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12.1 INTRODUCTION

A workflow models a process as consisting of a series of steps that simplifies the
complexity of execution and management of applications. Scientific workflows
in domains such as high-energy physics and life sciences utilize distributed
resources in order to access, manage, and process a large amount of data from a
higher level. Processing and managing such large amounts of data require the
use of a distributed collection of computation and storage facilities. These
resources are often limited in supply and are shared among many competing
users. The recent progress in virtualization technologies and the rapid growth
of cloud computing services have opened a new paradigm in distributed
computing for utilizing existing (and often cheaper) resource pools for on-
demand and scalable scientific computing. Scientific Workflow Management
Systems (WfMS) need to adapt to this new paradigm in order to leverage the
benefits of cloud services.

Cloud services vary in the levels of abstraction and hence the type of service
they present to application users. Infrastructure virtualization enables provi-
ders such as Amazon1 to offer virtual hardware for use in compute- and data-
intensive workflow applications. Platform-as-a-Service (PaaS) clouds expose a
higher-level development and runtime environment for building and deploying
workflow applications on cloud infrastructures. Such services may also expose
domain-specific concepts for rapid-application development. Further up in the
cloud stack are Software-as-a-Service providers who offer end users with
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standardized software solutions that could be integrated into existing
workflows.

This chapter presents workflow engines and its integration with the cloud
computing paradigm. We start by reviewing existing solutions for workflow
applications and their limitations with respect to scalability and on-demand
access.We thendiscuss someof thekeybenefits that cloud services offerworkflow
applications, compared to traditional grid environments. Next, we give a brief
introduction toworkflowmanagement systems in order to highlight components
that will become an essential part of the discussions in this chapter. We discuss
strategies for utilizing cloud resources in workflow applications next, along with
architectural changes, useful tools, and services. We then present a case study on
the use of cloud services for a scientific workflow application and finally end the
chapter with a discussion on visionary thoughts and the key challenges to realize
them. In order to aid our discussions, we refer to the workflow management
system and cloud middleware developed at CLOUDS Lab, University of
Melbourne. These tools, referred to as Cloudbus toolkit [1], henceforth, are
mature platforms arising from years of research and development.

12.2 BACKGROUND

Over the recent past, a considerable body of work has been done on the use of
workflow systems for scientific applications. Yu and Buyya [2] provide a
comprehensive taxonomy of workflow management systems based on work-
flow design, workflow scheduling, fault management, and data movement.
They characterize and classify different approaches for building and executing
workflows on Grids. They also study existing grid workflow systems high-
lighting key features and differences.

Some of the popular workflow systems for scientific applications include
DAGMan (Directed Acyclic Graph MANager) [3, 4], Pegasus [5], Kepler [6],
and Taverna workbench [7]. DAGMan is a workflow engine under the Pegasus
workflow management system. Pegasus uses DAGMan to run the executable
workflow. Kepler provides support for Web-service-based workflows. It uses
an actor-oriented design approach for composing and executing scientific
application workflows. The computational components are called actors, and
they are linked together to form a workflow. The Taverna workbench enables
the automation of experimental methods through the integration of various
services, including WSDL-based single operation Web services, into workflows.
For a detailed description of these systems, we refer you to Yu and Buyya [2].

Scientific workflows are commonly executed on shared infrastructure such as
Tera-Grid,2 Open Science Grid,3 and dedicated clusters [8]. Existing workflow
systems tend to utilize these global Grid resources that are made available

2 http://www.teragrid.org
3 http://www.opensciencegrid.org
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through prior agreements and typically at no cost. The notion of leveraging
virtualized resources was new, and the idea of using resources as a utility [9, 10]
was limited to academic papers and was not implemented in practice. With the
advent of cloud computing paradigm, economy-based utility computing is
gaining widespread adoption in the industry.

Deelman et al. [11] presented a simulation-based study on the costs involved
when executing scientific application workflows using cloud services. They
studied the cost performance trade-offs of different execution and resource
provisioning plans, and they also studied the storage and communication fees
of Amazon S3 in the context of an astronomy application known as Montage
[5, 10]. They conclude that cloud computing is a cost-effective solution for data-
intensive applications.

The Cloudbus toolkit [1] is our initiative toward providing viable solutions
for using cloud infrastructures. We propose a wider vision that incorporates an
inter-cloud architecture and a market-oriented utility computing model. The
Cloudbus workflow engine [12], presented in the sections to follow, is a step
toward scaling workflow applications on clouds using market-oriented
computing.

