
Enabling Computational Steering with an
Asynchronous-Iterative Computation Framework

Alexandre di Costanzo1, Chao Jin1, Carlos A. Varela2, and Rajkumar Buyya1

1. Department of Computer Science and Software Engineering
The University of Melbourne, Australia
{adc, chaojin, raj}@csse.unimelb.edu.au

2. Department of Computer Science
Rensselaer Polytechnic Institute, NY, U.S.A

cvarela@cs.rpi.edu

Abstract

In this paper, we present a framework that enables sci-
entists to steer computations executing over large-scale grid
computing environments. By using computational steering,
users can dynamically control their simulations or com-
putations to reach expected results more efficiently. The
framework supports steerable applications by introducing
an asynchronous iterative MapReduce programming model
that is deployed using Hadoop over a set of virtual ma-
chines executing on a multi-cluster grid. To tolerate the
heterogeneity between different sites, results are collected
asynchronously and users can dynamically interact with
their computations to adjust the area of interest. Accord-
ing to users’ dynamic interaction, the framework can re-
distribute the computational overload between the hetero-
geneous sites and explore the user’s interest area by using
more powerful sites when possible. With our framework,
the bottleneck induced by synchronisation between different
sites is considerably avoided, and therefore the response to
users’ interaction is satisfied more efficiently. We illustrate
and evaluate this framework with a scientific application
that aims to fit models of the Milky Way galaxy structure to
stars observed by the Sloan Digital Sky Survey.

1 Introduction

Many scientific and engineering applications require
high performance computing capabilities to complete their
computations in a reasonable amount of time. Grids, like
EGEE [11] and Grid’5000 [6], have been built to meet this
challenge. Grids combine the power of large numbers of
heterogeneous resources across geographically distributed

sites. Resources are usually organised in clusters, which are
managed by different administrative domains (labs, univer-
sities, etc.). Despite the computational power provided by
grids, grids lack interactivity between users and their jobs.
A typical use case of grids for an astronomer is: she first
collects the data; then she submits the data to a grid to be
processed; she waits until the processes return the results;
next, she gathers the results and proceeds to their analy-
sis; depending of this analysis she may need to refine some
computations on some parts of the data; then she resubmits
another computation to the grid and so on until she is sat-
isfied with the results. These tasks are more complicated
in a grid environment where she has to deal with challenges
such as deployment, heterogeneity, fault-tolerance, commu-
nication, and scalability. Very often, significant computa-
tional resources and scientists’ time are wasted as a result
of the lack of interactivity.

This scientific process of submitting tasks and analyz-
ing results can be accelerated by using computational steer-
ing. Steering consists of monitoring intermediate results
and modifying running jobs. There are steering tools for
grids, such as RealityGrid [5] that propose an API for in-
strumenting applications. However that approach requires
users to modify their applications. Furthermore, consis-
tently reaching intermediate points in the computation can
be harder in heterogeneous environments. A solution to the
heterogeneity problem is the use of virtual machine tech-
nologies. A virtual machine (VM) can be leased and used as
a container for deploying applications [22]. Existing virtual
machine-based resource management systems can manage
a cluster of computers within a site allowing the creation
of virtual workspaces [17]. They can bind resources to vir-
tual clusters or workspaces according to a user’s varying
demand of computational needs. These systems commonly
provide an interface through which one can allocate VMs

1

and configure them with the operating system and software
of choice. Furthermore, more or less resources can be allo-
cated on demand as the interest in the data changes.

Recently, the scientific community has started to use the
MapReduce [15] programming model for treating large sets
of data. MapReduce executes a map function, specified by
the user, for processing the data and then merges the results
using a reduce operation; both operations are run in paral-
lel on a cluster. This paradigm is becoming more used for
scientific applications, such as Blast [18] and data intensive
analyses [12]. MapReduce has a lot of advantages for sci-
entific applications because it is designed for data oriented
applications and it provides a simple programming inter-
face. However, MapReduce does not allow steering and is
single-cluster oriented.

In this work, we propose a computational steering frame-
work for grids that allows scientists to: dynamically refine
their results, focus on the evaluation of data subsets, and
re-distribute slow processes or renewed areas of interest
on faster clusters. The implementation relies on an adap-
tation of Hadoop [13], an open-source MapReduce frame-
work. Our framework dynamically sets several MapReduce
clusters and asynchronously returns partial results to users.
Users can completely control each partial result and remain-
ing task of their computations.

