
A Responsive Knapsack-based Algorithm for Resource Provisioning and Scheduling
of Scientific Workflows in Clouds

Maria A. Rodriguez and Rajkumar Buyya
Cloud Computing and Distributed Systems (CLOUDS) Laboratory

Department of Computing and Information Systems, The University of Melbourne, Australia
e-mail: mariaars@student.unimelb.edu.au, rbuyya@unimelb.edu.au

Abstract—Scientific workflows are used to process vast
amounts of data and to conduct large-scale experiments and
simulations. They are time consuming and resource intensive
applications that benefit from running in distributed platforms.
In particular, scientific workflows can greatly leverage the
ease-of-access, affordability, and scalability offered by cloud
computing. To achieve this, innovative and efficient ways of
orchestrating the workflow tasks and managing the compute
resources in a cost-conscious manner need to be developed.
We propose an adaptive, resource provisioning and scheduling
algorithm for scientific workflows deployed in Infrastructure
as a Service clouds. Our algorithm was designed to address
challenges specific to clouds such as the pay-as-you-go model,
the performance variation of resources and the on-demand ac-
cess to unlimited, heterogeneous virtual machines. It is capable
of responding to the dynamics of the cloud infrastructure and
is successful in generating efficient solutions that meet a user-
defined deadline and minimise the overall cost of the used
infrastructure. Our simulation experiments demonstrate that
it performs better than other state-of-the-art algorithms.

I. INTRODUCTION

Workflows are defined as a set of computational tasks
and a set of data or control dependencies between them.
They are widely used by the scientific community to analyse
and process large amounts of data efficiently. These large-
scale scientific workflows are resource-intensive applications
and hence are commonly deployed on distributed platforms.
Scheduling algorithms play a crucial role in running work-
flows efficiently as they are responsible for the orchestration
of the tasks on the distributed compute resources. Their
decisions are guided by a collection of Quality of Service
(QoS) requirements defined by the application users such
as minimising the total cost or makespan (i.e. total exe-
cution time), or meeting a specified budget or deadline.
This scheduling problem is non-trivial, in fact, it is a well-
known NP-complete problem [1] and therefore, algorithms
must focus on finding approximate solutions in a reasonable
amount of time.

Infrastructure as a Service (IaaS) clouds offer an eas-
ily accessible, flexible, and scalable infrastructure for the
deployment of large-scale scientific workflows. They allow
users to access a shared compute infrastructure on-demand
while paying only for what they use. This is done by leasing
virtualised compute resources, or Virtual Machines (VMs),

with a predefined CPU, memory, storage and bandwidth
capacity. Different resource bundles (i.e. VM types) are
available to users at varying prices to suit a wide range of ap-
plication needs. Aside from VMs, IaaS providers also offer
storage services and network infrastructure to transport data
in, out, and within their facilities. To fully take advantage
of these services and opportunities, scheduling algorithms
must consider several key characteristics of clouds.

The first one is the on-demand, elastic resource model.
This feature suggests a reformulation of the scheduling prob-
lem as traditionally defined for other distributed platforms
such as grids and clusters. Clouds do not offer a finite
set of compute resources, instead, they offer a virtually
infinite pool of VMs with various configurations ready to
be leased and used only for as long as they are needed.
This model creates the need for a resource provisioning
strategy that works together with the scheduling algorithm;
a heuristic that decides not only the type and number of
VMs to request from the cloud but also when is the best
time to lease and release them. Since this work is tailored
for cloud environments, from here on, the word scheduling
will be used to refer to an algorithm capable of making both,
resource provisioning and scheduling decisions.

Another feature to consider is the utility-based pricing
model used by cloud providers. The cost of using the
infrastructure needs to be considered or otherwise, users
risk paying prohibitive and unnecessary costs. For example,
the number of VMs leased, their type, and the amount of
time they are used for, all have an impact on the total
cost of running the workflow in the cloud. Consequently,
schedulers need to find a trade-off between cost and other
QoS requirements such as makespan.

A third characteristic of clouds is their dynamic state
and the uncertainties this brings with it. An example is the
variability in performance exhibited by VMs in terms of
execution times [2]. This variability means that despite a
VM type being advertised to have a specific CPU capacity, it
will most likely perform at a lower capacity that will change
overtime. It also means that two VMs of the same type
may exhibit completely different performances. Further-
more, having multiple concurrent users sharing a network
means that performance variation is also observed in net-

working resources [2]. Yet another source of uncertainty are
the VM provisioning and deprovisioning delays [3]; there are
no guarantees on their values and they can be highly variable
and unpredictable. Recognising performance variability is
important for schedulers so that they can recover from
unexpected delays and fulfil the QoS requirements.

As a result of these requirements, we propose the
Workflow Responsive resource Provisioning and Scheduling
(WRPS) algorithm for scientific workflows in clouds. Our
solution finds a balance between making dynamic decisions
to respond to changes in the environment and planning ahead
to produce better schedules. It aims to minimise the overall
cost of the utilised infrastructure while meeting a user-
defined deadline. It is capable of deciding what compute
resources to use considering heterogeneous VM types, when
is the best time to lease them and when they should be
released to avoid incurring in extra costs. Our simulation
results demonstrate it is scalable in terms of the number of
tasks in the workflow, it is robust and responsive to the cloud
performance variability and it is capable of generating better
quality solutions than the state-of-the-art algorithms.

II. RELATED WORK

There have been several works since the advent of
cloud computing that aim to efficiently schedule scientific
workflows. Many of them are dynamic and are capable
of adapting to changes in the environment. An example
is the Dynamic Provisioning Dynamic Scheduling (DPDS)
algorithm [4] in which the number of VMs is adjusted de-
pending on how well they are being used by the application.
Zhou et al. [5] also propose a dynamic approach designed
to capture the dynamic nature of cloud environments from
the performance and pricing point of view. Poola et al. [6]
designed a fault tolerant dynamic algorithm based on the
workflow’s partial critical paths. The Partitioned Balanced
Time Scheduling algorithm [7] estimates the optimal number
of resources needed per billing period so that a deadline is
met and the cost is minimised. Other dynamic algorithms
include those developed by Xu et al. [8], Huu and Mon-
tagnat [9], and Oliveira et al. [10]. The main disadvantage
of these approaches is their task-level optimisation strategy,
which is a trade-off for their adaptability to unexpected
delays.

