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Abstract—In many production clouds, with the notable exception of Google, aggregation-basedVMplacement policies are used to

provision datacenter resources energy and performance efficiently. However, if VMswith similar workloads are placed onto the same

machines, theymight suffer from contention, particularly, if they are competing for similar resources. High levels of resource contentionmay

degrade VMs performance, and, therefore, could potentially increase users’ costs and infrastructure’s energy consumption. Furthermore,

segregation-basedmethods result in stranded resources and, therefore, less economics. The recent industrial interest in segregating

workloads opens newdirections for research. In this article, we demonstrate how aggregation and segregation-basedVM placement

policies lead to variabilities in energy efficiency, workload performance, and users’ costs.We, then, propose various approaches to

aggregation-based placement andmigration.We investigate through a number of experiments, usingMicrosoft Azure andGoogle’s

workload traces for more than twelve thousand hosts and amillionVMs, the impact of placement decisions on energy, performance, and

costs. Our extensive simulations and empirical evaluation demonstrate that, for certain workloads, aggregation-based allocation and

consolidation is�9.61%more energy and�20.0%more performance efficient than segregation-based policies. Moreover, various

aggregationmetrics, such as runtimes andworkload types, offer variations in energy consumption and performance, therefore, users’ costs.

Index Terms—Clouds, datacenters, VM placement, resource consolidation, migrations, heterogeneity, energy efficiency, performance
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1 INTRODUCTION

ONE of the major challenges in cloud datacenters is to
manage computational resources energy and perfor-

mance efficiently. Energy consumption affects our environ-
ment and account for large energy bills while performance
affects cloud economics. Therefore, cloud service providers
are focusing to design policies for energy, performance
aware computing, encouraged by high operational costs of
installed computer clusters [1]. The goal can be achieved in
two different ways: (i) assigning only appropriate resources;

and (ii) consolidating workload onto fewer machines using
VM migration and switching off idle machines. On one
side, the capability of VM migrations brings several benefits
such as improved manageability, increased utilisation and
energy savings. However, on the other side, it results in
down time that decreases the performance of workloads.
Migrations are expensive and in dynamic cloud environ-
ments, where thousands number of VM requests arrive in
an hour, even they might not be suitable. Therefore, appro-
priate VM placement policies are essential to save energy
and provide customers the expected level of workload
performance [2].

VM placement policies can be categorized as: (a) segrega-
tion; and (b) aggregation based [1]. In segregation based poli-
cies, the providers run user-facing, batch, and production
workloads in separate clusters (hosts). Therefore, if work-
loads demand is either low or even not available, then their
resources still need to be switched on and this may also result
in stranded resources. Large number of hosts in use can
increase the providers’ energy bill and have impact on our
environment. Aggregation based policies run mixed work-
loads on same hosts which may degrade the workload per-
formance, particularly, if they compete for similar resources
(co-located VMs) [3]. Moreover, workload performance also
varies across different CPU architectures – similar workloads
may run quite differently over same CPU model [4]. Subse-
quently, lower workload performance could potentially
increase infrastructure energy consumption and users mone-
tary costs. The former approach is widely used in many pro-
duction clouds, such as Alibaba cluster [5], with the notable
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exception of the Google’s cluster [6]. Perhaps, inspired from
benefits of aggregation-based approaches, Alibaba’s cluster
resources are also now offered to run workloads in mix.
However, a detailed investigation of both methodologies is
still needed in terms of energy efficiency and workload per-
formance. In fact, the providers’ switching efforts motivate
us to investigate which technique is better than the other in
term of energy, performance, and cost efficiency. Further-
more, which characteristics of the workloads should be used
to aggregate them onto similar servers.

In this paper, we investigate how VMs and workloads
would be placed onto physical hosts, in a heterogeneous
cluster, so that the infrastructure energy consumption is
minimised under the performance and users’ cost con-
straints. We propose runtime-aware aggregation-based,
energy, performance, cost (EPC) efficient VM placement
and consolidation policies in order to execute several work-
loads in mix. Since, workloads are co-located, therefore, we
call it CoLocateMe. Using real workload datasets from vir-
tualised clouds, such as Google and Microsoft Azure
clouds, we evaluate the performance of runtime-aware
aggregation and segregation based placement policies, in an
event driven cloud simulator i.e., CloudSim [7]. Our empiri-
cal evaluation suggests that the proposed, runtime-aware
aggregation-based, VM placement and consolidation poli-
cies outperform segregation-based policies. Since, aggrega-
tion favours to colocate VMs having similar characteristics
onto similar hosts, therefore, we call it “CoLocateMe”.
Major contributions of this paper are:

� an aggregation-based, energy, performance and cost
(EPC) aware VM placement policy is proposed;

� a consolidation method is suggested that put similar
workloads onto same resources;

� with respect to workload performance, we model
resource heterogeneities in datacenters; and

� we evaluate the impact of aggregation and segrega-
tion-based VM placement and migration policies on
infrastructure energy efficiency, workload perfor-
mance and users’ costs.

The rest of the paper is organized as follows. In Section 2,
we discuss the VM placement problem. In Section 3, we pro-
pose an aggregation-based allocation and consolidation
technique that places similar workloads on same resources.
We validate the proposed scheme using real workload
traces from Azure clusters in Section 4. We offer an over-
view of the related work in Section 5. Finally, Section 6 con-
cludes the paper and describes future research.

2 PROBLEM DESCRIPTION

The runtime period or execution time of a VM (Rvm) is
dependent on data size to be processed and the quantity of
resources i.e., CPU cores, memory, and bandwidth,
assigned. The active period of a physical machine is propor-
tional to the lengthiest runtime of the VMs running on the
machine. If the duration of most VMs is much shorter than
the runtime of the longest one, it indicates low machine
runtime efficiency. To increase the runtime efficiency of
machines, researchers have proposed techniques like aggre-
gating VMs with similar runtime to a particular cluster or

consolidate VMs by their capacities [8]. The former method
can save more power than the later one through decreasing
machine runtime. However, the impact of the runtime diver-
sity of VMs and VM resource capacities on amount of
machines should be considered when designing energy and
performance efficient resource management policies. Fur-
thermore, performance loss due to resource contention must
be taken into account.

Considering only two hosts, as part of a datacenter, as
shown in Fig. 1; each one can accommodate two VMs. There
are four VMs with different runtime requirements. If the
placement is not runtime aware and consolidation is not
assumed; then, host A will at least run for 10 hours and host
B for 14 hours (right-hand side i.e., VM-1 and VM-2 are co-
located on host A while VM-3 and VM-4 on host B), continu-
ously. However, if runtimes are considered (left-hand side –
VM-2 and VM-4 are co-located on host A while VM-1 and
VM-3 on host B) then after 2 hours, host A can be switched
off to save power; if there are no pending VM requests in
the admission queue. Note that, the runtime of each VM
depends on the application’s workload which is highly
unpredictable. If we can predict it, this does not essentially
means that hosts in Fig. 1 (right) will run for 10 and 14
hours. When VM-2 and VM-4 finish their jobs, we can con-
solidate VM-1 and VM-3 to one host. Similar decisions can
also be taken on VM capacities and instances of similar
types can be placed together. However, various workloads
if co-located or aggregated may not perform up to expected
levels. However, if workloads compete for similar resour-
ces, then performance of the workloads may potentially be
affected [3]. Furthermore, similar workloads may perform
quite differently across same CPU models due to: (i) CPU
models [4]; and (ii) resource contention [3]. These variations
may potentially affect workload runtimes, therefore, users’
service costs; and energy consumption. Subsequently,
energy consumption affects revenue of service providers
(energy bills) and our environment (green house gases).
Therefore, it is essential to account for these costs when
deciding resource placement and consolidation.

The above problem can be formulated as a multi-objec-
tive optimisation problem where objective are: (a) minimise
total energy consumption (E ¼PN

i¼1 Ehosti ); improve or, at
least, maintain workload performance (P ); and minimise
users’ monetary costs (C i.e., VMs provisioning costs). Note
that, P and C are inversely proportional where improving
workload’ P means reducing its R (the sum of all VM run-
times Rvm running the same workload) which subsequently
means reducing C (the sum of all VMs provisioning costs).

Fig. 1. Problem description [aggregation w.r.t runtimes].
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For many request-response cloud workloads such as data-
bases, with the notable exception of batch workloads, this
statement might not be essentially true due to users’ experi-
ences. Furthermore, improving P through provisioning
more resources will itself increase certain costs (e.g., C, E).
For any request-response workloads such as web services,
streaming analytics, getting a response faster does not
reduce the energy cost, and would most likely increase it.
Therefore, our aim is to improve P through running work-
loads on appropriate VMs and hosts (based on historical
information). Moreover, various objectives (E;P;C) can be
combined into a single metric (ERC ¼ E�C

P ) where P is the
inverse of runtime (R), and then solved as a single objective
problem [1], given by

minðERCÞ: (1)

As, energy is measured inWh (watt hours), runtime in hours
and users’ monetary cost in $/hour. Thus, the above metric
captures power to runtime ratio per unit cost [4]. The least
values for ERC will translate to the best achievable perfor-
mance & energy efficiency at the lowest cost. To deal with
the above multi-objective optimisation problem, when one
objective is preferred over another; then, the ERC can be
elaborated as ERC ¼ a:E � b:R� g:C subject to aþ bþ g 2
f0; . . .; 1g (where a, b, and g are the domination values for
energy, performance, and user’s costs, respectively) [9], [10].