12.3 WORKFLOW MANAGEMENT SYSTEMS AND CLOUDS

The primary benefit of moving to clouds is application scalability. Unlike grids,
scalability of cloud resources allows real-time provisioning of resources to meet
application requirements at runtime or prior to execution. The elastic nature of
clouds facilitates changing of resource quantities and characteristics to vary at
runtime, thus dynamically scaling up when there is a greater need for additional
resources and scaling down when the demand is low. This enables workflow
management systems to readily meet quality-of-service (QoS) requirements of
applications, as opposed to the traditional approach that required advance
reservation of resources in global multi-user grid environments. With most
cloud computing services coming from large commercial organizations, service-
level agreements (SLAs) have been an important concern to both the service
providers and consumers. Due to competitions within emerging service
providers, greater care is being taken in designing SLAs that seek to offer (a)
better QoS guarantees to customers and (b) clear terms for compensation in the
event of violation. This allows workflow management systems to provide better
end-to-end guarantees when meeting the service requirements of users by
mapping them to service providers based on characteristics of SLAs. Econom-
ically motivated, commercial cloud providers strive to provide better services
guarantees compared to grid service providers. Cloud providers also take
advantage of economies of scale, providing compute, storage, and bandwidth
resources at substantially lower costs. Thus utilizing public cloud services could
be economical and a cheaper alternative (or add-on) to the more expensive
dedicated resources. One of the benefits of using virtualized resources for
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workflow execution, as opposed to having direct access to the physical
machine, is the reduced need for securing the physical resource from malicious
code using techniques such as sandboxing. However, the long-term effect of
using virtualized resources in clouds that effectively share a “slice” of the
physical machine, as opposed to using dedicated resources for high-perfor-
mance applications, is an interesting research question.

12.3.1 Architectural Overview

Figure 12.1 presents a high-level architectural view of a WorkflowManagement
System (WfMS) utilizing cloud resources to drive the execution of a scientific
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workflow application. The workflow system comprises the workflow engine, a
resource broker [13], and plug-ins for communicating with various technolo-
gical platforms, such as Aneka [14] and Amazon EC2. A detailed architecture
describing the components of a WfMS is given in Section 12.4.

User applications could only use cloud services or use cloud together with
existing grid/cluster-based solutions. Figure 12.1 depicts two scenarios, one
where the Aneka platform is used in its entirety to complete the workflow, and
the other where Amazon EC2 is used to supplement a local cluster when there
are insufficient resources to meet the QoS requirements of the application.
Aneka [13], described in further detail in Section 12.5, is a PaaS cloud and can be
run on a corporate network or a dedicated cluster or can be hosted entirely on an
IaaS cloud. Given limited resources in local networks, Aneka is capable of
transparently provisioning additional resources by acquiring new resources in
third-party cloud services such as Amazon EC2 to meet application demands.
This relieves the WfMS from the responsibility of managing and allocating
resources directly, to simply negotiating the required resources with Aneka.

Aneka also provides a set of Web services for service negotiation, job
submission, and job monitoring. The WfMS would orchestrate the workflow
execution by scheduling jobs in the right sequence to the Aneka Web Services.

The typical flow of events when executing an application workflow on
Aneka would begin with the WfMS staging in all required data for each job
onto a remote storage resource, such as Amazon S3 or an FTP server. In this
case, the data would take the form of a set of files, including the application
binaries. These data can be uploaded by the user prior to execution, and they
can be stored in storage facilities offered by cloud services for future use. The
WfMS then forwards workflow tasks to Aneka’s scheduler via the Web service
interface. These tasks are subsequently examined for required files, and the
storage service is instructed to stage them in from the remote storage server, so
that they are accessible by the internal network of execution nodes. The
execution begins by scheduling tasks to available execution nodes (also known
as worker nodes). The workers download any required files for each task they
execute from the storage server, execute the application, and upload all output
files as a result of the execution back to the storage server. These files are then
staged out to the remote storage server so that they are accessible by other tasks
in the workflow managed by the WfMS. This process continues until the
workflow application is complete.