The rest of this paper is organised as follows. In Section
2, we provide background on computational steering, the
MapReduce programming model, and the multi-sites grid
environment. Then, we present our asynchronous-iterative
computation framework with computational steering in Sec-
tion 3. Next, Section 4 shows the considered experimental
scenario and evaluates the framework. Related work is dis-
cussed in Section 5 and conclusions are presented in Sec-
tion 6.

2 Background and Context

In this section, we first introduce Computational Steer-
ing, we next describe the MapReduce programming model,
and we then present our previous work on InterGrid.

2.1 Computational Steering

Computational steering is a mechanism for scientific in-
vestigation, which allows users to guide the progress of their
computations according to their specific interests [16]. For
instance, steering can be used for searching special struc-
tures, patterns, trends, and relationships in a large scale of
data by interacting with users; or it can help users to iden-
tify an area of interest quickly during an execution of a long
time. In addition, when users find any incorrect problems,
steering allows users to modify the incorrect section.

Steering has been investigated for many scientific appli-
cations, such as computational fluid dynamics [20], manu-
facture engineering, and evolutionary algorithms [3]. More-
over, most features of computational steering are investi-
gated at the visualization level, which aims to present an
interactive interface to users for specifying any guidance
during the execution of scientific applications.

A steerable application must have a point in the control
loop of the program where a steering task can be performed.
Normally, a steering task consists of the following jobs: 1)
the retrieval of current results; 2) the acceptance of the alter-
ation of parameters; 3) continuation of the computation with
the new parameters. Many scientific computations comply
with these requirements. Especially, many computationally
intensive problems can get performance benefits from steer-
ing.

2.2 MapReduce

MapReduce [15] has been influenced by the power and
simplicity of the map and reduce operations in functional
languages, such as Lisp. This model allows users to write
map/reduce components with functional-style code. These
components are then composed as a dataflow graph to ex-
plicitly specify their parallelism. Finally, the MapReduce
runtime system schedules these components to distributed
resources for execution while handling many tough non-
functional problems transparently: parallelization, network
communication, and fault tolerance.

A map function takes a key/value pair as input and pro-
duces a list of key/value pairs as output. The type of the
output key and value can be different from the type of the
input:

map :: (key1, value1) ⇒ list(key2, value2) (1)

A reduce function takes a key and associated value list
as input and generates a list of new values as output:

reduce :: (key2, list(value2)) ⇒ list(value3) (2)

In a large cluster environment or data center, the MapRe-
duce model is supported by exploiting the massive data par-
allelism through two phases. In the first phase, all map op-
erations can be executed independently from each other. In
the second phase, each reduce operation may depend on the
outputs generated by any number of map operations. All
reduce operations can also be executed independently simi-
larly to map operations.

This model can split a large problem space into small
pieces and automatically parallelize the execution of small
tasks on the smaller space. In addition, the MapReduce
relies on a master-worker architecture, which is adapted
to distributed systems. However, the MapReduce is data-
oriented and may not be suitable for grid environments.

2

2.3 Multi-Sites Environment

In previous work, we presented a system for re-
source sharing between Grids [10] inspired by the peering
agreements established between Internet Service Providers
(ISPs) in the Internet, through which ISPs agree to allow
traffic into one another’s networks. The InterGrid relies on
InterGrid Gateways (IGGs) that mediate access to resources
of participating Grids. The InterGrid also aims at tackling
the heterogeneity of hardware and software within Grids.
The use of virtualization technology can ease the deploy-
ment of applications spanning multiple Grids as it allows
for resource control in a contained manner. In this way, re-
sources allocated by one Grid to another are used to deploy
VMs.

A Grid has pre-defined peering arrangements with other
Grids, managed by IGGs and, through which they co-
ordinate the use of resources of the InterGrid. An IGG
is aware of the terms of the peering with other Grids; se-
lects suitable Grids which are able to provide the required
resources; and replies to requests from other IGGs. Re-
quest redirection policies determine which peering Grid is
selected to process a request. An IGG is also able to allocate
resources from a Cloud provider, such as Amazon EC2.

