
the broadcasting node responds with the context instances.
The applications dependent on the requesting application share
the context instances only.

As we observed in the previous section, the maximum
number of context instances residing at a Fog node is lim-
ited, i.e., Cmax. Therefore, the incoming number of context
instances (NIC) and existing number of context instances
(Ctotal) should not exceed Cmax. If it is less than Cmax, the
broadcasting Fog node will accept all the incoming context
instances, otherwise the exceeding context instances should
migrate to another nearby free Fog node and this process
is termed as balancing of context instances which has been
shown in Algorithm 2.

The event of surpassing the limit of Cmax can be termed
as congestion for a context instance. The context manager
migrates the exceeding context instances based on a prior-
ity decided ahead of time. The context manager finds the
closest free node which can accommodate the extra con-
text instances and can thus migrate NTC such instances to
the closest node. The algorithm of our proposal is shown
in Algorithm 1. The notations and the comments of conditions
of Algorithms 1 and 2 are also shown in Table I.

However, our objective is to provide an efficient method for
context sharing. The service delay depends on the maximum
number of context instances at each Fog node. Service delay
can be optimized if the Cmax value is optimal and thus the
service delay is a function of Cmax. Because of this, the main
idea behind our proposal is to find an optimal value of Cmax

Algorithm 1: SCS Algorithm
Begin
Generate different context instances from the different
services of every application at each Fog node. Prioritize
the context instances as per IoT applications QoS
requirement
@Sender site each:
for Fog node do

NeighborList:= Collect all neighbor Fog node info
within range.
@Repeat
@Sender:
for each Fog node do

CMax = Random(Max1,Max2)
if (AppCtotal < AppCMin) then

Broadcast (SenderId, “msg: request for required
context instance”,NeighborList)

end if
end for
@All Receiver site:
Check for availability of requesting contexts instances
and send the number of instances (nc) of requested type
Send(SenderId, nc, ReceiverId);
@Sender site:
t=delay tolerance of an application;
while t <= (resTime+commTime do

Ctotal= SUMMATION nc from all Receivers.
end while
if (Ctotal +NA) > CMax then

Cextra=(Ctotal+ NA)-CMax
if Ctotal < NA then

Process the Application contexts
else

Cextra= (Ctotal+NIC) CMax
DelayTolerantLoadBalancing(NodeId, NeighborList ,
Cextra)
Migrate Cextra context instances to neighbor Fog
nodes
Ctotal = Ctotal+NIC

end if
Broadcast (SenderId, msg: ready to receive contexts,
NeighborList)
@All Receiver site: —————
for all node : NeighborList do

if available then
Send(SenderId, ContextList, ReceiverId);

end if
end for
@Sender site:
t=0;
while (t<=(resTime+commTime)) do

Receive(contextList, senderId, receiverId);
NIC =count(contextList);
Ctotal=Ctotal+NIC;
t=t+1;

end while
else

Balance the Fognode(Cextra)
end if
Until the ‘t’ time units are finished

end for

in order to optimize the service delay of context sharing. In
mathematical terms, this is reduced by solving an optimization
problem. The service delay in our proposal depends on three
variables, namely transmission time of context instances to

SINHA ROY et al.: CONTEXT-AWARE FOG ENABLED SCHEME FOR REAL-TIME CROSS-VERTICAL IoT APPLICATIONS 2407

Algorithm 2: DelayTolerantLoadBalancer (NodeId,
NeighborList, Cextra)

1: Begin
2: @Sender site:
3: for all node : NeighborList do
4: NeighborList .Capacity=node.Cmax - node.NA
5: end for
6: while (Cextra > 0) do
7: closestNode= minDistance(NeighborList)
8: for all App:SenderNode do
9: if (App.delayTolerance = 2) then

10: MigAppList. Add(App)
11: end if
12: end for
13: if (MigAppList is NOT NULL) then
14: for all App: MigAppList with

RL-MinTime(MigAppList) do
15: if (App = closestNode.App AND Cextra > 0) then
16: if (closestNode.Capacity > closestNode.Capacity)

then
17: Migrate(App, App.Capacity, closestNodeId)
18: Cextra= Cextra - App.Capacity
19: else
20: Migrate(App, closestNode.Capacity,

closestNodeId)
21: Cextra= Cextra - closestNode.Capacity
22: end if
23: end if
24: end for
25: else
26: for all App: SenderNode do
27: if (App.delayTolerance = 1) then
28: MigAppList. Add(App)
29: end if
30: end for
31: if (MigAppList is NOTNULL) then
32: for all App: MigAppList with

