
Journal of Network and Computer Applications 75 (2016) 223–235
Contents lists available at ScienceDirect
Journal of Network and Computer Applications
http://d
1084-80

n Corr
E-m

rbuyya@
journal homepage: www.elsevier.com/locate/jnca
To move or not to move: Cost optimization in a dual cloud-based
storage architecture

Yaser Mansouri n, Rajkumar Buyya
Cloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of Computing and Information Systems, The University of Melbourne, Australia
a r t i c l e i n f o

Article history:
Received 26 April 2016
Received in revised form
21 July 2016
Accepted 30 August 2016
Available online 2 September 2016

Keywords:
Cloud storage
Cost optimization
Data storage management
Dual cloud-based storage architecture
x.doi.org/10.1016/j.jnca.2016.08.029
45/& 2016 Elsevier Ltd. All rights reserved.

esponding author.
ail addresses: yase@student.unimelb.edu.au (Y
unimelb.edu.au (R. Buyya).
a b s t r a c t

IT enterprises have recently witnessed a dramatic increase in data volume and faced with challenges of
storing and retrieving their data. Thanks to the fact that cloud infrastructures offer storage and network
resources in several geographically dispersed data centers (DCs), data can be stored and shared in
scalable and highly available manner with little or no capital investment. Due to diversity of pricing
options and variety of storage and network resources offered by cloud providers, enterprises encounter
nontrivial choice of what combination of storage options should be used in order to minimize the
monetary cost of managing data in large volumes. To minimize the cost of data storage management in
the cloud, we propose two data object placement algorithms, one optimal and another near optimal, that
minimize residential (i.e., storage, data access operations), delay, and potential migration costs in a dual
cloud-based storage architecture (i.e., the combination of a temporal and a backup DC). We evaluate our
algorithms using real-world traces from Twitter. Results confirm the importance and effectiveness of the
proposed algorithms and highlight the benefits of leveraging pricing differences and data migration
across cloud storage providers (CSPs).

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Data volume is one of the important characteristics of cloud-
based application (e.g., Online Social Network) and has been
changed from TB to PB with an inevitable move to ZB in current IT
enterprises. From statistical perspective, 8 � 105 PB of data were
stored in the world by the year of 2000 and it is expected that this
number will increase to 35 ZB by 2020 (Yu et al., 2015). Storing and
retrieving such data volume demand a highly available, scalable,
and cost-efficient infrastructure.

Thanks to the cloud infrastructures, management of such large
volume data has been simplified and the need for capital invest-
ment has been removed from IT companies. However, this creates
a major concern for these companies regarding the cost of data
management in the cloud. The cost of data storage management
(simply, cost of data management) is a vital factor from companies’
perspective since it is the essential driver behind the migration to
the cloud. Thus, companies are in favor of optimizing data man-
agement cost in the cloud deployments. In order to optimize data
management cost, choosing a suitable storage option across CSPs
in the right time becomes a nontrivial task. This happens due to
. Mansouri),
the two following reasons.
First, there is an array of pricing options for the variety of

storage and network services across CSPs (e.g., Amazon, Google,
and Microsoft Azure). CSPs currently offer at least two classes of
storage service: Standard Storage (SS) and Reduced Redundancy
Storage (RRS). RRS enables users to reduce cost at the expenses of
lower levels of redundancy (i.e., less reliability and availability) as
compared to SS. These services provide users with API to Get
(read) data from storage and to Put (write) data into it. In mid-
2015, Amazon and Google respectively introduced Infrequent Ac-
cess Storage (IAS) and Nearline storage services that aims at
hosting objects with infrequent Gets/Puts. Both services charge
lower storage cost in comparison to their corresponding RRS but
higher cost for Gets and Puts.

Furthermore, CSPs charge users with different out-network
costs to read data from a DC to the Internet (typically in-network
data transfer is free). They also offer discounts for data transfer
between their DCs. For example, Amazon reduces out-network
cost when data is transferred across its DCs in different regions
and Google offers free of charge data exchange between its DCs in
the same region. Thus, taking the advantage of diversification in
price of storage and network (as well as service type) plays an
important factor in residential cost (i.e., Storage and data access
operations) as a major part of the data management cost. Note that
data access operations are Get and Put in this paper.

Second, there is time-varying workload on the object stored in

www.sciencedirect.com/science/journal/10848045
www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2016.08.029
http://dx.doi.org/10.1016/j.jnca.2016.08.029
http://dx.doi.org/10.1016/j.jnca.2016.08.029
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2016.08.029&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2016.08.029&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2016.08.029&domain=pdf
mailto:yase@student.unimelb.edu.au
mailto:rbuyya@unimelb.edu.au
http://dx.doi.org/10.1016/j.jnca.2016.08.029

Y. Mansouri, R. Buyya / Journal of Network and Computer Applications 75 (2016) 223–235224
the cloud. Presume that an object is a tweet/photo and it is posted
on the user's feed (e.g., timeline in Facebook) by herself or her
friends. Gets and Puts are usually high in the early lifetime of the
object and we say that such object is in hot-spot status. As time
passes, Gets and Puts are reduced and we refer that the object is in
cold-spot status. Thus, it is cost-efficient to store the object in a DC
with lower out-network cost (referred as a temporal DC) in its
early lifetime, and then migrate it to the DC with lower cost in
storage (referred as a backup DC). If the object migration happens
between a temporal DC and a backup DC, the user incurs migration
cost. This cost is another part of the data management cost, which
is affected by the number of Gets, Puts, and the object size. It is
important to note that the migration cost might be zero in some
cases: (i) if both DCs belong to the same provider and are in the
same region, then transferring objects between DCs is free, as in
Google provider, and (ii) if temporal and backup DCs are the same
and the object is just moved from a storage class to another (i.e.,
from SS to IAS) within the same DC.

Besides discussed costs, latency for reading from (writing into)
the data store is also a vital performance criterion from the user's
perspective. The latency is defined as the elapsed time between
issuing a Get/Put and receiving the required object. To respect this
criterion, we convert latency into monetary cost, as a latency cost,
and integrate it in our cost model.

In summary, by wisely taking into account the discussed dif-
ferences in prices across CSPs and time-varying workload, we can
reduce the data management cost (i.e., residential, latency, and
migration costs) as one of the main user's concerns with regard to
the cloud deployment. To address this issue, we make the fol-
lowing contributions:

� We propose an optimal algorithm that optimizes data man-
agement cost in the dual cloud-based architecture when the
workload in terms of Gets and Puts on the objects is known.

� We also propose a near-optimal algorithm that achieves com-
petitive cost as compared to that obtained by the optimal al-
gorithm in the absence of future workload knowledge.

� We demonstrate the effectiveness of the proposed algorithms
by using the real-world traces from Twitter in a simulation.

The reminder of this paper is organized as follows. Section 2
discusses related work. Section 3 presents system and cost model.
In Section 4, we describe our object placement algorithms to save
cost. Section 5 presents our simulation experiments and evalua-
tion of the proposed algorithms. Finally, in Section 6, we conclude
this paper with future work issue related to cost optimization of
data management across Geo-replicated cloud-based data stores.
2. Related work

We compare our work in this paper with state-of-the-art works
in five categories: benefits of cloud deployments, Geo-distributed
cloud storage services, cloud-based Content Delivery Network
(CDN), hierarchical storage management, and computing resource
allocation.

Benefits of cloud deployments: Some recent studies investigate
when to use cloud-based services, in particular focusing on how
and when to migrate applications from a private cloud to a public
one (Hajjat et al., 2010; Tak et al., 2011; Wood et al., 2010). While
they considered issues such as monetary cost and latency in wide-
area network, none of them leverage pricing differences across
CSPs to optimize storage cost.