3 PROPOSED SOLUTION

Aggregation, based on runtime of VMs might be useful if
workload runtimes are predictable. Albeit, various machine
learning based techniques, such as gradient boosted
trees [11], have been suggested to predict VMs runtimes.
However, due to the unpredictable nature of the cloudwork-
loads, many efforts are needed. In Section 3.1, we explain the
methodologies and approaches to implement resource man-
agement policies. In Section 3.2, we explain the aggregation-
based placement and consolidation policies.

3.1 Implementation Methodologies

Hence, due to the efforts involved in accurately predicting
the runtimes of VMs; we use two different methodologies to
implement the above algorithms: (i) use previous runtimes
of VMs to aggregate them; and (ii) predict VMs runtimes
using the gradient boost tree method [11]. However, there
would be other efficient ways of doing the same, for exam-
ple using workload types, VM sizes, as described later in
Section 4.3.9.

3.1.1 Past Runtimes

From IaaS point of view, workloads and their runtimes can-
not be predicted accurately. Therefore, instead of using
workload actual runtimes, an alternative approach is to use
their past runtimes (the duration for which the workload has
already run). In other words, we assume that workloads
which have run (in past) for similar runtimes may probably
run (in future) for similar durations – this is like a probabilis-
tic approach. The idea is based on our previous works [1],
[12]; that use VMs or containers past runtimes in workload
placement decisions – migrate only relatively long-running

VMs and/or containers since they could recover their migration
costs. We do not use the model here, instead, we use the
methodology of migrating relatively log running VMs. Fur-
thermore, the initial placement (i.e., past runtime is zero) is
achieved through the classic first fit (FF) heuristic algorithm.
Using past runtimes for such decisions avoid complex pre-
diction techniques (e.g., machine learning) that might not be
reasonable in hyper-scale IaaS clouds.

3.1.2 Runtimes Prediction

If we assume that clouds are not opaque; then it is possible to
predict their runtimes using historical data [13], [14]. Using
past runtimesmay not provide accurate estimates – for exam-
ple, workloads which have run for longer durations have
more probability and, therefore, higher tendency toward ter-
minations. Therefore, it is essential to predict runtimes and
use them in resource allocation andmigration decisions. Note
that, predicting a particular workload runtime may need
identifying its type first i.e., CPU, memory, disk intensive.We
assume that each VM requests certain resources (CPU, mem-
ory, storage), holds a priority and is initiated by a particular
user. Moreover, the actual resource usage of each VM is also
monitored. Since, submitting user, resource demand and
actual usage have shown strong relationship to runtimes [11],
[13]; therefore, we also used these features of more than ten
millions tasks (categorised in three different groups w.r.t
scheduling constants), using the Google’s cluster dataset, to
train our prediction model. We used simple (linear regres-
sion) to complex (boosted trees) machine learning algorithms
to estimateworkload runtimes. Moreover, various techniques
offer various levels of accuracy and, therefore, variations in
experimental outcomes. Moreover, accurate predictions
decrease the likelihood of inappropriate migration decisions.
Similarly, predicting the runtime of VMs is also influenced by
the type of workload hosted in the VM. In [15], the authors
describe various approaches to accurate historical data if
workloads differ. Further details onworkload predictions can
be found in [11], [14], [16], that offer reasonable accuracy for
public clouds where workloads fluctuate more than private
ones, significantly.

3.1.3 Migration Durations Prediction

When consolidating short running workloads, it is possible
that the migration efforts are being wasted if the VM termi-
nates during migration or just after its migration process is
finished [1]. However, if preference is given to migrate VMs
that would highly likely run for a long time after migration,
the actual migration time would be a very small fraction of
the VMs total lifetime. Further, the probability of the VM
powering off during the migration time would be equally
minuscule. To decide effective migrations, it is also essential
to estimate the migration durations for VMs running differ-
ent services. In [16], the authors have trained a machine
learning approach to predict migration durations and other
metrics using real workload dataset. Their investigations
suggest that migration durations and performance degrada-
tion are, largely, reliant on the migration approach (such as
pre-copy, post-copy) and workload type. Moreover, there is
a strong linear relationship among the amount of data being
copied and migration durations [17]. In off-line migration,
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the performance loss (downtime) is almost equal to migra-
tion duration. However, in live migration, downtime is dif-
ferent and, usually, smaller than the migration duration [1].
In addition, thememory size of the VM is not always the best
indicator on the performance drop whenmigrating. In many
cases it is the rate of change in the dirty pages [17], [18].

In total migration time, page dirty rate plays an impor-
tant role. To predict migration duration, it is essential that a
representative workload is available to train various predic-
tive models. Further, neither Google dataset [19] nor Micro-
soft Azure dataset [11] contain migration statistics of VMs.
Therefore, it is difficult to estimate migration durations for
tasks relating to these both datasets. Fortunately, an inter-
esting VM migration dataset is presented in [16]. Therefore,
we choose comparable workloads from Google, Microsoft
Azure, and the migration datasets provided in [16]. This
gives us simplified assumptions for comparing workload
benchmarks and, therefore, estimation of accurate migra-
tion durations. The model was then trained using various
approaches such as linear regression and support vector
regression (SVR). Various features, such as VM size, page
dirty rate, resource utilisation of VMs, source and destina-
tion servers, are considered. We have spent considerable
efforts on statistical mapping of various workloads so that
plausible assumptions can be derived for simulation pur-
poses. Further details on mapping the Google’s workload
traces [19] to real IaaS performance benchmarks [4] can be
found in our previous works [1], [12].

3.2 Placement and Consolidation

In this section, we explain how the placement and consolida-
tion techniques are being used in the optimisation module.
The proposed policies ensure that the most runtime efficient
hosts are selected to run particular VMs. The energy, perfor-
mance aware placement policy, based on first fit technique
(EPFF), is described in Algorithm 1. The energy, perfor-
mance aware migration approach (EPAM) is described in
Algorithm 2. The proposed aggregation-based placement is
dependent on the runtime efficiencies of the hosts and VMs.
First, the available hosts are being divided into groups based
on their runtime efficiencies and temporal slack (as
described in Section 3.2.1). Furthermore, all hosts in each
group are being sorted in increasing order of their ERC val-
ues – the objective function (Eq. (1)). Then, based on the run-
time of the VM (either predicted or past), using a particular
classification technique (such as k-Means clustering algo-
rithm as discussed in Section 3.2.2), every VM is categorised
and mapped onto each host in a particular group. In fact, the
latter step ensures that VMs of similar characteristics (run-
times, capacities, etc.) are placed onto similar hosts i.e.,
aggregation (CoLocateMe). In case of segregation, this step is
ignored from Algorithm 1 to ensure that VMs are not classi-
fied. As a result, the most runtime efficient host (i.e., at top of
the list) is selected to run that particular group of VMs. Note
that, the placement algorithm is a substantially improved
version of the first fit (FF) heuristic approach.

The consolidation policy EPAM runs, periodically, every
five minutes interval and looks for possibilities to aggregate
and consolidate the workload (VMs) onto fewer hosts. Note
that, a shorter time interval will lead to additional overhead
but a larger one may lead to poor system performance as

reacting to the dynamicity of the workload will be too late.
Furthermore, this could happen in two different ways: (i)
through migrating VMs from underloaded and overloaded
hosts, using some pre-defined threshold values in terms of
their utilisation levels (e.g., an upper threshold value Uupper

for overloaded hosts and a lower threshold value Ulower for
underloaded hosts) [1]; and (ii) through migrating all VMs
from hosts having the highest levels of runtime efficiencies.
Once hosts are being identified, a list of migratable VMs is
constructed using a particular VM selection policy, using
Algorithm 3. Several metrics of the VMs are considered
when deciding their migrations. For example, [20] chooses a
VM that either: (a) has a small memory so that its migration
can be completed quickly; or (b) has maximum utilisation
level so that overloaded host is avoided up to maximum.
However, [1] prefers to migrate relatively long-running
VMs so that their migration efforts are ensured. More-
over, [21] uses volume-to-size (VSR) ratio of a VM to decide
its migration. In this paper, we prefer to migrate long-run-
ning VMs. Finally, Algorithm 1 is used to place them onto
appropriate hosts that consumes less energy and perfor-
mance is assured along with aggregation or segregation.