RL-MinTime(MigAppList) do
33: if (App = closestNode.App AND Cextra >0) then
34: if (closestNode.Capacity >

closestNode.Capacity) then
35: Migrate(App, App.Capacity, closestNodeId)
36: Cextra= Cextra - App.Capacity
37: else
38: Migrate(App, closestNode.Capacity,

closestNodeId)
39: Cextra= Cextra - closestNode.Capacity
40: end if
41: end if
42: end for
43: else
44: Msg(Contexts cant be migratedİ)
45: end if
46: end if
47: end while
48: end

the broadcasting node (Tctr), the migration time of context
instances to other nodes during congestion (TM), and the
processing delay (TP). Our proposal has considered both
computation and communication delay. We can say that aver-
age service delay can be optimized by optimizing below
formulas

TS = Tctr + TM + TP. (1)

The initial step is to formulate transmission time, migration
time, and processing time that are, Tctr, TM , and TP, in order
to write final objective function.

The transmission time depends on the number of incoming
context instances from different participating Fog nodes and
the transmission time of each context instance. Therefore, the
transmission time can be enumerated using

Tctr =
Np∑

k=0

NIC × tkr
Tr (2)

where Np is the number of participating node, NIC is the num-
ber of incoming instance from each participating Fog node,
and tTr is the transmission time of a context instance from par-
ticipating node to broadcasting node. However, our proposed
approach has considered a Poisson arrival rate for incoming
context instances.

Moreover, the incoming context instances are affected
by delayed context instances due to delay in their arrival.
Therefore, at time t, the number of context instances can be
expressed as

Nk
IC = λt − λdk = λ(t − dk) (3)

where λ is the arrival rate of context instances from a node,
t is the observation time, and dk is the communication delay.
To the best of our knowledge, no literature has incorporated
the arrival rate of context instances and despite all efforts,
the authors could not provide values of arrival rate based on
concrete data. Therefore, a Monte Carlo simulation (MCS)
has been employed for estimating the arrival rate of context
instances. The MCS approach is used for visualization of the
actual process and random behavior of systems in a well-
designed way [39]. This approach is used to find the number
of time an event happens within a defined mission time. In this
paper, MCS is chosen to estimate the arrival rate by integrating
the probability density function of context instances which has
been assumed to be a Poisson process. The value of λ can be
obtained by (8)

f (t) = λ exp−λt (4)

F(t) =
∫ t

0
f (t)dt (5)

F(t) =
∫ t

0
λ exp−λt dt (6)

F(t) = 1 − exp−λt (7)

λ = −(ln(1 − F(t)))/t. (8)

Using MCS, the value of 1-F(t) can be randomly generated.

λ = −(ln α1)/t (9)

α1 = 1 − F(t). (10)

Once arrival rate is determined using MCS approach, the
number of incoming context instances without delay can be
estimated. However, the delay can happen due to network
congestion or packet loss due to high signal-to-noise ratio.
Therefore, the number of delayed context instances can be
found based on

dk = Lk
i

Sn × C
(11)

2408 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019

where dk is the communication delay, Sn is the number of
subcarriers available for context instance transmission, and
Lk

i is the size of context instances. However, channel capac-
ity depends on different parameters but we have employed
the Shannon–Hartley theorem [41] to estimate the channel
capacity between Fog nodes

C = B log2

(
1 + S

N

)
. (12)

Here, B is the bandwidth of the channel in Hertz, S is the
average received signal power over the bandwidth, and N is
the average noise and interference over the bandwidth. We
have used the predefined value these parameters suitable for
cellular networks. Substituting the value of C from (12) in
(11), the delay in transmission of context instances can be
found. The communication delay (dk) value and value of λ are
substituted in (3) to estimate the number of incoming context
instances. The number of incoming instances and transmission
time of a context instance are substituted in (2) from (3) and
(13), respectively, in order to estimate all context instances
transmission time from broadcasting Fog nodes

tTr = dkr

Y
(13)

where dkr is the distance between the broadcasting Fog node
k and receiving Fog node r and Y is the propagation speed
in wireless medium. Next, we need to formulate the migra-
tion delay of congested context instances. Congested context
instances are extra instance which is NTC. The migration time
is defined

TM =
Nm∑

k=1

(
Nk

TC × tks
Tr + NR

TC × tRS
Tr

)
(14)

where Nm is the number of participating nodes, NR
TC and Nk

TC
are the number of context instances migrated from participat-
ing nodes and broadcasting nodes, respectively. Also, tks