On the other side of the spectrum are static algorithms. An
example is the Static Provisioning Static Scheduling (SPSS)
[4] algorithm. Designed to schedule a group of interrelated
workflows (i.e. ensembles), it creates a provisioning and
scheduling plan before running any task. Another example
is the IaaS Cloud Partial Critical Path (IC-PCP) algorithm
[11]. It is based on the workflow’s partial critical paths
and tries to minimise the execution cost while meeting a
deadline constraint. Other examples include RDPS [12],
DVFS-MODPSO [13] and EIPR [14]. In general, these
algorithms are very sensitive to execution delays and runtime

estimation of tasks, which is a trade-off for their ability to
perform workflow-level optimisations and compare various
solutions before choosing the best-suited one.

Contrary to fully dynamic or static approaches, our work
combines both in order to find a better compromise between
adaptability and the benefits of global optimisation. SCS [15]
is an example of an algorithm attempting to achieve this. It
has a global optimisation heuristic that allows it to find the
optimal mapping of task to VM type. This mapping is then
used at runtime to scale the resource pool in or out and
to schedule tasks as they become ready for execution. Our
approach is different to SCS in that the static component
does not analyse the entire workflow structure and instead
optimises the schedule of a subset of the workflow tasks.
Moreover, our static component generates an actual schedule
for these tasks rather than just selecting a VM type.

III. APPLICATION AND RESOURCE MODELS

We consider workflows modelled as Directed Acyclic
Graphs (DAGs); that is, graphs with directed edges and no
cycles or conditional dependencies. Formally, a workflow W
is composed of a set of tasks T = {t1, t2, . . . , tn} and a set
of edges E. An edge e

ij

= (t
i

, t
j

) exists if there is a data
dependency between t

i

and t
j

, case in which t
i

is said to be
the parent of t

j

and t
j

the child of t
i

. Based on this, a child
task cannot run until all of its parent tasks have completed
and its input data is available in the corresponding compute
resource. Also, a workflow is associated with a deadline �

W

,
defined as a time limit for its execution. Additionally, we
assume that the size of a task S

t

is measurable in Million of
Instructions (MIs) and that, for every task, this information
is provided as input to the scheduler.

A pay-as-you go model where VMs are leased on-demand
and are charged per billing period is considered. Any partial
utilisation results in the VM usage being rounded up to
the nearest billing period. We model a VM type, VMT , in
terms of its processing capacity PC

VMT

and cost per billing
period C

VMT

. We define PC
VMT

in terms of the number
of instructions the CPU can process per second, Million of
Instructions per Second (MIPS). It is assumed that for every
VM type, its processing capacity in MIPS can be estimated
based on the information offered by providers.

Workflows process data in the form of files. A common
approach used to share these files among tasks is to use
a peer-to-peer (P2P) model in which files are transferred
directly from the VM running the parent task to the VM
running the child task. Another technique is to use a global
shared storage such as Amazon S3 as a file repository. In
this case, tasks store their output in the global storage and
retrieve their inputs from the same. We consider the latter
model based on the advantages it offers. Firstly, the data
is persisted and hence, can be used for recovery in case of
failures. Secondly, it allows for asynchronous computation.
In the P2P model, synchronous communication between

tasks means that VMs must be kept running until all of
the child tasks have received the corresponding data. With
a shared storage on the contrary, the VM running the parent
task can be released as soon as the data is persisted in the
storage system. This may not only increase the resource
utilisation but also decrease the cost of VM leasing.

We assume data transfers in and out of the global storage
system are free of charge, as is the case for products like
Amazon S3, Google Cloud Storage and Rackspace Block
Storage. As for the actual data storage, most cloud providers
charge based on the amount of data being stored. We do not
include this cost in the total cost calculation of neither our
implementation nor the implementation of the algorithms
used for comparison in the experiments. The reason for this
is to be able to compare our approach with others designed to
transfer files in a P2P fashion. Furthermore, regardless of the
algorithm, the amount of stored data for a given workflow
is most likely the same in every case or it is similar enough
that it does not result in a difference in cost.

We acknowledge the existence of VM provisioning and
deprovisioning delays and assume that the CPU performance
of VMs is not stable [2]. Instead, it varies over time with
its maximum achievable value being the CPU capacity
advertised by the provider. In addition, we assume network
congestion causes a variation in data transfer times [16].
The bandwidth assigned to a transfer depends on the current
contention for the network link being used. In addition, we
assume a global storage with an unlimited storage capacity.
The rates at which it is capable of reading and writing data
vary based on the number of processes currently writing or
reading data from the system. Finally, the processing time of
a task t on a VM of type VMT , PTVMT

t

, is defined as the
sum of its execution time and the time it takes to read the
input files from the storage and write the generated output
files to it. Note that whenever a parent and a child task are
running in the same VM, there is no need to read the child’s
input file from the storage.

IV. THE WRPS ALGORITHM

This section describes the reasoning behind the WRPS
heuristics as well as a detailed explanation of the algorithm.

A. Overview and Motivation
WRPS has dynamic and a static features. Its dynamicity

lies in the fact that the scheduling decisions are made at run-
time, every time tasks are released into an execution queue.
This allows it to adapt to unexpected delays caused by poor
estimates or by environmental changes such as performance
variation, network congestion, and VM provisioning delays.
The static component expands the ability of the algorithm
from making decisions based on a single task (the next one
in the queue) to making decisions based on a group of tasks.
The purpose is to find a balance between the local knowledge
of dynamic algorithms and the global knowledge of static

ones. This is achieved by introducing the concept of pipeline
and by statically scheduling all of the tasks in the execution
queue at once. In this way, WRPS is able to make better
optimisation decisions and find better quality schedules.