Algorithm 1. VM Placement Algorithm (EPFF)

Input: List of hosts (H), List of VM requests (V )
Output: Efficient VM placement
1 find runtime efficiency of host h 2 H (using Eq. (2));
2 find the temporal slack of host h 2 H (using Eq. (3));
3 categoriseH subject to their runtime efficiencies -Hc;
4 for each vm 2 V do
5 estimate (past) or predict runtime of the vm;
6 match vm toHc and pick all suitable hosts (Hm);
7 sortHm in assending order - temporal slack (Eq. (3));
8 compute and sortHm w.r.t ERC values (Eq. (1));
9 for each h 2 Hm do
10 if h has enough resources and can run the vm then
11 allocate vm to h;
12 break the loop and pick the next vm;
13 end if
14 end for
15 if vm did not fit in any available h then
16 start new h and allocate vm;
17 else
18 “vm cannot be allocated”;
19 “push the vm request intoW (waiting queue)”;
20 end if
21 end for
22 return output

From implementation perspective, all servers are classi-
fied into groups based on their energy consumption and per-
formance (CPU architecture). Workload of particular type is,
then, placed on separate server groups, as appropriate. In
contrast, workload of any type can be placed on any suitable
server in the segregation-based allocation approach. The
worst case computational complexity of Algorithm 1 is
OðnmÞ þTp where n, m and Tp denote the number of VMs,
hosts and runtime prediction time, respectively. Moreover,
Tp is dependent on theworkload type, historical data and the
prediction algorithm. The best case occurs when each VM is
allocated in the first iteration. This also applies to Algorithm
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2 with additional time for finding migratable VMs and
appropriate target hosts. Also, given that resource properties
can change over time; and if a runtime approach is adopted,
then, potentially there may be oscillatory or repeatable
behaviour, e.g., move VM from host X to Y and then back to
X. We can use techniques like CMCR i.e., Consolidation with
Migration Cost Recovery [1] or put a constraint to avoid such
repeatable migrations. We believe, the proposed VM selec-
tion policy (Algorithm 3), that prefers to migrate long-run-
ning VMs, ensures to control these repeatable migrations,
but not essentially.

Algorithm 2. Consolidation Technique (EPAM)

Input: List of hosts (H), List of VMs (V )
Output: Efficient VM placement

1 Using current states ofH and V , find overloaded and
underloaded hosts (Hou) – predefined thresholds;

2 select all migratabale VMs (Vm) fromHou using a VM
selection policy (Algorithm 3);

3 for each vm 2 Vm do
4 find a list of all hostsHn such thatHn 6�Hou;
5 call VM placement algorithm (Hn, vm) [Algorithm 1];
6 end for
7 run this optimisation module periodically;
8 return output

Algorithm 3. VM Selection Policy

Input: List of migratable VMs (Vm)
Output: Select a suitable VM VMfit for migration

1 VMfit null;
2 for each vm in Vm do
3 predict runtime or compute past runtime of the vm;
4 end for
5 sort Vm – decreasing order of runtimes, workload type;
6 VMfit  Vm½0� (the most suitable VM is on top of list);
7 return VMfit

3.2.1 Runtime Efficiency

The runtime efficiency of server host denotes its total
amount of energy consumed (Evm

host) when it runs a particu-
lar VM up to some expected j past runtime Rvm, given by
Eq. (2). Since, energy is the product of power consumed (P )
for time t (here R); thus, the least value offers an economical
placement.

Evm
host ¼ Pidleþdynamic

host �Rpredictjpast
vm : (2)

Rich literature of the prediction offers various ways to esti-
mate VM’ runtimes, as described in Section 3.1. In other
research, runtime efficiency is the ratio between the, num-
ber of, short running VMs and the longer one (diversity of
VM runtimes) while accounting for resource capacities.
The slack of each host denotes the difference between its
total CPU capacity C and amount of used CPU resources
of running VMs i.e., Chost -

P
i2Nvm

vmi [8]. The least the
slack, the more appropriate will be the placement. While
accounting for VMs durations, the temporal slack a of
each host is given by

avm
host ¼ Chost:dvm �

X

k2Nvm
host

wkðminfrk; rvmgÞ � svm; (3)

where Chost denotes the host resource capacity or a notion of
VM density [1] which can be computed using the host’s
number of cores and VM sizes (without any concerns
whether the VM resources are less, more utilised). Further,
rvm and svm represent the VM release time (expected run-
time) and start time, respectively. Similarly, rk andwk denote
the VM’ runtime and CPU demand on kth host. In practice,
VM release time and start time are determined by users not
by administrators. However, we assume that workload type
is known, and the VM runtime dvm is computed as rvm - svm.
Nvm

host denotes the number of VMs on host. Assigning VMs to
host with the least a offer opportunities for switching on/off
hosts when it is most cost effective. Hence, a is measured in
CPU � time; therefore, it can be easily translated to energy
consumption, performance and cost. Note that, dvm and rvm
aggregate demand w.r.t release time. In addition, we only
consider CPU in this formulation, since it is predicated on
the assumption that CPU is the largest driver of power con-
sumption [1]. However, there are other components such as
GPUs, memory, disks, and network devices whose power
consumption is also worth considering. More details about
the energy consumption and models of these devices can be
found in [22]. After computing a for each host, all hosts H
are classified into several clusters Hc, using a and k-Means
clustering approach. Next, all hosts in each cluster are sorted
in increasing order of their a values. Lastly, every VM is
assigned, based on its runtime (past or predicted), to a suit-
able host cluster and, subsequently, holding the least a value.

3.2.2 k-Means Clustering

Using the k-Means clustering approach, we create a set of
clusters in order to categorise all VMs. All VMs in a cluster
retain comparable features and each VM is mapped to a sin-
gle cluster. Furthermore, every VM is linked with different
types of VM characteristics i.e., runtimes, capacities, work-
loads (aggregation criteria). To divide these VMs into differ-
ent categories (z – selected in advance), we characterize each
VM as a point in the multi-dimensional Rz space – where
each point is a VM and coordinates of the point denote VM
categories. The inputs of the algorithm, for certain VM char-
acteristics, are the number of categories (clusters) that are
specified by its center point. For each characteristic, the clus-
ter centers are points in the Rz space. In fact, the algorithm
allocatesN data points to z clusters. In step 1, centers of the z
clusters are selected randomly. In step 2, the algorithm allo-
cates each data point to the cluster with the nearest center
using a particular distance measure such as euclidean dis-
tance. In step 3, these cluster centers are recalculated based
on the current assignment. The algorithm repeats step 2 and
step 3 until no further changes occur [2].

3.3 Modelling Heterogeneity of Infrastructure

In this section, we explain how energy consumption of vir-
tualised hosts and performance of various workloads (and
co-located VMs that compete for similar resources) across
several heterogeneous hosts can be modelled. These factors
are essential to account for as, potentially, they might have
impact on users’ costs and service revenues.
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3.3.1 Energy Consumption

Energy efficiency of a non-virtualised host could be accu-
rately identified through profiling its various resources for
energy measurement. However, the energy consumption of
a virtualised host may, possibly, be related to the number of
VMs they accommodate. This means that an energy expen-
sive host (virtualised) may, possibly, run a VM more energy
efficiently than an energy cheaper, but, non-virtualised host.
This relationship could be understood more effectively
through relating virtualised and non-virtualised hosts to a
bus and a car, respectively. A bus consumes more fuels but
still offers cheaper fare than a car. In a similar way, for a par-
ticular VMa less energy efficientmachinemight bemore effi-
cient if it can accommodate more VMs. Using the host (non-
virtualised) linear power model which is more than 90%
accurate, for certain workloads under reasonable assump-
tions [20], and the most widely used [1], the power/energy
consumption of a single VM can be estimated using Eq. (4)

Ph
vm ¼

Ph
idle

N
þWh

vm � ðPh
busy � Ph

idleÞ � Uh
vm; (4)

where N is the total number of VMs on a particular host h,
Ph

idle and Ph
busy are the power consumed when h is idle (0%

utilised) and fully utilised, respectively. Further,Wh
vm are the

host resources (cores) allocated to the VM and Uh
vm is the VM

utilisation level. The total energy consumption of the data-
center is the sum of the energy consumed by all hosts; and
each host energy consumption could be either: its bench-
marked values; a linear relationship to its CPU usage – very
similar to Eq. (4); or

Pm Ph
vm for all m number of VMs run-

ning on the virtualised host [1]. Since, for the duration of
migration there are exactly two VMs running on source and
destination hosts which also cost energy. In order to account
for migration energy cost, we use the model suggested
in [17]. According to [17], energy is largely consumed by
transferring the VM memory; and the amount of energy is
directly proportional of the VM size (as given by Eq. (5)). We
prefer to use this model because it is more than 90% accurate
for certainworkloads under reasonable assumptions [17].