Although applications can have resource management
mechanisms of their own, we consider a case where the
resources allocated by an application are used for the cre-
ation of a Distributed Virtual Environment (DVE), which is
a network of virtual machines that runs isolated from other
DVEs. Therefore, the allocation and management of the ac-
quired resources is performed on behalf of the application
by a component termed DVE Manager. The DVE Manager
currently supports bag-of-tasks applications. In this work
we develop an extension of this basic DVE.

3 Asynchronous-Iterative Computing

In this section, we describe our computational steer-
ing platform, which allows users to take control of
asynchronous-iterative computations executing on grids. In
the next sections, we describe the principles, the role of each
entity, and the steering controller. Finally, we present the ar-
chitecture and its implementation.

3.1 Principles

The aim of this framework is to provide tools that help
users to interactively re-adjust the focus of their computa-
tions on some parts of the data. To achieve that goal, we
propose an asynchronous iterative map/reduce framework
that enables partial composable data analyses. The user can
dynamically interact with her computation to refine some
partitions of the data by doing more iterations, re-mapping

partitions to clusters to obtain important results faster, etc.
These operations allow the user to take advantage of grids
for solving important problem instances, in multiple do-
mains such as Astronomy.

The framework enables users to split data among clus-
ters, evaluate partitions, iterate on these partitions, and dy-
namically re-organise or change the focus of the computa-
tion by receiving partial results asynchronously.

3.2 Entities

The proposed steering system is composed of four main
components:

• Controller: is the entry point for steering. The con-
troller allows the user to deploy and interact with her
computation.

• Collector: controls a site, i.e., a cluster. A collector
is in charge of deploying the evaluators and iterators
on each node, partitioning the data, and updating the
controller asynchronously with new results.

• Evaluator: is a process that takes, as input, a partition
of the data to evaluate; and returns as output, a result
based on that partition. The evaluator is provided by
the user.

• Iterator: is designed to locally process the result from
an evaluator before the next iteration. For instance,
the iterator can modify the local partition with the re-
sult that has been just calculated by the evaluator. The
number of iterations on a partition is given by the user
and can be dynamically updated. The iterator is also
provided by the user.

Figure 1 shows the interactions between the different en-
tities. The controller, on behalf of the user, splits the first
set of data and submits the sub-sets to the collectors. Next,
each controller splits the sub-set and sends a partition of
work to the evaluators. The user provides the split func-
tion. Depending of the speed of the cluster, the user can
set or dynamically modify the number of iterations on each
partition. In parallel of the evaluation/iteration process, the
controller collects partial results; the user via the controller
can monitor and fetch these partial results. When the user
starts collecting partial results, she can decide to reset the
objective of the computation to other sub-parts of the data.

For instance, after a few iterations, she notices the parti-
tion B looks important, thus she decides to stop the explo-
ration of other partitions and re-split B to focus the compu-
tation on that partition. She can also re-map the data dis-
tribution from one cluster, i.e., collector, to a faster one. In
addition, the user can refine the computation of some par-
titions; for instance F1 and F2, the first iteration does not

3

Data Input

B

B2 B4B3B1

...

F

F2F1

F2F1

B3 F2

Controller

Collectors

Evaluator

Evaluator

Evaluator

Iterator

Iterator

Controller

Focus on B

Focus on F

Fetch B3

Fetch F2

Figure 1: Data processing within the asynchronous-iterative
computational framework.

provide results with the expected quality, thus she decides
to run one more iteration on those partitions to obtain better
results.

3.3 The Steering Controller

The steering controller is designed as a set of command-
line tools, hence users can combine and script these com-
mands by using familiar tools such as UNIX-like terminals
or Windows PowerShell. For the moment, we provide these
commands as a set of low-level tools for composing appli-
cations, in the rest of this section we describe each of the
commands.

In the code snippet below, we show how users can deploy
and steer their computations with the proposed framework.
In this example, the user requests for 50 nodes from a first
site and 100 nodes from a second site, the nodes run each
a VM containing Hadoop. That process is part of a previ-
ous work on InterGrid [10]. After InterGrid provides the
resources and deployes the VMs, the user starts the frame-
work with the command dve steering deploy; when
the framework is ready to serve computation, a job file is
returned to the user, here ./job01.steering, the file

contains the information for interacting with the framework.
This file is then used with all the other commands for iden-
tifying the computation. Next, the user submits the data to
evaluate by using two commands: submit for deploying
evaluators, iterators, and splitters; and send for submitting
the data. Finally, she can check the status of the computa-
tion and fetch the results.