A pipeline is a common topological structure in scientific
workflows and is simply a group of tasks with a one-to-one,
sequential relationship between them. Formally, a pipeline P
is defined as a set of tasks T

p

= {t1, t2, . . . , tn} where n � 2

and there is an edge e
i,i+1 between task t

i

and task t
i+1. In

other words t1 is the parent of t2, t2 the parent of t3, and
so on. The first task in a pipeline may have more than one
parent but it must only have one child task. All other tasks
must have a single parent (the previous pipeline task) and
one child (the next pipeline task). A pipeline is associated
with a deadline �

P

which is equal to the deadline of the last
task in the sequence. An example is shown in Figure 1a.

By identifying pipelines in a workflow, we can easily
expand the view from a single task to a set of tasks that can
be scheduled more efficiently as a group rather than on their
own. To avoid communication and processing overheads as
well as VM provisioning and deprovisioning delays, tasks
in a pipeline are clustered together and are always assigned
to run on the same VM. The reasons are twofold. Firstly,
the tasks are sequential and are required to run one after
the other. There is no benefit in terms of parallelisation on
assigning them to different VMs. Secondly, the output file
of a task becomes the input file of the next one, by running
on the same VM, we avoid the cost and time of transferring
these files in and out of the global storage.

The strategy used to schedule queued tasks is derived from
the topological features of scientific workflows. Aside from
pipelines, a workflow also has parallel structures composed
of tasks with no dependencies between them. These tasks
can run simultaneously and are generally found whenever
data distribution or aggregation takes place. In data distribu-
tion [17] a tasks’s output is distributed to multiple tasks for
processing. In data aggregation [17] the output of multiple
tasks is aggregated, or processed, by a single task. Figure
1a shows an example of each of these structures.

The parallel tasks in these structures can be either ho-
mogeneous (same type) or heterogeneous (different types).
The case in which the tasks are homogenous is common in
scientific workflows; examples of well-known applications
with this characteristic are Epigenomics, SIPHT, LIGO,
Montage, and CyberShake. Based on this, we devise a
strategy to efficiently schedule homogeneous parallel tasks
that are of the same size (MIs) and are at the same level
in the DAG. When using a level-based deadline distribution
heuristic, these tasks will also have the same deadline. As an
example, consider the data aggregation case. All the parallel
tasks have to finish running before the aggregation task can
start, therefore they can be assigned the same deadline which
would be equal to the time the aggregation task is due to
start. Note that the case in which tasks are heterogeneous

Task
Type 5

Task
Type 1

Task
Type 4

Task
Type 2

Task
Type 3

Task
Type 6

Task
Type 7

Task
Type 4

Task
Type 1

Task
Type 1

Task
Type 1

Task
Type 1

Task
Type 1

Task
Type 4

Task
Type 4

Data Aggregation

Parallel Tasks

Data Distribution

Parallel Tasks

Pipeline

(a)

fastq2
bfq

filterC
ontas

sol2sn
ger

fastQ
Split

mapM
erge

map map

maqIn
dex

sol2sn
ger

filterC
ontas

fastq2
bfq

filterC
ontas

filterC
ontas

sol2sn
ger

sol2sn
ger

fastq2
bfq

fastq2
bfq

map map

pileup

Bag of Pipelines

(b)

Transt
erm

Findter
m

RNAM
otif Blast

SRNA

FFN_P
arse

BlastS
ynteny

BlastC
and

BlasQ
RNA

BlastP
aralog

SRNA
Annota

te

Paster
Conca

te

Paster

Paster

Paster

Paster Paster

Paster

Paster

Paster

Paster

Paster

PasterPaster PasterPaster

Bag of
Tasks

(c)

Figure 1. Scientific workflow examples. (a) Example of bag of tasks and three different topological structures found in workflows: data aggregation, data
distribution and pipelines. (b) Epigenomics workfow. An example of a bag of pipelines is depicted in this figure. (c) SIPHT workflow.

and at different levels in the workflow is uncommon but yet
possible. An example is the data distribution of the SRNA
task in the SIPHT workflow, shown in Figure 1c. Also, there
are other scenarios aside from distribution and aggregation
where parallel tasks with the same properties can be found,
however we focus on these as means for illustrating the
motivation behind our scheduling policy.

The main static scheduling policy of WRPS consists then
on grouping queued tasks of the same type and with the
same deadline into bags. Two sample bags can be seen in
Figure 1a, the first one is composed of all tasks of Type 1
and the second one of all tasks of Type 4. Scheduling these
bags of tasks is much simpler than scheduling a workflow.
There are no dependencies, the tasks are homogenous, and
have to finish at the same time. We model the problem of
running these tasks before their deadline and with minimum
cost as a variation of the unbounded knapsack problem and
find an optimal solution using dynamic programming. The
same concept is applied to pipelines, they are grouped into
bags and scheduled in the same way as bags of tasks are.
An example of a bag of pipelines is depicted in Figure 1b.

We have therefore designed an algorithm which is dy-
namic to a certain extent in order to adapt to unexpected
delays product of the unpredictability of cloud environments
but that also has a static component that enables it to
generate better quality schedules and meet deadlines at lower
costs. Moreover, it combines a heuristic-based approach with
dynamic programming in order to be able to process large-
scale workflows in an efficient and scalable manner. The
details of WRPS are presented in Section IV-C.

B. The Unbounded Knapsack Problem

The unbounded knapsack problem (UKP) is an NP-hard
combinatorial optimisation problem that derives from the
problem of selecting the most valuable items to pack in a
fixed-size knapsack. Given n items of different types, each
item type 1  i  n with a corresponding weight w

i

and
value v

i

, the goal is to determine the number and type of

items to pack so that the knapsack weight limit W is not
exceeded and the total value of the items is maximised.
Unlimited quantities of each item type are assumed.

Let x
i

� 0 be the number of items of type i to be placed
in the bag. Then UKP can be defined as

maximise
nX

i=1

v
i

x
i

subject to
nX

i=1

w
i

x
i

 W.