Emig ¼ 0:512:ðVMmemÞ þ 20:165; (5)

where VMmem denotes size of the VM and parameters of the
linear model (a = 0.512, b = 20.165) are computed through
empirical evaluation [17]. Besides memory, disk and net-
work states will also consume energy. Moreover, once the
duration of a particular VMmigration is predicted, then it is
also possible to compute the expected energy consumption
through multiplying the source (server) and network energy
profiles with durations. However, this might not produce
accurate estimation compared to the model in Eq. (5) which
already accounts for network and disk state costs.

3.3.2 Performance

Various studies suggest that performance of cloud applica-
tions or workloads perform quite differently due to: (i) CPU
models [4]; and (ii) resource contention [3], [15], [23].
Regarding (i), similar VMs (workloads) run quite strangely
even on same CPU models; which may be related to either
design (fabrication process), cache levels and/or memory

churns. Largely, the distribution of workload runtimes fol-
lows a log-normal pattern across different CPU models [4].
Moreover, a particular workload may run quickly on a spe-
cific CPU model, but, may run quite slow on another CPU
model. Similarly, a CPU model may run a particular work-
load quickly, but, another one quite slow. For example,
E5430 is faster for bzip2 benchmark than E5507, but, is
slower for povray benchmark – as shown in Table 1.
Regarding (ii), co-located VMs on a specific host may expe-
rience severe performance degradation, particularly, if they
compete for same resources (resource interference). The
degradation is dependent on the total number of co-located
VMs and the workload type they are running on a particu-
lar host – as shown in Table 2. In order to model perfor-
mance variations, we model: (i) CPU heterogeneity as log-
normally distributed with respect to workload runtimes;
and (ii) resource contention as regression line equation with
respect to total number of co-located VMs on a particular
host for certain workloads. Moreover, performance of work-
loads is also affected due to VMmigrations; and we account
for that, as described in Section 3.1.3. Note that perfor-
mance, here, refers to sum of all VM runtimes that run
workload W (most suitable to users which translates into
costs), and is given by

R ¼
X

vm2W
Runtimevm; (6)

where Runtimevm is the wall-clock time (measured in sec-
onds) of each vm involved in running workloadW . Further,
users are billed according to runtime of each vm as described
in Section 4.3.6. Similarly, cost of running a particular work-
load is the sum of all VM costs.

3.3.3 Workloads

Various workloads have different impacts on infrastructure
energy consumption, workload performance, and migration
durations. Therefore, it is necessary to characterize work-
load types, even, if real datasets are used or replayed in sim-
ulations [1]. An easy way to characterize workloads is to use
their resource utilisation levels. For example, CPU intensive
workloads would have large impact on CPU utilisation; but
not, essentially, on memory or disk usage. Similarly, mem-
ory or disk intensive workloads will have little impact on
CPU usage. However, in real, scenarios are completely dif-
ferent, probably, due to CPU heterogeneities. Another
approach is to use tasks’ priorities, that affects billings, as a
proxy to represent workload type [19]. However, this is not
reasonable for virtualised workloads [11]. Moreover, our
investigation of the Google cluster and Microsoft Azure

TABLE 1
Execution Times (Seconds) of Various Applications

Across Different CPU Models [4]

Workload type CPU model Execution times

bzip2 E5430 447 s
E5507 641 s

povray E5430 579 s
E5507 544 s
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datasets suggests that these workloads (containerised, vir-
tualised) perform quite differently [1]. Therefore, we use
monte-carlo simulations to create synthesized workload
from real benchmarks workloads that were produced in a
real IaaS cloud [4]; and obtain certain features (resource
demand and usage, arrival time, submitting users) of the
original traces using the laws of statistical distributions and
mapping [1]. The synthesized traces follow the features in
the original traces.

Table 3 describes the performance (runtimes) of various
benchmark workloads (Povray, Namd, Stream) when exe-
cuted over different CPU platforms [4]. Povray is short-run-
ning, Namd is long-running, and Stream is of mixed nature;
when run at maximum speed. Note that, stream values orig-
inally represent the bandwidth (i.e., data transfer) [4], how-
ever, we assume these as durations – since the less data
copied, the least time it will take [1]. However, if utilisation
levels are normally distributed, then execution times vary.
Moreover, distributions of runtimes for a particular work-
load necessarily follow multi-modal lognormal patterns;
where multi-modality relates to CPU architectural heteroge-
neity. Using laws of lognormal distributions [1], we gener-
ated three different synthesized workloads from the
reported values i.e., mean (m), standard deviation (s), mini-
mum, and maximum, as shown in Table 3. We believe, the
generated workloads closely match real workloads; and can
be assumed as mix of workloads. Further details on work-
load modelling and mapping them to real applications’ per-
formance benchmarks are described in [12], [24].

4 PERFORMANCE EVALUATION

We assume energy, performance and cost efficient VM
placement and consolidation as types of bin-packing prob-
lem that can be solved using various heuristics such as first
fit, best fit. Energy can be decreased via increasing the
resource utilisation levels; that subsequently minimises the
number of used servers. Similarly, performance can be
ensured either via: (a) relocating workloads to best perform-
ing hosts; and/or (b) minimising co-location. In both cases,
the proposed scheduler ensures to put similar workloads
onto same hosts such that energy and performance efficien-
cies are achieved. Albeit, techniques like linear program-
ming can be used to come up with an optimal or
approximate solution [25]. However, for large-scale systems
consisting thousands of servers and variety of workloads,
we prefer quickness rather than optimality – as happens in
real clouds such as Intel [11].

4.1 Experimental Set-Up

In order to evaluate the proposed policies, the CloudSim [7]
simulator was extensively modified to simulate a real het-
erogeneous datacenter as close as possible. For example,
classes were added to account for: CPU architectural hetero-
geneity, performance of co-located VMs, migration costs in
terms of energy consumption and performance loss, VM
level power consumption, and predicting workload run-
times, migration durations. Details of the extended version
of the CloudSim i.e., PerficientCloudSim are elaborated
in [24]. Moreover, performance degradation due to migra-
tions, migration durations, and workload runtimes are pre-
dicted using various machine learning techniques such as
linear regression, SVR and gradient boost trees [11], [16].
Note that, we used the well-known implementations of
these algorithms using the sklearn package. The energy con-
sumption of various servers is computed according to
SPECpower1 benchmarks. Furthermore, if servers are idle
with no workload running (0% utilised), we still assume
them as switched on and, therefore, consume their idle
power (Pidle). The energy consumption of a single VM and
virtualised host is computed using the linear power model
which is suggested more than 90% accurate [20].

Our simulated datacenter is a direct modelling of the Goo-
gle cluster [19] that comprises 12,583 heterogeneous servers
that belong to five types, as shown in Table 4. Speeds of vari-
ous servers were mapped to millions of instructions per sec-
ond (MIPS) in order to be consistent with the CloudSim. For
aggregation-based VM placement, all available servers are
grouped into five different clusters – based on these five
types of CPUmodels. For example, all servers of CPUmodel
“E5430” denote a separate cluster. Virtual machines of six
various sizes and speedswere assumed running three differ-
ent kinds of workloads (as shown in Table 3). The utilisation
levels of all workloads were modelled as normally distrib-
uted with respect to prior studies [20]. Frequencies of VMs,
as shown in Table 5, were mentioned in vCPUs (cores), con-
verted to ECUs (EC2 Compute Unit) and mapped to MIPS
rating, accordingly. The ECU is described as: “equivalent

TABLE 2
Execution Times (Seconds) of Various
Applications on Co-Located VMs [3]

Number of co-located VMs

Workload CPU model 2 4 6 8 10 12

type Execution times

Grep E5620 13 14 16 21 31 36
E7420 20 22 25 29 38 44

Sort E5620 16 22 38 59 69 78
E7420 21 28 43 65 76 85

TABLE 3
Different Benchmarks Runtime Parameters [4]

Benchmark CPU Real benchmarks runtimes

workload model ðmÞ ðsÞ Min Max CoV

E5430 439 11 421 467 0.025
Povray E5-2650 468 12 451 500 0.026

E5645 507 10 490 535 0.02

E5-2651 1994 41.9 1952 2036 0.021
E5-2650 2007 28.5 1978 2036 0.014

Namd E5645 2043 96.4 1946 2140 0.047
E5430 2160 20.7 2135 2189 0.01
E5507 2187 18.1 2162 2217 0.008

E5430 1446 66 1328 1572 0.045
Stream E5507 2348 104 2078 2448 0.044

E5645 3395 287 2995 4008 0.085
E5-2650 5294 191 4935 5860 0.036

1. https://www.spec.org/power_ssj2008/
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CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon
processor” and its rating is per vCPU/core; therefore, the
VM total rating is the multiple of cores (number) and
ECU rating. The rating is, then, translated to MIPS for
consistency with CloudSim as it does not support the
notion of ECU. Note that, the large difference in storage
capacities of VMs, which ensures heterogeneity, but this
will have a clear impact on the migration costs. Perfor-
mance parameters for servers and VMs (workloads) were
taken from real experimental values, as demonstrated
in [1], [4]. Various heuristics, that aggregate or segregate
workloads using different features such as runtimes, were
considered for initial VM placement. At five minutes
interval, the optimisation module searches for consolida-
tion opportunities – if utilisation level of a server exceeds
80% or drops below 20% which are two pre-defined
threshold values. Our empirical evaluation was accom-
plished using two different approaches for VM live
migration i.e., pre-copy and post-copy. Moreover, work-
load sizes (runtimes) were transformed to equivalent
MIPS over a rating of 2 GHz CPU. From implementational
simplification point of view, performance loss or gain was
modelled as subtraction or addition of MIPS to the work-
load size, respectively.

