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Abstract Function-as-a-Service (FaaS) is a cloud computing paradigm offering an 
event-driven execution model to applications. It features ‘serverless’ attributes by 
eliminating resource management responsibilities from developers, and offers trans-
parent and on-demand scalability of applications. To provide seamless on-demand 
scalability, new function instances are prepared to serve the incoming workload in the 
absence or unavailability of function instances. However, FaaS platforms are known 
to suffer from cold starts, where this function provisioning process introduces a non-
negligible delay in function response and reduces the end-user experience. There-
fore, the presented work focuses on reducing the frequent, on-demand cold starts on 
the platform by using Reinforcement Learning (RL). The proposed approach uses 
model-free Q-learning that consider function metrics such as CPU utilisation, exist-
ing function instances and response failure rate, to proactively initialize functions, 
in advance, based on the expected demand. The proposed solution is implemented 
on Kubeless and evaluated using an open-source function invocation trace applied 
to a matrix multiplication function. The evaluation results demonstrate a favourable 
performance of the RL-based agent when compared to Kubeless’ default policy and 
a function keep-alive policy by improving throughput by up to 8.81% and reducing 
computation load and resource wastage by up to 55% and 37%, respectively, that is 
a direct outcome of reduced cold starts. 
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1 Introduction 

In cloud computing, a serverless deployment model removes the burden of managing 
and provisioning resources from the developers, allowing them to focus solely on 
the application development process. The term serverless, interchangeably used with 
Function-as-a-Service (FaaS), does not imply an absence of servers, but instead, 
accentuates delegating the responsibility of complex resource management tasks to 
cloud service providers (CSP) [ 13, 16]. The FaaS paradigm puts forward an event-
driven, serverless computing model with fine-grained pay-per-use pricing where 
resources are billed based on their actual service time. Functions (i.e. a fragment of 
code containing business logic) are designed to scale on demand; they are stateless, 
short-lived and run on lightweight containers or virtual machines (VMs) in response 
to a triggering event. Such an abstraction increases agility in application development, 
offering lower administrative and ownership costs. The FaaS model has attracted a 
wide range of applications such as IoT services, REST APIs, stream processing and 
prediction services, which have strict availability and quality of service requirements 
in terms of response time. Conceptually, the FaaS model is designed to spin a new 
function instance for each demand request and shut down the instance after service 
[ 13]. However, in practice, commercial FaaS offerings like AWS Lambda, Azure 
Functions and Google Cloud Function may choose to re-use a function instance 
or keep the instance running for a limited time to serve subsequent requests [ 33]. 
Some open source serverless frameworks like Kubeless [ 1] and Knative, have similar 
implementations to re-use an instance of a function to serve subsequent requests. 

An increase in workload demand leads to an instantiation process involving the 
creation of new function containers and the initialisation of the function’s envi-
ronment within those containers, after which incoming requests are served. Such a 
process usually requires downloading the client code, setting up code dependencies 
and the runtime environment, setting up container networking, and finally executing 
the code to handle the incoming request. Hence, instantiating a function’s container 
introduces a non-negligible time latency, known as cold start, and gives rise to a 
challenge for serverless platforms [ 10, 15, 27, 36]. Some application-specific fac-
tors such as programming language, runtime environment and code deployment size 
as well as function requirements like CPU and memory, affect the cold start of a func-
tion [ 20, 22, 27, 31]. To automate the process of creating new function instances 
and reusing existing ones, serverless frameworks usually rely on resource-based 
(CPU or memory) horizontal scaling, known as horizontal pod auto-scaling (HPA) 
in Kubernetes-based frameworks like Kubeless, to respond to incoming requests. 
Resource-based scaling policies implement a reactive approach and instantiate new 
functions only when resource usage rises above a pre-defined threshold, thus leading 
to cold start latencies and an increase in the number of unsuccessful requests. 

Threshold-based scaling decisions fail to consider factors like varying application 
load and platform throughput and hence, pose an opportunity to explore dynamic 
techniques that analyse these factors to address cold starts. This work presents 
a model-free Q-learning agent to exploit resource utilisation, available function
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instances and platform response failure rate to reduce the number of cold starts for 
CPU-intensive serverless functions. We define a reward function for the RL agent to 
dynamically establish the required number of function instances for a given work-
load demand based on expected average CPU utilisation and response failure rate. 
The RL-based agent interacts with the serverless environment by performing scal-
ing actions and learns through trial and error during multiple iterations. The agent 
receives delayed feedback, either positive or negative, based upon the observed state, 
and consequently learns the appropriate number of function instances to fit the work-
load demand. This strategy uses no prior knowledge about the environment, demand 
pattern or workload, and dynamically adjusts to the changes for preparing required 
functions in advance to reduce cold starts. The proposed work scales the number of 
function instances by proactively estimating the number of functions that are needed 
to serve incoming workload to reduce the frequent cold starts. It utilises a practical 
workload of matrix multiplication involved in an image processing task, serving as a 
sample real-world function request pattern [ 28], and formally presents the cold start 
as an optimisation problem. Also, we structure the Q-learning components around 
the function metrics such as average CPU utilisation and response failure rate and 
evaluate our approach against the default resource-based policy and commercially 
accepted function keep-alive technique. 