The second scenario describes a situation in which the WfMS has greater
control over the compute resources and provisioning policies for executing
workflow applications. Based on user-specified QoS requirements, the WfMS
schedules workflow tasks to resources that are located at the local cluster
and in the cloud. Typical parameters that drive the scheduling decisions in
such a scenario include deadline (time) and budget (cost) [15, 16]. For instance,
a policy for scheduling an application workflow at minimum execution
cost would utilize local resources and then augment them with cheaper
cloud resources, if needed, rather than using high-end but more expensive
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cloud resources. On the contrary, a policy that scheduled workflows to achieve
minimum execution time would always use high-end cluster and cloud
resources, irrespective of costs. The resource provisioning policy determines
the extent of additional resources to be provisioned on the public clouds. In this
second scenario, the WfMS interacts directly with the resources provisioned.
When using Aneka, however, all interaction takes place via the Web service
interface.

The following sections focuses on the integration of workflow management
systems and clouds and describes in detail practical issues involved in using
clouds for scientific workflow applications.

12.4 ARCHITECTURE OF WORKFLOW MANAGEMENT SYSTEMS

Scientific applications are typically modeled as workflows, consisting of tasks,
data elements, control sequences and data dependencies. Workflow manage-
ment systems are responsible for managing and executing these workflows.
According to Raicu et al. [17], scientific workflow management systems are
engaged and applied to the following aspects of scientific computations: (1)
describing complex scientific procedures (using GUI tools, workflow specific
languages), (2) automating data derivation processes (data transfer compo-
nents), (3) high-performance computing (HPC) to improve throughput and
performance (distributed resources and their coordination), and (4) provenance
management and query (persistence components). The Cloudbus Workflow
Management System [12] consists of components that are responsible for
handling tasks, data and resources taking into account users’ QoS require-
ments. Its architecture is depicted in Figure 12.2. The architecture consists of
three major parts: (a) the user interface, (b) the core, and (c) plug-ins. The user
interface allows end users to work with workflow composition, workflow
execution planning, submission, and monitoring. These features are delivered
through a Web portal or through a stand-alone application that is installed at
the user’s end. Workflow composition is done using an XML-based Workflow
Language (xWFL). Users define task properties and link them based on their
data dependencies. Multiple tasks can be constructed using copy-paste func-
tions present in most GUIs.

The components within the core are responsible for managing the execution
of workflows. They facilitate in the translation of high-level workflow descrip-
tions (defined at the user interface using XML) to task and data objects. These
objects are then used by the execution subsystem. The scheduling component
applies user-selected scheduling policies and plans to the workflows at various
stages in their execution.The tasks anddatadispatchers interactwith the resource
interface plug-ins to continuously submit and monitor tasks in the workflow.
These components form the core part of the workflow engine.

The plug-ins support workflow executions on different environments and
platforms. Our system has plug-ins for querying task and data characteristics
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(e.g., querying metadata services, reading from trace files), transferring data to
and from resources (e.g., transfer protocol implementations, and storage and
replication services), monitoring the execution status of tasks and applications
(e.g., real-time monitoring GUIs, logs of execution, and the scheduled retrieval
of task status), and measuring energy consumption.

The resources are at the bottom layer of the architecture and include
clusters, global grids, and clouds. The WfMS has plug-in components for
interacting with various resource management systems present at the front end
of distributed resources. Currently, the Cloudbus WfMS supports Aneka, Pbs,
Globus, and fork-based middleware. The resource managers may communicate
with the market maker, scalable application manager, and InterCloud services
for global resource management [18].

12.5 UTILIZING CLOUDS FOR WORKFLOW EXECUTION

Taking the leap to utilizing cloud services for scientific workflow applications
requires an understanding of the types of clouds services available, the required
component changes in workflow systems for interacting with cloud services, the
set of tools available to support development and deployment efforts, the steps
involved in deploying workflow systems and services on the cloud, and an
appreciation of the key benefits and challenges involved. In the sections to
follow, we take a closer look at some of these issues. We begin by introducing
the reader to the Aneka Enterprise Cloud service. We do this for two reasons.
First, Aneka serves as a useful tool for utilizing clouds, including platform
abstraction and dynamic provisioning. Second, we describe later in the chapter
a case study detailing the use of Aneka to execute a scientific workflow
application on clouds.

