
Creating a ‘Cloud Storage’ Mashup for High

Performance, Low Cost Content Delivery

James Broberg1, Rajkumar Buyya1, and Zahir Tari2

1 Department of Computer Science and Software Engineering,
The University of Melbourne, Australia

2 Department of Computer Science and Information Technology,
RMIT University, Australia

Abstract. Many ‘Cloud Storage’ providers have launched in the last two
years, providing internet accessible data storage and delivery in several
continents that is backed by rigourous Service Level Agreements (SLAs),
guaranteeing specific performance and uptime targets. The facilities of-
fered by these providers is leveraged by developers via provider-specific
Web Service APIs. For content creators, these providers have emerged as
a genuine alternative to dedicated Content Delivery Networks (CDNs)
for global file storage and delivery, as they are significantly cheaper, have
comparable performance and no ongoing contract obligations. As a re-
sult, the idea of utilising Storage Clouds as a ‘poor mans’ CDN is very
enticing. However, many of these ‘Cloud Storage’ providers are merely
basic storage services, and do not offer the capabilities of a fully-featured
CDN such as intelligent replication, failover, load redirection and load
balancing. Furthermore, they can be difficult to use for non-developers,
as each service is best utilised via unique web services or programmer
APIs. In this paper we describe the design, architecture, implementation
and user-experience of MetaCDN, a system that integrates these ‘Cloud
Storage’ providers into an unified CDN service that provides high perfor-
mance, low cost, geographically distributed content storage and delivery
for content creators, and is managed by an easy to use web portal.

1 Introduction

Content creators, ranging from large media companies to smaller, independent
start-ups have a need to store and distribute large files (such as audio and video
files and rich documents) cost effectively, but with both a global reach and good
performance for end-users (consumers) of these files. Traditional CDNs such as
Akamai [1] can be too expensive for all but the largest enterprise customers [2].
Most major CDN providers do not publish prices but are anecdotally 2−15 times
more expensive, and require 1−2 year commitments1. ‘Cloud storage’ providers
such as Amazon S3 and Nirvanix SDN are an appealing alternative, as they
provide internet accessible data storage and delivery services in several continents
1 Information obtained from http://www.cdnpricing.com, part of a popular website

and blog for CDN and streaming media professionals run by StreamingMedia.com.

G. Feuerlicht and W. Lamersdorf (Eds.): ICSOC 2008, LNCS 5472, pp. 178–183, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Creating a ‘Cloud Storage’ Mashup 179

that are backed by rigourous Service Level Agreements (SLAs), guaranteeing
specific performance and uptime targets. They offer utility pricing (only pay for
what you use), and have no ongoing commitments or obligations. As such, a
content creator can choose to harness these services only when required for peak
load [3].

These emerging services have reduced the cost of content storage and de-
livery by several orders of magnitude, but they can be difficult to use for non-
developers, as each service is best utilised via unique web services or programmer
API’s, and have their own unique quirks. Many websites have utilised individual
Storage Clouds to deliver some or all of their content [3], most notably the New
York Times [4] and SmugMug [5], however there is no general purpose, reusable
framework to interact with multiple Storage Cloud providers and leverage their
services as a unified CDN. Furthermore, a customer may need coverage in more
locations than offered by a single provider. To address these issues, in Section 2
we introduce MetaCDN, a system which utilises numerous storage providers in
order to create an overlay network that can be used as a high performance, re-
liable and redundant geographically distributed CDN. MetaCDN makes it easy
to harness the performance and coverage footprint of multiple ‘Cloud Storage’
providers, removes single vendor lock-in, and allows content creators to agilely
manage their deployments by expanding and contracting them as needed.

In this paper we focus on the design, architecture, implementation and user-
experience of the MetaCDN system. Interested readers are directed to our pre-
vious work [6] which gives an extensive background on the ‘Cloud Storage’
providers used by MetaCDN (listed in Table 1), and demonstrates that they
provide sufficient performance (i.e. predictable and sufficient response time and
throughput) that is consistent with previous performance studies of dedicated
content delivery networks [7,8].