This problem can be solved optimally using dynamic pro-
gramming by considering knapsacks of smaller capacities as
subproblems and storing the best value for each capacity.
Let w

i

> 0, then a vector M can be defined where
m[w

i

] is the maximum value that can be obtained with a
weight less than or equal to w

i

. In this way, m[0] = 0

and m[w
i

] = max

wjwi(vj + m[w
i

� w
j

]). The time
complexity of this solution is O(nW) as computing each
m[w

i

] involves examining n items and there are W values of
m[w

i

] to calculate. This running time is pseudo-polynomial
as it grows exponentially with the length of W . Yet, there
are several algorithms that can efficiently solve UKP. An
example is the EDUK [18] algorithm which combines the
concepts of dominance [19], periodicity [20], and mono-
tonic recurrence [21]. Experiments performed by the authors
demonstrate its scalability. For instance, for W > 2 ⇥ 10

8,
n = 10

5, and items with weights in the [1, 105] range, the
average running time was found to be 0.150 seconds.

C. Algorithm
WRPS first preprocesses the DAG by identifying the

pipelines and by assigning a portion of the deadline �
W

to each task. To find the pipelines, tasks are first sorted in
topological order, in this way we ensure data dependencies
are preserved. Afterwards, pipelines are built based on the
following logic. For each sorted task that has not been
processed, the algorithm recursively tries to build a pipeline
that starts with that task. The base cases of the recursion
happen when the processed task has no children, when it
has more than one child or, when it has a single child

with more than one parent task. The recursive stage occurs
when the processed task has strictly one child which at the
same time has strictly one parent (the processed task). In
this case the task is added to the pipeline and the recursion
continues with its child task. Once a pipeline was identified
and the recursion finishes, the process is repeated for the next
unprocessed sorted task, this continues until all the tasks
have been processed. A more detailed explanation of the
recursive part of the algorithm is depicted in Algorithm 1.

Algorithm 1 Find a pipeline recursively
1: procedure FINDPIPELINE(Task t, Pipeline p)
2: if t.children.size > 1 OR t.children.size = 0 OR
3: t.children[0].parents.size > 1 then
4: if p.tasks.size > 0 then
5: p.addTask(t)
6: end if
7: return
8: end if
9: p.addTask(t)

10: findP ipeline(t.children[0], p)
11: end procedure

For the deadline distribution, the algorithm first calculates
the earliest finish time of all tasks defined as eft

t

=

max

p2t.parents

{eft
p

} + PTVMT

t

. The slowest VMT is
used to calculate the task processing times. In this way, they
can only improve if different VM types are used. However, if
using the slowest VM type means not being able to meet the
deadline, then the next fastest VM type is used to estimate
runtimes and so on. Afterwards, the spare time, defined as
the difference between the deadline and the earliest finish
time of the workflow (�

W

� max

t2W

{eft
t

}) is calculated
and divided between the workflow levels based on the num-
ber of tasks they have. Finally, each task is assigned its dead-
line �

t

= max

p2t.parents

{�
p

}+ PTVMT

t

+ t.level.spare.
Once a DAG is preprocessed the task scheduling begins.

During the first iteration, all the entry tasks (those with no
parent tasks) become ready for execution and are placed
in a scheduling queue.Tthese tasks are scheduled and after
they finish their execution, their child tasks are released onto
the queue. This process is repeated until all of the workflow
tasks have been successfully executed. To schedule the tasks
in the queue, tasks are first grouped into bags of tasks and
bags of pipelines. A bag of tasks bot is defined as a group
of one or more tasks T

bot

that can run in parallel. All of the
tasks in a bag share the same deadline �

bot

, are of the same
type ⌧

bot

, and are not part of a pipeline. Formally, bot =

(T
bot

, �
bot

, ⌧
bot

). The definition of bag of pipelines bop is
similar but instead of a group of tasks, the bag contains
one or more pipelines P

bop

that are parallelisable. The tuple
bop = (P

bop

, �
bop

), where �
bop

is the deadline the pipelines
in the bag have in common, formally defines the concept.

To find the sets of bags of tasks BoT = {bot1, . . . , botn}
and bags of pipelines BoP = {bop1, . . . , bopn}, each task
in the queue is processed in the following way. If the task

does not belong to a pipeline, then it is placed in the bot
i

that
contains tasks of the same type and with the same deadline.
If no such bot

i

exists, a new bag is created and the task
assigned to it. If, on the other hand, the task belongs to a
pipeline, the corresponding pipeline is placed in the bop

i

which contains pipelines with the same deadline and types
of tasks. If there is no bop

i

with these characteristics, a new
bag is created with its only element being the given pipeline.

Once the sets BoP and BoT are created, we proceed to
schedule them. Both types of bags are scheduled using the
same policy, with the only difference being that tasks in a
pipeline must be treated as a unit. We explain the heuristic
using BoT , note however that the same rules apply when
scheduling BoP . To schedule BoT , we repeat the following
process for each bag bot

i

2 BoT that has more than one
task (bags with a single element are treated as a special case
and scheduled accordingly). First, WRPS tries to reduce the
size of the bag and reuse already leased VMs by assigning
as many tasks as possible to idle VMs. The number of tasks
mapped to a free VM is determined by the number of tasks
that can finish before their deadline and before the next
billing period of the VM. In this way, wastage of already
paid CPU cycles is reduced without affecting the makespan
of the workflow. After this, a resource provisioning plan is
created for the remaining tasks in the bag.

To generate an efficient resource provisioning plan, WRPS
must explore different solutions using different VM types
and compare their associated costs. We achieve this and find
the optimal combination of VMs that can finish the tasks
in the bag in time with minimum cost by formulating the
problem as a variation of UKP and solve it using dynamic
programming. A knapsack item is defined by its type,
weight, and value. For our problem, we define a scheduling
knapsack item SKI

j

= (VMT
j

, NT
j

, C
j

) where the item
type corresponds to a VM type VMT

j

, the weight is the
maximum number of tasks NT

j

that can run in a VM of type
VMT

j

before their deadline, and the value is the associated
cost C

j

of running NT
j

tasks in a VM of type VMT
j

.
Additionally, we assume there is an unlimited quantity of
VMs of each type that can be potentially leased and define
the knapsack weight limit as the number of tasks in the bag,
that is, W = |T

bot

|. The goal is to find a set of items SKI
so that their combined weight (the total number of tasks) is
at least as large as the knapsack weight limit (the number
of tasks in the bag) and whose combined value is minimum
(the cost of running the tasks is minimum). Formally, the
problem of scheduling a bag of tasks is expressed as

minimise
nX

i=1

C
i

⇥ x
i

subject to
nX

i=1

NT
i

⇥ x
i

� |T
bot

| .