12.5.1 Aneka

Aneka is a distributed middleware for deploying platform-as-a-service (PaaS)
offerings (Figure 12.3). Developed at CLOUDS Lab, University of Melbourne,
Aneka is the result of years of research on cluster, grid, and cloud computing
for high-performance computing (HPC) applications. Aneka, which is both a
development and runtime environment, is available for public use (for a cost),4

can be installed on corporate networks, or dedicated clusters, or can be hosted
on infrastructure clouds like Amazon EC2. In comparison, similar PaaS
services such as Google AppEngine [19] and Windows Azure [20] are in-house
platforms hosted on infrastructures owned by the respective companies. Aneka
was developed on Microsoft’s.NET Framework 2.0 and is compatible with
other implementations of the ECMA 335 standard [21], such as Mono. Aneka

4 http://www.manjrasoft.com
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can run on popular platforms such as Microsoft Windows, Linux, and Mac OS
X, harnessing the collective computing power of a heterogeneous network.

The runtime environment consists of a collection of Aneka containers
running on physical or virtualized nodes. Each of these containers can be
configured to play a specific role such as scheduling or execution. The Aneka
distribution also provides a set of tools for administrating the cloud, reconfi-
guring nodes, managing users, and monitoring the execution of applications.
The Aneka service stack provides services for infrastructure management,
application execution management, accounting, licensing, and security. For
more information we refer you to Vecchiola et al. [14].

Aneka’s Dynamic Resource Provisioning service enables horizontal scaling
depending on the overall load in the cloud. The platform is thus elastic in
nature and can provision additional resources on-demand from external
physical or virtualized resource pools, in order to meet the QoS requirements
of applications. In a typical scenario, Aneka would acquire new virtualized
resources from external clouds such as Amazon EC2, in order to meet the
minimum waiting time of applications submitted to Aneka. Such a scenario
would arise when the current load in the cloud is high, and there is a lack of
available resources to timely process all jobs.

The development environment provides a rich set of APIs for developing
applications that can utilize free resources of the underlying infrastructure.
These APIs expose different programming abstractions, such as the task model,
thread model, andMapReduce [22]. The task programming model is of particular
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importance to the current discussion. It models “independent bag of tasks”
(BoT) applications that are composed of a collection of work units independent
of each other, and it may be executed in any given order. One of the benefits of
the task programming model is its simplicity, making it easy to run legacy
applications on the cloud. An application using the task model composes one or
more task instances and forwards them as work units to the scheduler. The
scheduling service currently supports the First-In-First-Out, First-In-First-Out
with Backfilling, Clock-Rate Priority, and Preemption-Based Priority Queue
scheduling algorithms. The runtime environment also provides two specialized
services to support this model: the task scheduling service and the task execution
service.

The storage service provides a temporary repository for application files—
that is, input files that are required for task execution, and output files that are
he result of execution. Prior to dispatching work units, any files required
are staged-in to the storage service from the remote location. This remote
location can be either the client machine, a remote FTP server, or a cloud
storage service such as Amazon S3. The work units are then dispatched to
executors, which download the files before execution. Any output files
produced as a result of the execution are uploaded back to the storage service.
From here they are staged-out to the remote storage location.

12.5.2 Aneka Web Services

Aneka exposes three SOAP Web services for service negotiation, reservation,
and task submission, as depicted in Figure 12.4. The negotiation and reserva-
tion services work in concert, and they provide interfaces for negotiating
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resource use and reserving them in Aneka for predetermined timeslots. As such,
these services are only useful when Aneka has limited resources to work with
and no opportunities for provisioning additional resources. The task Web
service provides a SOAP interface for executing jobs on Aneka. Based on the
task programming model, this service allows remote clients to submit jobs,
monitor their status, and abort jobs.

12.5.3 General Approach

Traditional WfMSs were designed with a centralized architecture and were thus
tied to a single machine. Moving workflow engines to clouds requires (a)
architectural changes and (b) integration of cloud management tools.

Architectural Changes. Most components of a WfMS can be separated from
the core engine so that they can be executed on different cloud services. Each
separated component could communicate with a centralized or replicated
workflow engine using events. The manager is responsible for coordinating
the distribution of load to its subcomponents, such as the Web server,
persistence, monitoring units, and so forth.

In our WfMS, we have separated the components that form the architecture
into the following: user interface, core, and plug-ins. The user interface can now
be coupled with a Web server running on a “large” instance of cloud that can
handle increasing number of users. The Web request from users accessing the
WfMS via a portal is thus offloaded to a different set of resources.

