SOFTWARE: PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2017; 47:505-521
Published online 27 June 2016 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/spe.2422

ContainerCloudSim: An environment for modeling and simulation
of containers in cloud data centers

Sareh Fotuhi Piraghaj*', Amir Vahid Dastjerdi, Rodrigo N. Calheiros and
Rajkumar Buyya

Cloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of Computing and Information Systems,
The University of Melbourne, Melbourne, Victoria, Australia

SUMMARY

Containers are increasingly gaining popularity and becoming one of the major deployment models in cloud
environments. To evaluate the performance of scheduling and allocation policies in containerized cloud
data centers, there is a need for evaluation environments that support scalable and repeatable experiments.
Simulation techniques provide repeatable and controllable environments, and hence, they serve as a powerful
tool for such purpose. This paper introduces ContainerCloudSim, which provides support for modeling
and simulation of containerized cloud computing environments. We developed a simulation architecture for
containerized clouds and implemented it as an extension of CloudSim. We described a number of use cases
to demonstrate how one can plug in and compare their container scheduling and provisioning policies in
terms of energy efficiency and SLA compliance. Our system is highly scalable as it supports simulation
of large number of containers, given that there are more containers than virtual machines in a data center.
Copyright © 2016 John Wiley & Sons, Ltd.

Received 3 March 2016; Accepted 26 May 2016

KEY WORDS: cloud computing; simulation; container as a service (CaaS); containerized clouds

1. INTRODUCTION

Because of the elasticity, availability, and scalability of its on-demand resources, cloud computing
is being increasingly adopted by businesses, industries, and governments for hosting applications.
In addition to traditional cloud services, namely, Infrastructure as a Service (IaaS), Platform as a
Service (PaaS), and Software as a Service (SaaS), recently a new type of service—Containers as
a Service (CaaS)—has been introduced. An example of container management system is Docker®
that allows developers to define containers for applications. Containers share the same kernel with
the host; hence, they are defined as lightweight virtual environments compared to virtual machines
(VMs) that provide a layer of isolation between workloads without the overhead of hypervisor-
based virtualization. CaaS can lie between laaS and PaaS; while TaaS provides virtualized compute
resources and PaaS provides application specific runtime services, CaaS glues these two layers
together by providing isolated environments for the deployed applications (or different modules
of an application). As illustrated in Figure 1, CaaS services are usually provided on top of IaaS’
virtual machines. CaaS providers, such as Google and AWS, argue that containers offer appropriate
environment for semi-trusted workloads, while virtual machines provide another layer of security
for untrusted workloads.

*Correspondence to: Sareh Fotuhi Piraghaj, Cloud Computing and Distributed Systems (CLOUDS) Laboratory,
Department of Computing and Information Systems, The University of Melbourne, Australia.

TE-mail: sarehfotuhi @ gmail.com
$Docker: https://www.docker.com/.

Copyright © 2016 John Wiley & Sons, Ltd.

506 S. FOTUHI PIRAGHAJ ET AL.

VM 1 VM 2 VM n

n|| Cont 1 | Cont 2 Cont n Guest 05 Guest 0S Guest 0S
l'sﬂ g Separate | Separate [Separate Separate Separate Separate
[2_7r | |User Space|User Space User Space Kernel & Kernel & e Kernel &
g 5 User Space User Space User Space

1o} ; :

= | Shared Libraries | | Hypervisor/ VMM |
[Kernel of the Host | Kernel of the Host |

Infrastructure Layer Infrastructure Layer
(a) Operating System (OS) Level. (b) System Level.

Figure 1. OS level versus System level virtual environments.

130D
Z3u0D
€ 3U0D
¥ JU0D

suibug
Jaulejuo)

auibug
Jauiejuo)

Libs Libs |

VM A | | VM B |
Hypervisor

Server

Figure 2. The virtual environment modeled in ContainerCloudSim.

Resource management policies to ensure Quality of Service (QoS), avoid energy wastage, and
resource fragmentation are an integral part of cloud systems. Innovating and comparing resource
management strategies require evaluation environments that facilitate the design of experiments
while making them repeatable and accurate. Simulators are useful tools to build such evaluation
environment in the cloud context [1]. They are particularly helpful at early stages of research to
identify and eliminate ineffective polices or when accessing large scale distributed infrastructure is
costly and not possible. Testing and evaluating resource management policies in the first verification
stage in a production environment is both risky and costly. In this respect, a number of simulation
tools are developed for evaluation of algorithms that are specifically designed for cloud computing
environments. Although containers are going to be one of the dominant application deployment
models in the cloud, most of the simulators consider VMs as the building blocks of the virtualized
cloud data centers.

To the best of our knowledge, no simulators introduced modeling for containerized cloud envi-
ronments. In this paper, we propose a simulation environment, named ‘ContainerCloudSim’, for
studying resource management techniques in CaaS environments. ContainerCloudSim is developed
as an extension of the CloudSim simulation toolkit [2]. It provides an environment for evaluation
of resource management techniques such as container scheduling, placement, and consolidation of
containers. As depicted in Figure 2, ContainerCloudSim uniquely enables researchers to consider
resource management techniques for both virtualization types including the Operating System level
virtualization/containers (Figure 1(a)) and system level virtualization/VMs (Figure 1(b)) side by
side. For the Virtual Machine type, applications execute inside virtual machines, and for the CaaS
model, applications execute inside containers while the containers are placed in virtual machines.
The proposed simulator models a container migration by stopping the container on the source host
and starting it with a realistic delay on the destination host, which closely resembles current con-
tainerized environments. Moreover, ContainerCloudSim offers an environment to evaluate various
(power-aware) resource management algorithms by providing diverse power models in a data center.

2. RELATED WORK

As we discussed earlier, simulation environments can speed up the development process of theoreti-
cal research by allowing repeatable experiments in a controllable environment [3]. Simulators enable
the study of the effect of one parameter on the objective of the research while keeping the other

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2017; 47:505-521
DOI: 10.1002/spe

MODELING AND SIMULATION OF CONTAINERIZED CLOUDS 507

parameters controlled, which might be difficult or sometimes impossible to achieve in a real world
scenario. Considering the significant benefits of simulation for cloud computing environments, a
number of simulators with various objectives were developed [4]. The simulators differ in consid-
ered performance metrics, supported applications, and whether they consider power consumption
or not.