In order to demonstrate the impact of EPC-aware VM
placement and optimisation on infrastructure energy con-
sumption, workload performance and service costs, we
consider different approaches to VM placement (first fit -
FF, energy aware first fit - EFF, energy and performance
aware first fit - EPFF) and consolidation with migration
(no migration - NO, migrate all - ALL, energy aware
migration - EAM, energy and performance aware migra-
tion - EPAM) [1]. Note that, VMs selected for migrations
are also placed on target servers using these heuristics. In

addition, we account for migration energy and perfor-
mance costs. For example, in ALL approach, all migratable
VMs are given chances to migrate; however, in EAM and
EPAM those migratable VMs are migrated which can
recover their migration costs [1]. Moreover, these policies
are implemented using two different methodologies to
placement i.e., segregation-based and aggregation-based.
The former one ensures that various workloads run in mix
(i.e., colocated across a single cluster) while the later one
puts similar workloads (based on runtimes, workload types)
on same servers (same CPU architectures, similar runtime
efficiencies). Similarly, the proposed methodologies have
been implemented in two different ways: (i) using past run-
times [1]; and (ii) using certain prediction techniques to pre-
dict workloads’ runtimes [16].

4.2 Evaluation Metrics

Data for various metrics, such as energy consumption
(KWh), performance or runtime (seconds), total number of
migrations, ERC, resource usage statistics, was collected
during simulations. Moreover, prediction accuracy is com-
puted in terms of absolute error both for runtimes (AEalloc)
and migration durations (AEmig). The AE denotes the diver-
gence of the estimated value from the actual value in abso-
lute units i.e., seconds and converted to hours.

4.3 Results and Discussion

The results, averaged over ten runs, are shown in Table 6.
Our evaluation suggests that workloads run more energy
and performance efficiently and, therefore economically, if
aggregated onto separate clusters or co-located w.r.t certain
metrics and scheduling policies. Moreover, a significant
decrease in total number of migrations can be observed; as
workloads were initially placed on appropriate servers.
Effective allocation techniques are more economical than
consolidation approaches; and we suspect, perhaps, this
might be a reason that public service providers do not
migrate workloads for energy or performance aware com-
putation in their clusters. Furthermore, if migration costs (in
terms of energy consumption and performance loss) are
considered, then the migrate all approach can be much
expensive than the no migration approach. Similarly, if we
migrate things only to energy efficient servers, it degrades
workload performance and, therefore, may consume more
energy due to the existing trade-off between energy con-
sumption and performance (runtimes) [1]. These findings
are, largely, consistent with previous outcomes [1], [12].
However, if performance is taken into account, significant

TABLE 5
Amazon Various Instances and Their Characteristics – MEM

Means Memory & vCPU Denotes a Hyperthreaded Core

Instance No of No of Speed MEM Storage

type vCPUs ECUs (GHz) (GB) (GB)

MIPS

t2.nano 1 1 1.0 0.5 1
t1.micro 1 1 1.0 0.613 1
t2.micro 1 1 1.0 1 1
m1.small 1 1 1.0 1.7 160
m1.medium 1 2 2.0 3.75 410
m3.medium 1 3 3.0 3.75 4

TABLE 4
Servers Types and Characteristics for Simulated Datacenter [ECU = CPU Speed (GHz) � Number of Cores]

CPU Speed No of No of Memory Storage Pidle Pbusy Amount

model (MHz) Cores ECUs (GB) (TB) (Wh) (Wh) of hosts

E5430 2,830 8 22.4 16 4 166 265
E5507 2,533 8 20 8 8 67 218
E5645 2,400 12 28.8 16 4 63.1 200 12,583
E5-2650 2,000 16 32 24 8 52.9 215
E5-2651 1,800 12 21.6 32 12 57.5 178
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energy, performance gains and, therefore, users costs can be
saved.

4.3.1 Aggregation versus Segregation

Table 6 shows that aggregation-based placement and/or
consolidation (based on workload runtimes) is approxi-
mately 9.61% energy and 20.0% performance efficient than
segregation-based methodology. The least value for ERC
shows the most EPC efficient placement. Fig. 2 describes the

percentage improvements, in energy consumption and per-
formance, of using runtime-based aggregation rather than
segregation. However, this may not be essentially true for all
workloads – as there are certain applications that could per-
form the best if segregated using other metrics such as work-
load type, VM sizes etc. For example, if various workloads
are placed aggregated (W1 is placed on servers with CPU
model E5430, whileW2 is placed on servers with CPUmodel
E5-2650, and so on), they result in lower utilisation level of
resources, as shown in Table 12. In short, segregation-based
policies offers high levels of datacenter utilisation, with the
least performance loss, for particular workloads.

Similarly, if VMs are aggregated onVM sizes, then resour-
ces are wasted (stranded resources) [26]. If VM sizes are
same, then both approaches are comparable. However, for
various sizes of VMs segregation packs them closely, which:
(a) increases resource utilisation (energy efficient); and (ii)
higher chances of resource contention (less performance and
cost-efficient). Our evaluation suggests that aggregation of
VMs, based on workload type, is not ensuring EPC aware
placement at all – as shown in Table 12 (observe ERC values
for various workloads andmethodologies). This is justifiable
as similar workloads often compete for same resources
which results in worse performance issues. Furthermore, we
observed that using past runtimes for aggregation-based
placement and migration of workloads always produces

TABLE 6
Average Results for Various Combinations of VM Allocation and Migration Policies – The Lowest Values are ‘Best’ [� Denotes

Standard Deviation, the Least Value for ERC Denotes the Most Effective and EPC Aware Placement Policy]

Policy No. of Energy Performance ERC No. of Energy Performance ERC Absolute error

allocation migration migrs (KWh) (hours) �106 migrs (KWh) (hours) �106 AEalloc AEmig

SEGREGATION-BASED PLACEMENT

Past runtimes Runtimes prediction
NO 0 511.93 302.78�0:02 287.2 0 511.93 302.78�0:12 287.2 - -

FF ALL 5231 547.23 349.71�0:21 409.6 6390 552.7 356.98�0:29 431.1 0.35 0.08
EAM 3211 493.31 278.02�0:09 233.4 4009 525.66 321.03�0:26 331.5 0.42 0.07
EPAM 1021 443.4 211.67�0:1 121.6 1921 461.52 235.76�0:21 157 0.29 0.09

NO 0 503.39 291.43�0:08 261.7 0 503.39 291.43�0:14 261.7 - -
EFF ALL 4123 520.04 313.56�0:41 312.9 4522 525.56 320.9�0:51 331.2 0.32 0.06

EAM 2198 511.25 301.87�0:32 285.1 2390 525.97 321.45�0:42 332.6 0.39 0.06
EPAM 1082 444.89 213.66�0:21 124.3 1693 457.28 230.12�0:39 148.2 0.44 0.08

NO 0 465.96 241.67�0:62 166.6 0 465.96 241.67�0:92 166.6 - -
EPFF ALL 3382 443.57 211.9�01:2 121.9 3319 479.24 259.32�1:3 197.2 0.49 0.1

EAM 1502 439.22 206.11�0:44 114.2 1699 460.86 234.89�0:56 155.6 0.5 0.11
EPAM 921 434.77 200.2�0:31 106.6 1256 459.45 233.01�0:34 152.7 0.49 0.07

AGGREGATION-BASED PLACEMENT

Past runtimes Runtimes prediction
NO 0 510.76 301.23�0:03 283.6 0 510.76 301.23�0:13 283.6 - -

FF ALL 2898 494.63 279.78�0:73 237 3033 501.41 288.79�0:76 255.9 0.29 0.12
EAM 1677 459.52 233.1�0:56 152.8 1799 485.75 267.98�0:51 213.5 0.38 0.11
EPAM 922 434.45 199.78�0:33 106.1 1209 458 231.08�0:42 149.7 0.4 0.09