In summary, the key contributions of our work are 

1. We analyse function resource metrics such as CPU utilisation, available instances 
and the proportion of unsuccessful responses to propose a Q-learning model 
that dynamically analyses the application request pattern and improves function 
throughput by reducing frequent cold starts on the platform. 

2. We present a brief overview of explored solutions to address function cold starts 
and highlight the differences between contrasting approaches to the proposed 
agent. 

3. We perform our experiments on a real-world system setup and evaluate the pro-
posed RL-based agent against the default resource-based policy and a baseline 
keep-alive technique. 

The rest of the paper is organised as follows. Section 2 highlights related research 
studies. In Sect. 3, we present the system model and formulate the problem statement. 
Section 4 outlines the proposed agentâŁ™s workflow and describes the implemen-
tation hypothesis and assumptions. In Sect. 5, we evaluate our technique with the 
baseline approach and highlight training results and discuss about performance in 
Sect. 6. Section 7 highlights future research direction and Sect. 8 summarises and 
concludes the paper.



4 S. Agarwal et al.

2 Related Work 

In this section, we briefly discuss about the Function-as-a-Service paradigm in server-
less computing and elaborate on the current function cold start mitigation techniques 
and approaches. 

2.1 Serverless Computing or Function-as-a-Service 

Serverless computing offers a cloud service model wherein the server management 
or resource management responsibility lies with the CSP. In [ 13], the authors dis-
cussed the potential of this new, less complex computing model introduced by Ama-
zon in 2014. They explain a function-based, serverless commercial offering of AWS 
Lambda, i.e. the Function-as-a-Service platform. They highlighted three primary dif-
ferences between traditional cloud computing and serverless computing as follows: 
decoupled computation and storage, code execution without resource management, 
and paying in proportion to the resources used. The research posits that the serverless 
or FaaS model promotes business growth, making the use of the cloud easier. 

Baldini et al. [ 8] introduced the emerging paradigm of FaaS as an application 
development architecture that allows the execution of a piece of code in the cloud 
without control over underlying resources. They identified containers and the emer-
gence of microservices architecture as the promoter of FaaS model in serverless. 
They used FaaS and serverless interchangeably and defines it as a ‘stripped down’ 
programming model that executes stateless functions as its deployment unit. 

Since the inception of serverless computing, there have been many commer-
cial and open-source offerings such as AWS Lambda, Microsoft Azure Functions, 
Google Cloud Functions, Fission and OpenWhisk. These platforms represent FaaS 
as an emerging technology but Hellerstein et al. [ 12] put together gaps that furnish 
serverless as a bad fit for cloud innovations. The authors criticized the current devel-
opments of cloud computing and state that the potential of cloud resources is yet to 
be harnessed. On the contrary, the work in [ 27] argued that serverless offerings are 
economical and affordable as they remove the responsibility of resource manage-
ment and complexity of deployments from consumers. It presented the opportunities 
offered by multiple FaaS offerings and gives an overview of other existing challenges 
and indicates potential approaches for future work. 

A Microsoft work [ 24] estimated that there will be near 500 million new applica-
tions in the subsequent 5 years, and it would be difficult for the current development 
models to support such large expansions. Another recent study by Datadog [ 2], pub-
lishes that over 70% organisations using AWS cloud services, 50% organisations 
using Microsoft Azure services and Google Cloud platform have adopted serverless 
computing into their architectures. FaaS is designed to increase development agility, 
reduce the cost of ownership and decrease overheads related to servers and other 
cloud resources. The term ’serverless’ has been in the industry since the introduction
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of Backend-as-a-Service (BaaS). Despite the serverless benefits, FaaS experiences 
two major challenges, which are categorized as (i) system-level and (ii) program-
ming and DevOps challenges [ 8, 13, 24]. The former identifies the cost of services, 
security, resource limits and cold start while scaling, and the latter focuses on tools 
and IDEs, deployment, statelessness and code granularity in the serverless model. 

2.2 Function Cold Start and Mitigation 

Researchers in [ 33] described function cold start as the time taken to execute a 
function. This process involves assigning a container to a function, accessing the 
code package and copying the function image, loading the image into memory, 
unpacking it and executing the function handler. It broadly classified the approaches 
to deal with function cold start in, environment optimisation and pinging. The former 
approach acts either by reducing container preparation time or decreasing the delay 
in loading function libraries, while the latter technique continuously monitors the 
functions and periodically pings them to keep the instances warm or running. 

An adaptive container warm-up technique to reduce the cold start latency and a 
container pool strategy to reduce resource wastage is introduced in [36]. The proposed 
solution leverages a Long-Short Term Memory (LSTM) network to predict function 
invocation times and non-first functions in a chain to keep a warm queue of function 
containers ready. Although both the discussed techniques work in synchronisation, 
the first function in the chain suffered from a cold start. 

The research in [ 15] explained platform-dependent overheads like pod provision-
ing and application implementation-dependent overheads. It presented a pool-based 
pre-warmed container technique, marked with selector ‘app-label’ to deal with the 
function cold start problem. To tackle the incoming demand, a container pool is 
checked first for existing pre-warmed containers, or the platform requests new con-
tainers as per the demand. 