$ dve_sub -n 50 HADOOP_VM
Status = SCHEDULED
Job ID = 0001
$ dve_sub -n 100 HADOOP_VM
Status = SCHEDULED
Job ID = 0002
$ dve_steering deploy 0001 0002
Collector 01 deployed with 49 slaves
Collector 02 deployed with 99 slaves
Job saved in ./job01.steering
$ dve_steering -f ./job01.steering submit \
/path/to_evaluator /path/to_splitter \
/path/to_iterator

$ dve_steering -f ./job01.steering send \
data_set_1 data-set_2 -iter 10

$dve_steering -f ./job01.steering status
Partitions 1.[1,49] running
Partitions 2.[1,99] running
...
$dve_steering -f ./job01.steering fetch \
1.35 2.[1,99] /target_folder
...

In addition to the commands presented in the previous
example, the framework provides some others to stop the
whole computation or a sub-part; and re-distribute the par-
titions between the clusters, i.e., moving slower computa-
tions or promising data subsets to faster clusters. Finally,
the set of commands is very flexible and allows the users to
dynamically add or remove resources to/from their compu-
tations.

3.4 Architecture and Implementation

In this section we present how we use InterGrid to de-
ploy the MapReduce model on multi-site grids. We also
describe an extension of the DVE Manager for supporting
computational data-oriented steering.

The main entry point of the architecture is the DVE Man-
ager from the InterGrid platform. A DVE Manager inter-
acts with the IGG by making requests for VMs and query-
ing their status. The DVE Manager requests VMs from
the gateway on behalf of the user application it represents.
When the reservation starts, the DVE manager obtains the
list of requested VMs from the gateway. This list contains
a tuple of public IP/private IP for each VM, which the DVE
Manager uses to access the VMs. Then, the DVE Manager

4

handles the deployment of the user’s application. In the con-
text of the steering application, the DVE is the main entry
point for the user. The DVE Manager embeds the controller
functionality and also provides a command-line interface.
The command-line is implemented in Python.

As our framework relies on the MapReduce program-
ming model, we use Hadoop [13], which is an open source
implementation of MapReduce sponsored by Yahoo! and
aims to be a general purpose distributed platform. With
Hadoop, the problem space is stored as files contained in
HDFS [13] and the optimum exploration problems are ab-
stracted as analyzing files in HDFS by using map/reduce
tasks.

DVE

I
n
t
e
r
G
r
i
d

VM:
Hadoop
Slave

Resources obtained from request #1

VM:
Hadoop
Server

VM:
Hadoop
Slave

VM:
Hadoop
Slave

VM:
Hadoop
Slave

Resources obtained from request #n

VM:
Hadoop
Server

VM:
Hadoop
Slave

VM:
Hadoop
Slave

...

Configuring VMs with Hadoop and
starting Hadoop

hadoop cluster #1

hadoop cluster #n

Controller

Collector

Collector

eval./iter.

eval./iter.

Figure 2: Architecture and implementation.

Figure 2 shows the architecture of the framework. The
DVE interacts with the InterGrid layer to obtain and de-
ploy VMs that are pre-configured with Hadoop. Next, the
DVE configures on each site Hadoop and starts a collec-
tor on every site. The collector is the interface between
the steering framework and Hadoop. The evaluator is the
mapper operation, the reduce operation is not used in our
case. The collector runs a wrapper, in Java, as a map task
of Hadoop. This wrapper forks the evaluator and the iter-
ator provided by the user. Both processes communicate by
redirection of their standard input and output. The wrap-
per takes as parameter the number of iterations requested
by the user. The collector is also in charge of splitting the
partitions when requested by the user. The user provides the
split command. The command takes as parameter the num-
ber of sub-partitions desired, reads on the standard input the

data, and then return the sub-partitions as files.
To support computational steering from the architecture

layer, the system needs to keep the intermediate status of
computations and dynamically configure the load within the
grid sites according to the interaction with users. We use
a versioning system for helping the user to keep track of
her computation. The versioning is based on the number of
splits of a partition. After the first split each partition gets
a major version and then it is incremented at each split by a
dot and the sub-number of the partition.