MDCSim [5] is a commercial comprehensive and scalable simulation toolbox that is used for in-
depth analysis of multi-tier data centers. It models the underlying hardware characteristics of data
center components and estimates the power consumption of data centers. Throughput and response
time are considered as performance metrics, and the topology of the data center is supplied as a
directed graph by the MDCSim network package. MDCSim helps cloud users to examine different
resource configurations to improve the performance of web applications while keeping the power
consumption low. Likewise, GDCSim [6], as a simulation tool, is especially developed to help ser-
vice providers to test the impact of different data center physical designs and resource management
algorithms on power consumption before deployment. GDCSim is extensible so that the user can
add new models of power consumption, resource management, and cooling. Similar to GDSim[6]
and MDCSim [5], ContainerCloudSim also enables users to have an estimate of the data center
power consumption by using the available built-in or user-defined power models.

CloudSim is developed as an extensible cloud simulation toolkit that enables modeling and sim-
ulation of cloud systems and application provisioning environments [2]. This toolkit provides both
system and behavior modeling of cloud computing components such as virtual machines (VMs),
data centers, and users. It also enables the evaluation of resource provisioning policies in a cloud
computing environment. The generic application provisioning techniques implemented in CloudSim
can be extended easily with limited effort. It also supports modeling and simulation of both single
and inter-networked clouds (federation of clouds) and exposes custom interfaces for implementing
policies and VM provisioning techniques. In ContainerCloudSim, CloudSim is extended to enable
modeling a containerized cloud environment that is not currently supported by CloudSim or any of
its extensions.

Simulation Program for Elastic Cloud Infrastructures (SPECI) [7] is a simulation toolkit that
focuses on scalable design of cloud data centers. In addition, it is capable of testing failure and
recovery mechanisms. This enables exploring aspects of scalability along with performance prop-
erties of future data centers. The objective of SPECI is simulating the performance and behavior of
data centers having the size and middleware design policy as input.

GroudSim [8] is a Java-based simulation toolkit especially designed for simulating scientific
applications execution both on Grid and cloud infrastructures. GroudSim provides users with basic
statistics and analysis after the simulation. It also supports modeling of computational and network
components, job submissions, and file transfers. Similar to SPECI [7], failures in GroudSim can
be modeled and integrated with background load and cost models. ContainerCloudSim can also be
extended to incorporate the modeled application and machine failures.

Data center Simulator (DCSim) [9] is an extensible simulation framework developed aiming at
investigating dynamic resource management techniques in Infrastructure as a Service cloud deploy-
ment model. The key features introduced in DCSim includes a multi-tier application model and
the modeling of interactions and dependencies between virtual machines (VMs). VM replication is
another feature available in DCSim and is utilized for handling increases in the workload.

GloudSim [10] is developed as a distributed cloud simulator based on the second version of the
Google traces considering virtualization technology (VMs). GloudSim introduced three main fea-
tures. The first feature is the ability to emulate resource utilization of reproduced jobs as closely
as possible to the real values in the trace. The second feature is the simulator’s ability to pre-
cisely emulate the different event types such as kill/evict based on the trace. Finally, the simulator
can emulate more complex cases beyond the original trace investigating the challenges in resource
management in cloud computing environment. GloudSim can also reproduce check-pointing/restart
events considering the Google trace leveraging Berkeley Lab Checkpoint/Restart (BLCR) tool. Like
GloudSim [10], ContainerCloudSim also provides the support for incorporating the cloud data cen-
ters’ resource utilization traces. Currently, the workload models of PlanetLab [11] is utilized as the
container’s usage data.

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2017; 47:505-521
DOI: 10.1002/spe

508 S. FOTUHI PIRAGHAJ ET AL.

iCanCloud [12] is a simulation tool that aims to predict the trade-offs between cost and perfor-
mance of a set of applications executed in a cloud data center. iCanCloud can be used by different
users including basic cloud users and distributed application developers. The simulation platform
of iCanCloud provides a scalable, fast, and easy-to-use tool helping users to obtain results quickly
considering their budget limits. iCanCloud is based on SIMCAN* and provides a graphical user
interface that enables users to execute the experiments. In addition, it models network communi-
cation between machines and supports parallel simulations; hence, an experiment can be executed
across multiple machines.

In CloudAnalyst, Wickremasinghe et al. [13] extended CloudSim to enable applications workload
description including the number of users, data centers, and cloud resources along with the location
of both users and data centers. CloudAnalyst can be used by application developers or testers to
determine the best strategic allocation of resources among the available cloud data centers. Data
centers can be selected strategically considering the application workload and the available budget.
Like iCanCloud [12], CloudAnalyst also provides a graphical interface that simplifies the process
of building a number of simulation scenarios.

In TeachCloud [14], CloudSim is extended with a model for MapReduce application and an
integrated comprehensive workload generator called Rain. It enables experiments with various cloud
components including processing elements, storage, networking, and data centers. Like the two
aforementioned simulators [12, 13], it also supports a graphical interface that enables building and
implementing customized network topologies. It also provides a VL2 network topology model.
TeachCloud, as a comprehensive and easy-to-use tool, can be utilized as a educational tool that
allows students to conduct experiments in a cloud system. As a future work, we will provide a
graphical interface for ContainerCloudSim that shows the utilization details of the modeled data
centers components.

CDOSim [15] is developed extending CloudSim to model response times, SLA violations,
and costs of a cloud deployment option (CDO). CDOSim is oriented towards the cloud user
side instead of investigating the issues on the cloud provider side. The user behavior can be
supplied through workload profiles extracted from production monitoring data. CDOSim can
simulate any application as long as it can be modeled following the Knowledge Discovery Meta-
Model (KDM) [16]. The notion of million instructions per second (MIPS) unit in CloudSim
is refined to the mega integer plus instructions per second (MIPIPS) unit. CDOSim is inte-
grated in the cloud migration framework CloudMIG [17] and is available as a plug-in for the
CloudMIG Xpress tool. Contrary to CDOSim [15], ContainerCloudSim is mainly focused on the
provider’s side.