Another study [ 18] exploited the data similarity to reduce the function cold start. 
It criticized the current container deployment technique of pulling new container 
images from the storage bucket and introduced a live container migration over a peer-
to-peer network. Similarly, [ 10] aimed to reduce the number of cold start occurrences 
by utilizing the function composition knowledge. It presented an application-side 
solution based on lightweight middleware. This middleware enable the developers 
to control the frequency of cold start by treating the FaaS platform as a black box. 

Based on the investigation in [ 22], network creation and initialisation were found 
to be the prime contributors to the cold start latency. The study expressed that cold 
starts are caused due to work and wait times involved in various set-up processes like 
initializing networking elements. The study explained the stages of the container 
lifecycle and states that the clean-up stage demands cycles from the underlying 
containerisation daemon, hindering other processes. Therefore, a paused container 
pool manager is proposed to pre-create a network for function containers and attach 
the new function containers to configured IP and network when required.
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Some studies [ 12, 20, 27] have identified significant factors that affect the cold 
start of a function. These include runtime environment, CPU and memory require-
ments, code dependency setting, workload concurrency and container networking 
requirements. Most works [ 14, 17, 21, 29, 35] focus on commercial FaaS platforms 
like AWS Lambda, Azure Functions, Google Cloud Functions and fall short to evalu-
ate open source serverless platforms like OpenLambda, Fission, Kubeless, etc. Very 
few studies [ 23, 25, 31] have successfully performed analysis on an open-source 
serverless platform and provided possible solution by targeting the container level 
fine-grained control of the platform. 

Recent research works [ 5, 9, 26, 34] introduce the paradigm of RL to the FaaS 
platforms in different ways. Schuler et al. [ 26] focuses on request-based provisioning 
of VMs or containers on the Knative platform. The authors demonstrated a correlation 
between latency and throughput with function concurrency levels and thus propose 
a Q-Learning model to determine the optimal concurrency level of a function for a 
single workload. Vahidinia et al. [ 34] proposed a two-layer adaptive approach, an 
RL algorithm to predict the best idle-container window, and an LSTM network to 
predict future invocation times to keep the pre-warmed containers ready. 

The study demonstrated the advantages of the proposed solution on the Open-
Whisk platform using a simple HTTP-based workload and a synthetic demand pat-
tern. Another research [ 9] focused on resource-based scaling configuration (CPU 
utilisation) of OpenFaaS and adjusts the HPA settings using an RL-based agent. 
They assumed a serverless-edge application scenario and a synthetic demand pattern 
for the experimentation and present their preliminary findings based on latency as 
SLA. 

Agarwal et al. [ 5] introduced the idea of Q-learning to ascertain the appropriate 
amount of resources to reduce frequent cold starts. The authors shared the preliminary 
training results with an attempt to show the applicability of reinforcement learning 
to the serverless environment. They utilised the platform exposed resource metrics 
to experiment with a synthetic workload trace, i.e. Fibonacci series calculation, to 
simulate a compute-intensive application and predict the required resources. 

Our proposed work introduces a Q-Learning strategy to reduce frequent cold 
starts in the FaaS environment. Contrasting existing solutions, we apply the model-
free Q-Learning to determine required number of function instances for the work-
load demand that eventually reduces number of on-demand cold starts. Further-
more, the existing solutions take advantage of either continuous pinging, pool-based 
approaches, container migration and network building or exploit platform-specific 
implementations like provisioned concurrency while failing to experiment with CPU-
intensive real-world application workloads. Similar to [ 5], our work utilises avail-
able resource-based metrics and response failure rate to accomplish the learning, but 
improves over the discussed approach. Contrasting to their model, we formulate the 
problem of cold starts as an optimisation approach to proactively spawn the required 
function instances and minimize frequent, on-demand cold starts. 

As part of their Q-learning model, the study used fixed-value constants in the 
reward modelling and we address this issue by carefully analysing the problem and 
curate it as a threshold-based reward system. Additionally, we experiment with matrix
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multiplication function, that can be used as part of image processing pipeline, to train 
and evaluate our agent and utilise the open-sourced function invocation trace [ 28] by  
Azure. Further we describe our design decisions and utilise constants based upon the 
trial-error analyses. The successful learning of the agent resulted in the preparation of 
near to optimal function instances in a timeframe to reduce the on-demand function 
creation or cold starts and improve the platform’s throughput. A summary of related 
works is presented in Table 1. 

3 System Model and Problem Formulation 

FaaS is an event-driven cloud service model that allows stateless function deploy-
ment. It delivers high scalability and scale-to-zero feature being economical to infre-
quent demand patterns. New functions . ni , where .1 ≤ ni ≤ N and .N is the maxi-
mum scale, are instantiated on-demand to serve the incoming load (scale up) and 
removed (scale down) when not in use after a certain time span or below a configured, 
resource-based threshold metric value for every. i iteration window. The preparation 
time of function containers, i.e. cold start. Ct , adds to the execution time of a request. 
These frequent on-demand cold starts result in an increased computation pressure on 
existing resources, neglecting expected average CPU utilisation (. φo), and expected 
request failure rate (. τo). Therefore, an intelligent, learning-based solution is proposed 
to address them. 

