
On-Demand Cold Start Frequency
Reduction with Off-Policy Reinforcement
Learning in Serverless Computing

Siddharth Agarwal, Maria A. Rodriguez, and Rajkumar Buyya

Abstract Function-as-a-Service (FaaS) is a cloud computing paradigm offering an
event-driven execution model to applications. It features ‘serverless’ attributes by
eliminating resource management responsibilities from developers, and offers trans-
parent and on-demand scalability of applications. To provide seamless on-demand
scalability, new function instances are prepared to serve the incoming workload in the
absence or unavailability of function instances. However, FaaS platforms are known
to suffer from cold starts, where this function provisioning process introduces a non-
negligible delay in function response and reduces the end-user experience. There-
fore, the presented work focuses on reducing the frequent, on-demand cold starts on
the platform by using Reinforcement Learning (RL). The proposed approach uses
model-free Q-learning that consider function metrics such as CPU utilisation, exist-
ing function instances and response failure rate, to proactively initialize functions,
in advance, based on the expected demand. The proposed solution is implemented
on Kubeless and evaluated using an open-source function invocation trace applied
to a matrix multiplication function. The evaluation results demonstrate a favourable
performance of the RL-based agent when compared to Kubeless’ default policy and
a function keep-alive policy by improving throughput by up to 8.81% and reducing
computation load and resource wastage by up to 55% and 37%, respectively, that is
a direct outcome of reduced cold starts.

Keywords Cold start · Function-as-a-Service · Reinforcement Learning ·
Serverless computing

S. Agarwal · M. A. Rodriguez · R. Buyya (B)
Cloud Computing and Distributed Systems Laboratory, School of Computing and Information
Systems, The University of Melbourne, Melbourne, VIC, Australia
e-mail: rbuyya@unimelb.edu.au

S. Agarwal
e-mail: siddhartha@student.unimelb.edu.au

M. A. Rodriguez
e-mail: maria.read@unimelb.edu.au

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
A. C. Frery et al. (eds.), Computational Intelligence and Data Analytics, Lecture Notes
on Data Engineering and Communications Technologies 236,
https://doi.org/10.1007/978-981-96-0451-7_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0451-7_1&domain=pdf
mailto:rbuyya@unimelb.edu.au
mailto:siddhartha@student.unimelb.edu.au
mailto:maria.read@unimelb.edu.au
https://doi.org/10.1007/978-981-96-0451-7_1
https://doi.org/10.1007/978-981-96-0451-7_1
https://doi.org/10.1007/978-981-96-0451-7_1
https://doi.org/10.1007/978-981-96-0451-7_1
https://doi.org/10.1007/978-981-96-0451-7_1
https://doi.org/10.1007/978-981-96-0451-7_1
https://doi.org/10.1007/978-981-96-0451-7_1
https://doi.org/10.1007/978-981-96-0451-7_1
https://doi.org/10.1007/978-981-96-0451-7_1
https://doi.org/10.1007/978-981-96-0451-7_1
https://doi.org/10.1007/978-981-96-0451-7_1

2 S. Agarwal et al.

1 Introduction

In cloud computing, a serverless deployment model removes the burden of managing
and provisioning resources from the developers, allowing them to focus solely on
the application development process. The term serverless, interchangeably used with
Function-as-a-Service (FaaS), does not imply an absence of servers, but instead,
accentuates delegating the responsibility of complex resource management tasks to
cloud service providers (CSP) [13, 16]. The FaaS paradigm puts forward an event-
driven, serverless computing model with fine-grained pay-per-use pricing where
resources are billed based on their actual service time. Functions (i.e. a fragment of
code containing business logic) are designed to scale on demand; they are stateless,
short-lived and run on lightweight containers or virtual machines (VMs) in response
to a triggering event. Such an abstraction increases agility in application development,
offering lower administrative and ownership costs. The FaaS model has attracted a
wide range of applications such as IoT services, REST APIs, stream processing and
prediction services, which have strict availability and quality of service requirements
in terms of response time. Conceptually, the FaaS model is designed to spin a new
function instance for each demand request and shut down the instance after service
[13]. However, in practice, commercial FaaS offerings like AWS Lambda, Azure
Functions and Google Cloud Function may choose to re-use a function instance
or keep the instance running for a limited time to serve subsequent requests [33].
Some open source serverless frameworks like Kubeless [1] and Knative, have similar
implementations to re-use an instance of a function to serve subsequent requests.

An increase in workload demand leads to an instantiation process involving the
creation of new function containers and the initialisation of the function’s envi-
ronment within those containers, after which incoming requests are served. Such a
process usually requires downloading the client code, setting up code dependencies
and the runtime environment, setting up container networking, and finally executing
the code to handle the incoming request. Hence, instantiating a function’s container
introduces a non-negligible time latency, known as cold start, and gives rise to a
challenge for serverless platforms [10, 15, 27, 36]. Some application-specific fac-
tors such as programming language, runtime environment and code deployment size
as well as function requirements like CPU and memory, affect the cold start of a func-
tion [20, 22, 27, 31]. To automate the process of creating new function instances
and reusing existing ones, serverless frameworks usually rely on resource-based
(CPU or memory) horizontal scaling, known as horizontal pod auto-scaling (HPA)
in Kubernetes-based frameworks like Kubeless, to respond to incoming requests.
Resource-based scaling policies implement a reactive approach and instantiate new
functions only when resource usage rises above a pre-defined threshold, thus leading
to cold start latencies and an increase in the number of unsuccessful requests.

Threshold-based scaling decisions fail to consider factors like varying application
load and platform throughput and hence, pose an opportunity to explore dynamic
techniques that analyse these factors to address cold starts. This work presents
a model-free Q-learning agent to exploit resource utilisation, available function

On-Demand Cold Start Frequency Reduction … 3

instances and platform response failure rate to reduce the number of cold starts for
CPU-intensive serverless functions. We define a reward function for the RL agent to
dynamically establish the required number of function instances for a given work-
load demand based on expected average CPU utilisation and response failure rate.
The RL-based agent interacts with the serverless environment by performing scal-
ing actions and learns through trial and error during multiple iterations. The agent
receives delayed feedback, either positive or negative, based upon the observed state,
and consequently learns the appropriate number of function instances to fit the work-
load demand. This strategy uses no prior knowledge about the environment, demand
pattern or workload, and dynamically adjusts to the changes for preparing required
functions in advance to reduce cold starts. The proposed work scales the number of
function instances by proactively estimating the number of functions that are needed
to serve incoming workload to reduce the frequent cold starts. It utilises a practical
workload of matrix multiplication involved in an image processing task, serving as a
sample real-world function request pattern [28], and formally presents the cold start
as an optimisation problem. Also, we structure the Q-learning components around
the function metrics such as average CPU utilisation and response failure rate and
evaluate our approach against the default resource-based policy and commercially
accepted function keep-alive technique.

In summary, the key contributions of our work are

1. We analyse function resource metrics such as CPU utilisation, available instances
and the proportion of unsuccessful responses to propose a Q-learning model
that dynamically analyses the application request pattern and improves function
throughput by reducing frequent cold starts on the platform.

2. We present a brief overview of explored solutions to address function cold starts
and highlight the differences between contrasting approaches to the proposed
agent.

3. We perform our experiments on a real-world system setup and evaluate the pro-
posed RL-based agent against the default resource-based policy and a baseline
keep-alive technique.

