
CloudSimSC: A Toolkit for Modeling and
Simulation of Serverless Computing Environments

Anupama Mampage and Rajkumar Buyya
Cloud Computing and Distributed Systems (CLOUDS) Laboratory

School of Computing and Information Systems
The University of Melbourne, Australia

Email: mampage@student.unimelb.edu.au, rbuyya@unimelb.edu.au

Abstract—Serverless computing is gaining traction as an at-
tractive model for the deployment of a multitude of work-
loads in the cloud. Designing and building effective resource
management solutions for any computing environment requires
extensive long term testing, experimentation and analysis of
the achieved performance metrics. Utilizing real test beds and
serverless platforms for such experimentation work is often times
not possible due to resource, time and cost constraints. Thus,
employing simulators to model these environments is key to
overcoming the challenge of examining the viability of such novel
ideas for resource management. Existing simulation software
developed for serverless environments lack generalizibility in
terms of their architecture as well as the various aspects of re-
source management, where most are purely focused on modeling
function performance under a specific platform architecture. In
contrast, we have developed a serverless simulation model with
induced flexibility in its architecture as well as the key resource
management aspects of function scheduling and scaling. Further,
we incorporate techniques for easily deriving monitoring metrics
required for evaluating any implemented solutions by users.
Our work is presented as CloudSimSC, a modular extension to
CloudSim which is a simulator tool extensively used for modeling
cloud environments by the research community. We discuss the
implemented features in our simulation tool using multiple use
cases.

Index Terms—serverless computing, modeling and simulation,
CloudSim, function scheduling, function scaling

I. INTRODUCTION

Serverless computing has gained much popularity as a
deployment model for applications in the cloud during the past
few years. Enterprise cloud users from numerous application
domains have expressed their interest in adopting this novel
computing model owing to the simplification it brings to the
whole end to end process of acquiring and managing cloud
resources for hosting their software components. Under this
novel paradigm, the cloud vendor takes on the full respon-
sibility of managing the servers on behalf of the users. This
means that the entire array of operational tasks of provisioning
the required resources, allocating them to running applications,
scheduling the applications on the infrastructure, scaling the
allocated resources to suit existing traffic levels and monitoring
application performance is fully under the control of the cloud
service provider. Recent statistics show that more than half of
the customers of many industry giants in cloud computing
such as AWS, Google and Azure, have adopted the serverless

offerings of these companies [1]. This evolving market of
serverless users is estimated to be worth around $8 billion
at the moment.

Along with presenting a blackbox front from the perspec-
tive of the end users comes the heavy duty of handling
all the operational tasks related to the application backends,
to the service providers themselves. In addition, unlike the
operational scenarios of leased out Virtual Machine (VM)
infrastructure, serverless environments are of a multi-tenant
nature. This means that numerous functions belonging to
multiple users would reside in a shared space and consume the
virtual resources simultaneously. Further, the cloud vendors
are expected to manage the cloud resources for serverless
applications with minimum input and intervention from the
application owners, in order to better maintain the ’serverless’
notion of infrastructure management. Accordingly, the service
providers would initially have only a minimal understanding
on the behavior of the deployed functions. This significantly
complicates their task of managing the allocated cloud re-
sources to the applications while satisfying their performance
requirements as well as the budgetary restrictions of cloud
infrastructure costs.

Although the ’serverless’ nature of application resource
management relieves end users from many responsibilities, it
also creates some additional complications not present under
a conventional cloud computing model. Inability to recreate
the execution environment for an application is one such
major shortcoming, which hinders the performance as well
as budgetary planning processes for the users. The design of
individual functions and the structure of an application requires
a sound understanding on the run time resource consumption
and behaviour of the same, so that the optimum code-level
decisions can be made.

The availability of a simulator platform replicating the prac-
tical serverless computing infrastructure is thus essential for
the serverless providers to make better resource management
decisions in a multi-tenant enviornment as well as for the end
users to plan and design their applications for the most favor-
able end results. The very few existing simulator environments
presented by researchers for serverless environments have a
narrowed scope, limiting to specific architectures of a particu-
lar commercial platform and focusing mostly on performance

TABLE I
A COMPARISION WITH RELATED SERVERLESS COMPUTING SIMULATORS

Work Architecture Configurable Resource Management Monitoring Perspective
Single Request Request Concurrency Scheduling Horizontal Scaling Vertical Scaling Application owner Service Provider