In this study, we consider Kubeless, an open-source Kubernetes-native server-
less platform that leverages Kubernetes primitives to provide serverless abstraction. 
It wraps function code inside a docker container with pre-defined resource require-
ments, i.e..RR f = (cpu f ,mem f , tout f ) and schedules them on worker nodes. Sim-
ilar to commercial FaaS providers, Kubeless has an idle-container window of 5 min 
to re-use functions and scales down to a minimum of one function if the collected 
metrics (default 15 s window) are below the set threshold. We take into account 
the general illustration of FaaS platform and consider a stochastic incoming request 
pattern .D = {d1, d2, . . . , di } with .di requests in .i th iteration window. We analyse 
the request pattern for a timeframe .T divided in . i iteration windows of duration . ti . 
The system model of the examined scenario is depicted in Fig. 1. The workflow of 
the potential cold start is explained in Fig. 2. 

3.1 Problem Formulation 

We formulate the function cold start as an optimisation problem aimed at minimizing 
the number of cold starts (Eq. 1) by preparing required instances, beforehand and aid 
the agent in learning a policy to reduce the request failure rate while maintaining 
average CPU utilisation.
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Table 1 Related work summary 

Work Name Platform Solution focus Strategy Application 
type 

Vahidinia et 
al. [ 33] 

– AWS Lambda Cold start 
latency 

Optimising 
environments 
& function 
pinging 

Concurrent & 
sequential 
CPU & I/O 
intensive 

Xu et al. [ 36] AWU & 
ACPS 

Kubernetes Cold start 
latency & 
resource 
wastage 

Invocation 
prediction 
(LSTM) & 
Container 
pool 

Function 
chain model 

Lin and 
Glikson [ 15] 

– Knative Cold start 
frequency 

Container 
pool & pod 
migration 

Single 
function 
model 

Bermbach et 
al. [ 10] 

Naïve, 
Extended & 
Global 
Approach 

AWS Lambda, 
Apache Open 
Whisk 

Cold start 
frequency 

Orchestration 
middleware 

Function 
chain model 

Mohan et al. 
[ 22] 

Pause 
Container 
Pool Manager 

Apache 
OpenWhisk 

Cold start 
latency 

Container 
Pool 

Function 
chain model 

Solaiman and 
Adnan [ 31] 

WLEC OpenLambda Cold start 
latency 

Container 
Pool 

Single 
function 
model 

Mahajan et al. 
[ 18] 

– AWS Cold start 
latency 

Container 
migration & 
content 
similarity 

Single 
function 
model 

Schuler et al. 
[ 26] 

– Knative Cold start 
frequency 

AI-based 
container 
concurrency 

Emulated 
CPU & I/O 
intensive 

Silva et al. 
[ 30] 

Prebaking OpenFaas Cold start 
latency 

CRIU process 
snapshot 

Single 
function 
model 

Vahidinia et 
al. [ 34] 

– OpenWhisk Cold start 
frequency 

RL-based idle 
window & 
LSTM based 
container 
pre-warming 

Single 
function 
model 

Benedetti et 
al. [ 9] 

– OpenFaas Function 
Scaling 

RL & 
SLA-based 
configuration 

Single 
function 
model 

Our work – Kubeless Cold start 
frequency 

AI-based 
function & 
throughput 
metrics 

Single 
function 
model
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Fig. 1 System model 

min 
φ,τ ,di 

(ni ) (1) 

such that 

τdi < τo; φdi < φo (2) 

A cold start happens when there are no function instances available on the platform 
to deal with the incoming request and a new function instance is requested from the 
platform. FaaS services scale horizontally as per resource-based thresholds to be 
agile, usually considering the function’s average CPU utilisation. Therefore, the 
goal of optimisation is to assess the incoming request pattern .di for an application 
task in .i th iteration window and configure a policy to prepare functions beforehand, 
considering actual and expected average CPU utilisation (.φdi&φo) and request failure 
rate (.τdi&τo). Since the preparation time, .Ct remains similar for individual function 
containers, we focus on optimizing the frequency of cold start .ni for an individual 
iteration window. 

With easy to implement and economical service model, enterprises are accom-
modating critical tasks like user verification, media processing, parallel scientific
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Fig. 2 Function warm start and cold start workflow 

computations, anomaly detection and event-driven video streaming into the server-
less paradigm. To assess the necessity of a dynamic solution, we consider matrix 
multiplication as workload, which is an important task in image processing work-
flow. 

Reinforcement Learning Model In a model-free Q-Learning process, the agent 
learns by exploring the environment and exploiting the acquired information. The 
core components of the environment are state, action, reward and agent. The envi-
ronment state represents the current visibility of the agent and is defined as a Markov 
Decision Process (MDP) [ 7, 32] where future environment state is independent of 
past states, given the present state information. Actions are the possible set of oper-
ations that the agent can perform in a particular state. Additionally, rewards are the 
guiding signals that lead the agent towards the desired goal by performing actions 
and transitioning between environment states. The agent maintains a Q-value table 
to assess the quality of action through obtained reward for the respective state and 
utilise it for future learning. Therefore, we propose a modelling scheme for the RL 
environment that is leveraged by a Q-Learning agent to learn a policy for function 
preparation. 