Tr is
the transmission delay between the broadcasting node and its
closest node and tRs

Tr is the delay between the participating
node and its closest node. However, as per our assumption,
transmission time between all Fog node is the same, i.e., tTr.
Therefore, (14) can be written as

TM =
Nm∑

k=1

(
Nk

TC × tTr + NR
TC × tTr

)
. (15)

The value of NTc needs to be estimated for calculating migra-
tion time. The number of migrating context instances is the
difference between the incoming and available context instance
at a Fog node k. Therefore,

NTC = Nk
IC − Ck

max (16)

where NIC can be calculated from (3) and Ck
max is the

optimal value which will be estimated later. The value
of NIC from (16) and value of tTr from (13) can be
substituted in (15) to estimate the migration time of context
instances.

Thereafter, we need to estimate the processing time at each
Fog node. The formulation of processing delay is as follows:

Tp = 1

(μ(t) − λ(t)) × Nk
IC

(17)

μ = −
(
ln(1 − F′(t))

)

t
(18)

1 − F′(t) = α2 (19)

μ = − ln α2

t
(20)

λ = − ln α1

t
. (21)

μ(t) is the service rate function at t of a Fog node, which
is calculated similar to an arrival rate using Poisson process
and MCS. Substituting the value from (20) and (21) in (17),
the value of processing time can be estimated. Equations (2),
(15), and (17) give the required values of transmission delay,
migration delay, and processing delay, respectively. The objec-
tive function to minimize the service delay of context sharing
is written below with its constraints

minimize Ts = Tctr + TM + Tp

s.t. Nk
A + Nk

IC ≤ Ck
max

Nk
TC + NS

A ≤ CS
max

Ck
max, CS

max > 0 (22)

where Nk
A is the available context instances at Fog node k, Nk

IC
is the incoming context instances to Fog node k, and Ck

max is
the maximum number of context instances allowed at a Fog
node k. The sum of incoming context instances and available
context instances should be less than or equal to a maxi-
mum number of context instances allowed at node k, which
is depicted in (22). Similarly, the limit of context instances
that a supporting or nearby node should satisfy is specified
in (22). In (22), Nk

TC is the migrated instance to the closest
node S from the broadcasting node k whereas is the number
of available context instances at the nearby node to the Fog
node or supporting node.

Their summation should also be less than CS
max. The final

constraint is that Ck
max and CS

max should be greater than 0.
Equation (22) should be minimized subject to given con-
straints. We can get the optimal value of Ck

max after solv-
ing (22). Similarly, our proposal calculates optimal value
for all other Fog nodes. The optimal values are assigned
to all Fog nodes. Thereafter, each Fog node implements
Algorithms 1 and 2. Algorithm 1 presents in a nut-
shell the essential functionalities of SCS approach, whereas
Algorithm 2 presents in summary the essential functionalities
of a delay tolerant load balancing approach.

Each Fog node implements both the functionalities to pro-
vide the service to user requests. For each request that arrives
at a Fog node, it checks the presence of a sufficient number
of context instances and also the required number of context
instances in it. Once these two criteria are satisfied, then it pro-
ceeds to check whether it can provide service response within
the stipulated service delay. If so, then it proceeds toward pro-
cessing. If any of the above three criteria is not satisfied, then
it invokes the SCS algorithm (Algorithm 1) to manage.

The first two @Sender sections deal with collecting of
neighbors information via a request message to all neigh-
bors for sending the required type of context instances with
minimum service delay. Next @Receiver section provides the
details about the operations that all receivers entail. They

SINHA ROY et al.: CONTEXT-AWARE FOG ENABLED SCHEME FOR REAL-TIME CROSS-VERTICAL IoT APPLICATIONS 2409

react to sender request after checking the presence of con-
text instances of requested type. If available, then they send
to requester. Next @Sender sections in the algorithm describes
the delay calculation for the delay incurred for sending request
and receiving context instances along with the required buffer
size (Cmax) for temporarily incorporating within Fog node for
processing the user requests. If available Cmax is less than what
is required, then some contexts are migrated to other node tem-
porary storage, either for unused context instances or for extra
context instances of an application or for context instances for
a low priority application. If none of these criteria are satis-
fied, then the service is itself migrated to some other Fog node
for processing with the help of DelayTolerantLoadBalancing
(Algorithm 2).