Geo-distributed cloud storage services: Several previously pro-
posed systems such as RACS (Abu-Libdeh et al., 2010), DEPSKY
(Bessani et al., 2011) and SafeStore (Kotla et al., 2007) are deployed
across Geo-distributed DCs to mitigate vendor lock-in and enhance
availability, durability, and performance. SPANStore (Wu et al.,
2013) leveraged pricing differences across Geo-distributed DCs to
minimize the cost. Qiu et al. (2015) proposed a dynamic control
algorithm to minimize the operational cost across hybrid cloud
providers, subject to meeting the response time constraints. Co-
splay (Jiao et al., 2014) optimized the monetary cost for an online
social network over Geo-DCs while ensuring QoS and the avail-
ability of data. This objective is achieved through changing the rule
of replicas (i.e., master and slave replica) across DCs that belong to
a cloud provider. These systems exploit neither the object migra-
tion across DCs nor the object movement between storage classes
within a DC in order to minimize cost.

Cloud-based CDN: With the advent of cloud-based storage ser-
vices, some literature has been devoted to utilize cloud storage in a
CDN in order to improve performance and reduce monetary cost.
Broberg et al. (2009) proposed MetaCDN that exploits cloud sto-
rage to enhance throughput and response time, while ignoring
cost optimization. Chen et al. (2012) investigated the problem of
placing replicas and distributing requests (issued by users) in or-
der to optimize cost, while meeting QoS requirements in a CDN by
utilizing cloud storage. Papagianni et al. (2013) go one step further
by optimizing replica placement problem and requests redirection,
while satisfying QoS for users and considering capacity constraints
on disks and network. Salahuddin et al. (2015) proposed another
model that minimizes monetary cost and QoS violation subject to
guaranteeing SLA in a cloud-based CDN. In contrast to these works
which have proposed greedy algorithms for read-only workload,
our work exploits the pricing differences among CSPs for time
varying read and write workload in the dual cloud-based storage
architecture.

Hierarchical storage management: An architecture mimics a
hierarchical storage management (HSM) when data automatically
moves between low- and high-cost storage media (Wikipedia,
2013). Puttaswamy et al. (2012) deployed a generalized form of
HSM to reduce the cost of operating a file system in a single cloud
storage. Unlike our work, they neither require to consider migra-
tion cost nor need to deal with latency across DCs. Our approach is
different from their proposed solution as we consider the object
migration cost between DCs.

Computing resource allocation: The efficient utilization of com-
puting resources is a complex and challenging issue, where tasks
scheduling is one of them. Fang et al. (2010) proposed a two level
task-scheduling mechanism based on load balancing of resources.
This mechanism cannot only guarantee the satisfaction of users
but also improve the utilization of resources. Van Den Bossche
et al. (2013) studied an algorithm to schedule deadline constrained
tasks in the hybrid cloud with the aim of minimizing cost while
maintaining QoS. Lin et al. (2014) designed a task-scheduling al-
gorithm that considers bandwidth requirements, in addition to
CPU and memory, to achieve better performance as compared to
bandwidth-only and computation-only algorithms. Rodriguez and
Buyya (2015) and Liu et al. (2016) studied task-scheduling algo-
rithms for scientific workload to minimize the cost of used re-
sources whereas guaranteeing the user-defined deadline con-
straint or reducing execution time of tasks.

Load-balancing is another challenging issue and helps in redu-
cing response time and resources consumption, maximizing scal-
ability, avoiding services bottleneck, etc. One technique to ac-
complish load balancing is VM migration, which in turn, reduces
the energy consumption and environmental impacts (Beloglazov
et al., 2012). In the same line, several studies utilize spatial load
balancing (Rao et al., 2010; Liu et al., 2011; Gao et al., 2012),
temporal load-balancing (Liu et al., 2012; Luo et al., 2014), or
spatio-temporal load balancing exploiting both geographical and
temporal variation of electricity price (Luo et al., 2015) to achieve

Fig. 1. A scenario of the dual cloud-based storage architecture in the European and Asia-Pacific regions. Parenthesis close to each DC's name shows the storage price (per GB
per month) for standard storage, backup storage, and network price (per GB), respectively.

Y. Mansouri, R. Buyya / Journal of Network and Computer Applications 75 (2016) 223–235 225
more reduction in energy consumption. However, compared to
these studies, our work focuses on storage services to achieve
lower monetary cost.
3. System and cost model

We first describe the dual cloud-based architecture, which can
lead to reduced monetary cost for applications. Then, we discuss
the cost model and the objective function that should be mini-
mized considering the objective and specifications of the
architecture.

3.1. System model

In our system model, an object is a tweet or photo posted by
users on their feed. As stated earlier, the object is stored in the
temporal (resp. backup) DC during its hot-spot (resp. cold-spot)
status to benefit from lower network (resp. storage) cost. A tran-
sition between hot- and cold-spot probably leads to the object
migration. Our architecture uses stop and copy migration techni-
que (Elmore et al., 2011) in which Gets and Puts are respectively
served by the temporal and backup DCs during the object migra-
tion. Fig. 1 illustrates the scenario of the architecture in two re-
gions. In the architecture, each user is assigned to the closest DC
among the DCs which are Geo-graphically located across the
world. This DC is referred as the home DC. The determined home
DC for each user is then paired with the DC that is selected by the
object owner or application provider.1 The paired DCs are con-
sidered as the temporal and backup DCs. As an example, in the
Asia-Pacific, a user stores the object in the Victoria Azure DC
(Victoria ADC) with low network cost, while their friends in
1 We pair each home DC with 21 DCs in the experiment to determine which
combination of temporal and backup DCs is cost-efficient.
Singapore and New South Wales access the object by issuing their
read/write requests from their home DCs. As time passes, the
object is migrated to the Taiwan Google DC (Taiwan GDC), which
has lower storage cost (i.e., Nearline) in comparison to S3 and ADC
in the Asia-Pacific region.

3.2. Cost model

The system model is represented as a set of independent DCs D
where each DC d is associated with the following cost elements to
manage data:

1. Storage cost: S(d) denotes the storage cost per unit size per time.
2. Network cost: O(d) is the cost per byte of out-bound bandwidth

transferred from DC d (in-bound bandwidth is typically free).
3. Transaction cost: tg and tp define transaction cost for a Get and

Put request respectively.

Assume that the application hosts a set of objects in time slot
∈ […]t T1 . Each object is associated with v(t), r(t), and w(t) de-

noting respectively size in byte, the number of read and write
operations for the object in time slot t. Also suppose l denotes the
latency between the DC that issues a Put/Get for the object and the
DC that hosts the required object. xd(t) represents whether the
object exists in DC d in time slot t (() =x t 1d) or not (() =x t 0d).

Residential cost: The residential cost of the object in time slot t
is as follows. (i) The storage cost of the object is equal to its size
multiplied by the storage price (() ()S d v t). (ii) The read cost of the
object is the cost of all Gets (() ()r t t dg) and the communication cost
(() () ()r t v t O d). (iii) The write cost of the object is the cost of all Puts
for updating of the object (() ()w t t dp). Thus, the residential cost CR
is defined as:

∑() = ()[()(() + () ()) + () () + () ()]
()

C x t x t v t S d r t O d r t t d w t t d, .
1

R d
x

d g p

d

Y. Mansouri, R. Buyya / Journal of Network and Computer Applications 75 (2016) 223–235226
Delay cost: Time is cost and user-perceived latency for reading
and writing the object is a vital criterion. For example, Amazon
reported that every 100 ms of latency reduces 1% of its sales (La-
tency-it costs you). To capture this cost, the incurred latency for
Gets and Puts is considered as a monetary cost (Zhang et al., 2013).
We consider “Get/Put delay” as the time taken from when a user
issues a Get/Put from the DC ′d to when he/she gets a response
from the DC d that hosts the object. In fact, the read and write
requests are issued from the application hosted by the closest DC
to the user. The delay cost of read and write requests, CD, can be
formally defined as:

∑() = [(′) ()(() + ())] ∀ ′ ∈
()()

C x t x l d d v t r t w t l d d D, , , , .
2

D d
x t

d w

d

In Eq. (2), (′)l d d, denotes the latency between DC ′d that issues
requests and DC d that hosts the object. (′)l d d, in our formulation
and evaluation is based on the round trip times between d and ′d .
This is reasonable because for the application, the size of objects is
typically small (e.g., tweets, photos, small text file), and thus data
transitions are dominated by the propagation delays, not by the
bandwidth between the two DCs. For applications with large ob-
jects, the measured (′)l d d, values capture the impact of bandwidth
and data size as well. In the above equation, lw denotes the latency
cost weight, which converts latency into a monetary cost. It is set
by the application based on the importance degree of the latency
from the user's perspective. The more importance the latency, the
higher lw will be.