We model the RL environment’s state as .si = (n̂i ,φdi , τdi ) where .φdi represents 
the average CPU utilisation of the available .n̂i function instances, .τdi represents 
the response failure rate, and . i is the iteration window during a timeframe . T . The
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agent’s task is to prepare the estimated number of function instances in the upcoming 
iteration window either by exploring or exploiting the suitable actions. These actions 
of adding or adjusting the number of function instances, compensate for any expected 
cold starts from the incoming demand and help to improve the throughput of the 
system. Therefore, we define the agent’s action as the number of function instances, 
. ni , to be added or removed from currently available functions .n̂i−1 and represent it 
as a set .ai = .{ni |1 ≤ (n̂i−1 + ai ) ≤ N }. This heuristic helps the agent to control the 
degree of exploration by maintaining the number of functions within the threshold 
. N , that is adapted based on deployed infrastructure capacity. Hence, we map the 
function resources and relevant metrics to RL environment primitives. 

The motive of the RL-based agent is to learn an optimal policy, and we structure 
the rewards over resource-based metrics .φdi , function response failure rate .τdi , and 
expected threshold values .(φo and .τo). It evaluates the quality of action .ai in state 
.si by keeping a value-based table, i.e. Q-table, that captures this information for 
every .(si , ai ) pair. After executing the action, the agent waits for the duration of the 
iteration window and receives a delayed reward. ri , expressed based on the difference 
between the expected and actual utilisation and failure rate values, as shown in Eq. 3. 

ri = 
(φo − φdi ) + (τo − τdi ) 

n̂i 
(3) 

and the Q-table is represented as a matrix (Eq. 4) of dimension .S × A. 

Q(Sn×Am ) = 

⎡ 

⎢⎣ 
s1, a1 . . .  s1, am 
... 

. . . 
... 

sn, a1 . . .  sn, am 

⎤ 

⎥⎦ (4) 

4 Q-Learning for Cold Start Reduction 

In this work, we apply model-free Q-learning algorithm in FaaS paradigm to reduce 
frequent on-demand function cold starts. We select this algorithm due to its sim-
ple and easy implementation, model interpretability, strong theoretical convergence 
guarantees, ability to process the perceived information quickly using the Bellman 
equation and its adaptability to other advanced algorithms like Deep Q-Learning 
(DQN). As discussed in Sect. 3, we model the process of creating required function 
instances as an MDP and map the serverless computing primitives to RL agent’s 
environment, state and actions. We explore and exploit an off-policy RL algorithm 
to reduce the on-demand function cold starts and determine the required function 
instances with the intuition of it being easy, simple to implement, less complex with 
stable convergence in a discrete action space. The proposed approach has two phases: 
an agent training phase and a testing phase. Algorithm 1 demonstrates the agent train-
ing workflow. The environment setup process precedes the agent training, where the 
agent interacts with the environment and obtains information. After initial setup, the
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agent is trained for multiple epochs or timeframes where it assesses the function 
demand .di over individual iteration windows . i and ascertains appropriate function 
instances. During an iteration window. i , the agent observes the environment state. si , 
selects an action.ai according to .ε-greedy policy. This greedy policy helps the agent 
to control its exploration and selects a random action with . ε probability, otherwise 
exploiting the obtained information. This exploration rate is a dynamic value and 
decays with ongoing learning to prioritise the acquired information. 

Algorithm 1 Q-Learning for Cold Start Reduction 
Require: Initialise Environment variables 
Ensure: Initialise Q-Table, decay  Rate, ε, epoch

ε = 0.01 + 0.99e(−decay  Rate×epoch) 

Repeat for each T rainingEpoch 
epoch ← epoch + 1 
while telapsed < T do 

si ← current State( n̂i , φdi , τdi , i ) 
ai ← choose using ε-greedy policy from Q-Table 
Scale & wait for i th iteration window 
ri ← calculateReward(φdi , τdi ) 
si+1 ← get N ewState( n̂i+1, φdi+1 , τdi+1 , i + 1) 
Q(si , ai ) ← (1 − α)Q(si , ai + α(ri + γ maxa Q(si+1, ai )) 
telapsed = telapsed + ti 

end while 

After performing the selected action, the agent waits for duration. ti of an iteration 
window to obtain the delayed reward. ri , calculated using the relevant resource-based 
metrics.φdi and function failure rate.τdi . This reward helps the agent in action quality 
assessment, and it combines the acquired knowledge over previous iterations using 
the Bellman Equation (Eq. 5). It is the core component in learning as it aids Q-value 
or Q-table updates and improves the agent’s value-based decision-making capability. 
The equation uses two hyper-parameters learning rate, . α and discount factor, . γ. The  
learning rate signifies the speed of learning and accumulating new information, and 
the discount factor balances the importance of immediate and future rewards. 

Q(si , ai ) = (1 − α)Q(si , ai ) + α(ri + γ max 
a 

Q(si+1, ai )) (5) 

The agent then evaluates and adjusts the Q-value in Q-Table based upon the 
delayed reward for the corresponding (.si , ai ) pair. The agent continues to analyse the 
demand over multiple iteration windows, selecting and performing actions, evaluat-
ing delayed rewards, assessing the quality of action and accumulating the information 
in Q-table, and repeating this process over multiple epochs for learning. Once the 
agent is trained for sufficient epochs and the exploration rate has decayed signifi-
cantly, we can exploit obtained knowledge in the testing phase. 