In NetworkCloudSim, Garg et al. [18] extended CloudSim to provide a scalable network and
generalized application model. It supports applications with communicating elements including
Message Passing Interface (MPI) and workflows. A network flow model is designed for cloud data
centers, and bandwidth sharing is made possible. The extension is developed in such a way that
users can modify the network topology simply by modifying a configuration file.

Contrary to NetworkCloudSim [18], GreenCloud [19] is developed as a packet level simulator
on top of the NS2 simulator [20]. GreenCloud is specifically designed to investigate power man-
agement schemes to achieve an energy efficient data center. These schemes include both voltage
and frequency scaling, and dynamic shutting down of network and compute components. It enables
the capture of details of the energy consumption of data center’s computing and network compo-
nents. It also considers the packet-level communication patterns between network components. Like
CloudSim, ContainerCloudSim can also be extended to incorporate network components and the
communications between containers.

In summary, in comparison to our proposed ContainerCloudSim, existing simulators do not sup-
port modeling and simulation of containers in a cloud environment. They primarily focus on system

*http://www.arcos.inf.uc3m.es/~simcan/.

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2017; 47:505-521
DOI: 10.1002/spe

http://www.arcos.inf.uc3m.es/~simcan/.

MODELING AND SIMULATION OF CONTAINERIZED CLOUDS 509

NetworkCloudSim

TeachCloud
Energy Model

ContainerCloudSim Cloud Modeling Simulation

| Discrete Event Simulation Core

L —_— e = =CloudSim=— =)

Figure 3. ContainerCloudSim relations to the CloudSim ecosystem. [Colour figure can be viewed at
wileyonlinelibrary.com]

level virtualisation with virtual machine as the fundamental component [6, 8-10, 12—15, 18, 19,
21]. In comparison to other CloudSim extensions [13, 14, 18, 21], ContainerCloudSim has been
developed on top of the CloudSim core as depicted in Figure 3.

3. CAAS MODELING REQUIREMENTS

Because Container as a Service (CaaS) is a newly introduced service in public cloud computing
environments, there is still a lack of defined methods and standards that can efficiently tackle both
application-level and infrastructure complexities. However, as container technologies mature and
are broadly adopted, research in this topic will also emerge, proposing new algorithms and policies
for containerized cloud environments. To reduce the development time of these new approaches,
there is need for an environment that provides functionalities to enable robust experiments with
various set-ups allowing development of best practices in a containerized cloud context. In this
respect, we developed ContainerCloudSim that aims to provide support for modeling and simulation
of containerized cloud computing environments including

e Management interfaces for containers, VMs, hosts, and data centers resources including CPU,
memory, storage. Particularly, it should provide the fundamental functionalities such as pro-
visioning of VMs to containers, dynamic monitoring of the system state, and controlling the
application execution inside the containers.

e Functionalities that enable researchers to plug in and compare new container scheduling and
provisioning policies. Container scheduling policies determine how resources are allocated to
containers and virtual machines, and can be extended to allow evaluation new strategies.

o Investigation of energy efficient resource allocation ability of provisioning algorithms. The
simulation environment should provide basic models and entities that can be utilized to evaluate
the energy aware provisioning algorithms. To this end, container migration and consolidation
have to be supported.

e Support for simulation scalability, as the number of container in a CaaS environment is much
higher than the number of virtual machines in a data center.

4. SIMULATOR ARCHITECTURE

ContainerCloudSim follows the same layered architecture of CloudSim, with necessary modifica-
tions to introduce the concept of containers. In the proposed architecture of ContainerCloudSim (as
depicted in Figure 4), CaaS consists of containerized cloud data centers, hosts, virtual machines,
containers, and applications along with their workloads. For efficient management of CaaS, the
architecture benefits from multiple layers:

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2017; 47:505-521
DOI: 10.1002/spe

510 S. FOTUHI PIRAGHAJ ET AL.

ContainerCloudSim
| Workload Management Service Application Deployment Application ’ Application Monitoring |
Container Life-cycle Management _
| Service Container |
| M Llfe-clls‘ifv?:l;nagemem ‘ Virtual Machine (VM) ’ |
| Resource Management Service Container Placement ’ VM Placement ’ Consolidation Service |
| Resource Allocation Service VM Allocation Service ‘ Container Allocation Service ’ |
Power and Energy Consumption
| Monitoring Service Power Monitoring Service |
Data Center
| Management Service Host |

Figure 4. ContainerCloudSim simulator architecture. [Colour figure can be viewed at wileyonlineli-

brary.com]

Workload Management Service: This service takes care of clients’ application registration, deploy-
ment, scheduling, application level performance, and health monitoring.

Container Life-cycle Management Service: This service is responsible for container life-cycle man-
agement. This includes creating containers and registering them in the system, starting, stopping,
restarting, and migrating containers from a host to another host, or destroying the container. In
addition, this component is responsible for managing the execution of tasks that are running
inside the container and monitoring their resource utilization.

VM Life-cycle Management Service: This service is responsible for VM management and consists
of VM creation, start, stop, destroy, migration and resource utilization monitoring.

Resource Management Service: This service manages the process of creating VMs/containers on
hosts/VMs that satisfy their resource requirements and other placement constraints such as
software environment. It consists of three main services:

e Container Placement Service: Containers are allocated to the VMs based on a Container
allocation policy defined in this service.

e VM Placement Service: VMs are allocated to hosts considering a VM allocation policy that
is defined in the VM placement service.

e Consolidation Service: This service minimizes resource fragmentation by consolidating
containers to the least number of hosts.

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2017; 47:505-521
DOI: 10.1002/spe

MODELING AND SIMULATION OF CONTAINERIZED CLOUDS 511

Resource Allocation Service: This service manages the allocation of resources to VMs and con-
tainers. It consists of the following services:

e Container Allocation Service: This service is equipped with policies that determine how
VM resources are allocated (scheduled) to containers.

e VM Allocation Service: This service is equipped with policies that determine how hosts’
resources are allocated (scheduled) to VMs.