Similarly, the core and plug-in components can be hosted on different types
of instances separately. Depending on the size of the workload from users, these
components could be migrated or replicated to other resources, or reinforced
with additional resources to satisfy the increased load. Thus, employing
distributed modules of the WfMS on the basis of application requirements
helps scale the architecture.

Integration of Cloud Management Tools. As the WfMS is broken down
into components to be hosted across multiple cloud resources, we need a
mechanism to (a) access, transfer, and store data and (b) enable and monitor
executions that can utilize this approach of scalable distribution of
components.

The cloud service provider may provide APIs and tools for discovering the
VM instances that are associated to a user’s account. Because various types of
instances can be dynamically created, their characteristics such as CPU
capacity and amount of available memory are a part of the cloud service
provider’s specifications. Similarly, for data storage and access, a cloud may
provide data sharing, data movement, and access rights management capabil-
ities to user’s applications. Cloud measurement tools may be in place to
account for the amount of data and computing power used, so that users are
charged on the pay-per-use basis. A WfMS now needs to access these tools
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to discover and characterize the resources available in the cloud. It also needs to
interpret the access rights (e.g., access control lists provided by Amazon),
use the data movement APIs, and share mechanisms between VMs to fully
utilize the benefits of moving to clouds. In other words, traditional catalog
services such as the Globus Monitoring and Discovery Service (MDS) [23],
Replica Location Services, Storage Resource Brokers, Network Weather
Service [24], and so on could be easily replaced by more user-friendly and
scalable tools and APIs associated with a cloud service provider. We describe
some of these tools in the following section.

12.5.4 Tools for Utilizing Clouds in WfMS

The range of tools and services offered by cloud providers play an important
role in integrating WfMSs with clouds (Figure 12.5). Such services can facilitate
in the deployment, scaling, execution, and monitoring of workflow systems.
This section discusses some of the tools and services offered by various service
providers that can complement and support WfMSs.

A WfMS manages dynamic provisioning of compute and storage resources
in the cloud with the help of tools and APIs provided by service providers. The
provisioning is required to dynamically scale up/down according to application
requirements. For instance, data-intensive workflow applications may require
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large amount of disk space for storage. A WfMS could provision dynamic
volumes of large capacity that could be shared across all instances of VMs
(similar to snapshots and volumes provided by Amazon). Similarly, for
compute-intensive tasks in an workflow, a WfMS could provision specific
instances that would help accelerate the execution of these compute-intensive
tasks.

A WfMS implements scheduling policies to assign tasks to resources based
on applications’ objectives. This task-resource mapping is dependent on several
factors: compute resource capacity, application requirements, user’s QoS, and
so forth. Based on these objectives, a WfMS could also direct a VM
provisioning system to consolidate data center loads by migrating VMs so
that it could make scheduling decisions based on locality of data and compute
resources.

A persistence mechanism is often important in workflow management
systems and for managing metadata such as available resources, job queues,
job status, and user data including large input and output files. Technologies
such as Amazon S3, Google’s BigTable, and the Windows Azure Storage
Services can support most storage requirements for workflow systems, while
also being scalable, reliable, and secure. If large quantities of user data are
being dealt with, such as a large number of brain images used in functional
magnetic resonance imaging (fMRI) studies [12], transferring them online can
be both expensive and time-consuming. In such cases, traditional post can
prove to be cheaper and faster. Amazon’s AWS Import/Export5 is one such
service that aims to speed up data movement by transferring large amounts of
data in portable storage devices. The data are shipped to/from Amazon and
offloaded into/from S3 buckets using Amazon’s high-speed internal network.
The cost savings can be significant when transferring data on the order of
terabytes.

Most cloud providers also offer services and APIs for tracking resource
usage and the costs incurred. This can complement workflow systems that
support budget-based scheduling by utilizing real-time data on the resources
used, the duration, and the expenditure. This information can be used both for
making scheduling decisions on subsequent jobs and for billing the user at the
completion of the workflow application.6

Cloud services such as Google App Engine and Windows Azure provide
platforms for building scalable interactive Web applications. This makes it
relatively easy to port the graphical components of a workflow management
system to such platforms while benefiting from their inherent scalability and
reduced administration. For instance, such components deployed on Google
App Engine can utilize the same scalable systems that drive Google applica-
tions, including technologies such as BigTable [25] and GFS [26].