An example on how the resource provisioning plan is
generated for a bag to tasks is shown in Figure 2. Assume
VM types, VMT1 and VMT2. The former can process 1

instructions/sec at a cost of $1/minute and the latter 10

Bag of Tasks
Tasks: 12

Task Size: 100 ins
Task Deadline: 100 sec

Cloud Provider

10

ins/sec

VMT1 1 $1

VM Type

VMT2

cost/min

$10
1

Item #

2

Cost

VMT1 $2

Max. #
of TasksVM Type

VMT2 $20

1

10

Scheduling Knapsack Items

VM1
Type: VMT1

Cost: $2

VM2
Type: VMT1

Cost: $2

VM3
Type: VMT2
Cost: $20

Knapsack (W = 12, Value = $24)

Figure 2. Example of a scheduling plan for a bag of tasks

instructions/sec at a cost of $10/minute. Consider a bag
of 12 tasks, each task has a size of 100 instructions and a
deadline of 100 seconds. The first knapsack item would be
SKI1 = (VMT1, 1, $2). NT1 = 1 as running a task in a
VM that can process 1 instructions/sec takes 100 seconds,
with a deadline of 100 seconds, this means only one task
can run on it before the deadline. C1 = $2 since the VM
billing period is 60 seconds, this means that to use it for 100
seconds, two billing periods need to be paid for. Following
the same reasoning, the second knapsack item would be
SKI2 = (VMT2, 10, $20). The optimal combination of
items to pack is then 2 items of type SKI1 and 1 item
of type SKI2. This means leasing 2 VMs of type VMT1

and running 1 task on each and leasing 1 VM of type VMT2

and running 10 tasks on it, for a total cost of $24.
After solving the UKP problem, a resource provisioning

RP bot

i

= (VMT
i

, numVM
i

, NT
i

) is obtained for each VM
type. It indicates the number of VMs of type VMT

i

to use
(numVM

i

) and the maximum number of tasks to run on
each VM (NT

i

). In rare cases in which there are no VM
types that can finish the tasks on time, a provisioning plan
of the form RP fastest

bot

= (VMT
fastest

,W, 1) is created.
This indicates that a VM of the fastest type must be leased
for each task in the bag so that they can run in parallel and
finish as early as possible. Then, for each RP bop

i

for which
numVM

i

> 0, WRPS tries to find a VM of type VMT
i

which has already been leased and is free to use. If it exists,
then NT

i

tasks from the bag are scheduled on to it. In this
way we reduce cost by using already paid for time slots
and avoid long provisioning delays of newly leased VMs.
If there is no free VM of the required type, a new one is
provisioned and NT

i

tasks are scheduled on to it.
We consider the case of a bags with a single task as a

special one. Single tasks are scheduled on free VMs if they
can finish the task on time and before their current billing
period finishes. If there is no free VM that can achieve this,
then a new VM of the type that is capable of finishing the
task by its deadline at the cheapest cost is provisioned and
the task scheduled to it. If no VM type can finish by the
deadline, the fastest available VM type is used. The pseudo-
code for the scheduling of BoT is shown in Algorithm 2.

WRPS continuously adjusts the deadline distribution to
reflect the actual finish time of tasks. If a task finishes earlier
than expected, all of the remaining tasks will have more time

Algorithm 2 BoT scheduling
1: procedure SCHEDULEBOT(BoT)
2: for all bot 2 BoT do
3: if bot.tasks.size > 1 then
4: RP

bot = UKPBasedProvisioningP lan(bot)
5: for all RP

bot

i

= (VMT

i

, numVM

i

, NT

i

) 2 RP

bot do
6: for k = 0; k < numVM

i

; k ++ do
7: nTasks = min{NT

i

, bot.size}
8: tasks = {t1, . . . , t

nTasks

|t
i

2 bot.tasks}
9: remove tasks from bot.tasks

10: vm = findFreeVM(VMT

i

)
11: if vm == null then
12: vm = provisionNewVM(VMT

i

)
13: end if
14: scheduleTasks(tasks, vm)
15: end for
16: end for
17: else
18: task = bot.taks[0]
19: vm = findFreeVMForTask(task, task.deadline);
20: if vm == null then
21: vm = provisionNewVM(VMT

i

)
22: end if
23: scheduleTask(task, vm)
24: end if
25: end for
26: end procedure

to run and cost can be potentially reduced. When a task
finishes later than expected, the deadline of all remaining
tasks is updated to avoid delays that could lead to the over-
all deadline being missed. WRPS also has a rescheduling
mechanism that enables it to deal with unexpected delays
encountered while running a bag of tasks (or pipelines).
Since multiple tasks are statically assigned to a VM, a delay
in the execution of one task will have an impact on the actual
finishing time of the other ones. To mitigate this effect, when
a task belonging to a bag finishes after its deadline on VM

i

,
then the tasks in the execution queue of VM

i

are analysed in
the following way. If all of the tasks remaining in the queue
of VM

i

can finish by their updated deadline then no action
is taken. If VM

i

cannot finish its queued tasks on time, then
the tasks are released back into the scheduling queue so that
they can be rescheduled based on their updated deadline.