4 Experiment and Evaluation

This section reports an experiment based on a scientific
application in astronomy. This experiment aims to validate
the framework and show its effectiveness.

4.1 A Typical Use Case with an Astronomer

Many scientific computations search for optimum val-
ues in a large multi-dimensional problem space, such as
scientific model validation, engineering design, etc. These
problems have to rely on an iterative style of optimisation
through which the final optimum values are gradually ex-
plored. In particular, taking the results of prior steps as
input, each step of iteration optimizes it and generates re-
sults for the next round of computation. During this se-
ries of computations, in comparison with totally automatic
methods, computational steering after each iteration allows
manual adjustment of search parameters or area of interest
for the next round of optimization, which could accelerate
convergence and prevent wasted computational cycles, re-
sulting in more efficient overall optimization.

To validate the proposed framework we consider an as-
tronomical data analysis framework. Using data from the
Sloan Digital Sky Survey [2], we can validate models of
galaxy structure and evolution by comparing their predic-
tions to the actual observed data. This maximum likelihood
estimation process can use genetic search, where population
individuals are different parameter sets in the model, fitness
is the quality of the model according to maximum likeli-
hood, and newer generations represent models that more
likely explain the observed data. Here, partial results are
useful, we can generate new individuals even if all the previ-
ous generation of individuals has not been evaluated. Com-
posability and incremental behavior can be done stochas-
tically: with certain probability a new deserving individ-
ual is either mutated or reproduced. Such asynchronous
genetic search eliminates the notion of generations and in-
stead keeps a single incrementally updated population that
still converges to the most interesting models, even in the
presence of failures and heterogeneity [9].

5

Table 1: Performance of the deployment and execution of MilkyWay application. All values are times in seconds.

Sites Nodes by Clusters Configuration Sending App. Sending Data Runtime

1 site - 50 nodes:
Orsay - 50

-
21 gdx, 29 netgdx

41.38 0.32 396.88 2227.99

1 site - 100 nodes:
Orsay - 100

-
71 gdx, 29 netgdx

86.86 0.19 420.02 1059.16

1 site - 200 nodes:
Orsay - 200

-
171 gdx, 29 netgdx

209.74 0.31 388.55 587.76

2 sites - 100 nodes:
Orsay - 50
Rennes - 50

-
21 gdx, 29 netgdx
50 paraquad

135.44 1.17 304.79 1275.64

2 sites - 200 nodes:
Orsay -100
Rennes -100

-
72 gdx, 28 netgdx
63 paraquad, 33 paramount, 4 paradent

212.14 1.01 341.53 668.57

2 sites - 300 nodes:
Orsay - 200
Rennes - 100

-
171 gdx, 29 netgdx
63 paraquad, 33 paramount, 4 paradent

308.91 1.16 308.44 611.55

In this work, we adapt the genetic algorithm application
to our computational steering framework. The MilkyWay
application developed for BOINC [4], has a master-worker
architecture. We use the work-unit as the evaluator and we
have adapted some of the genetic algorithms of the server
part as the splitter and iterator. There are many more appli-
cations that can benefit from our framework, such as global
warming models.

4.2 Experiments

This experiment uses the French experimental Grid plat-
form, Grid’5000 [6], as the test bed. Grid’5000 is a sci-
entific instrument for the study of large scale parallel and
distributed systems. It aims at providing a highly reconfig-
urable, controlable and monitorable experimental platform
to its users. Now it is composed of nine sites geographically
distributed in France, providing a total of 14 clusters.

Our experiment used up to 300 machines located in 2
different sites in France. During the experiment, only one
controller was deployed and each site was assigned one col-
lector. Each site may provide machines from different clus-
ters and therefore the configuration of machines has big dif-
ferences. In particular, the model of machines located in
Orsay is IBM eServer and most of them are equipped with
one AMD Operon 2GHz CPU and 2GB memory, while the
network connection is using PCI-X Gigabit Ethernet. The
machines in Rennes consist of HP, Sun and Dell Servers and
the size of memory on each machine varies between 2GB
and 32GB, while the network consists of Gigabit Ethernet,
Myri-10Gb and InfiniBand 10Gb. The network connecting
different sites is 10Gb/s optical fibre. Our experiment run
over virtual machines. Therefore, although the heterogene-
ity of physical machines is big, we were using the same
operating system, Debian GNU/Linux 5.0.