5 http://aws.amazon.com/importexport/
6 http://aws.amazon.com/devpay/
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12.6 CASE STUDY: EVOLUTIONARY MULTIOBJECTIVE
OPTIMIZATIONS

This section presents a scientific application workflow based on an iterative
technique for optimizing multiple search objectives, known as evolutionary
multiobjective optimization (EMO) [27]. EMO is a technique based on genetic
algorithms. Genetic algorithms are search algorithms used for finding optimal
solutions in a large space where deterministic or functional approaches are not
viable. Genetic algorithms use heuristics to find an optimal solution that is
acceptable within a reasonable amount of time. In the presence of many
variables and complex heuristic functions, the time consumed in finding even an
acceptable solution can be too large. However, when multiple instances are run
in parallel in a distributed setting using different variables, the required time for
computation can be drastically reduced.

12.6.1 Objectives

The following are the objectives for modeling and executing an EMO workflow
on clouds:

� Design an execution model for EMO, expressed in the form of a workflow,
such that multiple distributed resources can be utilized.

� Parallelize the execution of EMO tasks for reducing the total completion
time.

� Dynamically provision compute resources needed for timely completion
of the application when the number of tasks increase.

� Repeatedly carry out similar experiments as and when required.

� Manage application execution, handle faults, and store the final results for
analysis.

12.6.2 Workflow Solution

In order to parallelize the execution of EMO, we construct a workflow model
for systematically executing the tasks. A typical workflow structure is depicted
in Figure 12.6.

In our case study, the EMO application consists of five different topologies,
upon which the iteration is done. These topologies are defined in five different
binary files. Each file becomes the input files for the top level tasks (A0emo1,
A0emo, . . . ). We create a separate branch for each topology file. In Figure 12.6,
there are two branches, which get merged on level 6. The tasks at the root level
operate on the topologies to create new population, which is then merged
by the task named “emomerge.” In Figure 12.6, we see two “emomerge” tasks
in the 2nd level, one task in the 6th level that merges two branches and then
splits the population to two branches again, two tasks on the 8th and 10th
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levels, and the final task on the 12th level. In the example figure, each topology
is iterated two times in a branch before getting merged. The merged population
is then split. This split is done two times in the figure. The tasks labeled B0e and
B1e (depicted as darker shade in Figure 12.6) is the start of second iteration.

12.6.3 Deployment and Results

EMO Application. We use ZDT2 [27] as a test function for the objective
function. The workflow for this problem is depicted in Figure 12.6.

In our experiments, we carry out 10 iterations within a branch for 5 different
topologies. We merge and split the results of each of these branches 10 times.
For this scenario, the workflow constituted of a total of 6010 tasks. We varied
the tasks by changing the number of merges from 5 to 10. In doing so, the
structure and the characteristics of the tasks in the workflow would remain
unchanged. This is necessary for comparing the execution time when the
number of task increases from 1600 to 6000 when we alter the number of
merges from 5 to 10.

Compute Resource. We used 40 Amazon EC2 compute resources for
executing the EMO application. Twenty resources were instantiated at US-
east-1a, and 20 were instantiated at US-east-1d. Among these resources, one
was used for the workflow engine, one was used for Aneka’s master node and
the rest were worker nodes. The characteristics of these resources are listed in
Table 12.1.

The workflow engine, along with a database for persistence, the IBM TSpace
[28] based coordination server, and the Tomcat Web container, was instan-
tiated on a medium instance VM.

Output of EMO Application. After running the EMO workflow, we expect to
see optimized values for the two objectives given by the ZDT2 test function.
Figure 12.7 depicts the graph that plots the front obtained after iterating the
EMO workflow depicted in Figure 12.6. The front at Level 2 is not the optimal.
After first iteration, the front is optimized. Iteration 2 does not significantly
change the front, hence the overlapping of the data for Iteration 1 and 2.

Experimental Results When Using Clouds. Because the EMO workflow is
an iterative approach, increasing the number of iterations would increase the
quality of optimization in the results. Analogously, the greater the number of
tasks completing in the workflow, the greater the number of iterations, hence
the better the optimization.

Because the iterations can be carried out for an arbitrarily large number of
times, it is usually a best practice to limit the time for the overall calculation.
Thus, in our experiment we set the deadline to be 95 minutes. We then analyze
the number of tasks completing within the first 95 minutes in two classes of
experiments.
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Experiment 1: Seven Additional EC2 Instances Were Added. In this experi-
ment, we started executing the tasks in the EMO workflow initially using 20
EC2 compute resources (one node for workflow engine, one node for Aneka
master, 18 Aneka worker nodes). We instantiate seven more small instances to
increase the total number of resources to 25. They were available for use after
25 minutes of execution. At the end of 95 minutes, a total of 1612 tasks were
completed.