We use stop and copy migration technique in our model for two
reasons. First, the system performance is not significantly affected
by this technique because (i) the transfer time of a bucket (which
is at most 50 MB in size (Corbett et al., 2013)) between temporal
and backup DCs is about few seconds, and (ii) a significantly lower
number of Puts and Gets must be served after the transition to the
cold-spot status. Second, this technique imposes a lower cost as
compared to the log-based technique (Tran et al., 2011). The object
migration cost is the cost of retrieving the object from the source
DC (() ()v t O ds) and writing it to the destination DC (()t dp d). Thus the
migration Cost (−)C t t1,M is defined as:

(−) = () () + () ()C t t v t O d t d1, , 3M s p d

where ds and dd are the source and destination DCs respectively.
Migration cost: As time passes, the number of Puts and Gets

decreases, and it is cost-effective to migrate the object from a
temporal DC to a backup DC with the lower cost in storage.

Cost optimization problem: Considering the aforementioned
cost model, we define the objective as to determinate the object
placement (i.e., xd) in each time slot t so that the overall cost (i.e.,
the sum of residential, delay, and potential migration costs) of the
object during […]T1 is minimized. Thus, the objective function can
be defined as:

∑ ∑ (()) + (()) + (−) () ∈ { }
()= ()

C x t t C x t t C t t x t, , 1, , 0, 1 .
4t

T

x t
R d D d M d

1 d
4. Data management cost optimization

To solve the aforementioned cost optimization problem, we
first propose a dynamic algorithm to minimize the overall cost
while the future workload is assumed to be known a priori. Then,
we present a heuristic algorithm to achieve competitive cost as
compared to the cost of dynamic algorithm for unknown objects
workload.
4.1. Optimal object placement (OOP) algorithm

Let ()P d t, be the minimum cost of the object in DC d in time
slot t. In order to compute P, we drive a general recursive equation
for P as Eq. (5), where ()C d t, is the summation of the residential,
delay, and potential migration costs of the object in time slot t
(Eqs. (1)–(3)).

We first enumerate all possible DCs that could store the object
in time slot t and then calculate the residential and delay costs.
Second, we consider all possible placements of the object in time
slot −t 1 and calculate the migration cost from each DC in time
slot −t 1 to the current DC d in time slot t.

If we store the object at DC d in time slot t, then the overall cost
(i.e., ()P d t,) is the minimum of the overall cost in time slot −t 1
(i.e., (−)P d t, 1) plus the residential, delay, and potential migration
costs of the object in time slot t (i.e., ()C d t,). This recursive
equation is terminated when t is zero and its corresponding ()P d t,
value is zero. Therefore, we define the recursive equation for the
OOP algorithm as:

() =
[(−) + ()] >

= ()
⎪

⎪⎧⎨
⎩

P d t
P d t C d t t

t
,

min , 1 , , 0

0 0. 5
d

Once ()P d t, is calculated for all DCs d during ∈ […]t T1 , we
calculate ()P d Tmin ,d as the minimum cost of the object. It is easy
to find the optimal location of the object in time slot t (i.e., *()x td)
by backtracking from the minimum cost in time slot T. In each
time slot t, if the cost value leads to minimum cost value in time
slot +t 1, then the value of xd(t) is 1; otherwise is 0. Continuing on
the backtrack step from T to 1, we find the value of *()x td for all

∈ […]t T1 .
The pseudo code in Algorithm 1 shows the discussed OOP. Note

that since the value of *()x td is 1 only for one DC in each time slot t,
we can safely initialize xd(t) with 0 for all DCs d in all time slots t.

Algorithm 1: Optimal Object Placement (OOP) algorithm.

Input: DCs and objects specifications
Output: *()x td and the optimized overall cost during ∈ […]t T1
1 Initialize: ∀d∈DC, () ←P d, 0 0 ∧∀ ∈ […] () ←t T x t1 , 0d

2 for ←t 1 to T do

* () *
()

(−)
() ()

DCs i e d are a temporal DC and a backup DC

x t

x t

P d t

3
4
5
6
7
8

end
end

/ . ., . /
forall do

forall 1 do

Calculate , based on Equation 5 .

d

d

9 end
10 Select ()P d Tmin ,d as the optimized overall cost (i.e., Eq.(4)).
11 Take the optimized overall cost, i.e., ()P d Tmin ,d , in time T

and set its corresponding xd(T) to 1 (i.e., *()x Td). Then, the
value of (−)x T 1d is set to 1 if its corresponding cost value in
time slot −T 1 leads to the optimized overall cost in time slot
T. In the same way, find the value of all ()x t sd from −T 2 to 1.

12 All xd(t)s with value of 1 are *()x td s.

13 Return *()x td and the optimized overall cost.

The time complexity of the algorithm is dominated by three
nested “for” loops in which the recursive function (Eq. (5)) is cal-
culated. For each paired DCs (lines 5–8), we compute the value of

()P d t, for each time slot ∈ […]t T1 . Thus, this calculation takes
()O T2 since we have two DCs in the dual cloud-based storage ar-

chitecture. To find the location of the object in each time slot, we

Y. Mansouri, R. Buyya / Journal of Network and Computer Applications 75 (2016) 223–235 227
need to backtrack the obtained results (line 12), which takes O(T).
Since this process (lines 2–13) is repeated for all pairs of DCs (i.e.,

()n
2
, not shown in the algorithm), the total time complexity of the

algorithm yields ()O n T2 , where n is the number of DCs.

4.2. Near-Optimal Object Placement (NOOP) algorithm

We propose a novel heuristic algorithm that finds a competitive
solution for the cost optimization problem, as compared to that of
OOP. Intuitively, if the object migrations do not happen at the right
time, then besides migrations cost, the residential and delay costs
increase as compared to these costs in OOP. We refer to the dif-
ference between these costs in OOP and NOOP as the overhead
cost. This overhead cost should be minimized by providing a
strategy that leads to the object migration in time(s) tm so that it
should be near to the optimal migration time(s) obtained by OOP.
To achieve this aim and minimize the overhead cost, we make a
trade-off between the migration cost and the summation of re-
sidential and delay costs (for summary, denoted by CRD) in the
absence of the future workload knowledge. The idea behind this
trade-off is that the object is migrated to a new DC when (i) the
object migration leads to save monetary cost at the new DC, and
(ii) the sum of the lost cost savings from the last migration time up
to the current time slot gets more than or equal to the migration
cost of the object between DCs. This strategy avoids migrating the
object too early or too late. The “trick” is to move the object “lazily”,
i.e., when sum of overall cost savings that could be done by any
earlier migrations from the last migration time tm is as large as the
cost of migration in the current time slot.

Now we formally define the discussed trade-off. Let ()−C t t,M m m1
be the migration cost between two consecutive migration times,
where tm is the last time the object is migrated. For each time slot

∈ [)v t t,m , we calculate the summation of the residential and delay
costs of the object (i) in the DC hosting the object in the previous
time slot −t 1, and (ii) in the new DC in the current time slot as if
the object is migrated to it. Now, for each time slot v, we calculate
the summation of the difference between two CRDs in the two
previous cases from time =v tm to = −v t 1. This summation is

equal to ∑ [((−)) − (())]=
− C x v v C x v v1 , ,v t

t
RD d RD d

1
m

. Note that if the
migration of the object happens in time slot v¼t, we assign

=−t tm m1 and tm¼t in Eqs. (6) and (7). Based on the summation of
the residential and delay costs (i.e., CRD) and the migration cost
(i.e., ()−C t t,M m m1) in the current time slot, the algorithm decides
whether the object should be migrated or not. As discussed before,
to avoid the object being migrated too early or too late, the object
migration happens only if both the following conditions are
satisfied:

First, the object has the potential to be migrated to a new DC if

∑() ≤ [((−)) − (())]
()

−
=

−

C t t C x v v C x v v, 1 , , .
6

M m m
v t

t

RD d RD d1

1

m

Otherwise, the object is kept in the previous DC as determined in
time slot −t 1. This condition prevents the object being migrated
too late. Second, to avoid early object migration, we enforce the
following condition:

() + (()) ≤ ((−)) ()−C t t C x t t C x t t, , 1 , . 7M m m RD d RD d1

This constraint implies that the overall cost of the object, including
residential, delay, and migration costs, in the new DC should be
less or equal to the summation of residential and delay costs of the
object if it stays in the determined DC in time slot −t 1. Algorithm
2 represents the pseudo code for NOOP.
Algorithm 2: Near-Optimal Object Placement (NOOP) algorithm.