Mahmoudi et al. (2021) ✓ ✓ ✓
Jeon et al. (2019) ✓ ✓ ✓
Mastenbroek et al. (2021) ✓ ✓ ✓ ✓
CloudSimSC (Our work) ✓ ✓ ✓ ✓ ✓ ✓ ✓

modeling for a deployed function. In contrast, our simulator
CloudSimSC, aims to provide a generalized serverless envi-
ronment capable of following a flexible function execution
flow customizable depending on the commercial/open source
platform that needs to be replicated. Further, our environment
is developed with a focus of allowing the incorporation of
custom function scaling and scheduling policies, forming the
dual perspective of both the serverless application and infras-
tructure owners. We develop this environment as an extension
to a widely adopted simulator in cloud environments named,
CloudSim [2]. Thus, CloudSimSC could be used along with
all the existing functionalities of the CloudSim base simulator.

The major contributions of our work are listed below.
1) A generalized architecture for function execution fol-

lowing both the existing commercial and open-source
serverless architectures, allowing the users to choose de-
pending on the environment that needs to be replicated.

2) Functional components for request load balancing, func-
tion scheduling and resource scaling (horizontal and
vertical)

3) Facilitates the introduction of custom load balancing,
scheduling and scaling policies from the perspective of
service providers. Custom scaling options for horizontal
and vertical scaling of function instances are provided
based on the chosen function execution flow.

4) Ability to derive monitoring metrics with regard to ap-
plication performance, system throughput and the under-
lying resource consumption for infrastructure providers.

With these developments built on CloudSim, CloudSimSC
brings all the benefits of a simulation approach, wherein
performance evaluation experiments can be conducted under
repeatable simulation environments for multiple system con-
figurations and applications and user QoS (Quality of Service)
requirement scenarios. This developed serverless simulation
environment has been instrumental in conducting all the per-
formance evaluation experiments in our previous work [3].

II. RELATED WORK

A few attempts have been made to develop or extend exist-
ing simulators to recreate serverless computing environments.
Mahmoudi et al. [4] present a simulator developed in python
following the available public serverless computing platforms.
Accordingly, they use only the scale-per-request architecture
seen in commercial platforms such as AWS Lambda [5],
Google Cloud platform [6], Azure Cloud Functions [7], where
a function instance would serve only a single request at a
time. Their simulator identifies the different states of a function

instance and the cold/warm starts of a function request. They
also focus on modeling the performance of functions by deter-
mining metrics such as the average response time, probability
of cold starts and the average cost of infrastructure measured
in terms of the number of machines in use. However they lack
focus on the generalizability of function scheduling or scaling
functionalities.

Jeon et al. [8] develop an extension to cloudSim simulator
introducing a geo-distributed serverless architecture including
an edge network. They allow functions to define service level
objectives (SLOs) but the included features do not necessarily
follow the execution flow of existing serverless platforms in
use, but rather presents a visionary architecture for serverless
computing at the edge.

An open-source platform OpenDC is developed by Masten-
broek et al. [9] for modeling and simulation of emerging cloud
datacenter technologies. The presented usecases for datacen-
ter simulation in this platform include serverless computing
among many others such as machine learning and HPC (High-
performance computing)-as-a-service infrastructure. Under the
serverless implementation, they focus on different policies for
resource allocation and scheduling for functions, in addition
to the cost models for function resource consumption for the
users. However, the focus on provider aspect of operations and
generalizability of platform architecture along with the scaling
of function resources is lacking.

Table 1 summarizes the comparison among the existing
serverless simulators with CloudSimSC in terms of the pre-
sented architecture, focus on function scheduling, horizontal
and vertical scalability of deployed function instances, and the
derivation of monitoring metrics useful for both the application
owners and infrastructure owners. The architecture refers to
whether a single function instance is able to accommodate
multiple requests at a time. Based on this feature, routing of
an incoming request, scheduling of a function instance on a
VM and subsequently scaling up/down and in/out of function
resources need to be handled considering different factors.

From Table 1, we can observe that most of the existing
simulators lack generalizability in terms of the architecture
for function execution since most of them only support the
primary design specifications seen in commerial serverless
platforms. Open-source platforms such as OpenFaas [10],
Kubeless [11] and Fission [12] are built based on the Ku-
bernetes [13] container orchestration tool at their core. Ac-
cordingly, they follow a slightly different execution pattern
allowing multiple requests to be executed simultaneously on
a single function instance, referred to as a pod. Our simulator

Fig. 1. A class diagram of CloudSimSC as an extension of the existing CloudSim simulator

allows the user to decide on which execution style they want
to incorporate. The existing simulator designs also do not
specifically focus on the configurability of new scheduling or
scaling policies with ease whereas ours support easy inclusion
of new scheduling policies, horizontal, and even vertical scal-
ing policies depending on the usecase. Further, we introduce
the provider perspective in metrics monitoring, specially with
regard to the cost of maintaining the serverless infrastructure
which is disregarded by many.