Algorithm 2 presents in details the load balancing approach
without the violating service delay constraints. Initially it col-
lects all neighbors’ information such as available capacity,
pending load, presence of context instances of required appli-
cation and its sufficient number of instances for processing.
Based on this information, the algorithm decides to migrate
the sender service request to other Fog nodes for processing.
The first section of this algorithm deals with delay sensitive
applications and the second part deals with applications having
medium and high delay tolerance. Lower and upper sections
of this algorithm are used to predict a suitable node to migrate.
In order to improve the performance of the prediction tech-
nique, we incorporated a machine learning approach namely,
reinforcement learning (RL), which is adaptive in nature to
the environment.

VI. PERFORMANCE EVALUATION

In this section, we have discussed details related to the
performance evaluation of the proposed SCS and load balanc-
ing algorithms in terms of their efficacy in minimizing service
delays. The simulation for the network architecture has been
setup in NS-2 simulator. In this section, the various details and
initial values pertaining to the simulation setup are presented.
The initial values of parameters have been chosen as per those
provided in [20], [25], and [42].

A. Simulation Step

1) Network Topology: The simulation of Fog computing
network was build with a set of Fog nodes, the number of
such nodes being varied from 10 to 100 with increments of
10. An appropriate structure is used to store all the relevant
information pertaining to a Fog node, such as its neighbors, its
access range, response time, and Cmax size. The list of such
structures, named Fn, is created for maintaining information
for all Fog nodes and its adjacent nodes in the network. For
instance, if the topology considers 100 Fog nodes for simu-
lation at any instant, Fn[1. . .100][1. . .100] is used to provide
all required information.

2) Network Traffic: The data traffic is generated at differ-
ent Fog nodes using a random function within the range of
10%–50% of Cmax size.

3) Terminal Nodes: The total number of Fog nodes in
the simulation study has been kept fluid within a range of

10 to 100 in order to build a system that is more realistic and
to measure the system performance against varying conditions.
Capacity of Fog nodes (Cmax) is assigned in the simulations
randomly within a range of 500 to 8000, with increments of
500. The response time of these Fog nodes are kept within
a limit in between 2 and 10 ns and this is also generated
randomly.

4) Application: In order to simulate the above environment,
a total of 20 different applications were considered with differ-
ent computational requirements. The number of applications
and the type of applications for each Fog node is generated
using a random number generated, a unique number being
mapped to represent a certain application. A realistic charac-
terization of such IoT applications can be found in [42]. In
order to simplify the evaluation of our proposed algorithm for
various IoT infrastructures, we classified customers’ requests
into three classes depending upon their delay sensitiveness.
For example, Class-I considers highly delay tolerable appli-
cations like smart searching, smart agriculture, smart home,
and smart parking. Class-II considers medium delay toler-
able application like smart shopping, smart retailing, smart
pay, and so on, whereas Class-III considers highly delay sen-
sitive applications from health care, defense, and intrusion
detection areas. The delay tolerance of the above 20 appli-
cations were set to any one of the three different categories,
namely low, medium, and high and their values were assumed
to be 50 ns, 200 ns, and 500 ns, respectively. The applica-
tions were classified into three different priority levels (low,
medium, and high) depending upon its application type. High
priority applications are provided preference for processing at
Fog nodes.

Different application requests are generated from these three
classes in order to make the simulation environment more real-
istic. Context information of Fog nodes are dynamically varied
with time. The proposed SCS algorithm is thus employed
to appropriately prioritize the service requests and share
their contexts accordingly among Fog nodes along with effi-
cient duty cycling. Simulated network environment is highly
dynamic and the network topology is dynamically changed
with time.

5) Migration Policy: When the number of context instances
exceed beyond the maximum capacity of a Fog node, the
context instances of low priority applications are migrated to
nearby neighbors with minimum response time. The response
time of each Fog node are set at the beginning of the simu-
lation setup. The response time of these Fog nodes are varied
according to the current load and this current load depends
on the number of applications and type of applications being
handled by the nodes at that instant. To measure the efficacy
of the system in terms of service delay, the above simu-
lation setup is employed with varying Cmax values ranging
from 500 to 8000 for a constant number of user requests.
The service delay is recorded for each Cmax value which is
varied uniformly with increments of 500. Service delays are
recorded at different Fog nodes under varying load scenar-
ios. Simulations are repeated for 20 times and mean values
of obtained results are presented. To measure the effect of
Cmax on the overall system performance, we simulated our

2410 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019

Fig. 3. Service delay with varying Cmax.