The rest of the paper is organised as follows. Section 2 highlights related research
studies. In Sect. 3, we present the system model and formulate the problem statement.
Section 4 outlines the proposed agentâŁ™s workflow and describes the implemen-
tation hypothesis and assumptions. In Sect. 5, we evaluate our technique with the
baseline approach and highlight training results and discuss about performance in
Sect. 6. Section 7 highlights future research direction and Sect. 8 summarises and
concludes the paper.

4 S. Agarwal et al.

2 Related Work

In this section, we briefly discuss about the Function-as-a-Service paradigm in server-
less computing and elaborate on the current function cold start mitigation techniques
and approaches.

2.1 Serverless Computing or Function-as-a-Service

Serverless computing offers a cloud service model wherein the server management
or resource management responsibility lies with the CSP. In [13], the authors dis-
cussed the potential of this new, less complex computing model introduced by Ama-
zon in 2014. They explain a function-based, serverless commercial offering of AWS
Lambda, i.e. the Function-as-a-Service platform. They highlighted three primary dif-
ferences between traditional cloud computing and serverless computing as follows:
decoupled computation and storage, code execution without resource management,
and paying in proportion to the resources used. The research posits that the serverless
or FaaS model promotes business growth, making the use of the cloud easier.

Baldini et al. [8] introduced the emerging paradigm of FaaS as an application
development architecture that allows the execution of a piece of code in the cloud
without control over underlying resources. They identified containers and the emer-
gence of microservices architecture as the promoter of FaaS model in serverless.
They used FaaS and serverless interchangeably and defines it as a ‘stripped down’
programming model that executes stateless functions as its deployment unit.

Since the inception of serverless computing, there have been many commer-
cial and open-source offerings such as AWS Lambda, Microsoft Azure Functions,
Google Cloud Functions, Fission and OpenWhisk. These platforms represent FaaS
as an emerging technology but Hellerstein et al. [12] put together gaps that furnish
serverless as a bad fit for cloud innovations. The authors criticized the current devel-
opments of cloud computing and state that the potential of cloud resources is yet to
be harnessed. On the contrary, the work in [27] argued that serverless offerings are
economical and affordable as they remove the responsibility of resource manage-
ment and complexity of deployments from consumers. It presented the opportunities
offered by multiple FaaS offerings and gives an overview of other existing challenges
and indicates potential approaches for future work.

A Microsoft work [24] estimated that there will be near 500 million new applica-
tions in the subsequent 5 years, and it would be difficult for the current development
models to support such large expansions. Another recent study by Datadog [2], pub-
lishes that over 70% organisations using AWS cloud services, 50% organisations
using Microsoft Azure services and Google Cloud platform have adopted serverless
computing into their architectures. FaaS is designed to increase development agility,
reduce the cost of ownership and decrease overheads related to servers and other
cloud resources. The term ’serverless’ has been in the industry since the introduction

On-Demand Cold Start Frequency Reduction … 5

of Backend-as-a-Service (BaaS). Despite the serverless benefits, FaaS experiences
two major challenges, which are categorized as (i) system-level and (ii) program-
ming and DevOps challenges [8, 13, 24]. The former identifies the cost of services,
security, resource limits and cold start while scaling, and the latter focuses on tools
and IDEs, deployment, statelessness and code granularity in the serverless model.

2.2 Function Cold Start and Mitigation

Researchers in [33] described function cold start as the time taken to execute a
function. This process involves assigning a container to a function, accessing the
code package and copying the function image, loading the image into memory,
unpacking it and executing the function handler. It broadly classified the approaches
to deal with function cold start in, environment optimisation and pinging. The former
approach acts either by reducing container preparation time or decreasing the delay
in loading function libraries, while the latter technique continuously monitors the
functions and periodically pings them to keep the instances warm or running.

An adaptive container warm-up technique to reduce the cold start latency and a
container pool strategy to reduce resource wastage is introduced in [36]. The proposed
solution leverages a Long-Short Term Memory (LSTM) network to predict function
invocation times and non-first functions in a chain to keep a warm queue of function
containers ready. Although both the discussed techniques work in synchronisation,
the first function in the chain suffered from a cold start.

The research in [15] explained platform-dependent overheads like pod provision-
ing and application implementation-dependent overheads. It presented a pool-based
pre-warmed container technique, marked with selector ‘app-label’ to deal with the
function cold start problem. To tackle the incoming demand, a container pool is
checked first for existing pre-warmed containers, or the platform requests new con-
tainers as per the demand.

Another study [18] exploited the data similarity to reduce the function cold start.
It criticized the current container deployment technique of pulling new container
images from the storage bucket and introduced a live container migration over a peer-
to-peer network. Similarly, [10] aimed to reduce the number of cold start occurrences
by utilizing the function composition knowledge. It presented an application-side
solution based on lightweight middleware. This middleware enable the developers
to control the frequency of cold start by treating the FaaS platform as a black box.

Based on the investigation in [22], network creation and initialisation were found
to be the prime contributors to the cold start latency. The study expressed that cold
starts are caused due to work and wait times involved in various set-up processes like
initializing networking elements. The study explained the stages of the container
lifecycle and states that the clean-up stage demands cycles from the underlying
containerisation daemon, hindering other processes. Therefore, a paused container
pool manager is proposed to pre-create a network for function containers and attach
the new function containers to configured IP and network when required.

6 S. Agarwal et al.

Some studies [12, 20, 27] have identified significant factors that affect the cold
start of a function. These include runtime environment, CPU and memory require-
ments, code dependency setting, workload concurrency and container networking
requirements. Most works [14, 17, 21, 29, 35] focus on commercial FaaS platforms
like AWS Lambda, Azure Functions, Google Cloud Functions and fall short to evalu-
ate open source serverless platforms like OpenLambda, Fission, Kubeless, etc. Very
few studies [23, 25, 31] have successfully performed analysis on an open-source
serverless platform and provided possible solution by targeting the container level
fine-grained control of the platform.

Recent research works [5, 9, 26, 34] introduce the paradigm of RL to the FaaS
platforms in different ways. Schuler et al. [26] focuses on request-based provisioning
of VMs or containers on the Knative platform. The authors demonstrated a correlation
between latency and throughput with function concurrency levels and thus propose
a Q-Learning model to determine the optimal concurrency level of a function for a
single workload. Vahidinia et al. [34] proposed a two-layer adaptive approach, an
RL algorithm to predict the best idle-container window, and an LSTM network to
predict future invocation times to keep the pre-warmed containers ready.

The study demonstrated the advantages of the proposed solution on the Open-
Whisk platform using a simple HTTP-based workload and a synthetic demand pat-
tern. Another research [9] focused on resource-based scaling configuration (CPU
utilisation) of OpenFaaS and adjusts the HPA settings using an RL-based agent.
They assumed a serverless-edge application scenario and a synthetic demand pattern
for the experimentation and present their preliminary findings based on latency as
SLA.

Agarwal et al. [5] introduced the idea of Q-learning to ascertain the appropriate
amount of resources to reduce frequent cold starts. The authors shared the preliminary
training results with an attempt to show the applicability of reinforcement learning
to the serverless environment. They utilised the platform exposed resource metrics
to experiment with a synthetic workload trace, i.e. Fibonacci series calculation, to
simulate a compute-intensive application and predict the required resources.