NO 0 495.4 280.81�0:47 239.1 0 495.4 280.81�0:42 239.1 - -
EFF ALL 1999 488.51 271.65�0:35 220.6 2777 508.35 298.02�0:33 276.3 0.27 0.13

EAM 911 491.36 275.43�0:21 228.1 1455 503.75 291.9�0:45 262.7 0.5 0.12
EPAM 706 445.16 214.01�0:08 124.8 951 468.38 244.88�0:9 171.9 0.48 0.06

NO 0 463.23 238.03�0:11 160.6 0 463.23 238.03�0:18 160.6 - -
EPFF ALL 2001 462.25 236.73�0:54 158.5 2231 473.65 251.89�0:67 183.9 0.2 0.11

EAM 1109 485.56 267.72�0:39 213 1589 473.21 251.3�0:87 182.9 0.46 0.13
EPAM 799 433.61 198.66�0:64 104.7 988 449.05 219.19�0:55 132 0.33 0.08

Fig. 2. Percentage improvements in energy and performance using
aggregation-based VM placement instead of segregation, using EPFF
allocation and EPAM migration [Boosted Gradient Trees prediction].
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best results. However, if runtimes and migration durations
are being predicted, then inaccurate predictions may lead to
worse results even than segregation-based methods. There
are no EPC benefits derived from runtime prediction; and
using machine learning methods may decrease the metrics
of interest. This suggests to further investigate other metrics
for aggregation-based resource management in IaaS hetero-
geneous clouds.

4.3.2 Energy versus Performance Aware Allocation

If we allocate workloads on energy efficient servers (or
through energy aware placement policy - EFF), then neither
energy nor performance efficiency is assured – since energy
efficient servers are not essentially performance efficient.
Theoretically, energy efficiency is guaranteed; however,
lower performance means longer runtimes and these longer
durations translate to more energy consumption (i.e., energy
performance trade-off) [1]. Moreover, if workloads are
placed initially to energy, performance efficient servers (or
through energy, performance aware scheduling - EPFF),
then both energy and performance are assured. Fig. 3 shows
the percentage improvement, in energy consumption and
performance, of using EFF and EPFF allocation polices
instead of a simple FF approach.

4.3.3 Energy versus Performance Aware Migrations

Previous research findings, as demonstrated in [1], [12],
suggest that migrations are costly and sometimes it might
be even more economical not to migrate. Moreover, if a par-
ticular workload is being migrated several times, repeat-
edly, it may suffer from severe performance degradation
and, therefore, may consume more energy. Therefore, if
migrations are controlled through some methodology e.g.,
(i) migrate relatively long-running workloads [1]; (ii)
migrate to energy efficient servers - EAM; then energy
might be saved. Further, if migrations are performed to
energy, performance efficient servers (or through energy,
performance aware policies - EPAM), them both energy and
performance are guaranteed. Fig. 4 shows the percentage
degradation or improvement, in energy consumption and
workload performance, of using ALL, EAM and EPAM
migration polices instead of no migration approach (using
boosted tress i.e., B. TREE prediction method). Furthermore,
due to the existing trade-off between energy consumption

and performance (runtime), migration to energy efficient
servers only is not economical.

4.3.4 Impact of Predictions on Energy and Performance

As described earlier, workload runtimes and migration dura-
tions play an important role in placement and consolidation
decisions, particularly, if their objectives are energy efficiency
and/or performance gains. To decide energy efficient migra-
tions, such as CMCR [1] and CPER i.e., Consolidation with
migration Energy, Performance Cost Recovery [12], runtimes
andmigration durations are being compared. Therefore, their
predictions and accuracywill have an impact on total number
of migrations, which may subsequently affect energy con-
sumption and performance. Fig. 5 shows that good prediction
technique (such as boosted trees)may offer relatively accurate
results over linear regression, SVR (comparable); and, there-
fore, almost negligible savings and performance gains. Albeit,
the improvement is actually trivial (for certain kinds of work-
loads), and may even be worse if the overhead of the predic-
tion strategy is taken into account. However, for other
workloads’ types, considerably higher improvements were
observed. This is, possibly, due to the sizes of different data-
sets gathered for various applications. These findings are
inline with [27] that demonstrates the efficiency of using a
simple averaging method over using complex learning
approaches. Figs. 2, 3, and 4 indicate that the performance of
using prediction techniques to predict runtimes is worse than

Fig. 3. Percentage improvements in energy and performance using EFF
and EPFF placement techniques rather than FF [Boosted Gradient
Trees prediction].

Fig. 4. Percentage improvements in energy and performance using ALL,
EAM and EPAM migration with Boosted Gradient Trees prediction rather
than no migration [the bars below 0% indicate worse approaches –
EPAM outperforms ALL and EAM policies].

Fig. 5. Impact of various runtimes prediction techniques on energy con-
sumption and workload performance – the lowest values are the best
[LR - linear regression, SVR - support vector regression, B. TREE -
Boosted Gradient Trees].
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that using past runtimes. For migration scenarios (Fig. 4), the
performance of prediction-based approaches in many cases
is even worse than no migration approaches. However, the
prediction overhead of boosted trees is higher due to its
computational complexity. Therefore, if the accuracy differ-
ence among the three techniques is small, simple linear
regression may be a better choice. Therefore, it is recom-
mended, as a future work, to take the prediction overhead of
the three techniques into account to provide more convinc-
ing experimental results. This suggests the importance of
workload prediction in cost-efficient management of data-
center’ resources.

4.3.5 Running Containerised Workloads Over VMs

Since, containers are replacing VMs, therefore, it is essential
to account for containerised workloads [12]. We are aware
that lot of more discussions and experiments is needed to
show and discuss the differences between VM-based and
container-based cloud infrastructures. Therefore, readers
should look for our previous works to understand our obser-
vations and findings for containerised workloads [12], [28].
In this section, we describe how aggregation and segregation
based placement and consolidation policies would affect
energy consumption, performance and costs of workloads
that run within: containers directly; or containers that subse-
quently run within VMs [29]. In addition to earlier experi-
mental set-up, as explained in Section 4.1, we illustrated
three container types with characteristics shown in Table 7.
We assume that each VM can run several containers. Further,
the same allocation policy, which is used to place VMs on
servers, was also used to place containers on VMs.

We observed comparable outcomes when containers run
on virtualised IaaS resources (inside VMs), as shown in
Fig. 6. Albeit, servers were largely more utilised, but, with

no benefits. This demonstrates that increased levels of data-
center utilisation may not be always beneficial from energy
savings point of view. Moreover, significant performance loss
was seen, surprisingly, when containerised workloads that
run directly on servers were aggregated based on the work-
load type. We suspect this might be a possible reason for ser-
vice providers’ that prefer to segregate their workloads.
Unexpectedly, when containers were aggregated onto VMs
based on their runtimes; then, besides reduced total number
of migrations potential energy savings and comparable per-
formance was achieved. This experiment suggests that, for
diverse workload types, segregation-based approaches out-
perform aggregation-based techniques.

4.3.6 Costs Savings

The total electricity bill, user monetary costs and costs sav-
ings (in US dollars - $) are described in Table 8. For this
analysis, we assume a PUE2 of 1.10 and energy price of
$0.88 per KWh3 that mimic a Google datacenter located in
the Oklahoma State, USA. Moreover, we assume that users’
bills are computed at the rate of $0.0017 per second.4 The
cost of running a particular user’s workload is Cuser =Puser

vm 0:0017:Runtimevm; where the runtime of each VM is
in seconds. For certain workloads, service providers could
save up to �21.34% energy costs (bills) using aggregation-
based placement techniques instead of segregation. More-
over, users’ monetary costs could be reduced up to �8.39 to
18.99%.

Although, the least users’ monetary costs would certainly
affect the providers’ economics (less profit), however, they
can attract more customers which can recoup back these
losses (large business). Moreover, the above savings will
translate to a million dollars per year for hyper-scale IaaS
clouds, such as Amazon AWS and Google, that consist of
clusters with more that millions servers to offer resources at
large scale. Table 9 shows the percentage of savings possible
in energy consumption, performance improvement and
users’ costs, when using various techniques in relation to
CoLocateMe. It is clear that “CoLocateMe” (aggregation-
based policies) offers significant performance improvements
and energy savings.

4.3.7 Significance of Results

Todemonstrate the, significant, statistical differences between
the means of the obtained results using proposed methods
and others, we performed the t-test analysis. Table 10 shows

TABLE 7
Container Types and Their Characteristics [12]

Container Speed
Cores ECU’s

Memory

type (MHz) (MB)

A 1,000 1 1 128
B 1,225 1 1.23 256
C 1,500 1 1.5 512

Fig. 6. Percentage improvements in energy and performance when run-
ning workloads in: (i) containers; and (ii) virtualised containers, instead
of only VMs.