Input: DCs and objects specifications

Output: ^ ()x td and the overall cost during ∈ […]t T1 as denoted
by Cove.

1 ←C 0ove , ∀ ∈ […] () ←t T x t1 , 0d

2 ←Cove Select either backup or temporal DC so that cost CRD is
minimized in time slot t, and set Corresponding (=)x t 1d to 1.

3 ←t 1m

4 for ←t 2 to T do

* () *
()

() ← () ()
← + ()

(() () (−)!= ())

← ← ← ()
() = ← +

() ← (−)

− −

DCs i e d are a temporal DC and a backup DC

x t

C x t C x t

C C C

Equations and x t x t

t t t t C C t t

x t C C C

x t x t

5
6
7
8
9
10
11
12
13
14
15

end
if then

else

end

/ . ., . /

forall do

. Determine by minimizing ,

.

6 , 7 1

, , calculate ,

1,

1

d

RD d RD d

ove ove RD

d d

m m m M M m m

d ove ove M

d d

1 1

16 end

17 xds with value of 1 are ^ ()x td s.

18 Return ^ ()x td and Cove.

The time complexity of the algorithm is as follows. We need to
calculate the total cost (lines 4–16) for each paired DCs for each
time slot ∈ […]t T1 . This calculation takes O(T) (lines 6–15). Since
we repeat this computation for all pairs of DCs (i.e., ()n

2
, not shown

in the algorithm), the total time complexity of the algorithm is
()O n T2 , where n is the number of DCs.
5. Performance evaluation

In this section, we first discuss the experimental settings in
terms of workload characteristics, DCs specifications, and assign-
ment of users to DCs. Then, we study the performance of the
proposed algorithms in terms of cost saving and investigate the
effect of the various parameters on the cost saving.

5.1. Experimental settings

We evaluated the performance of algorithms via extensive
experiments using a dataset from Twitter (Li et al., 2012). In the
dataset, each user has her own profile, tweets, and a user friend-
ship graph over a 5-year period. We focus on tweet objects posted
by the users and their friends on the timeline, and obtain the
number of tweets (i.e., number of Puts) from the dataset. Since the
dataset does not contain information of accessing the tweets (i.e.,
number of Gets), we set a Get/Put ratio of 30:1, where the pattern
of Gets on the tweet follows Longtail distribution (Atikoglu et al.,
2012). This pattern mimics the transition status of the object from
hot- to cold-spot status. The size of each tweet varies from 1 KB to
100 KB in the dataset.

Fig. 2. Allocated users to data centers (%).

Fig. 3. Total data size in data centers.

Table 1
Summary of simulation parameters.

Parameters
setting

Data size
factor

Latency cost
weight

Read to
write ratio

Access pattern
on objects

Default 1 10 30 Longtail
Range 0.2–1 1–30 1�30 Normal and

Random

Table 2
Evaluation settings for figures and tables.

Figs./table Data size
factor

Latency cost
weight

Read to write
ratio

Access pattern on
objects

4–6 0.2,1 10 30 Longtail
7 0.2–1 10 30 Longtail
8 1 1–30 30 Longtail
9 1 10 1–30 Longtail
Table 3 1 10 30 Normal and

Random

Y. Mansouri, R. Buyya / Journal of Network and Computer Applications 75 (2016) 223–235228
We model 22 DCs in CloudSim Toolkit (Calheiros et al., 2011),
and among these DCs, 9 are owned by Microsoft Azure, 4 by
Google, and 9 by Amazon. Each DC is referred by a name that
consists of (i) provider name: Microsoft Azure (AZ), Google (GO)
and Amazon (AM); (ii) location: USA (US), Europe (EU), Asia (AS),
Australia (AU), Japan (JA), and Brazil (BR); and (iii) the specific part
of the location: south (S), north (N), west (W), east (E), and center
(C). Since we have two different Amazon DCs in US-West region,
i.e., Oregon and California, we add letter “O” for Oregon and “C” for
California. For example, based on this naming, the DC with name
AZ-USS refers to the DC that is part of Microsoft Azure in the USA
South. Every DC offers two classes of storage services: (i) SS and
(ii) RRS, that is, Locally Redundant Storage (LRS) for Azure, Near-
line for Google, and IAS for Amazon. The latter storage class, i.e.,
RRS, is used for the object when it transits to cold-spot status. We
set the storage and network prices of each DC as of September
2015.2

We measured inter-DCs latency (22*22 pairs) over several
hours using instances deployed on all 22 DCs. We run Ping op-
eration for this purpose, and used the medium latency values as
the input for our experiments. The default value of l (as the latency
cost weight) to convert delay to cost is 10. As a result, delay cost
constitutes 7–10% of the total cost in the system.

With the help of Google Maps Geocoding API (The google maps
geocoding api), we convert users’ text locations to geo-coordinates
2 https://www.aws.amazon.com/s3/pricing/
https://cloud.google.com/storage/pricing
https://azure.microsoft.com/en-us/pricing/details/storage/
https://azure.microsoft.com/en-us/pricing/details/data-transfers/
(i.e., latitude and longitude) according to the users’ profiles. Then,
according to the coordination of users and DCs, we assigned users
to the nearest DC based on their locations. In the case of two (or
more) DCs with the same distance from the user, one of these DCs
is randomly selected as the home DC for the user. One-month
(December 2010) of Tweeter dataset with more than 46 K users,
posting tweet on their timeline, is utilized for our experiments. As
shown in Fig. 2 , around 99.1% of users are assigned to DCs in the
USA while the remaining users are designated to DCs in Europe,
Asia, Australia and Brazil.3 This is because most of the users of the
dataset come from the USA region. Therefore, we focus on the cost
saving for DCs in the USA including: two Azure DCs (AZ-USS and
AZ-USC), two Google DCs (GO-USC and GO-USE), and three
Amazon DCs (AM-USW(O), AM-USE and AM-USW(C)). The total size
of data in each DC, as depicted in Fig. 3 , is dependent on the
number of users allocated to each DC and the number of tweets
posted by users.

5.2. Results

We compare the cost savings gained by the proposed algo-
rithms with the following policy benchmark. It is important to
mention that (1) the obtained results are valid for the current
prices offered by three well-known cloud providers investigated in
this paper, and these prices may change quickly in the current
competitive market, and (2) in this work, cloud provider selection
is only determined based on the monetary cost, while data pla-
cement decision can be made based on other criteria such as
availability, durability, scalability, and even the reputation of the
cloud provider from application owner's perspective. Thus, with
these results, we do not intend to advertise or harm the reputation
of an individual cloud provider.

5.2.1. Benchmark policy
In the benchmark policy, we permanently store the user's ob-

jects in the home DC (i.e., closest DC), and thus the object is not
allowed to be migrated to another DC. This is because that appli-
cation providers often deploy their data in data centers close to
their user base. In all experiments, we normalize the incurred cost
of the algorithms to the cost of the benchmark policy by varying
the following parameters: home DCs, data size factor, latency cost
3 We also used the same policy to assign friends of the user to a DC. The user's
friends are derived from the friendship graph of dataset.

https://www.aws.amazon.com/s3/pricing/
https://cloud.google.com/storage/pricing
https://azure.microsoft.com/en-us/pricing/details/storage/
https://azure.microsoft.com/en-us/pricing/details/data-transfers/

Fig. 4. Cost saving of OOP and NOOP algorithms for two Azure DCs: AZ-USS and AZ-USC as home DCs with data size factor 0.2 and 1. (a) Data center AZ-USS, data size
factor¼0.2. (b) Data center AZ-USS, data size factor¼1. (c) Data center AZ-USC, data size factor¼0.2. (d) Data center AZ-USC, data size factor¼1.