With the experiment, we aim to show two features of our

system: 1) the simplicity and relative small overhead of de-
ploying scientific applications in a large scale distributed
environment with computational steering; 2) the perfor-
mance scalability of our framework with the Milkyway ap-
plication.

Table 1 summarizes the performance results of our ex-
periment under a varied number of machines. The overhead
of conducting the Milkway computation by using Hadoop
over clusters of VMs mainly consists of 4 parts. These
are Configuration, Sending App., Sending Data and Run-
time respectively in Table 1. Configuration represents the
time required to set up each cluster with Hadoop and it in-
cludes editing the configuration file and starting HDFS and
Hadoop daemons on each machine. Sending App. includes
the time to send the files required by the Milkyway applica-
tions to each site, i.e., the master node in each Hadoop clus-
ter. In our case, the size of all the MilkyWay files is about
1.7MB, including collector, evaluator and iterator. Sending
Data is the time used to send input data to each cluster. In
this case, it means to put files into HDFS. During the ex-
periment, each Milkyway execution took 600 files as input,
the total size of which was 1,860 MB. Runtime presents the
time to execute the Milkyway application over the varied
number of resources. The time required to boot VMs is not
covered in our work, since it is a one-time-only cost.

In Table 1, the time consumed by Configuration in-
creases as more resources are added into the computation.
The reason is that Hadoop was configured and started on
each cluster sequentially. Therefore, more clusters and
more resources increase the overhead required by Config-
uration. We will optimize and parallelize the Configura-
tion phase in the future. Fortunately, it just incurs a small
percentage of the entire execution of Milkyway. This com-
paratively small overhead allows a convenient access to our
framework.

The time required to send Milkyway files to each sites

6

is considerably small and it can even be ignored in compar-
ison with the execution time. The reason is the total size
of Milkyway files is very small, just 1.7MB. However, in
contrast, the time to send 600 input files with the size of
1,860 MB is comparatively larger, between 300 and more
than 400 seconds.

The final column in Table 1 presents the performance
scalability of Milkyway over our framework. The entire ex-
ecution time of Milkyway decreases as more resources are
added into the computation. Due to the heterogeneity be-
tween machines from different sites and clusters, the per-
formance does not increase linearly. However it is still con-
sistent with our expectations, except the performance re-
sult over 300 machines from 2 sites. It is because currently
Hadoop does not tolerate big heterogeneity very well [13]
and the communication between more clusters incurs addi-
tional overhead.

5 Related Work

Computational steering is an important feature required
by many scientific applications. Petra Wenisch et al. [20]
work on a project which supports computational steering
on a large scale of computational fluid dynamics (CFD) ap-
plications over super-computers. This work is specialized
for MPI-based (Message Passing Interface) applications. D-
Grid [19] provides a run-time environment that monitors the
execution status of High Energy Physics jobs and supports
a steering system, called RMOST (Result Monitoring and
Online Steering Tool). With RMOST, users can connect to
the running job, optimize its parameters, control its correct-
ness and investigate unexpected results online. Shenfield et
al. [3] works on a set of APIs and runtime environments for
engineering design problems implemented by using evolu-
tionary algorithms. Different from the above computational
steering frameworks designed for special applications, Re-
alityGrid [23] [5] aims to provide a set of APIs and run-time
environment for more general steerable applications, espe-
cially legacy scientific applications. However, users have to
change their applications in order to use RealityGrid.

In comparison, our work aims to provide a transparent
framework for iterative applications and therefore no sig-
nificant changes are required to use the computational fea-
tures provided. Furthermore, our asynchronous-iterative
framework tries to provide a cooperative run-time environ-
ment by harnessing the computing capabilities from multi-
ple sites in grids. By using Hadoop, an open source imple-
mentation of MapReduce, the implementation difficulties,
such as fault tolerance and parallelism, are significantly de-
creased. MapReduce [15] has been used by Google for web
search applications, which selects the results best suited to
the users’ requirements within billions of web pages. Many
scientific problems also can be taken as searching best re-

sults from various problem spaces with a large scale. For
example, bioinformatic scientists have to seek clues from
DNA sequences, while the Milkyway application is explor-
ing all the possibilities to discover the best suitable galaxy
model. With the aim of exploring the high level similarities
between scientific and web search applications, DISC [21]
starts to work on suitable programming models for data-
intensive computational problems by using MapReduce.
MRPSO [1] utilizes the MapReduce model to parallelize
a compute-intensive application, Particle Swarm Optimiza-
tion, while MRPGA extends the MapReduce model to sup-
port general genetic algorithms [8]. Our work tries to bene-
fit from the advantages of MapReduce to build a framework
for computational steering over Grid environments.