As mentioned earlier, the set of bags of pipelines BoP
is scheduled using the same strategy used for BoT . Just as
tasks, pipelines have a deadline and a size (the aggregated
size of all the pipeline tasks). Thus, we can apply the same
scheduling heuristic and model the problem as a variation of
UKP with a slight difference in the definition of a knapsack
item. For pipelines, SKI

j

= (VMT
j

, NP
j

, C
j

), where an
item’s weight NP

j

, is equal to the maximum number of
pipelines a VM type can finish before their deadline. The
rescheduling strategy is also similar to that of tasks, except
that whenever a task in a pipeline is delayed, the remaining
pipeline tasks are left to finish in the VM while other
pipelines are rescheduled based on their updated deadline.
Once again, bags with a single pipeline are treated as a
special case and are assigned to free VMs if they can finish

mImgT
bl

mDiffF
t

mBack
ground

mProje
ctPP

mCon
catFit

mBgM
odel

mAdd

mShrin
k

mProje
ctPP

mBack
ground

mDiffF
t

mPEG

mProje
ctPP

mProje
ctPP

mDiffF
t

mDiffF
t

mDiffF
t

mDiffF
t

mBack
ground

mBack
ground

(a)

Inspiral

TmpltB
ank

Thinca

TrigBa
nk

TrigBa
nk

Thinca

TmpltB
ank

Inspiral

TmpltB
ank

TmpltB
ank

TmpltB
ank

TmpltB
ank

TmpltB
ank

TmpltB
ank

TmpltB
ank

Inspiral Inspiral Inspiral Inspiral Inspiral Inspiral Inspiral

Inspiral Inspiral Inspiral Inspiral Inspiral Inspiral Inspiral Inspiral Inspiral

TrigBa
nk

TrigBa
nk

TrigBa
nk

TrigBa
nk

TrigBa
nk

TrigBa
nk

TrigBa
nk

Thinca Thinca

(b)

Figure 3. (a) Montage workflow. (b) LIGO workflow.

Table I
VM TYPES BASED ON GOOGLE COMPUTE ENGINE OFFERINGS

Name Memory Google Compute
Engine Units

Price per Minute

n1-standard-1 3.75GB 2.75 $0.00105
n1-standard-2 7.5GB 5.50 $0.0021
n1-standard-4 15GB 11 $0.0042
n1-standard-8 30GB 22 $0.0084

them by their deadline or to a newly leased VM of the type
that can finish them by their deadline at minimum cost.

Finally, WRPS shuts down a VM if its use is approaching
the next billing period and there are no tasks assigned to
it. An estimate of the VM deprovisioning delay is used to
ensure the VM shutdown request is sent early enough so that
it stops being billed before the current billing period ends.

V. PERFORMANCE EVALUATION

WRPS was evaluated using four well-known workflows
from various scientific areas: Montage from the astronomy
field, Epigenomics and SIPHT from the bioinformatics do-
main, and LIGO from the astrophysics area. The Epige-
nomics and SIPHT structures are shown in Figure 1 while
LIGO and Montage are depicted in Figure 3. Each of these
workflows has different topological structures and different
data and computational characteristics. Their description and
characterisation is presented by Bharathi et al. [17].

Two algorithms were used to evaluate the quality of the
schedules produced by WRPS. The first one is the Static
Provisioning Static Scheduling (SPSS) [4] algorithm which
assigns sub-deadlines to tasks and schedules them onto
existing or newly leased VMs so that cost is minimised. It
was designed to schedule a group of interrelated workflows
but it can easily be adapted to schedule a single one. It
was chosen as it is a static algorithm capable of generating
high-quality solutions. Its drawback is its inability to meet
deadlines when unexpected delays occur. However, we are
still interested in comparing WRPS to SPSS when both are
able to meet the deadline constraints. Also, by comparing
them, we are able to validate our solution’s adaptability and

demonstrate how when other algorithms fail to recover from
unexpected delays WRPS succeeds in doing so.

The second algorithm is SCS [15], a state-of-the-art
dynamic algorithm that has an auto-scaling mechanism that
allocates and deallocates VMs based on the current status of
tasks. It determines the most cost-efficient VM type for each
task and creates a load vector. This load vector is updated
every scheduling cycle and indicates how many VMs of
each type are needed in order for the tasks to finish by their
deadline with minimum cost. The purpose is to demonstrate
how the static component of WRPS allows it to produce
better quality schedules than SCS.

An IaaS provider offering a single data centre and four
types of VMs was modelled. The VM type configurations
are based on the Google Compute Engine offerings and are
shown in Table I. A billing period of 60 seconds was used,
as offered by providers such as Google Compute Engine and
Microsoft Azure. For all VM types, the provisioning delay
was set to 30 seconds [22] and the deprovisioning delay
to 3 seconds [3]. CPU performance variation was modelled
after the findings by Schad et al. [2]. The performance of
a VM is degraded by at most 24% based on a normal
distribution with a 12% mean and a 10% standard deviation.
A network link’s total available bandwidth is shared between
all the transfers using the link at a given point in time.
This bandwidth allocation was done using the progressive
filling algorithm [23] to model congestion and data transfer
time degradation. A global shared storage with a maximum
reading and writing speeds was also modelled. The reading
speed achievable by a given transfer is determined by the
number of processes currently reading from the storage,
the same rule applies for the writing speed. In this way,
congestion in the storage system is simulated.

Workflows with approximately 1000 tasks were used for
the evaluation. We acknowledge that the estimation of task
sizes might not be 100% accurate and hence, introduce in our
simulation a variation of ±10% to the size of each task based
on a uniform distribution. The experiments were conducted

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4. Makespan and cost experiment results. The reference lines in the makespan line plots indicate the four deadline values. The stripped bars in
the cost bar charts indicate the deadline was not met for the corresponding deadline value. (a) LIGO makespan line plot. (b) LIGO cost bar chart. (c)
Montage makespan line plot. (d) Montage cost bar chart. (e) Epigenomics makespan line plot. (f) Epigenomics cost bar chart. (g) SIPHT makespan line
plot. (h) SIPHT cost bar chart.

using four different deadlines, �
W1 being the strictest one

and �
W4 being the most relaxed one. For each workflow,

�
W1 is equal to the time it takes to execute the tasks in

the critical path plus the time it takes to transfer all the
input files into the storage and the output files out of it. The
remaining deadlines are based on �

W1 and an interval size
�
int

= �
W1/2: �

W2 = �
W1 + �

int

, �
W3 = �

W2 + �
int

, and
�
W4 = �

W3 + �
int

. The results displayed are the average
obtained after running each experiment 20 times.