Power and Energy Consumption Monitoring Service: This services is responsible for measuring
the power consumption of hosts in the data center and is equipped with the necessary power
models.

Data Center Management Service: This services is responsible for managing data center resources,
powering on and off the hosts, and monitoring the utilization of resources.

5. DESIGN AND IMPLEMENTATION

For implementing the aforementioned functionalities, CloudSim Discrete Event simulator Core is
used to provide basic discrete event simulation functionalities and modeling of basic cloud comput-
ing elements. Because CloudSim entities and components communicate through message passing
operations, the core layer is responsible for managing events and handling interactions between
components. The main classes of ContainerCloudSim are depicted in Figure 5. In this section, we go
through the details of these classes. ContainerCloudSim implementation is constituted of two main
parts simulated elements and simulated services. The simulated elements include the following:

e Datacenter: The hardware layer of the cloud services is modeled through the Datacenter class.

e Host: The Host class represents physical computing resources (servers). Their configurations
are defined as processing capability that is expressed in MIPS (million instructions per second),
memory, and storage.

o VM: This class models a VM. Virtual Machines are managed and hosted by a Host. Attributes
of VM are memory, processor, and its storage size.

o Container: This class models a Container that is hosted by a VM. Attributes of Containers are
accessible memory, processor, and storage size.

o Cloudlet: The Cloudlet class models applications hosted in a container in cloud data centers.
Cloudlet length is defined as Million Instructions (MI), and it has functionalities of its prede-
cessor in CloudSim package including StartTime and status of execution (such as CANCEL,
PAUSED, and RESUMED).

I Data Center IQ—' Container Allocation Policy

| Container RAM Provisioner

| Container BW Provisioner

I Container Scheduler

Cloudlet Scheduler

Figure 5. ContainerCloudSim class diagram. [Colour figure can be viewed at wileyonlinelibrary.com]

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2017; 47:505-521
DOI: 10.1002/spe

512 S. FOTUHI PIRAGHAIJ ET AL.

In addition, simulated services available in ContainerCloudSim are as follows:

e VM Provisioning: The VM provisioning policy, which assigns CPU cores from the host to
VMs, is considered as a field of the Host class. Similar to CloudSim, the Host component
implements the interfaces that provide modeling and simulation of classes that implement CPU
cores management. For example, a VM can have dedicated cores assigned to it (pinning of
cores to VM) or can share cores with other VMs in the host.

e Container Provisioning: The simulator provides container provisioning at two levels: VM level
and container level. At the VM level, the amount of VM’s total processing power that is
assigned to each container is specified. Whereas at the container level, the container can assign
a fixed amount of resources to each of the application services that are hosted on it. To enable
compatibility with CloudSim, a task unit is considered as a finer abstraction of an application
service that is hosted in the container. Time-shared and space-shared provisioning policies are
implemented for both levels in the current version of the ContainerCloudSim (as depicted in
Figure 6). In addition,ContainerRamProvisioner is an abstract class that represents the provi-
sioning policy utilized for allocating the virtual machine’s memory to containers. A container
can be hosted on a VM only if the ContainerRamProvisioner component assures that the VM
has the needed amount of free memory. If the memory requested by the container is beyond
the VM’s available free memory, the ContainerRamProvisioner rejects the request. For provi-
sioning the bandwidth, the abstract class named ContainerBwProvisioner models the policy for
provisioning of bandwidth of the containers. The role of this component is handling network
bandwidth allocation to a set of competing containers. This class can be extended to contain
new policies to include the requirements of various applications.

Figure 6 illustrates a simple provisioning scenario. In this figure, containers A1 and A2 are
hosted on a host with 2 cores. In the space-shared scenario, only one of the two A1 and A2 con-
tainers can run at a given instance of time. Therefore, A2 can only be assigned the core when
ATl finishes its execution. In this scenario, each container requires 2 cores for its execution.
However, in the time-shared scenario, each container receives a time slice on each processing
core and each component receives a variable amount of the processing power during its exe-
cution. The available amount of processing power for each container can be estimated through
the calculation of the number of active components that are hosted on each VM. The provi-
sioning policy is defined by ContainerScheduler, which is an abstract class and is implemented
by a VM component. More application-specific processor sharing policies can be implemented
by overriding the functionalities of this class.

o CloudletScheduler: The same relationship between container and VM is held between applica-
tions (called Cloudlets) and containers. The CloudletScheduler abstract class can be extended
to implement different algorithms to identify the share of processing power among Cloudlets
that are running in a container. Both types of provisioning policies are included in the Con-
tainerCloudSim package, namely, time-shared (ContainerCloudletSchedulerTimeShared) and
space-shared (ContainerCloudetSchedulerSpaceShared) policies.

Core
Core

2
A2 2
1 AL 1 Al A2
Time Time
(a) Time-shared. (b) Space-shared.

Figure 6. Time-shared and space-shared provisioning concepts for containers Al and A2 running on a VM.

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2017; 47:505-521
DOI: 10.1002/spe

MODELING AND SIMULATION OF CONTAINERIZED CLOUDS 513

CloudInformationService: The CloudInformationService (CIS) class provides resource regis-
tration, indexing, and discovering capabilities.

ContainerAllocationPolicy: This abstract class represents a placement policy that is utilized
for allocating containers to VMs. The chief functionality of the ContainerAllocationPolicy is
to select the available VM in a data center that meets the container’s deployment require-
ments including the container’s required memory, storage, and availability. Different placement
policies, with different objectives, are created by extending this class.