Hadoop On Demand (HOD) [14] is a system for provi-
sioning virtual Hadoop clusters over a large physical cluster.
It uses the Torque resource manager to do node allocation.
On the allocated nodes, it can start Hadoop MapReduce and
HDFS daemons. It automatically generates the appropri-
ate configuration files for the Hadoop daemons and client.
HOD also has the capability to distribute Hadoop to the
nodes in the virtual cluster that it allocates. In short, HOD
makes it easy for administrators and users to quickly set up
and use Hadoop. It is also a very useful tool for Hadoop de-
velopers and testers who need to share a physical cluster for
testing their own Hadoop versions. However, HOD works
only with Torque. In comparison, our framework has no
special requirements to automatically deploy Hadoop. We
only require SSH (Secure Shell), which is now within the
standard release of most Unix-based systems.

Grid’BnB [7] is a parallel branch and bound framework
for grids. Branch and Bound (B&B) algorithms find opti-
mal solutions of search problems and NP-hard optimisation
problems. Grid’BnB is a Java framework that helps pro-
grammers to distribute problems over grids by hiding distri-
bution issues. It is built over a master-worker approach and
provides a transparent communication system among tasks.
This work also introduces a mechanism to localize com-
putational nodes on the deployed grid. This mechanism is
used in Grid’BnB to reduce inter-cluster communications.

6 Conclusions

In this work, we proposed an asynchronous-iterative
computation framework which enables users to perform
computational steering. The architecture of the framework
is based on previous work, InterGrid, that enables multi-
sites grid use and the MapReduce programming model.
Computational steering is enabled by a set of command-
line tools that allows users to interact with their computa-
tions. We demonstrate how users can adapt a representative
master-worker application to our framework.

The experiment was conducted using Grid’5000 by run-

7

ning the Milkyway application from our framework over up
to 300 physical machines in 2 sites. It proves that our frame-
work is able to provide a considerably small overhead and
scalable performance for applications following the master-
worker model. Therefore, it is a good choice for steering
scientific computations in Grid environments.

In future work, we would like to provide fault-tolerance,
which is not fully considered. However, users can indirectly
detect failures by seeing no advance in sub-computations’
status and can decide to move the failed data partition to an-
other cluster. We also would like to provide more tools for
helping users to analyze their computations, such as visual-
based computational steering. Finally, we want to investi-
gate more real-world applications that can benefit from our
computational steering framework.

7 Acknowledgements

This work is partially supported by research grants from
the Australian Research Council (ARC) and Australian De-
partment of Innovation, Industry, Science and Research
(DIISR). It is also partially supported by U.S.A. NSF CA-
REER CNS Grant No: 0448407. Some experiments were
carried out using the Grid’5000 experimental testbed, being
developed under the INRIA ALADDIN development action
with support from CNRS, RENATER, several universities,
and other funding bodies (see https://www.grid5000.fr).

References

[1] A. W. McNabb, C. K. Monson, and K. D. Seppi. Parallel
PSO Using MapReduce. In Proc. of the Congress on Evolu-
tionary Computation, 2007.

[2] J. Adelman-McCarthy, M. Agüeros, S. Allam, C. Prieto,
K. Anderson, S. Anderson, J. Annis, N. Bahcall, C. Bailer-
Jones, I. Baldry, et al. The sixth data release of the sloan
digital sky survey. Urbana, 51:61801.

[3] M. A. Alex Shenfield, Peter J. Fleming. Computational
steering of a multi-objective evolutionary algorithm for en-
gineering design. Engineering Applications of Artificial In-
telligence, 20-8:1047–1057, 2007.

[4] D. P. Anderson. Boinc: A system for public-resource com-
puting and storage. Fifth IEEE/ACM International Work-
shop on Grid Computing, 0:4–10, November 2004.