Our proposed work introduces a Q-Learning strategy to reduce frequent cold
starts in the FaaS environment. Contrasting existing solutions, we apply the model-
free Q-Learning to determine required number of function instances for the work-
load demand that eventually reduces number of on-demand cold starts. Further-
more, the existing solutions take advantage of either continuous pinging, pool-based
approaches, container migration and network building or exploit platform-specific
implementations like provisioned concurrency while failing to experiment with CPU-
intensive real-world application workloads. Similar to [5], our work utilises avail-
able resource-based metrics and response failure rate to accomplish the learning, but
improves over the discussed approach. Contrasting to their model, we formulate the
problem of cold starts as an optimisation approach to proactively spawn the required
function instances and minimize frequent, on-demand cold starts.

As part of their Q-learning model, the study used fixed-value constants in the
reward modelling and we address this issue by carefully analysing the problem and
curate it as a threshold-based reward system. Additionally, we experiment with matrix

On-Demand Cold Start Frequency Reduction … 7

multiplication function, that can be used as part of image processing pipeline, to train
and evaluate our agent and utilise the open-sourced function invocation trace [28] by
Azure. Further we describe our design decisions and utilise constants based upon the
trial-error analyses. The successful learning of the agent resulted in the preparation of
near to optimal function instances in a timeframe to reduce the on-demand function
creation or cold starts and improve the platform’s throughput. A summary of related
works is presented in Table 1.

3 System Model and Problem Formulation

FaaS is an event-driven cloud service model that allows stateless function deploy-
ment. It delivers high scalability and scale-to-zero feature being economical to infre-
quent demand patterns. New functions . ni , where .1 ≤ ni ≤ N and .N is the maxi-
mum scale, are instantiated on-demand to serve the incoming load (scale up) and
removed (scale down) when not in use after a certain time span or below a configured,
resource-based threshold metric value for every. i iteration window. The preparation
time of function containers, i.e. cold start. Ct , adds to the execution time of a request.
These frequent on-demand cold starts result in an increased computation pressure on
existing resources, neglecting expected average CPU utilisation (. φo), and expected
request failure rate (. τo). Therefore, an intelligent, learning-based solution is proposed
to address them.

In this study, we consider Kubeless, an open-source Kubernetes-native server-
less platform that leverages Kubernetes primitives to provide serverless abstraction.
It wraps function code inside a docker container with pre-defined resource require-
ments, i.e..RR f = (cpu f ,mem f , tout f) and schedules them on worker nodes. Sim-
ilar to commercial FaaS providers, Kubeless has an idle-container window of 5 min
to re-use functions and scales down to a minimum of one function if the collected
metrics (default 15 s window) are below the set threshold. We take into account
the general illustration of FaaS platform and consider a stochastic incoming request
pattern .D = {d1, d2, . . . , di } with .di requests in .i th iteration window. We analyse
the request pattern for a timeframe .T divided in . i iteration windows of duration . ti .
The system model of the examined scenario is depicted in Fig. 1. The workflow of
the potential cold start is explained in Fig. 2.

3.1 Problem Formulation

We formulate the function cold start as an optimisation problem aimed at minimizing
the number of cold starts (Eq. 1) by preparing required instances, beforehand and aid
the agent in learning a policy to reduce the request failure rate while maintaining
average CPU utilisation.

8 S. Agarwal et al.

Table 1 Related work summary

Work Name Platform Solution focus Strategy Application
type

Vahidinia et
al. [33]

– AWS Lambda Cold start
latency

Optimising
environments
& function
pinging

Concurrent &
sequential
CPU & I/O
intensive

Xu et al. [36] AWU &
ACPS

Kubernetes Cold start
latency &
resource
wastage

Invocation
prediction
(LSTM) &
Container
pool

Function
chain model

Lin and
Glikson [15]

– Knative Cold start
frequency

Container
pool & pod
migration

Single
function
model

Bermbach et
al. [10]

Naïve,
Extended &
Global
Approach

AWS Lambda,
Apache Open
Whisk

Cold start
frequency

Orchestration
middleware

Function
chain model

Mohan et al.
[22]

Pause
Container
Pool Manager

Apache
OpenWhisk

Cold start
latency

Container
Pool

Function
chain model

Solaiman and
Adnan [31]

WLEC OpenLambda Cold start
latency

Container
Pool

Single
function
model

Mahajan et al.
[18]

– AWS Cold start
latency

Container
migration &
content
similarity

Single
function
model

Schuler et al.
[26]

– Knative Cold start
frequency

AI-based
container
concurrency

Emulated
CPU & I/O
intensive

Silva et al.
[30]

Prebaking OpenFaas Cold start
latency

CRIU process
snapshot

Single
function
model

Vahidinia et
al. [34]

– OpenWhisk Cold start
frequency

RL-based idle
window &
LSTM based
container
pre-warming

Single
function
model

Benedetti et
al. [9]

– OpenFaas Function
Scaling

RL &
SLA-based
configuration

Single
function
model

Our work – Kubeless Cold start
frequency

AI-based
function &
throughput
metrics

Single
function
model

On-Demand Cold Start Frequency Reduction … 9

Fig. 1 System model

min
φ,τ ,di

(ni) (1)

such that

τdi < τo; φdi < φo (2)

A cold start happens when there are no function instances available on the platform
to deal with the incoming request and a new function instance is requested from the
platform. FaaS services scale horizontally as per resource-based thresholds to be
agile, usually considering the function’s average CPU utilisation. Therefore, the
goal of optimisation is to assess the incoming request pattern .di for an application
task in .i th iteration window and configure a policy to prepare functions beforehand,
considering actual and expected average CPU utilisation (.φdi&φo) and request failure
rate (.τdi&τo). Since the preparation time, .Ct remains similar for individual function
containers, we focus on optimizing the frequency of cold start .ni for an individual
iteration window.

With easy to implement and economical service model, enterprises are accom-
modating critical tasks like user verification, media processing, parallel scientific

10 S. Agarwal et al.

Fig. 2 Function warm start and cold start workflow

computations, anomaly detection and event-driven video streaming into the server-
less paradigm. To assess the necessity of a dynamic solution, we consider matrix
multiplication as workload, which is an important task in image processing work-
flow.

Reinforcement Learning Model In a model-free Q-Learning process, the agent
learns by exploring the environment and exploiting the acquired information. The
core components of the environment are state, action, reward and agent. The envi-
ronment state represents the current visibility of the agent and is defined as a Markov
Decision Process (MDP) [7, 32] where future environment state is independent of
past states, given the present state information. Actions are the possible set of oper-
ations that the agent can perform in a particular state. Additionally, rewards are the
guiding signals that lead the agent towards the desired goal by performing actions
and transitioning between environment states. The agent maintains a Q-value table
to assess the quality of action through obtained reward for the respective state and
utilise it for future learning. Therefore, we propose a modelling scheme for the RL
environment that is leveraged by a Q-Learning agent to learn a policy for function
preparation.