A. Results and Analysis

1) Makespan and Cost Evaluation: The average
makespan and cost obtained for each of the workflows is
depicted in Figure 4. The reference lines in the makespan
line plots correspond to the four deadline values used for
each workflow. Evaluating the makespan and cost with
regards to this value is essential as the main objective of

all the algorithms is to finish before the given deadline.
The dashed bars in the cost bar charts indicate that the
algorithm failed to meet the corresponding deadline.

For LIGO, �
W1 proves to be to tight for any of the algo-

rithms to finish on time. However, the difference between the
makespan obtained by WRPS and the deadline is marginal.
Additionally, WRPS generates the cheapest schedule in this
case. The second deadline is still not relaxed enough for SCS
or SPSS to achieve their goal, however, WRPS demonstrates
its adaptability and ability to generate cheap schedules by
being the only one to finish its execution before the deadline
and with the lowest cost. For the remaining deadlines, �

W3

and �
W4, both SCS and WRPS are capable of meeting the

constraint, in both cases SCS has a slightly lower makespan
but WRPS has a lower cost. SPSS is only capable of
meeting the most relaxed deadline, and in this case, WRPS
outperforms it in terms of execution cost. Overall, WRPS

meets the most deadlines and in all of the cases achieves
better quality schedules with the cheapest costs.

In the case of Montage, SCS and WRPS meet all of
the deadlines with WRPS consistently generating cheaper
schedules. SPSS fails to meet the tightest deadline but
succeeds in meeting �

W2, �
W3, and �

W4. Its success in
meeting three out of four deadlines may be explained by the
fact that most of the tasks in the Montage application are
considered small and require low CPU utilisation, leading to
a potentially low CPU performance variation impact on the
static schedule. In the case of �

W2, SPSS proves its ability
to generate cheap schedules and performs better than its
counterparts; although WRPS has a lower makespan in this
case, its cost is slightly higher than that of SPSS. For �

W3

and �
W4 however, WRPS succeeds in generating cheaper

solutions than its static counterpart.
The three algorithms fail to meet �

W1 of the Epigenomics
workflow, the closest makespan to the deadline is achieved
by SCS, followed by WRPS and finally SPSS. WRPS is the
only algorithm capable of meeting �

W2 and still achieves the
lowest cost. The third deadline constraint is met by SPSS
and WRPS, with WRPS once again outperforming SPSS
in terms of cost. Finally, as the deadlines become relaxed
enough, the three algorithms succeed in meeting the deadline
and WRPS does it with the lowest cost. The high deadline
miss percentage of SCS and SPSS in this case is due to
the high-CPU nature of the Epigenomics tasks, meaning that
CPU performance degradation will have a significant impact
on the execution time of tasks causing unexpected delays.

SIPHT is an interesting application to evaluate WRPS
with due to its topological features. As mentioned earlier,
it has data distribution and aggregation structures in which
the parallel tasks differ on their type. The results demonstrate
that even in cases like this, WRPS remains responsive and
efficient. It succeeds in meeting all the deadlines with the
lowest makespan and with the lowest cost amongst the
algorithms that meet the constraint. The large number of files
that need to be transferred when running this workflow lead
to SPSS struggling to recover from the lower data transfer
rates due to network congestion and hence failing to meet
the four deadlines. Even SCS fails to adapt to these delays
on time and fails to meet the three tightest deadlines.

Overall, WRPS is the most successful algorithm in meet-
ing deadlines. On average, it succeeds in meeting the con-
straint in 87.5% of the cases while SCS succeeds in 56.25%
and SPSS on 37.5%. These results are inline with what was
expected of each algorithm. The static approach is not very
efficient in meeting the deadlines whereas the dynamism in
WRPS and SCS allows them to accomplish their goal more
often. The experiments also demonstrate the efficiency of
WRPS in terms of its ability to generate low cost solutions.
It outperforms SCS an SPSS as in all of the scenarios
except one (Montage workflow, �

W2); WRPS achieves the
lowest cost when compared to those algorithms that met

(a) (b)

(c) (d)

Figure 5. Average number of files read from the storage by each algorithm.
The reference lines indicate the total number of files required as input by
the given workflow. (a) LIGO. (b) Montage. (c) Epigenomics. (d) SIPHT.

the deadline. Another desirable characteristic of WRPS that
can be observed from the results is its ability to consistently
increase the time it takes to run the workflow and reduce the
cost as the deadline becomes more relaxed. The importance
of this relies in the fact that many users are willing to trade-
off execution time for lower costs while others are willing to
pay higher costs for faster executions. The algorithm needs
to behave within this logic in order for the deadline value
given by users to be meaningful.

2) Network Usage Evaluation: Network links are well-
known bottlenecks in Cloud environments. For instance,
Jackson et al. [16] report a data transfer time variation of up
to 65% in Amazon EC2. Hence, as means of reducing the
sources of unpredictability and improving the performance
of workflow applications, it is important for scheduling
algorithms to try to reduce the amount of data transferred
through the cloud network infrastructure. In this section, we
evaluate the number of files read from the global storage
by each of the algorithms. Recall that a task does not need
to read from the storage system whenever the input files it
requires are already available in the VM where it is running.

The bar charts in Figure 5 show the average number
of files read across the four deadlines for each workflow
and algorithm. The reference line indicates the total number
of input files that are required by the workflow tasks. By
scheduling pipelines in a single VM and by running as many
tasks or pipelines from the same bag in a single VM, WRPS
is successful in reducing by 50% or more the number of files
read from the storage. In fact, WRPS reads the least amount
of files when compared to SCS and SPSS in the cases of the
LIGO and Epigenomics workflow. The files read from the
storage are reduced by 58% in the LIGO case and by 75% in

the Epigenomics case. For the Montage workflow, SCS and
WRPS achieve a similar performance and reduce the number
of files by approximately 50%. Finally, even though reduced
by 23%, WRPS is not as successful in reducing the number
of files as SCS and SPSS for the SIPHT workflow. The lack
of pipelines and bags of tasks in the SIPHT application are
the main cause for this and as a future work we would like to
explore and develop new heuristics so that WRPS is capable
of scheduling these type of workflows more efficiently.