Experiment 2: Twenty Additional EC2 Instances Were Added. In this
experiment, we started executing the tasks in the EMO workflow using 20

TABLE 12.1. Characteristics of Amazon Compute Resources (EC2) Used

in Our Experiment

Characteristics Aneka Master/Worker Workflow Engine

Platform Windows 2000 Server Linux

CPU (type) 1 EC2 Compute Unitsa

(small)

5 EC2 Compute Unitsb

(medium)

Memory 1.7 GB 1.7 GB

Instance storage 160 GB 350GB

Instance location US-east-1a (19)

US-east-1b(20)

US-east-1a

Number of instances 39 1

Price per hour $US 0.12 $US 0.17

aSmall instance (default) 1.7 GB of memory, 1 EC2 compute unit (1 virtual core with 1 EC2

compute unit), 160 GB of instance storage, 32-bit platform.
bHigh-CPUmedium instance 1.7 GB of memory, 5 EC2 compute units (2 virtual cores with 2.5 EC2

compute units each), 350 GB of instance storage, 32-bit platform.

Source: Amazon.
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FIGURE 12.7. A graph that plots the pareto-front obtained after executing EMO for

ZTD2 test problem.
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EC2 compute resources, similar to Experiment 1. We instantiated 20 more EC2
instances after noticing the linear increase in task completion rate. These
instances however were available for use after 40 minutes of execution. At the
end of 95 minutes, a total of 3221 tasks were completed.

Analysis of the Results. In both experiments, the initial task completion rate
increased linearly until we started more instances, as depicted in Figure 12.8. As
the number of resources was increased, the rate of task completing increased
drastically. This is due to the submission of queued tasks in Aneka to the newly
available resources, which would have remained queued if resources were not
added.

In the figure, the completion rate curve rises up to a point until all the
queued tasks are submitted. The curve then rises gradually because the EMO
application is a workflow. Tasks in the workflow get submitted gradually as
their parents finish executions. Hence, the completion rate has similar slope
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provisioned were increased at runtime.
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as the initial rate, even after increasing the number of resources (30 to 45
minutes for Experiment 1; 45 to 70 minutes for Experiment 2). When more
tasks began completing as a result of adding new resources, the workflow
engine was able to submit additional tasks for execution. As a result, tasks
started competing for resources and hence were being queued by Aneka.
Because of this queuing at Aneka’s scheduler, the curve flattens after 45
minutes for Experiment 1 and after 70 minutes for Experiment 2.

The most important benefit of increasing the resources dynamically at
runtime is the increase in the total number of tasks completing, and hence
the quality of final result. This is evident from the two graphs depicted in Figure
12.8. If a total of 25 resources were used, Experiment 1 would complete 1612
tasks by the end of the 95-minute deadline, whereas Experiment 2 would
complete executing nearly 3300 tasks within the same deadline if 20 additional
resources were added. The quality of results would be twice as good for
Experiment 2 as for Experiment 1. However, if a user wants to have the same
quality of output as in Experiment 1 but in much shorter time, he should
increase the number of resources used well before the deadline. A line just
above 1600 in Figure 12.8 depicts the cutoff point where the user could
terminate all the VM instances and obtain the same quality of results as
Experiment 1 would have obtained by running for 95 minutes. It took B45
minutes less time for Experiment 2 to execute the same number of tasks as
Experiment 1. This drastic reduction in time was seen even when both
experiments initially started with the same number of resources. In terms of
cost of provisioning additional resources, Experiment 2 is cheaper because
there are fewer overheads in time spent queuing and managing task submis-
sions, since the tasks would be submitted as soon as they arrive at Aneka’s
master node. If Amazon were to charge EC2 usage cost per minute rather than
per hour, Experiment 2 would save 45 minutes of execution time at the cost of
20 more resources.

We also analyzed the utilization of instantiated compute resources by
Aneka, as depicted in Figure 12.9. At the time of recording the graph, there
were 21 worker nodes in the Aneka cloud, with a combined power of 42 GHz.