We model the RL environment’s state as .si = (n̂i ,φdi , τdi) where .φdi represents
the average CPU utilisation of the available .n̂i function instances, .τdi represents
the response failure rate, and . i is the iteration window during a timeframe . T . The

On-Demand Cold Start Frequency Reduction … 11

agent’s task is to prepare the estimated number of function instances in the upcoming
iteration window either by exploring or exploiting the suitable actions. These actions
of adding or adjusting the number of function instances, compensate for any expected
cold starts from the incoming demand and help to improve the throughput of the
system. Therefore, we define the agent’s action as the number of function instances,
. ni , to be added or removed from currently available functions .n̂i−1 and represent it
as a set .ai = .{ni |1 ≤ (n̂i−1 + ai) ≤ N }. This heuristic helps the agent to control the
degree of exploration by maintaining the number of functions within the threshold
. N , that is adapted based on deployed infrastructure capacity. Hence, we map the
function resources and relevant metrics to RL environment primitives.

The motive of the RL-based agent is to learn an optimal policy, and we structure
the rewards over resource-based metrics .φdi , function response failure rate .τdi , and
expected threshold values .(φo and .τo). It evaluates the quality of action .ai in state
.si by keeping a value-based table, i.e. Q-table, that captures this information for
every .(si , ai) pair. After executing the action, the agent waits for the duration of the
iteration window and receives a delayed reward. ri , expressed based on the difference
between the expected and actual utilisation and failure rate values, as shown in Eq. 3.

ri =
(φo − φdi) + (τo − τdi)

n̂i
(3)

and the Q-table is represented as a matrix (Eq. 4) of dimension .S × A.

Q(Sn×Am) =

⎡

⎢⎣
s1, a1 . . . s1, am
...

. . .
...

sn, a1 . . . sn, am

⎤

⎥⎦ (4)

4 Q-Learning for Cold Start Reduction

In this work, we apply model-free Q-learning algorithm in FaaS paradigm to reduce
frequent on-demand function cold starts. We select this algorithm due to its sim-
ple and easy implementation, model interpretability, strong theoretical convergence
guarantees, ability to process the perceived information quickly using the Bellman
equation and its adaptability to other advanced algorithms like Deep Q-Learning
(DQN). As discussed in Sect. 3, we model the process of creating required function
instances as an MDP and map the serverless computing primitives to RL agent’s
environment, state and actions. We explore and exploit an off-policy RL algorithm
to reduce the on-demand function cold starts and determine the required function
instances with the intuition of it being easy, simple to implement, less complex with
stable convergence in a discrete action space. The proposed approach has two phases:
an agent training phase and a testing phase. Algorithm 1 demonstrates the agent train-
ing workflow. The environment setup process precedes the agent training, where the
agent interacts with the environment and obtains information. After initial setup, the

12 S. Agarwal et al.

agent is trained for multiple epochs or timeframes where it assesses the function
demand .di over individual iteration windows . i and ascertains appropriate function
instances. During an iteration window. i , the agent observes the environment state. si ,
selects an action.ai according to .ε-greedy policy. This greedy policy helps the agent
to control its exploration and selects a random action with . ε probability, otherwise
exploiting the obtained information. This exploration rate is a dynamic value and
decays with ongoing learning to prioritise the acquired information.

Algorithm 1 Q-Learning for Cold Start Reduction
Require: Initialise Environment variables
Ensure: Initialise Q-Table, decay Rate, ε, epoch

ε = 0.01 + 0.99e(−decay Rate×epoch)

Repeat for each T rainingEpoch
epoch ← epoch + 1
while telapsed < T do

si ← current State(n̂i , φdi , τdi , i)
ai ← choose using ε-greedy policy from Q-Table
Scale & wait for i th iteration window
ri ← calculateReward(φdi , τdi)
si+1 ← get N ewState(n̂i+1, φdi+1 , τdi+1 , i + 1)
Q(si , ai) ← (1 − α)Q(si , ai + α(ri + γ maxa Q(si+1, ai))
telapsed = telapsed + ti

end while

After performing the selected action, the agent waits for duration. ti of an iteration
window to obtain the delayed reward. ri , calculated using the relevant resource-based
metrics.φdi and function failure rate.τdi . This reward helps the agent in action quality
assessment, and it combines the acquired knowledge over previous iterations using
the Bellman Equation (Eq. 5). It is the core component in learning as it aids Q-value
or Q-table updates and improves the agent’s value-based decision-making capability.
The equation uses two hyper-parameters learning rate, . α and discount factor, . γ. The
learning rate signifies the speed of learning and accumulating new information, and
the discount factor balances the importance of immediate and future rewards.

Q(si , ai) = (1 − α)Q(si , ai) + α(ri + γ max
a

Q(si+1, ai)) (5)

The agent then evaluates and adjusts the Q-value in Q-Table based upon the
delayed reward for the corresponding (.si , ai) pair. The agent continues to analyse the
demand over multiple iteration windows, selecting and performing actions, evaluat-
ing delayed rewards, assessing the quality of action and accumulating the information
in Q-table, and repeating this process over multiple epochs for learning. Once the
agent is trained for sufficient epochs and the exploration rate has decayed signifi-
cantly, we can exploit obtained knowledge in the testing phase.

In the testing phase, the agent is evaluated using a demand pattern for the matrix
multiplication function and the Q-table values guide the agent in taking informed

On-Demand Cold Start Frequency Reduction … 13

actions. The agent determines the current environment state and obtains the best
possible action, i.e. action with the highest Q-value for the corresponding state, and
adjusts the required number of functions based on its understanding of the demand.
We hypothesise that there exists a relationship between throughput and function
availability to serve incoming requests. Therefore, we evaluate the agent’s perfor-
mance by considering metrics such as system throughput, function resource utilisa-
tion and available function instances. We further hypothesise that the RL-based agent
learns to prepare and adjust required number of functions beforehand and improve
the throughput while keeping the function’s resource utilisation below the expected
threshold.

5 Performance Evaluation

In this section, we provide the experimental setup and parameters, and perform an
analysis of our agent compared to other complementary solutions.

5.1 System Setup

We set up our experimental test-bed as discussed in Sect. 3, using NeCTAR (Aus-
tralian National Research Cloud Infrastructure) services on the Melbourne Research
Cloud. We configure Kubernetes (v1.18.6) and Kubeless (v1.0.6) on a service clus-
ter of 4 nodes, each with Ubuntu (18.04 LTS) OS image, 4 vCPUs, 16 GB RAM
and 30 GB of disk storage to perform the relevant experiments. Typical serverless
applications expect high scalability for their changing demands and can be compute-
intensive, demanding a considerable amount of resources such as CPU, memory, or
time to execute. These factors add to frequent cold starts on the platform by keeping
the available functions or resources busy while requesting new functions for the sub-
sequent workload demand. We use Python-based matrix multiplication (1024 pixels
x 1024 pixels) to mimic the image processing task as our latency-critical application
to deploy serverless functions.

The experimental setup mimics real-time application demand experienced in com-
mercial FaaS platforms [11, 28]. We consider a single function invocation trace from
the open-source Azure function data [28] and downsize it according to our resource
capacity. We deploy the Apache JMeter load testing tool to generate the HTTP-based
requests and randomize its request ramp-up period to guarantee the changing demand
pattern for our workload. Also, we collect the relevant resource-based metrics and
throughput information via Kubernetes APIs. Table 2 summarises the parameters
used for system set-up.