model under three different ranges of Cmax. Details regard-
ing the range of Cmax values are given in the results section.
We have also simulated a greedy approach for the above sce-
narios with the same ranges as defined previously. Greedy
approach always selects the choice that seems to be the best
at that moment. During migration, greedy approach selects
a neighbor for migrating a user request based on the infor-
mation available with sender node. On the contrary, in the
SCS model, we employed a prediction approach which pre-
dicts the response time and delay required to complete the
required task. This is done intuitively since Fog node char-
acteristics are dynamic in nature, varying from time to time
depending upon arrival of requests. Inputs are generated from
users and these users are deployed at different Fog nodes with
different application requirements. Using this information, in
our model, an RL prediction scheme is employed to predict
the best Fog node for a particular purpose, unlike the greedy
approach which decides upon the neighbor simply on the basis
of static information it has.

B. Results and Discussion

To validate the proposed SCS model, we carried out a num-
ber of experiments and performance of our proposed model
is compared with the performance of the greedy approach.
During our experimental analysis, we observed service delay
of our model by varying context instances. Fig. 3 depicts the
service delay with varying Cmax size from 500 to 8000 (Cmax
size indicates the number of context instances can store in a
Fog node) with a fixed incoming user request. In our exper-
iment, we set the Cmax value to three categories like high,
medium, and low with ranges of 5001 to 8000, 3001 to 5000,
and 500 to 3000, respectively. Fig. 3 demonstrates that the dif-
ference in efficacy among the two approaches is very less up
to a certain Cmax value (up to around 5500), and thereafter
SCS model outperforms the greedy approach in terms of
service delay. Figs. 5–7 capture the relative performance of
the proposed SCS scheme over its greedy counterpart for ser-
vice delay with different Cmax values and a particular number
of incoming user requests. From Fig. 4, it can be observed
that our proposed SCS provides performance improvement
of around 5%–24% in service delay over its greedy coun-
terpart. Fig. 5 depicts that performance improvement of the

Fig. 4. Service delay over percentage of incoming context instances with
low Cmax values.

Fig. 5. Service delay over percentage of incoming context instances with
medium Cmax values.

Fig. 6. Service delay over percentage of incoming context instances with
high Cmax values.

proposed SCS model is up to 21% with medium Cmax value,
whereas Fig. 6 depicts the performance improvement of SCS
model up to 19% over its greedy counterpart with high Cmax
value.

Fig. 7 depicts the performance differences between SCS
model and greedy approach with variations in migrated
context migration extents. The efficacy of both models are
close as long as 40% of contexts are migrated. However,
beyond that, there is a marked performance degradation
observed for greedy approach resulting in up to 31% degra-
dation in service delays. In order to achieve reduced service

SINHA ROY et al.: CONTEXT-AWARE FOG ENABLED SCHEME FOR REAL-TIME CROSS-VERTICAL IoT APPLICATIONS 2411

Fig. 7. Effect of percentage of migrated context instances on service delays.

Fig. 8. Efficacy comparison of RL approach over migrated context instances.

delay from context migration point of view, we incorpo-
rated a delay tolerant load balancer depicted with RL in
Algorithm 2. Fig. 8 depicts the performance differences
between greedy, SCS model and SCS with reinforcement
learning (SCS-RL) approaches. The efficacy of all three mod-
els are close as long as context migrations are less. However,
with increase in migrated context instances, SCS model out-
performs the greedy approach considerably up to 27%–29%
and SCS-RL outperforms the SCS model considerably up
to 30%–33%.

VII. CONCLUSION

Myriad existing IoT applications have paved the path for
next generation cross-vertical IoT applications to be envi-
sioned. Meeting the QoS requirements of such unified IoT
services requires improvised network architectures that lever-
age context sharing among IoT applications within the Fog
nodes. This paper presents a novel scheme for material-
izing such network architecture comprising of Cloud and
Fog resources that is oblivious to underlying communica-
tion protocols. To that end, this paper proposes a novel SCS
scheme that in conjunction with context migration among Fog
nodes can reduce service delay. Additionally, an SCS scheme
has been shown to outperform greedy schemes by approxi-
mately 5%–20% depending upon the Fog nodes’ capabilities.
In future, we shall investigate the ramifications that such a
scheme can have on the energy consumption of the network
architectures.

REFERENCES

[1] I. Bisio, F. Lavagetto, M. Marchese, and A. Sciarrone, “Smartphone-
based user activity recognition method for health remote monitoring
applications,” in Proc. PECCS, 2012, pp. 200–205.