Java stub
MetaCDN.org

WebDAVConnector

Amazon S3 &
CloudFront

Coral CDNNirvanix SDN
Mosso Cloud

Files CDN

Java SDK
Open Source

JetS3t toolkit
Java SDK
Nirvanix, Inc

Nirvanix SDK

Java stub
MetaCDN.org

AmazonS3Connector
Java stub
MetaCDN.org

NirvanixConnector
Java stub
MetaCDN.org

CoralConnector

MetaCDN

MetaCDN
Manager

MetaCDN QoS
Monitor

MetaCDN
Allocator

Java (JSF/EJB) based portal
Support HTTP POST
New/view/modify deployment

Web Portal
SOAP Web Service
RESTful Web Service
Programmatic access

Web Service

Shared/Private
Host

Random redirection
Geographical redirection
Least cost redirection

Load Redirector

MetaCDN
Database

Java stub
MetaCDN.org

CloudFilesConnector

Java SDK
Mosso, Inc

Cloud Files SDK

Java stub
MetaCDN.org

SCPConnector

Java stub
MetaCDN.org

FTPConnector

Fig. 1. MetaCDN Architecture

180 J. Broberg, R. Buyya, and Z. Tari

Table 1. Cloud Features (< 2TB for Nirvanix, < 10TB for Amazon, < 5TB for Mosso)

Feature Nirvanix SDN Amazon S3 Mosso Cloud
Files

Coral CDN

SLA 99.9 99-99.9 * None
Max. File Size 256GB 5GB 5GB 50MB
US PoP Yes Yes Yes Yes
EU PoP Yes Yes Yes2 Yes
Asia PoP Yes Yes3 Yes2 Yes
Australasia PoP No No Yes2 Yes
Per File ACL Yes Yes Yes No
Automatic Replication Yes Yes3 Yes2 Yes
Developer API Yes Yes Yes No
Bittorrent Support No Yes No No
Sideloading Support Yes No No No
Incoming data ($/GB) 0.18 0.10 0.00 0.00
Outgoing data ($/GB) 0.18 0.17(US/EU),

0.21(HK)3, 0.22(JP)3
0.22 0.00

Storage ($/GB) 0.25 0.15(US), 0.18(EU) 0.15 0.00
Requests ($/1,000 PUT) 0.00 0.01 0.02 0.00
Requests ($/1,000 GET) 0.00 0.01 0.00 0.00

2 The MetaCDN System

The aim of the MetaCDN system is to to build a low cost, high performance
CDN that harnesses the power of ‘Storage Clouds’, and is presented to users as
a cohesive, unified interface. In this section we discuss the design, architecture,
implementation and user-experience of the MetaCDN system.

2.1 Overall Design and Architecture of the System

The MetaCDN service (shown in Figure 1) is made available to users as a web
portal, allowing users to harnessing the storage, performance capabilities and lo-
cality of multiple Cloud Storage providers, whilst hiding the complexity involved
with interacting with these different entities. The web portal is most suited for
small or ad-hoc deployments. A SOAP Web Service has been developed for
MetaCDN that is useful for users with more complex and frequently changing
content delivery needs. A RESTful Web Service is also under development, that
will provide a lightweight Cloud Storage solution for mashup developers that
is trivial to utilise. The web portal was developed using Java Enterprise and
Java Server Faces (JSF) technologies, with a MySQL back-end to store user ac-
counts, deployments, and the capabilities and pricing of service providers. The
MetaCDN system integrates with its’ upstream providers via connectors, which
are discussed further in Section 2.2.

The web portal acts as the entry point to the system and also functions as
an application-level load balancer for end-users that wish to download content
2 When used with Limelight’s CDN service.
3 When used with Amazon’s CloudFront CDN service.

Creating a ‘Cloud Storage’ Mashup 181

that has been deployed by MetaCDN. In order to utilise the MetaCDN system
effectively, content must be deployed and managed via the portal or the Web
Service, as MetaCDN is unaware of content uploaded directly to participating
providers. Currently, the MetaCDN portal (and backing MySQL database) is
deployed at a single location (Melbourne, Australia) but in the near future we
intend to deploy MetaCDN portals (and replicated backing databases) in all
major continents to improve responsiveness and locality for users of MetaCDN,
and consumers of the content deployed by the system. This aspect is discussed
further in Section 2.5.