[5] J. Brooke, P. Coveney, J. Harting, S. Jha, S. Pickles, R. Pin-
ning, and A. Porter. Computational steering in RealityGrid.
In Proc. of the UK e-Science All Hands Meeting, September,
volume 2, pages 885–889. Citeseer, 2003.

[6] F. Cappello, E. Caron, M. Dayde, F. Desprez, E. Jean-
not, Y. Jegou, S. Lanteri, J. Leduc, N. Melab, G. Mornet,
R. Namyst, P. Primet, and O. Richard. Grid’5000: a large
scale, reconfigurable, controlable and monitorable Grid plat-
form. In Grid’2005 Workshop, Seattle, USA, November 13-
14 2005. IEEE/ACM.

[7] D. Caromel, A. di Costanzo, L. Baduel, and S. Matsuoka.
Grid’bnb : A parallel branch and bound framework for grids.
In S. Aluru, M. Parashar, R. Badrinath, and V. K. Prasanna,
editors, HiPC, volume 4873 of Lecture Notes in Computer
Science, pages 566–579. Springer, 2007.

[8] Chao Jin, Christian Vecchiola, Rajkumar Buyya. MRPGA:
An Extension of MapReduce for Parallelizing Genetic Al-
gorithms. In Proc. of 4th IEEE International Conference on
e-Science, 2008.

[9] T. Desell, B. Szymanski, and C. A. Varela. An asynchronous
hybrid genetic-simplex search for modeling the milky way
galaxy using volunteer computing. In Genetic and Evo-
lutionary Computation Conference (GECCO 2008), pages
921–928, Atlanta, Georgia, July 2008.

[10] A. di Costanzo, M. D. de Assunção, and R. Buyya. Build-
ing a virtualized distributed computing infrastructure by har-
nessing grid and cloud technologies. Internet Computing,
IEEE, Sept-Oct 2009. To appear.

[11] EGEE. http://public.eu-egee.org/, 2004.
[12] J. Ekanayake, S. Pallickara, and G. Fox. Map-Reduce for

Scientific Applications. In Proc. of the 4th IEEE Interna-
tional Conference on e-Science., 2008.

[13] Hadoop. http://hadoop.apache.org.
[14] Hadoop on demand.

http://hadoop.apache.org/core/docs/current/hod user guide.html.
[15] J. Dean and S. Ghemawat. MapReduce: Simplified Data

Processing on Large Clusters. In Proc. of the 6th Symposium
on Operating System Design and Implementation, 2004.

[16] R. v. L. Jurriaan D. Mulder, Jarke J. van Wijk. A survey
of computational steering environments. Future Generation
Computer Systems, 15-1:119–129, 1999.

[17] K. Keahey, I. Foster, T. Freeman, and X. Zhang. Virtual
workspaces: Achieving quality of service and quality of life
in the Grids. Scientific Programming, 13(4):265–275, 2006.

[18] A. Matsunaga, M. Tsugawa, and J. Fortes. Cloudblast:
Combining mapreduce and virtualization on distributed re-
sources for bioinformatics applications. In Proceedings
of the Fourth IEEE International Conference on eScience,
pages 222–229, USA, 2008.

[19] R. Müller-Pfefferkorn et al. User-centric monitoring and
steering of the execution of large job sets. In Proc. of Ger-
man e-Science Conference. Citeseer, 2007.

[20] O. W. Petra Wenisch and E. Rank. Harnessing high-
performance computers for computational steering. Re-
cent Advances in Parallel Virtual Machine and Message
Passing Interface, Lecture Notes in Computer Science,
3666/2005:536–543, 2005.

[21] R. E. Bryant. Data-Intensive Supercomputing: The Case
for DISC. In CMU-CS-07-128, Technical Report, Carnegie
Mellon University, 2007.

[22] L. Ramakrishnan, D. Irwin, L. Grit, A. Yumerefendi,
A. Iamnitchi, and J. Chase. Toward a doctrine of contain-
ment: Grid hosting with adaptive resource control. In 2006
ACM/IEEE Conference on Supercomputing, page 101.

[23] Shantenu Jha, Stephen Pickles, Andrew Porter. A Computa-
tional Steering API for Scientific Grid Applications: Design,
Implementation and Lessons. In Proc. of Grid Application
Programming Interfaces Workshop, 2004.

8