[2] I. Bisio, A. Delfino, F. Lavagetto, and A. Sciarrone, “Enabling IoT for
in-home rehabilitation: Accelerometer signals classification methods for
activity and movement recognition,” IEEE Internet Things J., vol. 4,
no. 1, pp. 135–146, Feb. 2017.

[3] M. I. Al, P. Patel, S. K. Datta, and A. Gyrard, “Multi-layer cross
domain reasoning over distributed autonomous IoT applications,” Open
J. Internet Things, vol. 3, no. 1, pp. 75–90, Nov. 2017.

[4] S. K. Datta, J. Haerri, C. Bonnet, and R. F. D. Costa, “Vehicles as
connected resources: Opportunities and challenges for the future,” IEEE
Veh. Technol. Mag., vol. 12, no. 2, pp. 26–35, Jun. 2017.

[5] S. Soursos et al., “Towards the cross-domain interoperability of IoT plat-
forms,” in Proc. Eur. Conf. Netw. Commun. (EuCNC), Athens, Greece,
Jun. 2016, pp. 398–402.

[6] A. Gyrard, S. K. Datta, C. Bonnet, and K. Boudaoud, “Cross-domain
Internet of Things application development: M3 framework and evalu-
ation,” in Proc. 3rd Int. Conf. Future Internet Things Cloud (FiCloud),
Rome, Italy, Aug. 2015, pp. 9–16.

[7] M. Blackstock and R. Lea, “Toward interoperability in a Web of Things,”
in Proc. ACM Conf. Pervasive Ubiquitous Comput. Adjunct Publ.,
Zürich, Switzerland, Sep. 2013, pp. 1565–1574.

[8] A. Gyrard, C. Bonnet, and K. Boudaoud, “Enrich machine-to-machine
data with semantic Web technologies for cross-domain applications,” in
Proc. IEEE World Forum Internet Things (WF-IoT), Seoul, South Korea,
2014, pp. 559–564.

[9] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context
aware computing for the Internet of Things: A survey,” IEEE Commun.
Surveys Tuts., vol. 16, no. 1, pp. 414–454, 1st Quart., 2014.

[10] B. Guo, L. Sun, and D. Zhang, “The architecture design of a cross-
domain context management system,” in Proc. 8th IEEE Int. Conf.
Pervasive Comput. Commun. Workshops, Apr. 2010, pp. 499–504.

[11] N. Wang, B. Varghese, M. Matthaiou, and D. S. Nikolopoulos,
“ENORM: A framework for edge node resource manage-
ment,” IEEE Trans. Services Comput., to be published,
doi: 10.1109/TSC.2017.2753775.

[12] X. Li, M. Eckert, J. F. Martinez, and G. Rubio, “Context aware mid-
dleware architectures: Survey and challenges,” Sensors, vol. 15, no. 8,
pp. 20570–20607, Aug. 2015.

[13] C. Kamienski et al., “Context-aware energy efficiency management
for smart buildings,” in Proc. IEEE 2nd World Forum Internet Things
(WF-IoT), Milan, Italy, Dec. 2015, pp. 699–704.

[14] R. Fallahzadeh, Y. Ma, and H. Ghasemzadeh, “Context-aware system
design for remote health monitoring: An application to continuous
edema assessment,” IEEE Trans. Mobile Comput., vol. 16, no. 8,
pp. 2159–2173, Aug. 2017.

[15] D. Evans, “The Internet of Things: How the next evolution of the Internet
is changing everything,” San Jose, CA, USA, CISCO, White Paper,
Apr. 2011.

[16] A. Botta, W. de Donato, V. Persico, and A. Pescapé, “On the integration
of cloud computing and Internet of Things,” in Proc. Int. Conf. Future
Internet Things Cloud, Barcelona, Spain, Dec. 2014, pp. 23–30.

[17] C. Chang, S. N. Srirama, and R. Buyya, “Indie fog: An efficient fog-
computing infrastructure for the Internet of Things,” Computer, vol. 50,
no. 9, pp. 92–98, Sep. 2017.

[18] M. Bansal, I. Chana, and S. Clarke, “Enablement of IoT based context-
aware smart home with fog computing,” J. Cases Inf. Technol., vol. 19,
no. 4, pp. 1–12, Oct. 2017.

[19] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog computing:
A platform for Internet of Things and analytics,” in Big Data and
Internet of Things: A Roadmap for Smart Environments, vol. 546. Cham,
Switzerland: Springer, 2014, pp. 169–186.