Y. Mansouri, R. Buyya / Journal of Network and Computer Applications 75 (2016) 223–235 229
weight, read to write ratio, and access pattern of read/write on the
objects. Each parameter has a default value and a range of values
as summarized in Table 1. This range is used for studying the
impact of the parameter variations on the cost performance of the
proposed algorithms. For clarity, Table 2 summarizes the specific
settings in terms of parameters corresponding to each figure. In
the following section, we discuss the cost saving of OOP and NOOP.

5.2.2. Cost performance
In this section, we study the cost savings of the proposed
Fig. 5. Cost saving of OOP and NOOP algorithms for two Google DCs: GO-USC and GO-U

factor¼0.2. (b) Data center GO-USC, data size factor¼1. (c) Data center GO-USE, data si
algorithms for the most populated DCs (i.e., 6 home DCs) with
factor size 0.2 and 1. Note that a DC with “data size factor x” means
that it only stores x percent of the generated total data size, as
shown in Fig. 3 for each home DC. A DC stores the total data size
when data size factor is 1. For example, based on Fig. 3 , AZ-USS
with data size factor 0.2 stores 20% of 30 TB. It is important to note
that we report result for each pairing between the home DC and
each of 21 DCs in the experiments when cost can be saved.

Fig. 4 shows the cost savings of OOP and NOOP for AZ-USS and
AZ-USC when each of these home DCs are paired with 21 DCs. As
SE as home DCs with data size factor 0.2 and 1. (a) Data center GO-USC, data size
ze factor¼0.2. (d) Data center GO-USE, data size factor¼1.

Fig. 6. Cost saving of OOP and NOOP algorithms for three Amazon data centers: AM-USW(O), AM-USE, and AM-USW(C) as home data centers with data size factor 0.2 and 1.
(a) Data center AM-USW (O), data size factor¼0.2. (b) Data center AM-USW (O), data size factor¼1. (c) Data center AM-USE, data size factor¼0.2. (d) Data center AM-USW,
data size factor¼1. (e) Data center AM-USW (C), data size factor¼0.2. (f) Data center AM-USW (C), data size factor¼1.

Y. Mansouri, R. Buyya / Journal of Network and Computer Applications 75 (2016) 223–235230
expected, the cost cannot be saved when AZ-USS and AZ-USC are
paired with Azure DCs, as Azure DCs have more (or the same) cost
in the network and storage services than these considered home
DCs. In contrast, Google DCs are more suitable to pair with
aforementioned home DCs compared to the DCs that belong to
Amazon. The reason is that Google DCs have the cheapest cost in
the storage service (i.e., Nearline) for hosting the objects in their
cold-spot status. For pairing home DCs with Google DCs, OOP can
save cost about 40% and 70% respectively when the data size factor
is equal to 1 and 0.2. However, NOOP can reduce cost by 40% (resp.
25–28%) if the home DCs are paired with GO-USC and GO-USE

(resp. GO-EUW and GO-ASE) when the data size factor is equal to 1.
For data size factor¼0.2, NOOP cuts the cost by around 55% (see
Figs. 4a and 4c) when the considered home DCs are paired with
each of Google DCs. For both algorithms, when data size
factor¼0.2, the different component costs (i.e., residential, delay,
and migration costs) remain constant for all Google DCs; while for
data size factor¼1, pairing the home DCs with GO-EUW and GO-

ASE incurs more delay cost compared to the case that these home
DCs are paired with other Google DCs (i.e., GO-USC and GO-USE).
Therefore, the latter pairing set (i.e., pairing the home DCs with
GO-USC and GO-USE) gains more cost savings.

Fig. 4 also suggests that, when AZ-USS and AZ-USC are home
DCs, Amazon DCs can be another suitable set of DCs to pair with,
except AM-BRS as this DC is more expensive than home DCs in
both network and storage services. OOP and NOOP gain cost sav-
ings about 32–35% and 18–20% respectively when paired with AM-

USW(O), AM-USE, and AM-EUC for data size factor¼1, and likewise
67–68% and 52–56% for data size factor¼0.2. In contrast, when
home DCs are paired with other Amazon DCs (i.e., AM-JAE, AM-
ASA and AM-AUE), both algorithms attain lower cost savings due to
two reasons: (i) these Amazon DC are more expensive in storage
for backup objects and network as compared to the former subset
of Amazon DCs (i.e., AM-USW(O), AM-USE, and AM-EUC), and (ii)
they also impose more delay cost owing to their longer distance to
home DCs.

Fig. 5 depicts the cost savings of OOP and NOOP when home
DCs are GO-USC and GO-USE. The results show that the cost is
reduced when these home DCs are paired with AZ-USS and AZ-

USC that offer the same price in the network and storage. This cost
reduction is 65–67% for OOP and 53–55% for NOOP when data size
factor¼0.2, while for data size factor¼1, both algorithms approach
the same cost saving (about 35–37%—see Figs. 5b and 5d). The
reason behind this result for data size factor¼1 is that both al-
gorithms determine to migrate a low proportion of objects (about
25%) at roughly the same time. Moreover, the results show that
OOP can save more cost by (2–3%) when GO-USC is paired with
AZ-USC rather than AZ-USS (Figs. 5a and 5b) for both data size

Fig. 7. Cost saving of OOP and NOOP algorithms for the home DC of Azure, Google, and Amazon when the data size factor is varied. The first (resp. last) two legends indicate
DC with maximum (resp. minimum) cost saving when they are paired with the home DC. (a) Data center AZ-USS. (b) Data center GO-USE. (c) Data center AM-USE. (d) Data
center AM-USW(C).

Y. Mansouri, R. Buyya / Journal of Network and Computer Applications 75 (2016) 223–235 231
factor values. This implies that users in GO-USC and their friends
(in other DCs) incur less delay cost when their read/write requests
are sent to AZ-USC.

Fig. 5 also demonstrates that the home DCs can benefit from
pairing with three Amazon DCs, but the benefit is less than pairing
with the specified Azure DCs. This is because of AM-USW(O) and
AM-USE are more expensive than Azure DCs in terms of network
cost, while AM-USW(C) is more expensive in both storage and
network costs. However, the results (Figs. 5c and 5d) depict an
exception in which pairing GO-USE with AM-USE can save more
cost than pairing GO-USE with Azure DCs. This happens because
both GO-USE and AM-USE are in eastern USA, and thus read/write
requests (mainly coming from this region) incur less delay cost.

Fig. 6 depicts the obtained cost savings from pairing each DC
when home DCs are: AM-USW(O), AM-USE, and AM-USW(C).

Figs. 6a–6d show that AM-USW(O) and AM-USE can benefit
from pairing with at most three Azure DCs, all Google DCs, and one
Amazon DC. Pairing with Google DCs can bring more cost savings
than with Amazon DC4 which in turn, save more cost than with
Azure DCs (i.e., AZ-USS and AZ-USS) especially for NOOP when
data size factor¼1. The reason behind this is: (i) objects tend to
migrate to Google DCs with the cheapest storage cost for backup
objects, and (ii) Amazon DCs offer discount in network cost if the
objects are migrated between two Amazon DCs. For data size
factor¼1, NOOP can save around 32–35% cost when AM-USW(O) is
paired with AM-USE (Fig. 6b) or vice versa (Fig. 6d) by utilizing this
discount, and around 20–25% when both home DCs are paired
with AZ-USS and AZ-USC. The difference in cost savings of NOOP
between the two pairing settings (i.e., pairing the home DCs with
Amazon DC and with Azure DCs) is at most 15% (Fig. 6a) for the
data size factor¼1, and likewise at most 5% when data size factor
is 0.2 (Fig. 6c).

Figs. 6e and 6f show that AM-USW(C), as a home DC, can be
paired with more DCs to save cost because its storage and network
4 AM-USW(O) as a home DC is paired with AM-USE (Figs. 6a and 6b), and AM-

USE as a home DC is paired with AM-USW(O) (Figs. 6c and 6d).
costs are substantially higher than the cost in storage and network
services offered by other DCs. As it can be easily seen in the fig-
ures, the most and least profitable DCs for pairing respectively are
Google and Azure DCs for both algorithms and for both values of
the data size factor.