In the testing phase, the agent is evaluated using a demand pattern for the matrix 
multiplication function and the Q-table values guide the agent in taking informed
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actions. The agent determines the current environment state and obtains the best 
possible action, i.e. action with the highest Q-value for the corresponding state, and 
adjusts the required number of functions based on its understanding of the demand. 
We hypothesise that there exists a relationship between throughput and function 
availability to serve incoming requests. Therefore, we evaluate the agent’s perfor-
mance by considering metrics such as system throughput, function resource utilisa-
tion and available function instances. We further hypothesise that the RL-based agent 
learns to prepare and adjust required number of functions beforehand and improve 
the throughput while keeping the function’s resource utilisation below the expected 
threshold. 

5 Performance Evaluation 

In this section, we provide the experimental setup and parameters, and perform an 
analysis of our agent compared to other complementary solutions. 

5.1 System Setup 

We set up our experimental test-bed as discussed in Sect. 3, using NeCTAR (Aus-
tralian National Research Cloud Infrastructure) services on the Melbourne Research 
Cloud. We configure Kubernetes (v1.18.6) and Kubeless (v1.0.6) on a service clus-
ter of 4 nodes, each with Ubuntu (18.04 LTS) OS image, 4 vCPUs, 16 GB RAM 
and 30 GB of disk storage to perform the relevant experiments. Typical serverless 
applications expect high scalability for their changing demands and can be compute-
intensive, demanding a considerable amount of resources such as CPU, memory, or 
time to execute. These factors add to frequent cold starts on the platform by keeping 
the available functions or resources busy while requesting new functions for the sub-
sequent workload demand. We use Python-based matrix multiplication (1024 pixels 
x 1024 pixels) to mimic the image processing task as our latency-critical application 
to deploy serverless functions. 

The experimental setup mimics real-time application demand experienced in com-
mercial FaaS platforms [ 11, 28]. We consider a single function invocation trace from 
the open-source Azure function data [ 28] and downsize it according to our resource 
capacity. We deploy the Apache JMeter load testing tool to generate the HTTP-based 
requests and randomize its request ramp-up period to guarantee the changing demand 
pattern for our workload. Also, we collect the relevant resource-based metrics and 
throughput information via Kubernetes APIs. Table 2 summarises the parameters 
used for system set-up.
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Table 2 System setup parameter values 

Parameter name Value 

Kubernetes version v1.18.6 

Kubeless version v1.0.6 

Nodes 4 

OS Ubuntu 18.04 LTS 

vCPU 4 

RAM 16 GB 

Workload Matrix Multiplication (.m × m) 

m 1024 

5.2 RL Environment Setup 

To initialise the proposed RL-based environment, we first analyse and set up the func-
tion requirements according to deployed resource limits. After preliminary analysis, 
we configure the function requirements as 1 vCPU, 128 MB memory and 60 s func-
tion timeout, where timeout represents the maximum execution period for a function 
until failure. To experiment we assume a timeframe of 10 min to analyse the demand 
pattern of 100 requests during 5 iteration windows of 2 min. Based on the resource 
analysis and underlying Kubernetes assets we assume the function limit .N = 7. 
These constraints allow us to put a considerable load or pressure on the different 
techniques discussed and effectively evaluate them against each other. 

As discussed in Sect. 3, the RL-environment components depend upon resource 
metrics (average CPU utilisation), response failure rate, number of available func-
tions and expected threshold values, summarized in Table 3. Since the proposed 
agent maintains a Q-table, these considerations help to minimise the risk of state-
space explosion related to Q-Learning. The actions signify the addition or removal 
of functions based upon the function limit and the reward is modelled around the 
expected threshold values. We configure the Bellman Equation hyper-parameters: 
learning rate and discount factor as 0.9 and 0.99, respectively, based on the results 
of hyper-parameter tuning in [ 5]. The agent is structured to explore the environment 
and exploit the acquired knowledge. We use .ε-greedy action selection policy to ran-
domly select an action with initial .ε = 1 probability and exploit this information 
with a decay rate of 0.0025. These RL system parameter values were chosen after 
careful consideration of discussed workload and invocation pattern, according to the 
underlying resource capacity, and to showcase the applicability of RL-based agent 
in a serverless environment.
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Table 3 RL-Environment parameter values 

Parameter Value 

.cpu f ,mem f , tout f 1, 128M, 60 s 

.N 7 

.T 10 min 

.i 5 

.ti 2 min  

.φo 75% 

.τo 20% 

.α 0.9 

.γ 0.99 

.ε 1 

.decayRate 0.0025 

5.3 Q-Learning Agent Evaluation 

We train the RL-based agent for a timeframe of 10 min over 500 epochs to analyse 
an application demand and learn the ideal number of functions to reduce frequent 
cold starts. The agent is structured according to the RL-based environment design 
explained in Sect. 3 and around the implementation constraints. The quality of the 
RL-based agent is evaluated during a 2 h period to reduce the effect of any bias and 
performance bottlenecks. 