[20] (Oct. 21, 2017). Cisco Delivers Vision of Fog Computing to
Accelerate Value From Billions of Connected Devices. [Online].
Available: https://newsroom.cisco.com/press-releasecontent?type=
webcontent&articleId=1334100

[21] Z. Sanaei, S. Abolfazli, A. Gani, and R. Buyya, “Heterogeneity in mobile
cloud computing: Taxonomy and open challenges,” IEEE Commun.
Surveys Tuts., vol. 16, no. 1, pp. 369–392, Feb. 2014.

[22] Z. Lv, H. Song, P. Basanta-Val, A. Steed, and M. Jo, “Next-generation
big data analytics: State of the art, challenges, and future research
topics,” IEEE Trans. Ind. Informat., vol. 13, no. 4, pp. 1891–1899,
Aug. 2017.

http://dx.doi.org/10.1109/TSC.2017.2753775

2412 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019

[23] P. Hu, H. Ning, T. Qiu, Y. Zhang, and X. Luo, “Fog computing based
face identification and resolution scheme in Internet of Things,” IEEE
Trans. Ind. Informat., vol. 13, no. 4, pp. 1910–1920, Aug. 2017.

[24] B. Tang et al., “Incorporating intelligence in fog computing for big data
analysis in smart cities,” IEEE Trans. Ind. Informat., vol. 13, no. 5,
pp. 2140–2150, Oct. 2017.

[25] H. Gupta, A. V. Dastjerdi, S. K. Ghosh, and R. Buyya, “iFogSim: A
toolkit for modeling and simulation of resource management techniques
in the Internet of Things, edge and fog computing environments,” Softw.
Pract. Exp., vol. 47, no. 9, pp. 1275–1296, Jun. 2017.

[26] M. Aazam and E. N. Huh, “Fog computing micro datacenter based
dynamic resource estimation and pricing model for IoT,” in Proc. IEEE
29th Int. Conf. Adv. Inf. Netw. Appl. (AINA), Gwangiu, South Korea,
Mar. 2015, pp. 687–694.

[27] M. Aazam and E.-N. Huh, “Dynamic resource provisioning through fog
micro datacenter,” in Proc. IEEE Int. Conf. Pervasive Comput. Commun.
Workshops (PerCom Workshops), St. Louis, MO, USA, Mar. 2015,
pp. 105–110.

[28] C. Dsouza, G. J. Ahn, and M. Taguinod, “Policy-driven security man-
agement for fog computing: Preliminary framework and a case study,”
in Proc. IEEE 15th Int. Conf. Inf. Reuse Integr. (IEEE IRI), Redwood
City, CA, USA, Mar. 2014, pp. 16–23.

[29] S. J. Stolfo, M. B. Salem, and A. D. Keromytis, “Fog computing:
Mitigating insider data theft attacks in the cloud,” in Proc. IEEE Symp.
Security Privacy Workshops, San Francisco, CA, USA, May 2012,
pp. 125–128.

[30] S. Kulkarni, S. Saha, and R. Hockenbury, “Preserving privacy in sensor-
fog networks,” in Proc. 9th Int. Conf. Internet Technol. Secured Trans.
(ICITST), London, U.K., Dec. 2014, pp. 96–99.

[31] A. Yousefpour, G. Ishigaki, and J. P. Jue, “Fog computing: Towards
minimizing delay in the Internet of Things,” in Proc. IEEE Int. Conf.
Edge Comput. (EDGE), Honolulu, HI, USA, 2017, pp. 17–24.

[32] A. Yousefpour, G. Ishigaki, R. Gour, and J. P. Jue, “On reducing IoT
service delay via fog offloading,” IEEE Internet Things J., vol. 5, no. 2,
pp. 998–1010, Apr. 2018.

[33] S. Verma, Y. Kawamoto, Z. M. Fadlullah, H. Nishiyama, and N. Kato, “A
survey on network methodologies for real-time analytics of massive IoT
data and open research issues,” IEEE Commun. Surveys Tuts., vol. 19,
no. 3, pp. 1457–1477, 3rd Quart., 2017.

[34] B. Schilit, N. Adams, and R. Want, “Context-aware computing applica-
tions,” in Proc. 1st Workshop Mobile Comput. Syst. Appl., Santa Cruz,
CA, USA, Dec. 1994, pp. 85–90.

[35] T. Gu, H. K. Pung, and D. Q. Zhang, “A service oriented middleware
for building context aware services,” J. Netw. Comput. Appl., vol. 28,
no. 1, pp. 1–18, Jan. 2005.