VmAllocationPolicy: In addition to allocating VMs to hosts, this abstract class implements the
optimizeAllocation method that defines the consolidation policies in container and VM levels.
Workload Management: Highly variable workloads is one of the main characteristics of
cloud applications. In this respect, ContainerCloudSim also supports the modeling of dynamic
workload patterns of cloud applications in a CaaS environment. We leveraged the existing
Utilization Model in CloudSim to determine resource requirements on container-level. The
Utilization Model is an abstract class and its getUtilization() method can be overridden by
simulator users to obtain various workload patterns. The getUtilization() method input is the
simulation time, and its output is the percentage of the required computational resource of
each Cloudlet.

e Data Center Power Consumption: To manage power consumption per host basis, the Pow-
erModel class is included. It can be extended (by overriding the getPower() method) for
simulating custom power consumption model of a host. getPower() input parameter is the host’s
current utilization metric while its output is the power consumption value. By using this capa-
bility, ContainerCloudSim users are able to design and evaluate energy-conscious provisioning
algorithms that demand real-time monitoring of power utilization of cloud system components.
The total energy consumption can also be reported at the end of the simulation.

5.1. Discrete-event simulation dynamics

The simulated processing of task units is managed inside the containers executing the tasks. In
this respect, at every simulation step, the task execution progress is updated. Figure 7 depicts
the sequence diagram of the updating process. At each simulation time step, the method updat-
eVMsProcessing() of the Datacenter class is called. updateVMsProcessing() method accepts the
current simulation time as its input parameter type. It then calls a method (updateContainersPro-
cessing()) on each host to instruct them to update the processing on each of their VMs. The
process is recursively repeated for each VM to update their container processing and for each con-
tainer to update the application processing. The method at the container level returns the earliest
completion time of jobs running on it. At VM level, the smallest completion time among all con-
tainers is returned to the host. Finally, at host level, the smallest completion time among all VMs
is returned to Datacenter. The earliest time value returned to the Datacenter class is used to set
the time in which the whole process will be repeated. An event is then scheduled in the simula-
tion core for the calculated time, which dictates the next simulation step, and therefore progresses
the simulation.

6. USE CASES AND PERFORMANCE EVALUATION

To demonstrate the capabilities of ContainerCloudSim for evaluating resource management poli-
cies, we present three use cases including the container overbooking, container consolidation, and
container placement. Further, we evaluate the ContainerCloudSim in terms of its scalability and
container start-up delay modeling.

All the use cases leverage the architecture depicted in Figure 8. In this architecture, the VMM
deployed on top of physical servers sends the data including the status of the host along with the
list of containers that are required to be migrated to the consolidation manager. The consolidation
manager, which is deployed on a separate machine, decides about the new placement of containers
and sends requests to provision resources to the destination host.

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2017; 47:505-521
DOI: 10.1002/spe

514 S. FOTUHI PIRAGHAIJ ET AL.

DataCenter Host 0

| .
) UpdateVMsProcessing()

VirtualMachine 0 Container 0

UpdateContainersProcessing() | uUpdateCloudletsProcessing()
time of next event

Container n

I

UpdateCloudletsProcessing() L
time of next event time of next event :

VirtualMachine n Container 0

I_‘

UpdateContainersProcessing() UpdateCloudletsProcessing() J
time of next event

Container n

UpdateCloudletsProcessing()
smallest time of next event time of next event time of next event
-

t:IC

VirtualMachine 0 Container 0

UpdateVMsProcessing() ' UpdateContainersProcessing() ! UpdateCloudletsProcessing() J

time of next event

Container n

UpdateCloudletsProcessin
time of next event i

VirtualMachine n

I—‘

Container 0

UpdateContainersProcessing() ! UpdateCloudletsPro i !

Container n

UpdateCloudletsProcessing() .,
smallest time of next event time of next event time of next event

I

|
| | 1
1 1

) update processing event

Figure 7. Data center internal processing sequence diagram.

6.1. Use Case 1: container overbooking

Cloud users tend to overestimate the container size they require so that they can avoid the risk of
facing less capacity than the actually required by the application. The user’s overestimation pro-
vides opportunity for the cloud providers to include an overbooking strategy [22] in their admission
control system to accept new users based on the anticipated resource utilization rather than the
requested amount. Overbooking strategies manage the trade-off between maximizing resource uti-
lization and minimizing performance degradation and SLA violation. ContainerCloudSim is capable
of overbooking containers by allocating resources for a specific percentile of the workload.

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2017; 47:505-521
DOI: 10.1002/spe

MODELING AND SIMULATION OF CONTAINERIZED CLOUDS 515

I Consolidation Manager I

i o
Host [YN] Host [VMM]

Container Container Container Container Container Container
Scheduler Scheduler Scheduler Scheduler Scheduler Scheduler

VM VM

FEE a

Figure 8. A common architecture for the studied use cases: VMM sends the data including the status

of the host along with the list of the containers to migrate to the consolidation manager. The consolida-

tion manager decides about the destination of containers and sends requests to provision resources to the
selected destination.

In this case study, to demonstrate this capacity of the simulator, we designed a couple of exper-
iments to investigate the impact of container overbooking. In the designed experiments, containers
are placed on virtual machines according to a pre-defined percentile of their workload, which varied
from 10 to 90. The workload traces are derived from PlanetLab [11] and are used as the containers’
CPU utilization. These traces contain 10 days of the workload of randomly selected sources from
the testbed that were collected between March and April 2011 [23]. Containers are placed on the
VMs using First Fit algorithm.

In these experiments, we also utilized the consolidation capability of the simulator. In this respect,
the migration process is triggered if the host status is identified as over-utilized/underutilized. A
simple static threshold-based algorithm is utilized for this purpose. Hosts with less than 70% or
more than 80% CPU utilization are considered overloaded or under-loaded, respectively. When the
migration is triggered because of an overloaded host, the containers with the highest CPU utilization
are chosen to migrate. The simulation set up including the configurations of the servers, containers,
and virtual machines are all shown in Table I.

The output of the simulation is depicted in Figure 9(a) and shows that the number of success-
fully allocated containers decreases as the percentile increases. The higher percentile results in a
smaller number of containers accommodated on each VM. The same trend exists when the number
of container migrations is considered (Figure 9(b)). The volatility of the workload is the key factor
that affects the percentile value. Thus, more volatile workloads would show more difference in the
simulation results.