We assess the effectiveness of our approach against the default scaling policy and 
commercially used function keep-alive policy on the serverless platform. Kubeless 
leverages the default resource-based scaling (HPA) implemented as a control loop 
that checks for the specific target metrics to adjust the function replicas. HPA has 
a default query period of 15 s to check and control the deployment based on the 
target metrics like average CPU utilisation. Therefore, the HPA controller fetches the 
specific metrics from the underlying API and calculates the average metric values 
for the available function instances. The controller adjusts the desired number of 
instances based on threshold violation but is unaware of the demand and only scales 
after a 15 s metric collection window. The expected threshold for function average 
CPU utilisation is set to be 75% with maximum scaling up to 7 instances. Therefore, 
whenever the average CPU utilisation of the function violates the threshold, new 
function instances are provisioned in real-time, representing a potential cold start in 
the system. 

Also, HPA has a 5 min down-scaling window and during that period resources are 
bound to the platform irrespective of incoming demand which represents potential 
resource wastage. Therefore, it is worthwhile to analyse the performance of the RL-
based agent against the function queuing or keep-alive approach that keeps enough 
resources bound to itself for an idle-container window.
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Fig. 3 Training iteration 1 

Fig. 4 Training iteration 2 

Fig. 5 Training iteration 3 

Figures 3, 4, 5, 6 and 7 illustrate the learning curve of the agent over multiple 
epochs and we observe that the agent continuously attempts to meet the expected 
thresholds. This highlights the agent’s capability to obtain positive rewards and move 
towards the desired configuration. We compare the RL-based agent with HPA and 
successfully demonstrate the agent’s ability to improve the function throughput, i.e. 
reduce the failure rate by up to 8.81%, Fig. 8. The RL-based agent further targets to 
maintain the expected CPU utilisation thresholds, Fig. 9, by reducing CPU stress up 
to 55% while determining the required function instances in Fig. 10. For example, 
in Fig. 10 during iteration windows 1 and 2, the HPA scales functions based on CPU 
utilisation threshold, unaware of the actual requirement for upcoming iteration and
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Fig. 6 Training iteration 4 

Fig. 7 Training iteration 5 

Fig. 8 RL agent v/s HPA: 
failure rate 

results in resource wastage. Similarly, Fig. 10 illustrates the resource wastage by 
HPA during iterations 3 and 4. 

Similar results are observed against function queuing or keep-alive policy, where 
we evaluate two queues with .N = 4 and .N = 7. The RL-based agent scales and 
prepares the function according to demand needs while the queue results in resource 
wastage of up to 37%, as shown in Fig. 11. Although the queuing policy manages to 
reduce the request failure rate to zero, it is due to extra resources available, as depicted 
in Fig. 12, but can not be precisely captured by HPA metrics and shows over CPU 
utilisation of up to 50% in Fig. 13. The proposed agent analysed the demand pattern 
by consuming sufficient function resources, preparing the ideal number of functions
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Fig. 9 RL agent v/s HPA: 
CPU utilisation 

Fig. 10 HPA: function 
provision 

Fig. 11 Function queue: 
function provision 

Fig. 12 RL agent v/s 
function queue: failure rate
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Fig. 13 RL agent v/s 
function queue: CPU 
utilisation 

and trying to keep the desired CPU utilisation under control. Hence, the learning and 
testing analysis support our hypothesis that reducing on-demand cold starts can be 
directly linked to the throughput improvement. 

6 Discussion 

Function cold start is an inherent shortcoming of the serverless execution model. 
Thus, we have proposed an RL-based technique to investigate the demand pattern 
of the application and attempt to reduce the frequency of function cold starts. The 
proposed agent performs better than the baseline approaches under a controlled 
experimental environment. But there are certain points to recollect associated with 
the real-time appropriateness of the proposed solution. 

We leverage the RL environment modelling, specifically Q-Learning constraints 
[ 32, 37], and in general, these algorithms are expensive in terms of data and time. 
The agent interacts with the modelled environment to acquire relevant information 
over multiple epochs that signify a higher degree of exploration. Hence, as evidenced 
in the proposed work, for an RL-based agent to outperform a baseline technique, a 
training period of 500 epochs is exploited for satisfactorily analysing the workload 
demand for a timeframe (10 min). Therefore, RL-based approaches are considerably 
expensive in practical applications with stringent optimisation requirements. 

A classical Q-Learning approach is applied to discrete environment variables [32]. 
To constrain the serverless environment within the requirements of the Q-Learning 
algorithm, we consider the discrete variables to model cold starts. The size of the Q-
table is large and is a function of state space and action space. But with the expansion 
of state space or the action space, the size of the Q-table grows exponentially [ 32, 37]. 
Therefore, Q-Learning experiences state explosion, making it infeasible to perform 
updates on Q-values and degraded space and time complexity. 

The proposed agent analyses individual application demand, so the learning 
canâŁ™t be generalised for other demand patterns and requires respective train-
ing to be commissioned. Furthermore, the agent is trained for 500 iterations and 
evaluated, but the chance of exploring every state is bleak with limited iterations
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of training. Therefore, the agent expects to be guided by certain approximations to 
avoid acting randomly. The agent utilises resource-based metrics that affect the cold 
starts, so the availability of relevant tools and techniques to collect instantaneous 
metrics is essential. Also, the respective platform implementation of a serverless 
environment, such as metrics collection frequency, function concurrency policy and 
request queuing, can extend support to the analyses. 

The difference between the approaches can be attributed to the following charac-
teristics of the proposed RL-based agent-

1. The process of elimination of invalid states during the RL environment setup 
and lazy loading of Python, helps the agent to productively use the acquired 
information about the environment. 