TABLE 8
Costs Savings [Energy and Users Monetary Costs are

Described in US Dollars]

Policy
Energy Users monetary Total costs

costs ($) costs ($) savings (%)

Segregation 2202.78 1149.87 -
Aggregation 1732.65 931.56 18.99

2. https://www.google.co.uk/about/datacenters/efficiency/
3. https://www.eia.gov/electricity/monthly/
4. https://aws.amazon.com/ec2/pricing/
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the p values for various allocation and migration policies. It
can be seen that energy aware allocation (EFF), only, may be
worse than non-energy aware placement (FF). Similarly,
aggregation-based policies offers lower p values (t-critical =
2.774) than segregation-based policies. The failure of the t-test
for FF and EFF policies is, perhaps, due to the overlaps that
exist in the collected dataset; however, EFF outperforms FF
based on themean values.

Further, PerficientCloudSim is suggested to produce
approximately 98.63% accurate results as compared to a
real IaaS cloud [1], [12]. This means that approximately
�1.37% error is expected in our simulated outcomes. Thus,
the proposed aggregation-based policy is approximately
9.61[�0.13]% more energy, and 20.0[�0.27]% more perfor-
mance efficient than segregation-based policies. Table 9
describes that these savings, in energy and performance
gains, are significant as compared to other segregation-
based policies.

4.3.8 Comparative Study

Table 11 offers a comparative study of the proposed CoLo-
cateMe approach to other competing methods including
Heifer [3], iAware [18], Granite [30], and IGGA [31]. The
results were obtained both for aggregation and segregation
methodologies. In case of aggregation, compared with other
approaches, CoLocateMe could save approximately 3.02% –
7.22% energy and improve the workload’s performance i.e.,
0.34% – 6.6%. The CoLocateMe approach is � 1.11% – 2.54%
more energy efficient and 0.58% – 4.48% more performance
efficient than other methods when segregation is taken into
account. As, CoLocateMe prefers aggregation, therefore, the
savings are potentially small in the segregation environ-
ment. Furthermore, the proposed approach has lower ERC
values than all the closest rivals. The results demonstrate
that aggregation is �11.08% – 24.67% more energy efficient
but 0.98% – 8.86% less performance efficient than the segre-
gation. Moreover, aggregation by workloads decreases per-
formance but could be more energy efficient than through
aggregating with runtimes. Using various statistical meth-
ods, we believe that these outcomes are reasonable against a
real IaaS cloud i.e., �98.99% accurate [24].

4.3.9 Generalisation of Outcomes

In order to find consistency in our results and scalability of
our proposals, we evaluated the proposed techniques using
a variety of heterogeneous dynamic workloads, heteroge-
neous servers, various metrics for aggregation (such as run-
time, workload type), and datacenter sizes. The experiments

were carried out using experimental set-up and mathemati-
cal models, as described earlier in Section 4.1. In additions,
three workload types W1, W2 and W3 which belong to tasks
of three different priorities (0, 2, 9) from Google’s cluster
dataset, are also investigated. Furthermore, besides work-
load runtimes, their type (based on the priority or resource
usage – CPU, memory, disk intensive) are considered for
aggregation and segregation.We observed that certainwork-
loads, if aggregated using other features such as workload
type,may perform ’best’ using segregation-based placement.
However, our findings are largely consistent regarding data-
center and workloads sizes which means that our approach
can be scaled for cost-efficient resource management in
hyper-scale datacenters such as Google, AWS, andAzure.

Table 12 describes the results which were obtained using
previous experimental parameters and set-up, as initially
was described in Section 4.1. Largely, we observed that seg-
regation-based VM placement offers fewer opportunities
for migrations. Less number of migration opportunities
may ensure workload performance, however, it reduces
resource utilisation levels. Moreover, workloads aggregated
or segregated using various metrics (such as VM sizes,
workload type, submitting users) offer variations in energy
consumption and performance, therefore, costs. Our evalua-
tion suggests that aggregating VMs based on their workload
types in not ensuring EPC aware placement at all. For exam-
ple, similar VM types may not be tightly packed on servers,
in aggregation, and resources are wasted. However, segre-
gation can ensure tight packing of VMs, but, increases
resource contention due to co-location. Furthermore, aggre-
gating workloads of similar duration allowing for more
servers to be powered down to save energy. Segregation
may imply either: (a) having all servers switched on, and
minimising the number of VMs per host; or (b) putting the
shortest runtime VMs onto hosts with the longest runtime
(the greatest runtime efficiency). In respect of (b), workload
performance should be better than (a); because there are
more servers and resource contention is lessened (the
period of the short runtime), rather than a period of time
closer to the longest runtime.

We observed that aggregating VMs that have similar
types of workloads could lead to high resource contention,
interference (and possibly performance degradation that
can be � 12:2%) for CPU activity, as shown in Table 12.
However, if VM sizes are assumed as running different
types of workloads e.g., CPU, memory, disk intensive; then,
the contention will be low. Therefore, it is useful to aggre-
gate VM types that have different resource requirements –
as this will reduce energy use (� 7:51%) and performance
overheads (� 13:63%), as shown in Table 12. For aggregat-
ing and segregating with respect to the workload type, we

TABLE 9
Percentage of Savings Possible, Using Various Techniques,
in Terms of Energy Consumption, Performance and Cost

[+ Means PerformanceGains and - Indicates Performance Loss]

Work [8] [12] [18] [1] [28] CoLocate

Me

Energy �30 43.31 - 3.66 30.47 9.61
Performance - +1.09 +16.0 +1.87 -2.14 +20.0
Cost - 14.78 - 13.56 - 18.99

TABLE 10
Statistical Significance of Results [FF and ALL are “Base”

Allocation and Migration Policies for Comparison]

Policy Allocation Migration

FF EFF EPFF ALL EAM EPAM

Segregation - 0.311 0.048 - 0.045 0.044
Aggregation - 0.135 0.042 - 0.041 0.043
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observed opposite findings as compared to VM sizes – seg-
regation is better than aggregation. This type of profiling is
particularly relevant in a real-time context; which needs fur-
ther investigation.

5 RELATED WORK

In cloud computing, resource allocation algorithms use
certain features of the infrastructure, and workloads in
order to run them in respect of achievable objective
(energy, performance, cost). For example, [1] used the host
(virtualised) or VM efficiency factor (Ef ) to minimise IaaS
energy consumption and improve (at least maintain) the
workload performance levels. Other works [20], also use
the host energy efficiency metric (i.e., hosts with the least
energy consumption) for efficient placement; however,
this metric may not accurately measure the efficiency of a
heterogeneous virtualised host [1]. However, due to the
existing trade-off among energy and runtime (performance),
energy cannot be saved with these methods. In such circum-
stances, performance must be considered during allocation
and migration decisions. In the cloud literature, various

research, as demonstrated in [1], [15], [18], [30], [32], have
considered performance of workloads along with energy
efficiency during resource placement and migration deci-
sions. In [30], the authors proposed a scheduling technique,
called Granite, to reduce datacenter energy consumption
that accounts for CPU temperature. In Granite, a VM is
assigned to a server that results with the least increase in
energy consumption after allocation. Further, the migration
policy selects VMs from servers based on their temperature
levels. Dabbagh et al. [8] usedworkload runtimes to place rel-
atively similar-running VMs onto same hosts. In practice,
predicting workload runtimes can be a daunting task. More-
over, all workloads of a particular user could be, possibly,
placed on same hosts or VMs.

In practice, public clouds are opaque and service pro-
viders are not aware of the workloads they are hosting on
their infrastructure. Albeit, there are various efforts towards
workload runtimes prediction [11], [13], [16], but, in practice
they are not reasonable – as public cloud workloads differ
significantly from private ones. Therefore, an alternative
approach is to use their past runtimes. The only reason
which supports this idea is that Google’s tasks that run for

TABLE 11
Comparison of CoLocateMe With Other Methods [Energy is Measured in KWh and Performance in Seconds]

Policy Aggregation Segregation

Runtime Workload

Energy Performance ERC Energy Performance ERC Energy Performance ERC

Granite 15178.56 654.48 9.93 17032.34 699.98 11.92 19834.51 681.56 13.52
IGGA 15694.43 653.74 10.26 17521.4 696.09 12.2 20122.1 673.9 13.56
Heifer 16168.9 612.17 9.9 17011.22 667.11 11.35 19981.66 655.67 13.1
iAware 16285.09 613.73 9.99 17634.11 661.26 11.66 19831.9 654.82 12.99
CoLocateMe 15108.87 611.28 9.24 16498.3 659.04 10.87 19611.6 651.03 12.77

TABLE 12
Results Generalisation Using Various Approaches to Aggregation and Different Kinds of Workloads (Using EPFFAllocation and
EPAM Migration Policies); Datacenter Size Denotes the Total Number of Servers and VMs; and VM Sizes Refer to Different

Workloads i.e., CPU, Memory, Disk Intensive – the Lowest Values for ERC Represent EPC Aware Placement