6.2. Use Case 2: container consolidation

Container consolidation is a promising approach to decrease energy consumption. Container-
CloudSim supports this by modeling container migrations aiming at consolidating containers to a
smaller number of hosts. In ContainerCloudSim, a migration is triggered either because a host is
overloaded or under-loaded. To this end, a number of containers should be selected for the migration
list in order to rectify the situation. Utilizing ContainerCloudSim, researchers are able to study var-
ious selection algorithms and investigate the efficiency of their proposed selection policies in terms
of the desired metrics including the data center energy consumption, container migration rate, and
SLA violations.

The aim of this case study is utilizing ContainerCloudSim to investigate the container selection
algorithm effect on the efficiency of the consolidation process of the containers. The same set up
depicted in Table I is considered; however, in order to evaluate the algorithms in a larger scale, a

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2017; 47:505-521
DOI: 10.1002/spe

S. FOTUHI PIRAGHAJ ET AL.

516

S 8 $2100 § v #

c b 2100 | ¢ L9 TIs 9€981 c#

S 4 $2I00 ¢ # L9 96T 0T€6 T#

S I $9100 ¢ I # 99 8CI 859% I #
uonendod (gO)AIOWL (2100 1od SAIIA 9€981 uo paddewr) [zHD ¢’ 11 NdD #°dALINA uonemdod (gD) Alowoly (2100 [) SAIN NdD # 2dAJ, 1oureiuo)

(12101 UI SN A (T PUe s1dureiuo)) 00g) SOdAL JNA pue Isureiuo))

0T sel €6 8CI §9100 8 I#

uogendod (MBM) xpuwd (11D M) oypid (gD) Alowdpy (2109 134 SAIN +LZLE uo paddew) [ZHO ¢] NdD # 2d£) 1oa10g

(s10A13S (07) S[opowt Jomod pue suoneInSyuo)) IoAIdS

“SIQUIBIUOD PUB ‘S A IOAISS dY) Jo uoneinSyuo)) ‘[d[qel,

Softw. Pract. Exper. 2017; 47:505-521

Copyright © 2016 John Wiley & Sons, Ltd.

DOI: 10.1002/spe

MODELING AND SIMULATION OF CONTAINERIZED CLOUDS 517

[

Bagre s

2 S,

Q185 * 55

8 82

5] T 5

& 172 * éE 2104 .

[S

é 159 T T T T ? ? \‘ ? ? 2 209 - T * * * T
10 20 30 40 50 60 70 80 90 50 60 70 80 90

Percentile Percentile

(b) The number of container migrations
happened during the experiments.

(a) The number of containers which are success-
fully allocated to the VMs considering each pre-
defined percentiles of the workload.

Figure 9. Impact of container’s overbooking on the number of successfully allocated containers along
with the number of container migrations happened for the experiments with the same number of
allocated containers. [Colour figure can be viewed at wileyonlinelibrary.com]

— 3

S 0250, % <

=} c C

g150, g g 170+

= [Q.

= 30225 =

3 > ? 160- ’

=100 < 5

g A 0200 8

5 == 5w —

_ 0.175- GC)
50- , , ‘ ‘

0 o = e 1) 5
= = = = =

o
=
(

(a) b) (c)

Figure 10. Impact of container selection algorithm on the container migration rate (per 5 minute), SLA
violations, and the total data center energy consumption.

larger number of elements are considered in this case study: the number of containers, VMs, and
servers set to 4002, 1000, and 700, respectively. Under-load and overload thresholds are fixed as
in the previous use case and are 70% and 80%, respectively. Containers are placed utilizing the
First-Fit algorithm. The destination host is also selected based on the First Fit policy.

The two studied algorithms for containers selection are the ‘MaxUsage’ and the ‘MostCorrelated’
algorithms. The ‘MaxUsage’ algorithm selects the container that has the biggest CPU utilization
while the ‘MostCorrelated’ algorithm chooses the container whose load is the most correlated with
the server that is hosting it. Each experiment is repeated 30 times, and results are compared and
depicted in Figure 10. The power consumption of the data center at time ¢ (Pg.(?)) is calculated
as Pg.(t) = Zl]\fl P;(t), where Ng is the number of servers and P;¢ corresponds to the power
consumption of server; at time ¢. CPU utilization is applied for estimating the power consumption
of each server as CPU is the dominant component in a server’s power consumption [24]. The linear
power model P;(t) = Piidle + (Pi’"“x - Piid le) * U; ; 1s applied for calculating the servers power
consumption, where Piidle and P/"®* are the idle and maximum power utilization of the server,
respectively, and U; ; corresponds to the CPU utilization of server i at time ¢.

The SLA in this experiment is considered violated if the virtual machine on which the container
is hosted does not receive the required amount of CPU that it requested. Therefore, the SLA metric
is defined as the fraction of the difference between the requested and the allocated amount of CPU
for each VM. The SLA metric is shown in Equation 1 [23] in which N, Ny, and N, are the number
of servers, VMs and containers, respectively. In this equation, CPU,wm ;1) and CPUswm, ;1)
correspond to the requested and the allocated CPU amount to vm ; on server i at time £ .

N N, N,
N XA o CPU(vm . 1p) — CPUG (vm . tp)
SLA = ’ ’ :
ZZZ CPU,(vmj;,tp) .
i=1j=1p=1 ’

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2017; 47:505-521

DOI: 10.1002/spe

518 S. FOTUHI PIRAGHAJ ET AL.

80- I s
5 0.200- 3
= c 200-
5 g S %
< 70- © a
= $ 5 0.175- £
3 > 2 180
= < 5
-
T 60- » 0.1501 (&)
Q %I > 160-
(&} 2 $
[0
C
. | ‘ 0.125¢ | , | L | ‘ |
FirstFit MostFull Random FirstFit MostFull Random FirstFit MostFull Random

(a) (®) ©

Figure 11. Impact of initial container placement algorithm on the container migration rate (per 5 minute),
SLA violations, and data center energy consumption.

As shown in Figure 10, adding the containers with the maximum CPU utilization to the migration
list results in less container migrations, energy consumption, and SLA violations and thus should be
the preferred policy to be utilized by CaaS providers.