2. Although the RL-based agent outperforms HPA and function queue policy, there 
is a lack of function container concurrency policy. The CPU-intensive function 
workload is configured with an execution time of 60 s and thus affected by the 
concurrency control of the instance. 

3. The composition of state space and reward function incorporates the effect of 
failures during the training, and therefore, the agent tries to compensate for the 
failures in consequent steps of learning by exploiting the acquired knowledge. 

On the account of the performance evaluation results, we can adequately conclude 
that the proposed agent successfully outperforms competing policies for the given 
workload and experiment settings. We strengthen this claim by analysing the training 
and testing outcomes of the RL-based agent, focused on examining the workload 
pattern to reduce request failure which is a direct consequence of appropriate function 
instances representing reduced function cold starts. 

7 Future Research Directions 

As part of the future research in broader serverless computing domain, various 
aspects of resource management needs to be addressed. These could be broadly cat-
egorised under workload estimation and characterisation, resource scheduling, and 
resource scaling. Following the increased adoption of FaaS, challenges such as func-
tion cold start delay, co-located function interference, lack of QoS guarantees, user 
pricing model, runtime limitations and support for specialised hardware, resource 
efficiency and workload management emerge as concerning factors for the success 
of serverless computing [ 19]. With the changing dynamics of application workload, 
its resource demand and introduction of AI/ML models in real-time systems, there 
is need for adaptive and proactive methods to tackle inefficient resource manage-
ment in serverless computing. Additionally, there is a need for autonomous resource 
management system to completely offload the function scheduling, resource alloca-
tion and resource scaling tasks to offer a true serverless experience for developers 
and utilise the provider resources to the maximum. However, a guarantee of QoS 
objectives is still warranted in terms of service latency, throughput, fault tolerance
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and cost incurred by the user. Other aspects of FaaS that require meticulous thinking 
with adoption in edge and fog computing environments are data privacy and data 
locality concerns that further reduces the flexibility of FaaS application model. 

Specifically, to address the issue of function cold start delays, an impact of other 
important aspects such as function memory allocation, language runtime, deploy-
ment size, programming convention and function characteristics in conjunction with 
different techniques can be explored as discussed below: 

• In the industrial works like [ 3, 4], an insight is provided for the serverless AWS 
Lambda functions and how an improvement can be made to its cold start latencies 
and operating costs with careful function initialisation phase consideration. 

• An in-depth analysis of function fusion or monolithic function development on 
resource requirements and cold start of function workflows can also be explored 
with respect to the performance and run-time costs of the function. 

• Furthermore, a trade-off analysis of techniques like function pre-baking, provi-
sioned concurrency and reserved concurrency can also be valuable in performance 
optimisation of serverless function and associated application workflows. 

• In addition to CPU-intensive functions, impact of cold start on different classes of 
functions like memory-intensive, I/O-intensive and network-intensive functions, 
utilised for application domains such as AI/ML model training and inference, and 
media processing, can also be explored. 

• Consequently, a cost and performance analysis of RL-based agents can also be 
made for the function cold start reduction in these application cases. Similar to Q-
Learning, the application of other policy-based techniques such as SARSA, which 
is known to converge faster than Q-Learning, can also be experimented with in the 
domain of the cold start problem. As an adaptation of Q-Learning, the proposed 
solution includes discrete values over continuous values for state representation. In 
this context, to avoid the problem of state space explosion, function approximation 
techniques such as DQNs, Proximal Policy Optimisation (PPO) and other complex 
deep learning methods such as Soft-Actor-Critic (SAC) or Recurrent models [ 6] 
can also be leveraged to estimate the information about optimal actions. 

• To further explore the evolving technological space, an integration of Generative 
Adversarial Networks for synthetic training data generation or Large-Language-
Models can be explored for pro-active cold start reduction using the historical 
data. 

8 Summary and Conclusions 

FaaS model executes the piece of code inside a container, known as a function and 
prepares new function containers on demand. New function containers undergo an 
initialisation process that puts together all the essential components before executing 
the function handler. This bootstrapping process consumes time in the order of a few
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seconds, known as function cold start and introduces a delay in the response of the 
function container. 

This work visits the problem of function cold start by addressing frequent cold 
starts and analysing the application demand through an RL technique. We leverage 
the services of Apache JMeter to produce varying incoming request patterns and a 
CPU-intensive function workload to complement the invocation pattern and observe 
relevant cold starts. The system is set up using the Kubeless framework and the RL 
environment is modelled for the agent to examine the necessary metrics to make 
guided decisions in provisioning an appropriate number of function instances. 

We present an evidence of leveraging Q-Learning to address cold starts on FaaS 
platforms and verify it with improved platform throughput, reduced resource wastage 
while maintaining expected thresholds, during the iterations. We evaluate the perfor-
mance of our proposed agent against the HPA policy and function queue policy. We 
successfully observe the RL-based agent outperforming comparing techniques after 
a training of 500 epochs that verifies our hypothesis of strong association between 
success rate and reduced number of cold starts on the platform. After the test anal-
yses, the Q-Learning agent successfully improves throughput by up to 8.81% and 
reduces resource wastage by up to 37% while preparing sufficient functions to reduce 
cold starts. 
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