14 S. Agarwal et al.

Table 2 System setup parameter values

Parameter name Value

Kubernetes version v1.18.6

Kubeless version v1.0.6

Nodes 4

OS Ubuntu 18.04 LTS

vCPU 4

RAM 16 GB

Workload Matrix Multiplication (.m × m)

m 1024

5.2 RL Environment Setup

To initialise the proposed RL-based environment, we first analyse and set up the func-
tion requirements according to deployed resource limits. After preliminary analysis,
we configure the function requirements as 1 vCPU, 128 MB memory and 60 s func-
tion timeout, where timeout represents the maximum execution period for a function
until failure. To experiment we assume a timeframe of 10 min to analyse the demand
pattern of 100 requests during 5 iteration windows of 2 min. Based on the resource
analysis and underlying Kubernetes assets we assume the function limit .N = 7.
These constraints allow us to put a considerable load or pressure on the different
techniques discussed and effectively evaluate them against each other.

As discussed in Sect. 3, the RL-environment components depend upon resource
metrics (average CPU utilisation), response failure rate, number of available func-
tions and expected threshold values, summarized in Table 3. Since the proposed
agent maintains a Q-table, these considerations help to minimise the risk of state-
space explosion related to Q-Learning. The actions signify the addition or removal
of functions based upon the function limit and the reward is modelled around the
expected threshold values. We configure the Bellman Equation hyper-parameters:
learning rate and discount factor as 0.9 and 0.99, respectively, based on the results
of hyper-parameter tuning in [5]. The agent is structured to explore the environment
and exploit the acquired knowledge. We use .ε-greedy action selection policy to ran-
domly select an action with initial .ε = 1 probability and exploit this information
with a decay rate of 0.0025. These RL system parameter values were chosen after
careful consideration of discussed workload and invocation pattern, according to the
underlying resource capacity, and to showcase the applicability of RL-based agent
in a serverless environment.

On-Demand Cold Start Frequency Reduction … 15

Table 3 RL-Environment parameter values

Parameter Value

.cpu f ,mem f , tout f 1, 128M, 60 s

.N 7

.T 10 min

.i 5

.ti 2 min

.φo 75%

.τo 20%

.α 0.9

.γ 0.99

.ε 1

.decayRate 0.0025

5.3 Q-Learning Agent Evaluation

We train the RL-based agent for a timeframe of 10 min over 500 epochs to analyse
an application demand and learn the ideal number of functions to reduce frequent
cold starts. The agent is structured according to the RL-based environment design
explained in Sect. 3 and around the implementation constraints. The quality of the
RL-based agent is evaluated during a 2 h period to reduce the effect of any bias and
performance bottlenecks.

We assess the effectiveness of our approach against the default scaling policy and
commercially used function keep-alive policy on the serverless platform. Kubeless
leverages the default resource-based scaling (HPA) implemented as a control loop
that checks for the specific target metrics to adjust the function replicas. HPA has
a default query period of 15 s to check and control the deployment based on the
target metrics like average CPU utilisation. Therefore, the HPA controller fetches the
specific metrics from the underlying API and calculates the average metric values
for the available function instances. The controller adjusts the desired number of
instances based on threshold violation but is unaware of the demand and only scales
after a 15 s metric collection window. The expected threshold for function average
CPU utilisation is set to be 75% with maximum scaling up to 7 instances. Therefore,
whenever the average CPU utilisation of the function violates the threshold, new
function instances are provisioned in real-time, representing a potential cold start in
the system.

Also, HPA has a 5 min down-scaling window and during that period resources are
bound to the platform irrespective of incoming demand which represents potential
resource wastage. Therefore, it is worthwhile to analyse the performance of the RL-
based agent against the function queuing or keep-alive approach that keeps enough
resources bound to itself for an idle-container window.

16 S. Agarwal et al.

Fig. 3 Training iteration 1

Fig. 4 Training iteration 2

Fig. 5 Training iteration 3

Figures 3, 4, 5, 6 and 7 illustrate the learning curve of the agent over multiple
epochs and we observe that the agent continuously attempts to meet the expected
thresholds. This highlights the agent’s capability to obtain positive rewards and move
towards the desired configuration. We compare the RL-based agent with HPA and
successfully demonstrate the agent’s ability to improve the function throughput, i.e.
reduce the failure rate by up to 8.81%, Fig. 8. The RL-based agent further targets to
maintain the expected CPU utilisation thresholds, Fig. 9, by reducing CPU stress up
to 55% while determining the required function instances in Fig. 10. For example,
in Fig. 10 during iteration windows 1 and 2, the HPA scales functions based on CPU
utilisation threshold, unaware of the actual requirement for upcoming iteration and

On-Demand Cold Start Frequency Reduction … 17

Fig. 6 Training iteration 4

Fig. 7 Training iteration 5

Fig. 8 RL agent v/s HPA:
failure rate

results in resource wastage. Similarly, Fig. 10 illustrates the resource wastage by
HPA during iterations 3 and 4.

Similar results are observed against function queuing or keep-alive policy, where
we evaluate two queues with .N = 4 and .N = 7. The RL-based agent scales and
prepares the function according to demand needs while the queue results in resource
wastage of up to 37%, as shown in Fig. 11. Although the queuing policy manages to
reduce the request failure rate to zero, it is due to extra resources available, as depicted
in Fig. 12, but can not be precisely captured by HPA metrics and shows over CPU
utilisation of up to 50% in Fig. 13. The proposed agent analysed the demand pattern
by consuming sufficient function resources, preparing the ideal number of functions

18 S. Agarwal et al.

Fig. 9 RL agent v/s HPA:
CPU utilisation

Fig. 10 HPA: function
provision

Fig. 11 Function queue:
function provision

Fig. 12 RL agent v/s
function queue: failure rate

On-Demand Cold Start Frequency Reduction … 19

Fig. 13 RL agent v/s
function queue: CPU
utilisation

and trying to keep the desired CPU utilisation under control. Hence, the learning and
testing analysis support our hypothesis that reducing on-demand cold starts can be
directly linked to the throughput improvement.

6 Discussion

Function cold start is an inherent shortcoming of the serverless execution model.
Thus, we have proposed an RL-based technique to investigate the demand pattern
of the application and attempt to reduce the frequency of function cold starts. The
proposed agent performs better than the baseline approaches under a controlled
experimental environment. But there are certain points to recollect associated with
the real-time appropriateness of the proposed solution.

We leverage the RL environment modelling, specifically Q-Learning constraints
[32, 37], and in general, these algorithms are expensive in terms of data and time.
The agent interacts with the modelled environment to acquire relevant information
over multiple epochs that signify a higher degree of exploration. Hence, as evidenced
in the proposed work, for an RL-based agent to outperform a baseline technique, a
training period of 500 epochs is exploited for satisfactorily analysing the workload
demand for a timeframe (10 min). Therefore, RL-based approaches are considerably
expensive in practical applications with stringent optimisation requirements.

A classical Q-Learning approach is applied to discrete environment variables [32].
To constrain the serverless environment within the requirements of the Q-Learning
algorithm, we consider the discrete variables to model cold starts. The size of the Q-
table is large and is a function of state space and action space. But with the expansion
of state space or the action space, the size of the Q-table grows exponentially [32, 37].
Therefore, Q-Learning experiences state explosion, making it infeasible to perform
updates on Q-values and degraded space and time complexity.