6.3. Use case 3: container placement policies

Various mapping scenarios between containers and virtual machines result in different resource
utilization patterns. Researchers can utilize ContainerCloudSim to study various container to VM
mapping algorithms. Therefore, in this case study, we demonstrate how ContainerCloudSim is used
to investigate the effect of container placement algorithms on the number of container migrations,
data center total power consumption, and resulting SLA violations. The same set up as of the Use
Case 2 is applied. The three different placement policies are evaluated: FirstFit, MostFull, and ran-
dom. As depicted in Figure 11, the MostFull placement algorithm, which packs containers on the
most full virtual machine in terms of the CPU utilization, results in a higher container migration rate.
Consequently, the aforementioned algorithm results in higher violations and energy consumption.
In contrast, FirstFit results in less number of migrations and energy consumption and thus should
be the preferred policy to be utilized if the goal of the provider is to reduce energy consumption.

6.4. Container and VM start-up delays

An important operation in cloud computing environments is instantiation of virtual machines. This
time is non-negligible and can impact performance of applications running on clouds. Virtual
machine start-up delay of virtual machines was previously studied by Mao et. al [25]. Based on
this study, the current version of the simulator includes a static delay of 100 seconds for every
virtual machine.

Containers startup delay is also important, because live migration of containers is not appli-
cable in real-world scenarios. Therefore, the container migration is performed through shut-
ting down the container on the source host as soon as the same container is started on the
destination host. Likewise VMs, container startup delay can be set as a constant (Constant-
sEx.Container STARTTUP_DELAY) in the current version of ContainerCloudSim.

The Docker containers startup delay has been recently studied for running one to 100 Ubuntu
containers on top of one of the Amazon EC2 instances (c4.4xlarge)®. Each container runs the server
Uptime command. This command is used for identifying how long a system has been running. The
storage backend devicemapper is utilized along with an Ubuntu Linux image. In order to have a
better understanding of the startup delay, we also followed the same set up. However, we increased
the number of containers simultaneously executed from 100 to 5000 (adding one container at a time).
The experiment is conducted for other selected Amazon EC2 instance types. As Figure 12 shows,

$Docker Performance Tests: http://www.draconyx.net/articles/some-docker-performance-tests.html.

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2017; 47:505-521
DOI: 10.1002/spe

http://www.draconyx.net/articles/some-docker-performance-tests.html

MODELING AND SIMULATION OF CONTAINERIZED CLOUDS 519

Amazon Instance Type
© c4.4xlarge
A cd.large
+ m3.medium
> M4.4xlarge
< md.large
v t2.Medium

§ ® t2.small
2.00

¥

1.00 ° .

I
a ° Km ® ® L]

T I N R SR e tEeliie

0251 4! LA L A L

0 1000 2000 3000 4000 5000
Number of Concurrent Containers

Startup Delay (second)

Figure 12. The container start up delay for running 1 to 5000 concurrent containers in each of the studied
Amazon EC2 instances. [Colour figure can be viewed at wileyonlinelibrary.com]

750
I
80
1

=

700
1
|

650
L

50

600
I
}

40

Average Memory Usage (MB)
Execution Time (Seconds)
L]

550
1
30
1

20

500
1

T T T T T T T T T T T
50 500 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

Number of Containers Number of Containers
(@ (b)

Figure 13. Impact of increasing the number of containers on the average memory usage and the execution
time of the simulator. [Colour figure can be viewed at wileyonlinelibrary.com]

the start up delays varies between 0.2 and 0.5 seconds for most of the cases. For the current version
of the simulator, we utilized the average container startup delay for all studied instance types, which
is equal to 0.4 seconds.

6.5. Simulation scalability

As a containerized cloud simulator, ContainerCloudSim scales with minimal memory overhead and
execution time. In order to investigate the scalability of the developed simulator, we ran the same
experiment set up as Case 2 considering the MostFull algorithm as the container initial placement
policy. The same experiment is repeated for various number of containers ranging from 50 to 5000.

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2017; 47:505-521
DOI: 10.1002/spe

520 S. FOTUHI PIRAGHAJ ET AL.

In order to have a fair comparison, the number of available hosts and VMs are considered constant
and equal to 700 and 1000, respectively. For each experiment, the execution time of the simulation,
which is defined as the time that it takes for the simulation to finish, and the memory utilization of
the Java program (simulation) are depicted in Figure 13. The experiment results show (Figure 13(a))
that the memory overhead for running 5000 containers is less than 200MB on average. Considering
the execution time as it is depicted in Figure 13(b), with every 1000 containers added the simulation
time increases by almost 20 seconds only. It shows that ContainerCloudSim is scalable enough to
enable simulation experiments on the scale expected in the context of Container as a Service.

7. CONCLUSIONS AND FUTURE WORK

We discussed modeling and simulation of containerized computing environments as they are
currently one of the dominant application deployment models in clouds. We proposed the Contain-
erCloudSim simulator architecture and implemented it as an extension of CloudSim. We carried out
three use cases and demonstrated effectiveness of the ContainerCloudSim for evaluating resource
management techniques in containerized cloud environments. Moreover, scalability of simulation is
verified, and the approach for modeling container migration is validated in a real environment. Our
experiment results demonstrated that ContainerCloudSim is capable of supporting simulations on
the scale expected in the context of CaaS. We also believe that the availability of our simulator will
energize research in CaaS policies.

As future work, we plan to extend ContainerCloudSim to visualize spatio temporal behavior
of nodes, VMs, and containers in a data center. We also plan to model the connectivity between
containers for supporting modeling of application such as Web applications and MapReduce-like
computing environments.

SOFTWARE AVAILABILITY

The ContainerCloudSim code is available for download along with CloudSim software from
website: http://www.cloudbus.org/cloudsim.

REFERENCES

1. Zhao W, Peng Y, Xie F, Dai Z. Modeling and simulation of cloud computing: A review. Proceedings of the 2012
IEEE Asia Pacific Congress on Cloud Computing (APCloudCC), Shenzhen, 2012; 20-24.

2. Calheiros RN, Ranjan R, Beloglazov A, De Rose CA, Buyya R. CloudSim: a toolkit for modeling and simula-
tion of cloud computing environments and evaluation of resource provisioning algorithms. Software: Practice and
Experience 2011; 41(1):23-50.