[36] M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on context-aware
systems,” Int. J. Ad Hoc Ubiquitous Comput., vol. 2, no. 4, pp. 263–267,
Jan. 2007.

[37] G. D. Abowd, M. Ebling, G. Hung, H. Lei, and H. W. Gellersen,
“Context-aware computing,” IEEE Pervasive Comput., vol. 1, no. 3,
pp. 22–23, Jul. 2002.

[38] A. K. Dey, G. D. Abowd, and D. Salber, “A conceptual framework
and a toolkit for supporting the rapid prototyping of context-aware
applications,” J. Human–Comput. Interact., vol. 16, no. 2, pp. 97–166,
Dec. 2001.

[39] J. Venkatesh, B. Aksanli, C. S. Chan, A. S. Akyürek, and T. S. Rosing,
“Scalable-application design for the IoT,” IEEE Softw., vol. 34, no. 1,
pp. 62–70, Jan./Feb. 2017.

[40] (Oct. 21, 2017). Random Poisson Process. [Online]. Available: https://
books.google.co.in/books?id=JRs3DwAAQBAJ&pg=PA127&dq=rando
m+Poisson+process&hl=en&sa=&redir_esc=y#v=onepage&q&f=false

[41] L. M. Surhone, M. T. Timpledon, and S. F. Marseken, Shannon–Hartley
Theorem. Saarbrücken, Germany: VDM, 2010. [Online]. Available:
https://books.google.co.in/books?id=K89mcAAACAAJ

[42] B. Afzal, S. A. Alvi, G. A. Shah, and W. Mahmood, “Energy efficient
context aware traffic scheduling for IoT applications,” Ad Hoc Netw.,
vol. 62, pp. 101–115, Jul. 2017.

Diptendu Sinha Roy (M’14) was born in Hooghly,
India. He received the B.Tech. degree from Kalyani
University, Kalyani, India, in 2003, and the M.Tech.
and Ph.D. degrees from the Birla Institute of
Technology Mesra, Ranchi, India, in 2005 and 2010,
respectively.

He is currently with the National Institute of
Technology Meghalaya, where he is the Head of the
Department of Computer Science and Engineering.
His current research interests include distributed,
grid computing, cloud computing, fog computing,

software reliability, and optimization in engineering. He also performs
research on design and analysis of distributed infrastructure of power systems.

Ranjit Kumar Behera was born in Balasore, India.
He received the B.Tech. and M.Tech. degrees from
the Biju Patnaik University of Technology, Rourkela,
India, in 2004 and 2010, respectively.

He is currently with the National Institute of
Science and Technology, Berhampur, India. His cur-
rent research interests include distributed and grid
computing, cloud computing, fog computing, and
service oriented architectures.

K. Hemant Kumar Reddy was born in Berhampur,
India. He received the M.Tech. and Ph.D. degrees
from Berhampur University, Bhanja Vihar, India, in
2008 and 2014, respectively.

He is currently with the National Institute of
Science and Technology, Berhampur, India, as an
Assistant Professor. His current research interests
include distributed and grid computing, cloud
computing, fog computing, and service oriented
architectures.

Rajkumar Buyya (S’03–M’03–SM’08–F’15) is
a Professor of computer science and software
engineering and the Director of the Cloud
Computing and Distributed Systems Laboratory
with the University of Melbourne, Melbourne,
VIC, Australia. He is a Adjunct Professor with
the National Institutes of Technology Meghalya,
Shillong, India. He served as a Future Fellow of the
Australian Research Council from 2012 to 2016. He
has authored over 525 publications, 7 textbooks, and
edited several books. He is one of the highly cited

authors in computer science and software engineering worldwide (citations).
Dr. Buyya was a recipient of the Bharath Nirman Award and Mahatma

Gandhi Award along with Gold Medals for his achievements in the infor-
mation technology field and services rendered to promote greater friendship
and India international cooperation, and the Highly Cited Researcher Award
of the Web of Science by Thomson Reuters in 2016. Software technologies
for grid and cloud computing developed under his leadership have gained
rapid acceptance and are in use at several academic institutions and com-
mercial enterprises in 40 countries around the world. Manjrasofts Aneka
Cloud technology developed under his leadership has received the 2010
Frost & Sullivan New Product Innovation Award. He served as the Founding
Editor-in-Chief of the IEEE TRANSACTIONS ON CLOUD COMPUTING. He
is currently serving as the Co-Editor-in-Chief of the Journal of Software:
Practice and Experience, which was established over 45 years ago. Please
visit his cyberhome: www.buyya.com for additional information.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