The proposed agent analyses individual application demand, so the learning
canâŁ™t be generalised for other demand patterns and requires respective train-
ing to be commissioned. Furthermore, the agent is trained for 500 iterations and
evaluated, but the chance of exploring every state is bleak with limited iterations

20 S. Agarwal et al.

of training. Therefore, the agent expects to be guided by certain approximations to
avoid acting randomly. The agent utilises resource-based metrics that affect the cold
starts, so the availability of relevant tools and techniques to collect instantaneous
metrics is essential. Also, the respective platform implementation of a serverless
environment, such as metrics collection frequency, function concurrency policy and
request queuing, can extend support to the analyses.

The difference between the approaches can be attributed to the following charac-
teristics of the proposed RL-based agent-

1. The process of elimination of invalid states during the RL environment setup
and lazy loading of Python, helps the agent to productively use the acquired
information about the environment.

2. Although the RL-based agent outperforms HPA and function queue policy, there
is a lack of function container concurrency policy. The CPU-intensive function
workload is configured with an execution time of 60 s and thus affected by the
concurrency control of the instance.

3. The composition of state space and reward function incorporates the effect of
failures during the training, and therefore, the agent tries to compensate for the
failures in consequent steps of learning by exploiting the acquired knowledge.

On the account of the performance evaluation results, we can adequately conclude
that the proposed agent successfully outperforms competing policies for the given
workload and experiment settings. We strengthen this claim by analysing the training
and testing outcomes of the RL-based agent, focused on examining the workload
pattern to reduce request failure which is a direct consequence of appropriate function
instances representing reduced function cold starts.

7 Future Research Directions

As part of the future research in broader serverless computing domain, various
aspects of resource management needs to be addressed. These could be broadly cat-
egorised under workload estimation and characterisation, resource scheduling, and
resource scaling. Following the increased adoption of FaaS, challenges such as func-
tion cold start delay, co-located function interference, lack of QoS guarantees, user
pricing model, runtime limitations and support for specialised hardware, resource
efficiency and workload management emerge as concerning factors for the success
of serverless computing [19]. With the changing dynamics of application workload,
its resource demand and introduction of AI/ML models in real-time systems, there
is need for adaptive and proactive methods to tackle inefficient resource manage-
ment in serverless computing. Additionally, there is a need for autonomous resource
management system to completely offload the function scheduling, resource alloca-
tion and resource scaling tasks to offer a true serverless experience for developers
and utilise the provider resources to the maximum. However, a guarantee of QoS
objectives is still warranted in terms of service latency, throughput, fault tolerance

On-Demand Cold Start Frequency Reduction … 21

and cost incurred by the user. Other aspects of FaaS that require meticulous thinking
with adoption in edge and fog computing environments are data privacy and data
locality concerns that further reduces the flexibility of FaaS application model.

Specifically, to address the issue of function cold start delays, an impact of other
important aspects such as function memory allocation, language runtime, deploy-
ment size, programming convention and function characteristics in conjunction with
different techniques can be explored as discussed below:

• In the industrial works like [3, 4], an insight is provided for the serverless AWS
Lambda functions and how an improvement can be made to its cold start latencies
and operating costs with careful function initialisation phase consideration.

• An in-depth analysis of function fusion or monolithic function development on
resource requirements and cold start of function workflows can also be explored
with respect to the performance and run-time costs of the function.

• Furthermore, a trade-off analysis of techniques like function pre-baking, provi-
sioned concurrency and reserved concurrency can also be valuable in performance
optimisation of serverless function and associated application workflows.

• In addition to CPU-intensive functions, impact of cold start on different classes of
functions like memory-intensive, I/O-intensive and network-intensive functions,
utilised for application domains such as AI/ML model training and inference, and
media processing, can also be explored.

• Consequently, a cost and performance analysis of RL-based agents can also be
made for the function cold start reduction in these application cases. Similar to Q-
Learning, the application of other policy-based techniques such as SARSA, which
is known to converge faster than Q-Learning, can also be experimented with in the
domain of the cold start problem. As an adaptation of Q-Learning, the proposed
solution includes discrete values over continuous values for state representation. In
this context, to avoid the problem of state space explosion, function approximation
techniques such as DQNs, Proximal Policy Optimisation (PPO) and other complex
deep learning methods such as Soft-Actor-Critic (SAC) or Recurrent models [6]
can also be leveraged to estimate the information about optimal actions.

• To further explore the evolving technological space, an integration of Generative
Adversarial Networks for synthetic training data generation or Large-Language-
Models can be explored for pro-active cold start reduction using the historical
data.

8 Summary and Conclusions

FaaS model executes the piece of code inside a container, known as a function and
prepares new function containers on demand. New function containers undergo an
initialisation process that puts together all the essential components before executing
the function handler. This bootstrapping process consumes time in the order of a few

22 S. Agarwal et al.

seconds, known as function cold start and introduces a delay in the response of the
function container.

This work visits the problem of function cold start by addressing frequent cold
starts and analysing the application demand through an RL technique. We leverage
the services of Apache JMeter to produce varying incoming request patterns and a
CPU-intensive function workload to complement the invocation pattern and observe
relevant cold starts. The system is set up using the Kubeless framework and the RL
environment is modelled for the agent to examine the necessary metrics to make
guided decisions in provisioning an appropriate number of function instances.

We present an evidence of leveraging Q-Learning to address cold starts on FaaS
platforms and verify it with improved platform throughput, reduced resource wastage
while maintaining expected thresholds, during the iterations. We evaluate the perfor-
mance of our proposed agent against the HPA policy and function queue policy. We
successfully observe the RL-based agent outperforming comparing techniques after
a training of 500 epochs that verifies our hypothesis of strong association between
success rate and reduced number of cold starts on the platform. After the test anal-
yses, the Q-Learning agent successfully improves throughput by up to 8.81% and
reduces resource wastage by up to 37% while preparing sufficient functions to reduce
cold starts.

References

1. Kubeless-kubernetes native serverless. https://kubeless.io/docs/
2. Datadog, the state of serverless (2022). https://www.datadoghq.com/state-of-serverless-2022/.

(June 2022)
3. Operating lambda: Performance optimization-part 1 (2021). https://aws.amazon.com/blogs/

compute/operating-lambda-performance-optimization-part-1/. (May 2021)
4. Operating lambda: Performance optimization-part 2 (2021). https://aws.amazon.com/blogs/

compute/operating-lambda-performance-optimization-part-2/. (May 2021)
5. Agarwal S, Rodriguez MA, Buyya R (2021) A reinforcement learning approach to reduce

serverless function cold start frequency. In: Proceedings of the 21st IEEE/ACM international
symposium on cluster, cloud and internet computing (CCGrid). IEEE, pp 797–803

6. Agarwal S, Rodriguez MA, Buyya R (2024) A deep recurrent-reinforcement learning method
for intelligent autoscaling of serverless functions. IEEE Trans Serv Comput 1–12. https://doi.
org/10.1109/TSC.2024.3387661

7. Ashraf M (2018) Reinforcement learning demystified: Markov decision processes. Towards
Data Science

8. Baldini I, Castro P, Chang K, Cheng P, Fink S, Ishakian V, Mitchell N, Muthusamy V, Rabbah
R, Slominski A et al (2017) Serverless computing: Current trends and open problems. In:
Research advances in cloud computing. Springer, pp 1–20