FIGURE 12.9. Distributed compute resource utilized by Aneka network.
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The graph shows a steep rise in the system utilization (labeled as usage in the
figure) as tasks were submitted for execution. The compute power available
(labeled as available) decreased to 4% with 80.8% memory available. This
decrease in utilization was due to the use of all the available resources for
execution of tasks submitted to Aneka by the workflow engine executing EMO
workflow.

12.7 VISIONARY THOUGHTS FOR PRACTITIONERS

The cloud computing paradigm is emerging and is being adopted at a rapid
rate. Gartner ranks it at the top of the hype cycle for the year 2010 [29]. As the
technology is being adopted by practitioners industry-wide, there are numerous
challenges to overcome. Moreover, these challenges could be addressed via a
realistic vision of the cloud computing models of the near future. This section
discusses some of them.

Software and service giants such as Google, Amazon, and Microsoft own
large data centers for providing a variety of cloud services to customers. These
independent and disparate initiatives would eventually lead to an interconnec-
tion model where users can choose a combination of services from different
providers in their applications. Our vision provides an entity responsible for
brokerage of resources across different cloud providers, termed the market
maker [16]. These inter-cloud environments would then facilitate executions of
workflow applications at distributed data centers. Large scientific experiments
would then be able to use inter-cloud resources, brokered through the market
maker.

The essence of using cloud services is to be able to dynamically scale the
applications running on top of it. Automating resource provisioning and VM
instance management in clouds based on multiobjectives (cost, time, and other
QoS parameters) can help achieve this goal. The automation process should be
transparent to the end users who would just be interested in running workflow
applications under their time and budget constraints. Users would specify
either flexible or tight deadline for the cost they pay for using cloud services. It
becomes the responsibility of the workflow engine running in the cloud to
dynamically scale the application to satisfy multiple users0 request.

In order to facilitate fair but competitive use of cloud resources for workflow
applications, a service negotiation module must be in place. This entity would
negotiate with multiple service providers to match users0 requirements to a
service provider’s capabilities. Once a match is found, required resources can
then be allocated to the user application. A cloud market directory service is
needed to maintain a catalog of services from various cloud service providers.
Data and their communication play a vital role in any data-intensive workflow
application. When running such applications on clouds, storage and transfer
costs need to be taken into account in addition to the execution cost. The right
choice of compute location and storage service provider would result in
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minimizing the total cost billed to a user. A cloud market maker could handle
these task and communication issues at the time of negotiation between various
cloud service providers.

12.8 FUTURE RESEARCH DIRECTIONS

In Section 12.7, we described some visions and inherent difficulties faced by
practitioners when using various cloud services. Drawing upon these visions,
we list below some future research directions in the form of broad research
directions:

� How to facilitate inter-cloud operations in terms of coherent data
exchange, task migration, and load balancing for workflow application.

� When and where to provision cloud resources so that workflow applica-
tions can meet their deadline constraints and also remain within their
budget.

� How to balance the use of cloud and local resources so that workflow
applications can meet their objectives.

� How to match workflow application requirements to any service provi-
der’s capabilities when there are numerous vendors with similar capabil-
ities in a cloud.

12.9 SUMMARY AND CONCLUSIONS

To summarize, we have presented a comprehensive description of using
workflow engine in cloud computing environments. We discussed the limita-
tions of existing workflow management systems and proposed changes that
need to be incorporated when moving to clouds. We also described cloud tools
that could help applications use cloud services.

To demonstrate a practical scenario of deploying a workflow engine in
clouds, we described in detail our workflow management system and a.NET-
based cloud computing platform, Aneka. We presented a case study of an
evolutionary multiobjective optimization algorithm. By modeling this applica-
tion in the form of a workflow, we obtained an order-of-magnitude improve-
ment in the application runtime when compute resources were provisioned at
runtime. Thousands of tasks were completed in a short period of time as
additional resources were provisioned, eventually decreasing the total runtime
of the application.

Based on our experience in using cloud services, we conclude that large
applications can certainly benefit by using cloud resources. The key benefits are
in terms of decreased runtime, on-demand resource provisioning, and ease of
resource management. However, these services come at a price whereby users
have to pay cloud service providers on the basis of the resource usage.
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Although clouds offer many benefits, they can’t and will not replace grids.
Clouds will augment grids. Users will use cloud services together with their in-
house solutions (cluster/enterprise grids) to enhance the performance of their
applications as and when needed.
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