The MetaCDN system offers a number of functions via the web portal inter-
face4, including:

1. The creation of an account in the MetaCDN system, where a user registers
their details, as well as credentials for any service providers (listed in Table 1)
they wish to utilise.

2. Intelligent deployment of content based on geographical regions of the user’s
choice, their storage and transfer budget, or specific quality of service pa-
rameters (described in Section 2.3).

3. Viewing, modifying or deleting existing content deployment.
4. Viewing the physical location of deployed content replicas as a Google Maps

Geolocation mashup (described in Section 2.4).

2.2 Integrating ‘Cloud Storage’ Providers

The MetaCDN system integrates with each storage provider via a connector
that provides an abstraction to hide the complexity arising from each provider
having their own unique Web Service API. An abstract class, DefaultConnec-
tor, is defined that prescribes the basic functionality that each provider could
be expected to support, that must be implemented for all existing and future
connectors. These include basic operations like creation, deletion and renam-
ing of files and folders, and more advanced operations like creating Bittorrent
deployments, and sideloading files (replicating a file from a publicly available
origin URL). If an operation is not supported on a particular service, then the
connector for that service should throw a FeatureNotSupportedException.

Whilst the intent of the MetaCDN system is to provide its users a consistent,
unified interface to disparate ‘Cloud Storage’ systems, there are some important
differences in functionality and cost between the various providers (as noted
in Table 1). For example, Amazon S3 supports Bittorrent deployment of files,
whilst the other providers do not. There are also differences in the largest file
size that can be deployed, or whether files can be sideloaded as well as directly
uploaded to a given service. MetaCDN users do not need to be aware of these
subtle differences, as the content they wish to replicate is intelligently matched
to the most appropriate provider that suits their specific requirements.

4 A screencast of the web interface is available at http://www.metacdn.org

182 J. Broberg, R. Buyya, and Z. Tari

2.3 Content Deployment Options

Users of the MetaCDN web portal are presented with a number of different
deployment options for replicating their content. These include:

1. Maximising coverage and performance, where MetaCDN deploys as many
replicas as possible to all available locations.

2. Deploying content to specific locations a user nominates, where MetaCDN
matches the requested regions with providers that service those areas.

3. Cost optimised deployment, where MetaCDN deploys as many replicas in
the locations requested by the user as their storage budget will allow.

4. Quality of Service (QoS) optimised deployment, where MetaCDN deploys
to providers that match specific QoS targets that a user specifies, such as
average throughput or response time from a particular location, which is
tracked by persistent probing from the MetaCDN QoS monitor.

Once a user deploys using the options above, they are either returned a set of
publicly accessible URLs, pointing to the specific locations of the replica files, or a
singleMetaCDNURL,http://www.metacdn.org/FileMapper.jsp?itemid=XX,
where XX is a unique hash key associated with the deployed content. This provides
a single namespace which may be more convenient for users, and can provide au-
tomatic and totally transparent load balancing for end-users. This functionality is
described further in Section 2.5.

2.4 Integration of Geo-IP Services and Google Maps

Cloud Storage offerings are already available from providers located across the
globe. The principle of cloud computing and storage is that you shouldn’t need to
care where the processing occurs, or where your data is stored - the services are
essentially a black box. However, your software and data are subject to the laws
of the nations they are executed and stored in. Cloud storage users could find
themselves inadvertently running afoul of the Digital Millennium Copyright Act
(DMCA)5 or Cryptography Export laws that may not apply to them in their
own home nations. As such, it is important for Cloud Storage users to know
precisely where their data is stored. Furthermore, this information is crucial
for MetaCDN load balancing purposes, so end-users are redirected to the closest
replica, to maximise their download speeds and minimise latency. To address this
issue, MetaCDN offers its’ users the ability to pinpoint exactly where their data
is stored via geolocation services and Google Maps integration. When MetaCDN
deploys replicas to different Cloud Storage providers, they each return a URL
pointing to the location of the replica. MetaCDN then utilises a geolocation
service (either free6 or commercial7) to find the latitude and longitude of where
the file is stored. This information is stored in the MetaCDN database, and can
be overlaid onto a Google Maps view inside the MetaCDN portal, giving users
a birds-eye view of where their data is currently being stored.
5 Available at http://www.copyright.gov/legislation/dmca.pdf
6 Hostip.info is a free community-based project to geolocate IP addresses.
7 MaxMind GeoIP is a commercial IP geolocation service.