As shown in Fig. 6e. for OOP and NOOP, pairing the home DC
AM-USW(C) with three Amazon DCs (i.e., AM-USW(O), AM-USE,
and AM-EUN) gains roughly the same cost savings than when it is
paired with Google DCs. For OOP (resp. NOOP), the pairing with
the remaining Amazon DCs (i.e., AM-EUC and AM-ASS) cuts the
same cost (resp. more cost) as it is paired with Azure DCs. In fact,
for both algorithms and for both values of the data size factor,
paring with AM-USW(O), AM-USE, and AM-EUN can offer more cost
savings than AM-EUC and AM-ASS.

As depicted in Fig. 6f, for both algorithms, pairing the home DC
AM-USW(C) with Google DCs outperforms pairing the home DC
with AM-USW(O), AM-USE, and AM-EUN at most by 10% in cost
saving. For two pairing sets, pairing the home DC with AM-EUC

and AM-ASS, and with Azure DCs, OOP gains the same cost saving
in both sets, while NOOP achieves a twice cost savings in the latter
pairing set in comparison to the former pairing set.

The results can be justified as the aforementioned three Ama-
zon DCs (i.e., AM-USW(O), AM-USE, and AM-EUN) benefit from the
discount in network price for moving data across Amazon DCs. The
amount of discount is about 3/4 of the network price for moving
data out to the Internet. AM-EUC takes the advantage of the same
amount of discount but its low profitability happens due to the
small difference in the price of both storage classes (5% less for IAS
and 8% more for SS) compared to these prices of the home DC AM-

USW(C). For AM-ASS, the proposed algorithms achieve a lower
cost saving because the amount of discount is about 1/4 of the
network price.

5.2.3. The impact of data size factor value
We evaluate the effect of the data size factor value by varying it

from 0.2 to 1 with the step size of 0.2. The read and write requests
for all data size factor values are fixed based on the default value as

Fig. 8. Cost saving of OOP and NOOP algorithms for the home DC of Azure, Google, and Amazon when the latency cost weight is varied. The first (resp. last) two legends
indicate DC with the maximum (resp. minimum) cost saving when they are paired with the home DC. (a) Data center AZ-USS. (b) Data center GO-USE. (c) Data center AM-
USE. (d) Data center AM-USW(C).

Y. Mansouri, R. Buyya / Journal of Network and Computer Applications 75 (2016) 223–235232
in Table 1. This setting implies that as the data size factor value is
smaller, the data is more read- and write-intensive.

For the sake of brevity, from hereafter (excluding Section 5.2.6),
we report the results only for the most populated Azure DC (AZ-
USS), Google DC (GO-USE), and the two most populated Amazon
DCs (AM-USE and AM-USW(C)), as home DCs. We also consider the
pairing of these DCs with two DCs: the ones with maximum and
minimum cost savings, where the value of data size factor is 1.
Note that these DCs can be easily recognized in Figs. 4b, 5d, 6d,
Fig. 9. Cost saving of OOP and NOOP algorithms for the home DC of Azure, Google, an
indicate DC with the maximum (resp. minimum) cost saving when they are paired with
USE. (d) Data center AM-USW(C).
and 6f. For example, Fig. 4b depicts AZ-USS, as a home DC, can
achieve maximum (resp. minimum) cost saving when it is paired
with GO-USC (resp. AM-ASS).

As shown in Fig. 7, as the data size factor value increases, the
cost saving decreases. This is because when the data size factor
value is small, the network cost dominates the total cost, and the
proposed algorithm exploits more difference between network
prices offered by the paired DCs. On the contrary, as the value of
data size factor increases, the storage cost becomes more
d Amazon when the write to read ratio is varied. The first (resp. last) two legends
the home DC. (a) Data center AZ-USS. (b) Data center GO-USE. (c) Data center AM-

Table 3
Cost saving of OOP and NOOP (shown in bracket), and the potential DCs pairing
with four home DCs when the access patterns on the objects are Normal and
Random.

Home DC Access
pattern

Azure Google Amazon

AZ-USS Normal – 2–3%[�(11–
18)%]

2�4% [�(3–
7)%]

Random – 2–3%[�(1–
13)%]

2–3% [�(3–5)%]

– – All DCs USW(O,C), USE

GO-USE Normal 4%[�(7)%] – 4–5% [(2–4)%]
Random 4%[�(2)%] – 3–4% [(1–2)%]
– USS, USC – USW(O,C), USE

AM-USE Normal 4% [0%] 4% [1–3%] 4% [2%]
Random 4% [�5%] 3–4% [�(0–4)%] 3% [1%]
– USS, USC All DCs USW(O)

AM-USW(C) Normal 7–8% [�3%] 4–10% [3–9%] 6–9% [6–7%]
Random 7% [1%] 3–9% [3–6%] 6–8% [5–6%]
– USS, USC All DCs USW(O), USE

Y. Mansouri, R. Buyya / Journal of Network and Computer Applications 75 (2016) 223–235 233
important and thus the difference between storage prices offered
by the paired DCs comes into play for optimization. We can also
see that both algorithms approach the same cost saving value
(referred as convergence point) in the case of maximum cost
savings obtained from pairing DCs. The convergence point for each
home DC is: data size factor¼0.6 for GO-USE and AM-USE, and
data size factor¼0.8 for AM-USW(C). This implies that both algo-
rithms decide to migrate the objects at roughly the same time, and
consequently they almost achieve the same cost saving.

5.2.4. The impact of latency cost weight
We study the effects of latency cost weight by varying it from

1 to 30 on the cost performance of the algorithms on the pairing
DCs as already discussed in Section 5.2.3. As shown in Fig. 8, when
the value of latency cost weight increases, the cost savings gradu-
ally decrease (1–10%) for both algorithms. This is due to the fact
that as the latency cost weight value grows, the delay cost in dual
cloud-based storage increases and the impact of other parts of the
total cost (i.e., residential and migration costs) diminishes. In fact,
the growth in the latency cost weight reduces the potential for
exploiting the difference cost between storage and network, which
leads in the cost saving reduction. In summary, for both algo-
rithms, as the latency cost weight value increases, the delay cost
comes as a vital factor in the cost saving, while the impact of
difference between storage and network costs on the cost saving
decrease. As a result, a dual cloud-based storage prefers to store
more objects locally.

5.2.5. The impact of read to write ratio
We explore the effects of read to write ratio by varying it from

1 to 30 on the cost performance of the proposed algorithms on
pairing with DCs discussed in the previous section. Fig. 9 depicts
that, as the ratio of read to write increases, the cost savings gra-
dually increase at most 3% for OOP and 10% for NOOP. This in-
dicates more exploitation of pricing differences in the case of
network costs between the two paired DCs as the ratio grows.
Also, as it can be seen, for the paired DCs with minimum cost
saving, the OOP algorithm gains 3–10% more cost saving than
NOOP, except for the home DC GO-USE. On the contrary, for the
paired DCs with maximum cost saving, both algorithms approach
the same cost saving. This is because the total cost is dominated by
the storage cost, where in all paired DCs, Google DCs offer the
same storage cost. For the data size factor values between 0.2 and
0.6 in the case of the paired DCs with maximum cost saving (not
shown in results), OOP outperforms NOOP in the cost savings. The
reason is that the total cost is dominated by the network cost and
home DCs are paired with different DCs (except Google DCs) in
terms of network cost.

5.2.6. The impact of the access pattern of reads/writes on objects
We finally investigate the cost performance of the proposed

algorithms when the access pattern of reads/writes on the objects
follows different distributions, i.e., Normal and Random (Recall
that the access pattern of reads/writes on objects follows a Long-
tail distribution (Atikoglu et al., 2012), as the default). Although
Normal and Random access patterns are not compatible with hot-
and cold-spot status definition for objects, we investigate the
impact of these patterns separately to find out whether the algo-
rithms can still cut cost. And if so, to what extent? We conduct the
experiment for four home DCs: AZ-USS, GO-USE, AM-USE, and
AM-USW(C). We use the default value of read to write ratio, la-
tency cost weight, and data size factor, as shown in Table 1. Table 3
gives the cost savings for OOP and NOOP (shown in brackets).