3. Stojmenovic I. Simulations in wireless sensor and ad hoc networks: matching and advancing models, metrics, and
solutions. IEEE Communications Magazine 2008; 46(12):102—107.

4. Ettikyala K, Devi YR. Article: A study on cloud simulation tools. International Journal of Computer Applications
2015; 115(14):18-21.

5. Lim SH, Sharma B, Nam G, Kim EK, Das CR. MDCSim: a multi-tier data center simulation, platform. Proceedings
of the 2009 IEEE International Conference on Cluster Computing and Workshops, New Orleans, LA, 2009; 1-9.

6. Gupta SKS, Banerjee A, Abbasi Z, Varsamopoulos G, Jonas M, Ferguson J, Gilbert RR, Mukherjee T. GDCSim: a
simulator for green data center design and analysis. ACM Transactions on Modeling and Computer Simulation 2014;
24(1):3:1-3:27.

7. Sriram I. SPECI, a simulation tool exploring cloud-scale data centres. In Cloud Computing, vol. 5931, Jaatun M,
Zhao G, Rong C (eds)., Lecture Notes in Computer Science. Springer-Verlag: Berlin, Heidelberg, 2009; 381-392.

8. Ostermann S, Plankensteiner K, Prodan R, Fahringer T. GroudSim: an event-based simulation framework for
computational grids and clouds. Proceedings of the 2010 Conference on Parallel Processing, Euro-Par 2010,
Springer-Verlag, Berlin, Heidelberg, 2011; 305-313.

9. Tighe M, Keller G, Bauer M, Lutfiyya H. DCSim: a data centre simulation tool for evaluating dynamic virtualized
resource management. Proceedings of the 2012 8th International Conference on Network and Service Management
(CNSM) and 2012 Workshop on Systems Virtualiztion Management (SVM), Las Vegas, NV, 2012; 385-392.

10. Di S, Cappello F. GloudSim: google trace based cloud simulator with virtual machines. Software: Practice and
Experience 2015; 45(11):1571-1590.

11. Park K, Pai VS. CoMon: a mostly-scalable monitoring system for planetlab. SIGOPS Operating Systems Review
2006; 40(1):65-74.

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2017; 47:505-521
DOI: 10.1002/spe

http://www.cloudbus.org/cloudsim

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

MODELING AND SIMULATION OF CONTAINERIZED CLOUDS 521

Nez A, Vzquez-Poletti J, Caminero A, Casta G, Carretero J, Llorente 1. iCanCloud: a flexible and scalable cloud
infrastructure simulator. Journal of Grid Computing 2012; 10(1):185-209.

Wickremasinghe B, Calheiros R, Buyya R. CloudAnalyst: a cloudsim-based visual modeller for analysing cloud
computing environments and applications. Proceedings of the 2010 24th IEEE International Conference on Advanced
Information Networking and Applications (AINA), Perth, WA, 2010; 446—452.

Jararweh Y, Alshara Z, Jarrah M, Kharbutli M, Alsaleh MN. TeachCloud: a cloud computing educational toolkit.
International Journal of Cloud Computing 2013; 2(2-3):237-257. PMID: 55269.

Fittkau F, Frey S, Hasselbring W. CDOSim: simulating cloud deployment options for software migration support.
2012 IEEE 6th International Workshop on the Proceedings of the Maintenance and Evolution of Service-Oriented
and Cloud-Based Systems (MESOCA), Trnto, 2012; 37-46.

Prez-Castillo R, de Guzmn IGR, Piattini M. Knowledge discovery metamodel-iso/iec 19506: A standard to modernize
legacy systems. Computer Standards and Interfaces 2011; 33(6):519-532.

Frey S, Hasselbring W. Model-based migration of legacy software systems into the cloud: The CloudMIG approach.
Softwaretechnik-Trends 2010; 30(2):84-85.

Garg SK, Buyya R. NetworkCloudSim: modelling parallel applications in cloud simulations. Proceedings of the 2011
Fourth IEEE International Conference on Utility and Cloud Computing (UCC), Victoria, NSW, 2011; 105-113.
Kliazovich D, Bouvry P, Khan S. GreenCloud: a packet-level simulator of energy-aware cloud computing data
centers. The Journal of Supercomputing 2012; 62(3):1263-1283.

The network simulator - ns-2. Available at: http://www.isi.edu/nsnam/ns/ [Accessed on 30 November 2015].
Calheiros RN, Netto MA, De Rose CA, Buyya R. Emusim: an integrated emulation and simulation environment
for modeling, evaluation, and validation of performance of cloud computing applications. Software: Practice and
Experience 2013; 43(5):595-612.

Tomas L, Klein C, Tordsson J, Hernandez-Rodriguez F. The straw that broke the camel’s back: Safe cloud over-
booking with application brownout. Proceedings of the 2014 International Conference on Cloud and Autonomic
Computing (ICCAC), London, 2014; 151-160.

Beloglazov A, Buyya R. Optimal online deterministic algorithms and adaptive heuristics for energy and performance
efficient dynamic consolidation of virtual machines in cloud data centers. Concurrency and Computing : Practice
and Experience 2012; 24(13):1397-1420.

Blackburn M, Grid G (eds.) Five Ways to Reduce Data Center Server Power Consumption. The Green Grid
Administration: Beaverton, Oregon, USA, 2008.

Mao M, Humphrey M. A performance study on the vm startup time in the cloud. Proceedings of the 2012 IEEE Fifth
International Conference on Cloud Computing, CLOUD 12, IEEE Computer Society: Washington, DC, USA, 2012;
423-430.

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2017; 47:505-521

DOI: 10.1002/spe

http://www.isi.edu/nsnam/ns/

	ContainerCloudSim: An environment for modeling and simulation of containers in cloud data centers
	Summary
	Introduction
	Related Work
	CaaS modeling requirements
	Simulator Architecture
	Design and Implementation
	Discrete-event simulation dynamics

	Use Cases and Performance Evaluation
	Use Case 1: container overbooking
	Use Case 2: container consolidation
	Use case 3: container placement policies
	Container and VM start-up delays
	Simulation scalability

	Conclusions and Future Work
	REFERENCES