Creating a ‘Cloud Storage’ Mashup 183

2.5 Load Balancing via DNS and HTTP Redirection

Load balancing for both MetaCDN users and consumers of the content that the
system replicates is achieved in two stages. First, users or consumers of MetaCDN
are directed to their closest portal at the DNS resolution stage. Currently, there
is a MetaCDN portal running in Australia, and soon their will be portals running
in Europe and North America. For MetaCDN consumers, if they are attempting
to access a file via a MetaCDN URL, then they are redirected (by a HTTP 302
Found directive) to the most appropriate replica. What constitutes the most
appropriate replica depends on the deployer of the content (and the preferences
they expressed, described in Section 2.3). This could be the highest performing
replica, the geographically closest replica or even the cheapest replica.

3 Conclusion

In this paper we gave an overview of the design, architecture, implementation and
user-experience of MetaCDN, a system that integrates ‘Cloud Storage’ providers
into an unified CDN service that provides high performance, low cost, geograph-
ically distributed content storage and delivery for content creators, and is man-
aged by an easy to use web portal. More information on the ongoing development
of MetaCDN can be found at http://www.metacdn.org

This work is supported by Australian Research Council (ARC) as part of the
Discovery Grant ‘Coordinated and Cooperative Load Sharing between Content
Delivery Networks’ (DP0881742, 2008-2010).

References

1. Maggs, B., Technologies, A.: Global internet content delivery. In: First IEEE/ACM
International Symposium on Cluster Computing and the Grid, pp. 12–12 (2001)

2. Pathan, M., Buyya, R.: A Taxonomy of CDNs. Content Delivery Networks, 33–78
(2008)

3. Elson, J., Howell, J.: Handling Flash Crowds from your Garage. In: USENIX 2008:
2008 USENIX Annual Technical Conference (June 2008)

4. Gottfrid, D.: Self-service, prorated super computing fun! OPEN: All the
code that is fit to print (2007), http://open.nytimes.com/2007/11/01/

self-service-prorated-super-computing-fun
5. MacAskill, D.: Scalability: Set Amazon’s Servers on Fire, Not Yours. In: ETech

2007: O’Reilly Emerging Technology Conference (2007), http://blogs.smugmug.

com/don/files/ETech-SmugMug-Amazon-2007.pdf
6. Broberg, J., Buyya, R., Tari, Z.: MetaCDN: Harnessing ‘Storage Clouds’ for high

performance content delivery. Technical Report GRIDS-TR-2008-10, Grid Comput-
ing and Distributed Systems Laboratory, The University of Melbourne (August
2008)

7. Johnson, K., Carr, J., Day, M., Kaashoek, M.: The measured performance of content
distribution networks. Computer Communications 24(2), 202–206 (2001)

8. Su, A., Choffnes, D., Kuzmanovic, A., Bustamante, F.: Drafting behind Akamai
(travelocity-based detouring). ACM SIGCOMM Computer Communication Re-
view 36(4), 435–446 (2006)

http://open.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun
http://open.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun
http://blogs.smugmug.com/don/files/ETech-SmugMug-Amazon-2007.pdf
http://blogs.smugmug.com/don/files/ETech-SmugMug-Amazon-2007.pdf

	Creating a `Cloud Storage' Mashup for High Performance, Low Cost Content Delivery
	Introduction
	The MetaCDN System
	Overall Design and Architecture of the System
	Integrating `Cloud Storage' Providers
	Content Deployment Options
	Integration of Geo-IP Services and Google Maps
	Load Balancing via DNS and HTTP Redirection

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