As shown in Table 3, OOP can save cost for all home DCs under
both access patterns. For AZ-USS, the algorithm saves more cost if
it is paired with Amazon DCs rather than Google DCs under Nor-
mal access pattern by incurring less migration cost. For GO-USE,
OOP cuts the cost by 4% if it is paired with Azure DCs and cuts
slightly more costs with Amazon DCs under Normal access pat-
tern. In contrast to the two discussed home DCs, AM-USE and AM-

USW(C), as home DCs, can achieve cost reduction by pairing with
DCs of all cloud providers (i.e., Microsoft Azure, Google, and
Amazon). The cost saving obtained from these home DCs with
Amazon DCs (i.e., AM-USW(O) and AM-USE, see rows 3 and 4 under
column “Amazon” in Table 3) approaches the one achieved
through pairing with Google (i.e., all Google DCs) and Azure DCs
(i.e., AZ-USS and AZ-USC). This is because home DCs exploit the
discount on the network cost when data is moved across two
Amazon DCs.

From the results of the OOP algorithm, we observe that the cost
saving obtained from pairing potential DCs (see their name in
rows 3 and 4 of Table 3) with home DC AM-USW(C) is approxi-
mately two times more than that achieved by pairing these DCs
with home DC AM-USE. The reason is that the difference between
storage and network prices offered by AM-USW(C) and its paired
DCs is substantially high, while for AM-USE is comparatively low.
The result for AM-USW(C) shows that the cost savings are still
considerable under both Normal and Random access patterns
when a home DC offers services with prices that are significantly
different from those prices provided by other DCs. We can find
similar DCs (i.e., a significant difference between two DCs in terms
of price) in Asia-Pacific and Brazil regions as well. The companies
in these regions can leverage pairing of their DCs with DCs in other
regions to reduce cost not only for objects with hot- and cold-spot
status, but also for objects accessed under Normal and Random
access patterns.

Contrary to OOP, NOOP achieves less cost savings and in some
circumstances this algorithm is not even cost-efficient. Under both
access patterns, NOOP is not profitable when AZ-USS is paired
with DCs of Google and Amazon. NOOP triggers more migrations
that increase the total cost. Moreover, the results indicate that
pairing GO-USE with Azure DCs is not cost-efficient (�7% for
Normal and �2% for Random access pattern), while pairing of GO-
USE with Amazon DCs can still cut cost by 4% for Normal and 2%
for Random access pattern. NOOP brings more cost saving for
pairing both of the Amazon home DCs with the other potential
DCs, as compared to the pairing of home DCs such as AZ-USS and
GO-USE with the other DCs. For instance, AM-USW(C) achieves
cost savings under all circumstances except pairing with Azure
DCs under Normal access pattern. As already mentioned, this is

Y. Mansouri, R. Buyya / Journal of Network and Computer Applications 75 (2016) 223–235234
because AM-USW(C) offers more expensive storage and network
as compared to its paired DC, and object migration between these
paired DCs under both access patterns is cost-effective.

In summary, according to the experimental results, one can
conclude that OOP is cost efficient under both access patterns.
NOOP is not profitable for pairing Azure DCs with Google and
Amazon DCs, while it can be cost-effective in other pairing situa-
tions, such as Amazon DCs with Azure, Google, and Amazon DCs,
as well as pairing Google DC with Amazon DC. We realized that
NOOP can be profitable especially when the paired DCs can exploit
the discounted price in the network cost for moving data across
DCs belonging to the same provider. This discount is currently
offered by Amazon, and it is likely that Google and Azure would
offer their customers the same discount in the near future.
6. Conclusions and future work

Choosing storage options across CSPs for time-varying work-
load is critical for optimizing data management cost. In particular,
issues such as when should an object be migrated and in which
storage class it should be stored need to be addressed. We con-
sider a fine-grained architecture and propose two algorithms that
determine optimal (resp. near optimal) placement of the object
with (resp. without) the knowledge of the future workload. Such a
fine-grained architecture provides evidence that one can achieve
cost savings in Geo-replicated system where a home DC can be
paired with different DCs during the lifetime of the object.

In the future, we plan to apply the cost model in Geo-replicated
data stores so that the cost saving is maximized, while the weak
and strong consistency models are both guaranteed. Furthermore,
we are interested to investigate the effect of users’ mobility on the
cost optimization, and to determine when it is necessary to change
the home DC (in the proposed model we assumed the closest DC
as user's home DC) of the users when they move across the globe.
Acknowledgments

We thank Rodrigo N. Calheiros, Adel Nadjaran Toosi, Sareh
Fotuhi Piraghaj, Chenhao Qu, and Yali Zhao for their valuable
comments in improving the quality of the paper. This work is
supported by the Australian Research Council Future Fellowship
and Discovery Project Grant.
References

Abu-Libdeh, H., Princehouse, L., Weatherspoon, H., 2010. Racs: a case for cloud
storage diversity. In: Proceedings of the 1st ACM Symposium on Cloud Com-
puting (SoCC'10), ACM, New York, NY, USA, pp. 229–240.

Atikoglu, B., Xu, Y., Frachtenberg, E., Jiang, S., Paleczny, M., 2012. Workload analysis of
a large-scale key-value store. In: Proceedings of the 12th ACM SIGMETRICS/
PERFORMANCE Joint International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS'12), ACM, New York, NY, USA, 2012, pp. 53–64.

Beloglazov, A., Abawajy, J., Buyya, R., 2012. Energy-aware resource allocation
heuristics for efficient management of data centers for cloud computing. Future
Gener. Comput. Syst. 28 (5), 755–768 (Special Section: Energy Efficiency in
Large-Scale Distributed Systems).

Bessani, A., Correia, M., Quaresma, B., André, F., Sousa, P., 2011. Depsky: dependable
and secure storage in a cloud-of-clouds. In: Proceedings of the Sixth European
Conference on Computer Systems (EuroSys'11), ACM, New York, NY, USA, pp.
31–46.

Broberg, J., Buyya, R., Tari, Z., 2009. Metacdn: harnessing storage clouds for high
performance content delivery. J. Netw. Comput. Appl. 32 (5), 1012–1022.

Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R., 2011. Cloudsim:
a toolkit for modeling and simulation of cloud computing environments and
evaluation of resource provisioning algorithms. Softw. Pract. Exp. 41 (1), 23–50.

Chen, F., Guo, K., Lin, J., La Porta, T., 2012. Intra-cloud lightning: Building cdns in the
cloud. In: INFOCOM, 2012 Proceedings, IEEE, Orlando, Florida, USA, pp. 433–
441.
Corbett, J.C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman, J.J., Ghemawat, S.,
Gubarev, A., Heiser, C., Hochschild, P., Hsieh, W., Kanthak, S., Kogan, E., Li, H.,
Lloyd, A., Melnik, S., Mwaura, D., Nagle, D., Quinlan, S., Rao, R., Rolig, L., Saito, Y.,
Szymaniak, M., Taylor, C., Wang, R., Woodford, D., 2013. Spanner: google's
globally distributed database. ACM Trans. Comput. Syst. 31 (3), 8:1–8:22.

Elmore, A.J., Das, S., Agrawal, D., El Abbadi, A., 2011. Zephyr: Live migration in
shared nothing databases for elastic cloud platforms. In: Proceedings of the
2011 ACM SIGMOD International Conference on Management of Data, SIGMOD
’11, ACM, New York, NY, USA, pp. 301–312.

Fang, Y., Wang, F., Ge, J., 2010. A task scheduling algorithm based on load balancing
in cloud computing. In: Proceedings of the 2010 International Conference on
Web Information Systems and Mining, WISM'10, Springer-Verlag, Berlin, Hei-
delberg, pp. 271–277.

Gao, P.X., Curtis, A.R., Wong, B., Keshav, S., 2012. It's not easy being green, in:
Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communication, SIGCOMM
’12, ACM, New York, NY, USA, pp. 211–222.

Hajjat, M., Sun, X., Sung, Y.-W.E., Maltz, D., Rao, S., Sripanidkulchai, K., Tawarmalani,
M., 2010. Cloudward bound: planning for beneficial migration of enterprise
applications to the cloud. SIGCOMM Comput. Commun. Rev. 40 (4), 243–254.