9. Benedetti P, Femminella M, Reali G, Steenhaut K (2022) Reinforcement learning applicability
for resource-based auto-scaling in serverless edge applications. In: Proceedings of the IEEE
international conference on pervasive computing and communications workshops and other
affiliated events (PerCom Workshops). IEEE, pp 674–679

10. Bermbach D, Karakaya AS, Buchholz S (2020) Using application knowledge to reduce cold
starts in faas services. In: Proceedings of the 35th annual ACM symposium on applied com-
puting, pp 134–143

https://kubeless.io/docs/
https://kubeless.io/docs/
https://kubeless.io/docs/
https://kubeless.io/docs/
https://www.datadoghq.com/state-of-serverless-2022/
https://www.datadoghq.com/state-of-serverless-2022/
https://www.datadoghq.com/state-of-serverless-2022/
https://www.datadoghq.com/state-of-serverless-2022/
https://www.datadoghq.com/state-of-serverless-2022/
https://www.datadoghq.com/state-of-serverless-2022/
https://www.datadoghq.com/state-of-serverless-2022/
https://www.datadoghq.com/state-of-serverless-2022/
https://aws.amazon.com/blogs/compute/operating-lambda-performance-optimization-part-1/
https://aws.amazon.com/blogs/compute/operating-lambda-performance-optimization-part-1/
https://aws.amazon.com/blogs/compute/operating-lambda-performance-optimization-part-1/
https://aws.amazon.com/blogs/compute/operating-lambda-performance-optimization-part-1/
https://aws.amazon.com/blogs/compute/operating-lambda-performance-optimization-part-1/
https://aws.amazon.com/blogs/compute/operating-lambda-performance-optimization-part-1/
https://aws.amazon.com/blogs/compute/operating-lambda-performance-optimization-part-1/
https://aws.amazon.com/blogs/compute/operating-lambda-performance-optimization-part-1/
https://aws.amazon.com/blogs/compute/operating-lambda-performance-optimization-part-1/
https://aws.amazon.com/blogs/compute/operating-lambda-performance-optimization-part-1/
https://aws.amazon.com/blogs/compute/operating-lambda-performance-optimization-part-1/
https://aws.amazon.com/blogs/compute/operating-lambda-performance-optimization-part-1/
https://aws.amazon.com/blogs/compute/operating-lambda-performance-optimization-part-2/
https://aws.amazon.com/blogs/compute/operating-lambda-performance-optimization-part-2/
https://aws.amazon.com/blogs/compute/operating-lambda-performance-optimization-part-2/
https://aws.amazon.com/blogs/compute/operating-lambda-performance-optimization-part-2/
https://aws.amazon.com/blogs/compute/operating-lambda-performance-optimization-part-2/
https://aws.amazon.com/blogs/compute/operating-lambda-performance-optimization-part-2/
https://aws.amazon.com/blogs/compute/operating-lambda-performance-optimization-part-2/
https://aws.amazon.com/blogs/compute/operating-lambda-performance-optimization-part-2/
https://aws.amazon.com/blogs/compute/operating-lambda-performance-optimization-part-2/
https://aws.amazon.com/blogs/compute/operating-lambda-performance-optimization-part-2/
https://aws.amazon.com/blogs/compute/operating-lambda-performance-optimization-part-2/
https://aws.amazon.com/blogs/compute/operating-lambda-performance-optimization-part-2/
https://doi.org/10.1109/TSC.2024.3387661
https://doi.org/10.1109/TSC.2024.3387661
https://doi.org/10.1109/TSC.2024.3387661
https://doi.org/10.1109/TSC.2024.3387661
https://doi.org/10.1109/TSC.2024.3387661
https://doi.org/10.1109/TSC.2024.3387661
https://doi.org/10.1109/TSC.2024.3387661
https://doi.org/10.1109/TSC.2024.3387661

On-Demand Cold Start Frequency Reduction … 23

11. Galstyan A, Czajkowski K, Lerman K (2004) Resource allocation in the grid using reinforce-
ment learning. In: Proceedings of the third international joint conference on autonomous agents
and multiagent systems, 2004. AAMAS 2004, vol 1. IEEE Computer Society, pp 1314–1315

12. Hellerstein JM, Faleiro J, Gonzalez JE, Schleier-Smith J, Sreekanti V, Tumanov A, Wu C
(2018) Serverless computing: One step forward, two steps back. arXiv:1812.03651

13. Jonas E, Schleier-Smith J, Sreekanti V, Tsai CC, Khandelwal A, Pu Q, Shankar V, Carreira
J, Krauth K, Yadwadkar N et al (2019) Cloud programming simplified: a berkeley view on
serverless computing. arXiv:1902.03383

14. Lee H, Satyam K, Fox G (2018) Evaluation of production serverless computing environments.
In: Proceedings of the IEEE 11th international conference on cloud computing (CLOUD).
IEEE, pp. 442–450

15. Lin PM, Glikson A (2019) Mitigating cold starts in serverless platforms: a pool-based approach.
arXiv:1903.12221

16. Lloyd W, Ramesh S, Chinthalapati S, Ly L, Pallickara S (2018) Serverless computing: an
investigation of factors influencing microservice performance. In: Proceedings of the IEEE
international conference on cloud engineering (IC2E). IEEE, pp 159–169

17. Lynn T, Rosati P, Lejeune A, Emeakaroha V (2017) A preliminary review of enterprise server-
less cloud computing (function-as-a-service) platforms. In: Proceedings of the IEEE interna-
tional conference on cloud computing technology and science (CloudCom). IEEE, pp 162–169

18. Mahajan K, Mahajan S, Misra V, Rubenstein D (2019) Exploiting content similarity to address
cold start in container deployments. In: Proceedings of the 15th international conference on
emerging networking experiments and technologies, pp 37–39

19. Mampage A, Karunasekera S, Buyya R (2022) A holistic view on resource management
in serverless computing environments: taxonomy and future directions. ACM Comput Surv
(CSUR) 54(11s):1–36

20. Manner J, Endreß M, Heckel T, Wirtz G (2018) Cold start influencing factors in function
as a service. In: Proceedings of the IEEE/ACM international conference on utility and cloud
computing companion (UCC Companion). IEEE, pp 181–188

21. McGrath G, Brenner PR (2017) Serverless computing: design, implementation, and perfor-
mance. In: Proceedings of the 37th IEEE international conference on distributed computing
systems workshops (ICDCSW). IEEE, pp 405–410

22. Mohan A, Sane H, Doshi K, Edupuganti S, Nayak N, Sukhomlinov V (2019) Agile cold starts
for scalable serverless. In: Proceedings of the 11th USENIX workshop on hot topics in cloud
computing (HotCloud 19)

23. Mohanty SK, Premsankar G, Di Francesco M et al (2018) An evaluation of open source
serverless computing frameworks. in Proceedings of the IEEE international conference on
cloud computing technology and science (CloudCom), pp 115–120

24. Rosenbaum E (2020) Next frontier in microsoft, google, amazon cloud battle is over
a world without code. https://www.cnbc.com/2020/04/01/new-microsoft-google-amazon-
cloud-battle-over-world-without-code.html. (Apr 2020)

25. Santos J, Wauters T, Volckaert B, De Turck F (2019) Towards network-aware resource provi-
sioning in kubernetes for fog computing applications. In: Proceedings of the IEEE conference
on network softwarization (NetSoft). IEEE, pp 351–359