VI. CONCLUSIONS

WRPS, a responsive resource provisioning and scheduling
algorithm for scientific workflows in clouds capable of
generating high quality schedules was presented. It has as
objectives minimising the overall cost of using the cloud
infrastructure while meeting a user-defined deadline. The
algorithm is dynamic to a certain extent to respond to
unexpected delays and environmental dynamics common in
cloud computing. It also has a static component that allows
it to find the optimal schedule for a group of workflow tasks,
consequently improving the quality of the schedules it gen-
erates. By reducing the workflow into bags of homogeneous
tasks and pipelines that share a deadline, we are able to
model their scheduling as a variation UKP and solve it in
pseudo-polynomial time using dynamic programming.

The simulation experiments show that our solution has an
overall better performance than state-of-the-art algorithms.
It is successful in meeting deadlines under unpredictable sit-
uations involving performance variation, network congestion
and inaccurate task size estimations. It achieves this at low
costs, even lower than fully static approaches which have the
ability of using the entire workflow structure and comparing
various solutions before the workflow execution.

REFERENCES

[1] J. D. Ullman, “Np-complete scheduling problems,” J. Com-
put. System Sci., vol. 10, no. 3, pp. 384–393, 1975.

[2] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, “Runtime mea-
surements in the cloud: observing, analyzing, and reducing
variance,” Proc. VLDB Endowment, vol. 3, no. 1-2, pp. 460–
471, 2010.

[3] M. Mao and M. Humphrey, “A performance study on the VM
startup time in the cloud,” in Proc. Int. Conf. Cloud Comput.
(CLOUD), 2012.

[4] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Cost-
and deadline-constrained provisioning for scientific workflow
ensembles in IaaS clouds,” in Proc. Int. Conf. High Perfor-
mance Comput., Netw., Storage Anal., 2012.

[5] A. C. Zhou, B. He, and C. Liu, “Monetary cost optimiza-
tions for hosting workflow-as-a-service in IaaS clouds,” IEEE
Trans. Cloud Comput., vol. PP, no. 99, pp. 1–1, 2015.

[6] D. Poola, K. Ramamohanarao, and R. Buyya, “Fault-tolerant
workflow scheduling using spot instances on clouds,” Proce-
dia Comput. Sci., vol. 29, pp. 523–533, 2014.

[7] E.-K. Byun, Y.-S. Kee, J.-S. Kim, and S. Maeng, “Cost
optimized provisioning of elastic resources for application
workflows,” Future Generation Comput. Syst., vol. 27, no. 8,
pp. 1011–1026, 2011.

[8] M. Xu, L. Cui, H. Wang, and Y. Bi, “A multiple QoS con-
strained scheduling strategy of multiple workflows for cloud
computing,” in Proc. Int. Symp. Parallel Distrib. Processing
Applicat. (ISPA), 2009.

[9] T. T. Huu and J. Montagnat, “Virtual resources allocation for
workflow-based applications distribution on a cloud infras-
tructure,” in Proc. Int. Conf. Cluster, Cloud Grid Comput.
(CCGrid), 2010.

[10] D. de Oliveira, K. A. Ocaña, F. Baião, and M. Mattoso, “A
provenance-based adaptive scheduling heuristic for parallel
scientific workflows in clouds,” J. Grid Comput., vol. 10,
no. 3, pp. 521–552, 2012.

[11] S. Abrishami, M. Naghibzadeh, and D. H. Epema, “Deadline-
constrained workflow scheduling algorithms for infrastruc-
ture as a service clouds,” Future Generation Comput. Syst.,
vol. 29, no. 1, pp. 158–169, 2013.

[12] Z. Wu, Z. Ni, L. Gu, and X. Liu, “A revised discrete particle
swarm optimization for cloud workflow scheduling,” in Proc.
Int. Conf. Computational Intell. Security (CIS), 2010.

[13] S. Yassa, R. Chelouah, H. Kadima, and B. Granado, “Multi-
objective approach for energy-aware workflow scheduling in
cloud computing environments,” Sci. World J., 2013.

[14] R. Calheiros and R. Buyya, “Meeting deadlines of scientific
workflows in public clouds with tasks replication,” IEEE
Trans. Parallel Distrib. Syst., vol. 25, no. 7, pp. 1787–1796,
2014.

[15] M. Mao and M. Humphrey, “Auto-scaling to minimize cost
and meet application deadlines in cloud workflows,” in Proc.
Int. Conf. High Performance Comput., Newt., Storage Anal.
(SC), 2011.

[16] K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon,
S. Cholia, J. Shalf, H. J. Wasserman, and N. J. Wright,
“Performance analysis of high performance computing ap-
plications on the amazon web services cloud,” in Proc. Int.
Conf. Cloud Comput. Technol. and Sci. (CloudCom), 2010.

[17] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-
H. Su, and K. Vahi, “Characterization of scientific work-
flows,” in Proc. Workshop Workflows Support Large-Scale Sci.
(WORKS), 2008.

[18] R. Andonov, V. Poirriez, and S. Rajopadhye”, “Unbounded
knapsack problem: Dynamic programming revisited,” Euro-
pean J. Oper. Research, vol. 123, no. 2, pp. 394 – 407, 2000.

[19] P. C. Gilmore and R. E. Gomory, “A linear programming ap-
proach to the cutting stock problem-part ii,” Oper. Research,
vol. 11, no. 6, pp. 863–888, 1963.

[20] P. Gilmore and R. Gomory, “The theory and computation
of knapsack functions,” Oper. Research, vol. 14, no. 6, pp.
1045–1074, 1966.

[21] R. Andonov and S. Rajopadhye, “A sparse knapsack algo-
tech-cuit and its synthesis,” in Proc. Int. Conf. Appl. Specific
Array Processors, 1994.

[22] S. Stadill, “By the numbers: How google compute engine
stacks up to amazon ec2,” https://gigaom.com/2013/03/15/by-
the-numbers-how-google-compute-engine-stacks-up-to-
amazon-ec2/.

[23] D. P. Bertsekas, R. G. Gallager, and P. Humblet, Data
networks. Prentice-Hall International New Jersey, 1992.