Jiao, L., Li, J., Xu, T., Du, W., Fu, X., 2014. Optimizing cost for online social networks
on geo-distributed clouds. Netw. IEEE/ACM Trans. 99, 1.

Kotla, R., Alvisi, L., Dahlin, M., 2007. Safestore: a durable and practical storage
system. In: Proceedings of the USENIX Annual Technical Conference (ATC'07),
USENIX Association, Berkeley, CA, USA, pp. 10:1–10:14.

Latency-it Costs You. 〈http://highscalability.com/latency-everywhere-and-it-costs-
you-sales-how-crush-it〉.

Li, R., Wang, S., Deng, H., Wang, R., Chang, K.C., 2012. Towards social user profiling:
unified and discriminative influence model for inferring home locations, in:
The 18th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD'12, Beijing, China, August 12–16, pp. 1023–1031.

Lin, W., Liang, C., Wang, J.Z., Buyya, R., 2014. Bandwidth-aware divisible task
scheduling for cloud computing. Softw.: Pract. Exp. 44 (2), 163–174.

Liu, J., Pacitti, E., Valduriez, P., de Oliveira, D., Mattoso, M., 2016. Multi-objective
scheduling of scientific workflows in multisite clouds. Future Gener. Comput.
Syst. 63, 76–95 (Modeling and Management for Big Data Analytics and
Visualization).

Liu, Z., Chen, Y., Bash, C., Wierman, A., Gmach, D., Wang, Z., Marwah, M., Hyser, C.,
2012. Renewable and cooling aware workload management for sustainable
data centers. In: Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE
Joint International Conference on Measurement and Modeling of Computer
Systems, SIGMETRICS'12, ACM, New York, NY, USA, pp. 175–186.

Liu, Z., Lin, M., Wierman, A., Low, S.H., Andrew, L.L., 2011. Greening geographical
load balancing. In: Proceedings of the ACM SIGMETRICS Joint International
Conference on Measurement and Modeling of Computer Systems, SIG-
METRICS'11, ACM, New York, NY, USA, pp. 233–244.

Luo, J., Rao, L., Liu, X., 2014. Temporal load balancing with service delay guarantees
for data center energy cost optimization. IEEE Trans. Parallel Distrib. Syst. 25
(3), 775–784.

Luo, J., Rao, L., Liu, X., 2015. Spatio-temporal load balancing for energy cost opti-
mization in distributed internet data centers. IEEE Trans. Cloud Comput. 3 (3),
387–397.

Papagianni, C., Leivadeas, A., Papavassiliou, S., 2013. A cloud-oriented content de-
livery network paradigm: modeling and assessment. IEEE Trans. Depend. Secur.
Comput. 10 (5), 287–300.

Puttaswamy, K.P., Nandagopal, T., Kodialam, M., 2012. Frugal storage for cloud file
systems. In: Proceedings of the 7th ACM European Conference on Computer
Systems (EuroSys'12), ACM, New York, NY, USA, pp. 71–84.

Qiu, X., Li, H., Wu, C., Li, Z., Lau, F.C.M., 2015. Cost-minimizing dynamic migration of
content distribution services into hybrid clouds. IEEE Trans. Parallel Distrib.
Syst. 26 (12), 3330–3345.

Rao, L., Liu, X., Xie, L., Liu, W., 2010. Minimizing electricity cost: Optimization of
distributed internet data centers in a multi-electricity-market environment. In:
Proceedings of the 29th Conference on Information Communications, IN-
FOCOM'10, IEEE Press, Piscataway, NJ, USA, pp. 1145–1153.

Rodriguez, M.A., Buyya, R., 2015. A responsive knapsack-based algorithm for re-
source provisioning and scheduling of scientific workflows in clouds. In: 2015
44th International Conference on Parallel Processing (ICPP), pp. 839–848.

Salahuddin, M.A., Elbiaze, H., Ajib, W., Glitho, R.H., 2015. Social network analysis
inspired content placement with qos in cloud based content delivery networks.
In: 2015 IEEE Global Communications Conference, GLOBECOM 2015, San Diego,
CA, USA, December 6–10, 2015, pp. 1–6.

Tak, B.C., Urgaonkar, B., Sivasubramaniam, A., 2011. To move or not to move: The
economics of cloud computing. In: Proceedings of the 3rd USENIX Conference
on Hot Topics in Cloud Computing. HotCloud'11, USENIX Association, Berkeley,
CA, USA, pp. 5–5.

The Google Maps Geocoding API. 〈https://developers.google.com/maps/doc
umentation/geocoding/intro〉.

Tran, N., Aguilera, M.K., Balakrishnan, M., 2011. Online migration for geo-distributed
storage systems. In: Proceedings of the 2011 USENIX Conference on USENIX
Annual Technical Conference, USENIXATC'11, USENIX Association, Berkeley, CA,
USA, pp. 15–15.

Van Den Bossche, R., Vanmechelen, K., Broeckhove, J., 2013. Online cost-efficient
scheduling of deadline-constrained workloads on hybrid clouds. Future Gener.
Comput. Syst. 29 (4), 973–985.

Wikipedia. Hierarchical Storage Management (hsm). 〈http://en.wikipedia.org/wiki/

http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref1
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref1
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref1
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref1
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref1
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref2
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref2
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref2
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref3
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref3
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref3
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref3
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref4
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref4
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref4
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref4
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref4
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref4
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref5
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref5
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref5
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref5
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref6
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref6
http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it
http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref7
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref7
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref7
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref8
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref8
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref8
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref8
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref8
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref9
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref9
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref9
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref9
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref10
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref10
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref10
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref10
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref11
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref11
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref11
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref11
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref12
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref12
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref12
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref12
https://developers.google.com/maps/documentation/geocoding/intro
https://developers.google.com/maps/documentation/geocoding/intro
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref13
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref13
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref13
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref13
http://www.en.wikipedia.org/wiki/Hierarchicalstoragemanagement

Y. Mansouri, R. Buyya / Journal of Network and Computer Applications 75 (2016) 223–235 235
Hierarchicalstoragemanagement〉 (accessed 14.01.13).
Wood, T., Cecchet, E., Ramakrishnan, K.K., Shenoy, P., van der Merwe, J., Venkatar-

amani, A., 2010. Disaster recovery as a cloud service: Economic benefits & de-
ployment challenges. In: Proceedings of the 2nd USENIX Conference on Hot
Topics in Cloud Computing, HotCloud'10, USENIX Association, Berkeley, CA,
USA, pp. 8–8.

Wu, Z., Butkiewicz, M., Perkins, D., Katz-Bassett, E., Madhyastha, H.V., 2013. Span-
store: Cost-effective geo-replicated storage spanning multiple cloud services.
In: Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles (SOSP'13), ACM, New York, NY, USA, pp. 292–308.

Yu, S., Lin, X., Misic, J., Shen, X., 2015. Networking for Big Data, Chapman & Hall/CRC
Big Data Series. CRC Press, Taylor & Francis Group, Boca Raton, FL.

Zhang, L., Wu, C., Li, Z., Guo, C., Chen, M., Lau, F., 2013. Moving big data to the cloud:
an online cost-minimizing approach. IEEE J. Sel. Areas Commun. 31 (12),
2710–2721.

http://www.en.wikipedia.org/wiki/Hierarchicalstoragemanagement
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref14
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref14
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref14
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref14
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref15
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref15
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref15
http://refhub.elsevier.com/S1084-8045(16)30197-7/sbref15

	To move or not to move: Cost optimization in a dual cloud-based storage architecture
	Introduction
	Related work
	System and cost model
	System model
	Cost model

	Data management cost optimization
	Optimal object placement (OOP) algorithm
	Near-Optimal Object Placement (NOOP) algorithm

	Performance evaluation
	Experimental settings
	Results
	Benchmark policy
	Cost performance
	The impact of data size factor value
	The impact of latency cost weight
	The impact of read to write ratio
	The impact of the access pattern of reads/writes on objects

	Conclusions and future work
	Acknowledgments
	References