26. Schuler L, Jamil S, Kühl N (2021) Ai-based resource allocation: Reinforcement learning for
adaptive auto-scaling in serverless environments. In: Proceedings of the IEEE/ACM 21st inter-
national symposium on cluster, cloud and internet computing (CCGrid). IEEE, pp 804–811

27. Shafiei H, Khonsari A, Mousavi P (2019) Serverless computing: a survey of opportunities,
challenges, and applications. ACM Comput Surv (CSUR)

28. Shahrad M, Fonseca R, Goiri Í, Chaudhry G, Batum P, Cooke J, Laureano E, Tresness C,
Russinovich M, Bianchini R (2020) Serverless in the wild: characterizing and optimizing the
serverless workload at a large cloud provider. In: Proceedings of the USENIX annual technical
conference (USENIX ATC 20), pp 205–218

29. Shilkov M (2021) Comparison of cold starts in serverless functions across aws, azure, and gcp.
https://mikhail.io/serverless/coldstarts/big3/ (Jan 2021)

http://arxiv.org/abs/1812.03651
http://arxiv.org/abs/1902.03383
http://arxiv.org/abs/1903.12221
https://www.cnbc.com/2020/04/01/new-microsoft-google-amazon-cloud-battle-over-world-without-code.html
https://www.cnbc.com/2020/04/01/new-microsoft-google-amazon-cloud-battle-over-world-without-code.html
https://www.cnbc.com/2020/04/01/new-microsoft-google-amazon-cloud-battle-over-world-without-code.html
https://www.cnbc.com/2020/04/01/new-microsoft-google-amazon-cloud-battle-over-world-without-code.html
https://www.cnbc.com/2020/04/01/new-microsoft-google-amazon-cloud-battle-over-world-without-code.html
https://www.cnbc.com/2020/04/01/new-microsoft-google-amazon-cloud-battle-over-world-without-code.html
https://www.cnbc.com/2020/04/01/new-microsoft-google-amazon-cloud-battle-over-world-without-code.html
https://www.cnbc.com/2020/04/01/new-microsoft-google-amazon-cloud-battle-over-world-without-code.html
https://www.cnbc.com/2020/04/01/new-microsoft-google-amazon-cloud-battle-over-world-without-code.html
https://www.cnbc.com/2020/04/01/new-microsoft-google-amazon-cloud-battle-over-world-without-code.html
https://www.cnbc.com/2020/04/01/new-microsoft-google-amazon-cloud-battle-over-world-without-code.html
https://www.cnbc.com/2020/04/01/new-microsoft-google-amazon-cloud-battle-over-world-without-code.html
https://www.cnbc.com/2020/04/01/new-microsoft-google-amazon-cloud-battle-over-world-without-code.html
https://www.cnbc.com/2020/04/01/new-microsoft-google-amazon-cloud-battle-over-world-without-code.html
https://www.cnbc.com/2020/04/01/new-microsoft-google-amazon-cloud-battle-over-world-without-code.html
https://www.cnbc.com/2020/04/01/new-microsoft-google-amazon-cloud-battle-over-world-without-code.html
https://www.cnbc.com/2020/04/01/new-microsoft-google-amazon-cloud-battle-over-world-without-code.html
https://www.cnbc.com/2020/04/01/new-microsoft-google-amazon-cloud-battle-over-world-without-code.html
https://mikhail.io/serverless/coldstarts/big3/
https://mikhail.io/serverless/coldstarts/big3/
https://mikhail.io/serverless/coldstarts/big3/
https://mikhail.io/serverless/coldstarts/big3/
https://mikhail.io/serverless/coldstarts/big3/
https://mikhail.io/serverless/coldstarts/big3/

24 S. Agarwal et al.

30. Silva P, Fireman D, Pereira TE (2020) Prebaking functions to warm the serverless cold start.
In: Proceedings of the 21st international middleware conference, pp 1–13

31. Solaiman K, Adnan MA (2020) Wlec: a not so cold architecture to mitigate cold start prob-
lem in serverless computing. In: Proceedings of the IEEE international conference on cloud
engineering (IC2E). IEEE, pp 144–153

32. Sutton RS (1998) Reinforcement learning: past, present and future. In: Asia-Pacific conference
on simulated evolution and learning. Springer, pp 195–197

33. Vahidinia P, Farahani B, Aliee FS (2020) Cold start in serverless computing: current trends and
mitigation strategies. In: Proceedings of the international conference on omni-layer intelligent
systems (COINS). IEEE, pp 1–7

34. Vahidinia P, Farahani B, Aliee FS (2022) Mitigating cold start problem in serverless computing:
a reinforcement learning approach. Proc IEEE Internet of Things J

35. Wang L, Li M, Zhang Y, Ristenpart T, Swift M (2018) Peeking behind the curtains of serverless
platforms. In: Proceedings of the USENIX annual technical conference (USENIX ATC 18),
pp 133–146

36. Xu Z, Zhang H, Geng X, Wu Q, Ma H (2019) Adaptive function launching acceleration in
serverless computing platforms. In: Proceedings of the IEEE 25th international conference on
parallel and distributed systems (ICPADS). IEEE, pp 9–16

37. Zychlinski S (2019) Qrash course: reinforcement learning 101 deep q networks
in 10 minutes. https://towardsdatascience.com/qrash-course-deep-q-networks-from-the-
ground-up-1bbda41d3677. (10 Jan 2019)

https://towardsdatascience.com/qrash-course-deep-q-networks-from-the-ground-up-1bbda41d3677
https://towardsdatascience.com/qrash-course-deep-q-networks-from-the-ground-up-1bbda41d3677
https://towardsdatascience.com/qrash-course-deep-q-networks-from-the-ground-up-1bbda41d3677
https://towardsdatascience.com/qrash-course-deep-q-networks-from-the-ground-up-1bbda41d3677
https://towardsdatascience.com/qrash-course-deep-q-networks-from-the-ground-up-1bbda41d3677
https://towardsdatascience.com/qrash-course-deep-q-networks-from-the-ground-up-1bbda41d3677
https://towardsdatascience.com/qrash-course-deep-q-networks-from-the-ground-up-1bbda41d3677
https://towardsdatascience.com/qrash-course-deep-q-networks-from-the-ground-up-1bbda41d3677
https://towardsdatascience.com/qrash-course-deep-q-networks-from-the-ground-up-1bbda41d3677
https://towardsdatascience.com/qrash-course-deep-q-networks-from-the-ground-up-1bbda41d3677
https://towardsdatascience.com/qrash-course-deep-q-networks-from-the-ground-up-1bbda41d3677
https://towardsdatascience.com/qrash-course-deep-q-networks-from-the-ground-up-1bbda41d3677
https://towardsdatascience.com/qrash-course-deep-q-networks-from-the-ground-up-1bbda41d3677

	 On-Demand Cold Start Frequency Reduction with Off-Policy Reinforcement Learning in Serverless Computing
	1 Introduction
	2 Related Work
	2.1 Serverless Computing or Function-as-a-Service
	2.2 Function Cold Start and Mitigation

	3 System Model and Problem Formulation
	3.1 Problem Formulation

	4 Q-Learning for Cold Start Reduction
	5 Performance Evaluation
	5.1 System Setup
	5.2 RL Environment Setup
	5.3 Q-Learning Agent Evaluation

	6 Discussion
	7 Future Research Directions
	8 Summary and Conclusions
	References