Workload Agg. j seg. Datacenter No. of Energy Performance ERC No. of Energy Performance ERC

type metric size migrs (KWh) (hours) 106 migrs (KWh) (hours) 106

Aggregation Segregation

W1 3 k - 50 k 672 71.22 19.34 0.16 528 71.26 19.56 0.17
W2 runtime 6 k - 70 k 563 167.13 88.2 7.96 500 167.78 90.01 8.32
W3 9 k - 0.1 m 501 295.73 171.9 53.48 487 311.69 201.56 77.5

W1,W2 6 k - 0.12 m 0 174.91 109.89 12.93 0 175.92 112.7 13.67
W1,W2 6 k - 0.12 m 1098 171.81 101.23 10.78 1001 175.51 111.56 13.37
W2,W3 runtime 9 k - 0.17 m 1891 352.75 277.89 166.71 1792 203.25 279.01 96.83
W1,W3 6 k - 0.15 m 1056 203.49 189.56 44.75 934 207.75 201.44 51.59
W1,W2,W3 12 k - 0.22 m 3221 578.79 391.67 543.39 2875 584.83 399.7 571.81

W1,W2,W3 12 k - 0.22 m 0 702.63 556.3 1330.75 0 652.16 489.21 955.2
W1,W2 6 k - 0.12 m 1389 174.99 110.11 12.98 1238 171.36 99.98 10.48
W2,W3 workload 9 k - 0.17 m 1690 365.42 301.43 203.2 1782 358.24 288.09 181.98
W1,W3 type 6 k - 0.15 980 208.27 202.88 52.46 995 207.39 200.45 51
W1,W2,W3 12 k - 0.22 m 2150 617.33 442.9 741.11 2201 576.7 388.89 533.77

W1,W2 6 k - 0.12 m 1288 174.04 107.45 12.3 1499 178.3 119.34 15.54
W2,W3 VM size 9 k - 0.17 m 1185 359.86 291.09 186.61 1282 376.79 322.57 239.94
W1,W2,W3 12 k - 0.22 m 1976 584.89 399.77 572.07 2019 632.35 462.87 829.14
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more than seven hours continue running for several days or
evenmonths [19], [26]. This is further evidenced inMicrosoft
Azure cluster [11]; however, this may not be essentially true.
If we assume that clouds are not opaque; then it is possible to
predict their runtimes using historical data [13], [14]. For
example, Cortez et al. [11] used gradient boosted treemethod
to predict VMs runtimes inMicrosoft Azure cloud. They also
found a close relationship among VMs runtimes, submitting
users, and job names (logical). Tumanov et al. [13] predicted
job runtimes using various characteristics of the workloads
in order to automate resource allocation.

A resource level server disaggregation technique, as
described in [33], integrates various resources (such as CPU,
memory, storage) from multiple servers into a single pool.
With server disaggregation it is also possible to run a single
VM on multiple servers which provides higher chances for
maximising resource utilisation. Moreover, it offers an easy
way to enable vertical resource scaling (adding more resour-
ces) of VMs. From resource allocation perspective, server dis-
aggregation simplifies the VM scheduling problem to only
one dimension. However, aggregation and segregation based
VMs placement and consolidation techniques are not
explored. Lebre et al. [34] have also discussed various VM
placement and consolidation techniques in terms of three dif-
ferent schedulers: centralised, hierarchical and distributed.
Tchana et al. [35] suggested software or applicationmigration
to achieve energy efficiency in datacenters. Wu et al. [31] also
studied VMs consolidation while accounting for energy con-
sumption and migration costs i.e., performance loss in terms
of downtime. The authors suggested a consolidation scheme
i.e., improved grouping genetic algorithm (IGGA). The swap-
ping criteria ensures that energy costs are reduced through
avoiding unnecessary migrations. Jiang et al. [36] proposed
an adaptive resource allocation algorithm that dynamically
allocates resources to VMs energy efficiently.

In [37], a solution for improved IaaS energy consumption
while keeping SLA violations minimum, is proposed. The
proposed scheme uses energy aware methods that are
founded over adaptive three threshold framework (ATF),
policies for VM selection like maximum ratio of CPU utilisa-
tion to memory utilisation (MRCU), minimum product of
CPU and memory utilisation (MPCU), and maximum
energy efficient VM placement (VPME). The results show
that optimal energy efficiency and lower SLA violations
could be achieved. In [38], the authors offer a survey of pro-
active methods for VM placement while classifying them as
per their application in forecasting procedures. The pre-
dicted strategies are efficient and produce minimal VM
overheads. An in-depth analysis of predictive VM place-
ment algorithms is illustrated. A dynamic consolidation
policy (ETAS) holistically manages IaaS resources through
creating a trade-off between computing resources and cool-
ing systems [39]. An improvement in energy utilisation is
seen as compared to thermal aware methods.

The peak efficiency-aware scheduling (PEAS) algorithm
initially defines metrics like peak power efficiency, and
optimal energy usage for heterogeneous servers [40].
Later, it allocates and consolidates VMs over servers so
that maximum power efficiency is achieved. It helps to
optimise energy usage, overall system performance, and
QoS metrics. Similarly, a VM placement algorithm
(PLVMP) ensures to achieve better VM performance and
balanced server workload between user and service pro-
vider [41]. The PLVMP method improves VM placement
and creates an effective load balance among various serv-
ers. In terms of energy consumption, an in-depth analysis
of proactive VM consolidation techniques and algorithm is
offered in [42]. In [43], authors focused over maximising
the IaaS profits while solving the problem as multi-objec-
tive optimisation issue. An evolutionary algorithm is

TABLE 13
Summary of the Related Work, Closest to CoLocateMe, With Respect to Various Evaluation Criteria

Related Work CoLocate

Parameters [8] [5] [33] [34] [35] [18] [6] [31] [29] [28] [36] [1] [20] Me

VMs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Platform Containers ✓ ✓ ✓

Containers j VMs ✓ ✓ ✓ ✓

Energy ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Performance ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Metrics Migration cost ✓ ✓ ✓
User costs ✓ ✓ ✓
Co-location ✓ ✓

Placement Aggregation ✓ ✓ ✓
method Segregation ✓ ✓ ✓

Single ✓ ✓ ✓ ✓
Scheduler Distributed ✓ ✓ ✓

Hierarchical ✓ ✓ ✓

Aggregation Runtimes ✓ ✓
criteria Workload type ✓

VM size ✓

Management Allocation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
policy Migration ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Sharing resources ✓
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suggested that optimises revenue of the IaaS providers
while SLAs are guaranteed.

An overview of state-of-the-art algorithms for energy effi-
cient datacenters and large-scale multimedia services is
offered in [44]. It also outlines key challenges while designing
and managing green datacenters. Further, the authors high-
light several possibilities for green streaming services. In [45],
a continuous replica placement method is proposed that is
based on greedy heuristics. The placement method creates a
new replicawhile taking into account the optimisation criteria
and various constraints such as energy, costs, etc. Majority of
the above techniques consider segregation-based placement
and consolidation;while aggregation remains relatively unex-
plored. Furthermore, with the notable exception of [2], [8],
VM runtimes, sizes and workloads they run, are not evalu-
ated for similar placement and consolidation decisions. The
summary of the comparison between our proposed technique
“CoLocateMe” and other closely related works is given in
Table 13. We believe, Table 13 would help our readers to
quickly identify gaps for further research.

6 CONCLUSION AND FUTURE WORK

In this paper, through empirical evaluation we demonstrated
how various approaches to VM placement and consolidation,
and methodologies such as aggregation and segregation,
would affect the energy, performance and cost efficiencies of
large-scale IaaS providers. Our findings show that, for certain
workload types, significant energy could be saved while their
performance is ensured; through aggregating them on same
servers. Moreover, aggregating workloads of similar duration
allows formore servers to be switched off to save energy.How-
ever, if workloads are aggregated based on their types or other
metrics, then they suffer from severe performance degradation.
Our evaluation also suggests that if containers (instead of VMs)
are aggregated based on their workloads types (instead of run-
times), then segregation-based placement methods might
potentially outperform aggregation-based techniques.

Further research is needed to determine what kinds of
workload are not suitable for aggregation, segregation,
and/or migration. Similarly, investigation of workload run-
times, their accurate prediction and other suitable metrics
such as workload type, sizes, is needed for segregation-
based VM placement. Furthermore, there is a need for the
investigation of other metrics-based aggregated and segre-
gated techniques and their potential impact on energy con-
sumption, performance, and costs. In future research, we
will investigate how aggregation and segregation based
resource management would affect oversubscribed resour-
ces. Moreover, the linear power model is hard to take at
face value; as it only covers CPU resource. Modern process-
ors have P-states and C-states (as opposed to merely busy/
idle) and fairly involved automated switching between
them, which we should consider in future research. More-
over, as a future plan we will work in order to implement
the proposed strategies in a real-world public cloud.
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