III. DESIGN OF CLOUDSIMSC AND ITS COMPONENTS

To address the limitations seen in existing simulator designs,
we introduce CloudSimSC, an extension to the CloudSim
simulator which facilitate the execution of serverless functions.

Fig. 1 shows how the features of the CloudSimSC ex-
tension are intergrated with the existing components of the
CloudSim simulator. CloudSim is a highly modular framework
extensively used by researchers for modeling, simulation and
experimentation of various cloud application and resource
provisioning scenarios in cloud computing environments over
the years. CloudSim has the abstract class SimEntity at its
core, representing the simulation entities that are able to
send and process messages from and to other entities. All
communications and actions in the simulator take place via
events represented by SimEvent objects. Events are stored and
executed sequentially as per their simulation time, by invoking
their corresponding methods. The ContainerDatacenterBroker
and ContainerDatacenter classes are derived from the SimEn-
tity class. The ContainerDatacenter class represents the core

hardware infrastructure maintained by cloud providers. This
class in turn encapsulates the ContainerHost and ContainerVM
classes which denote the physical and virtual machines for
running cloud applications.

The core components of the CloudSim framework can be
extended to simulate various distributed computing scenar-
ios within the cloud computing paradigm. Thus we have
developed the CloudSimSC framework extending CloudSim,
which enables the inclusion of unique features of a serverless
computing environment in order to easily simulate and model
function executions. As seen in Fig. 1, we have inherited many
of the core classes in CloudSim such as the ContainerDat-
acenterBroker, ContainerDatacenter, ContainerHost, Contain-
erVM, Container, and ContainerCloudlet and extended their
features to support serverless executions. These components
are explained in detail in the following subsections. Further,
we illustrate the basic serverless system model followed in
our design in Fig. 2, which helps in understanding these key
functional elements.

A. ServerlessController

ServerlessController class extends the ContDatacenterBro-
ker class. This acts as the coordinating body which han-
dles communication between the end users and the cloud
service providers offering serverless computing services. It
handles online negotiations for reserving required resources
for meeting user demands to their satisfaction. The controller
receives the external user requests and directs them to the load
balancer for deciding its’ execution environment depending

on the user specified platform architecture. It also monitors
and gathers the status of cluster resources represented by the
ServerlessDatacenter class as well as the performance data
of serverless workload executions. The gathered data could
be used by clients for measuring the quality of service of
the cloud providers and also for budgeting purposes. Cloud
providers could use the same for evaluating their resource
management techniques, which is crucial for the provider
managed serverless computing paradigm.

B. RequestLoadBalancer

All the user requests are initially received and queued at the
load balancer. The execution flow of a request from this point
is dependent on the selected platform architecture by the end
user. If the user intends to follow the commercial serverless
computing architecture with a single request occupying a
container at a time, they could choose to either create a
new container for every new request (scale per request) or
to select an existing idle container to schedule the incoming
request, if available. If the user decides to follow a scale
per request style, the new container creation request is sub-
mitted to the ServerlessController, who passes it on to the
ServerlessDataCenter. Subsequently, the request is scheduled
on the newly created container. If instead the user wishes to
use any existing warm, idling containers that are available
before creating new containers, containerIdling needs to be
enabled which commands every container to be retained for
a set time interval after usage. If the user plans to follow
a serverless architecture more synonymous with the open-
source platforms, they could opt to have request concurrency
in function containers where multiple requests of the same
function are accommodated by a function instance at a time.
In this case, they can either choose to have containerIdling
enabled or have a separate auto-scaling policy for maintaining
a pool of ready instances.

In using either of the platform architectures, whenever
idle instances are available, a suitable policy for container

Fig. 2. The system model of the serverless application execution environment

selection need to be implemented under the selectContainer
method, where the user requests are forwarded to an existing
function instance with sufficient free resources. The default
implementation has the First Fit (FF) logic where the first
available matching instance is selected for request execution.
If an active idle container is currently not available, the load
balancer checks for any suitable containers pending to be
created. If such pending containers exist, the request could
wait for a set time interval for a scheduling retry when
the container gets launched. If this is not an option, a new
container gets created for the request execution. Algorithm 1
illustrates this procedure, where r denotes an incoming user
request.

C. ServerlessDatacenter

ServerlessDatacenter class encapsulates the hardware/virtual
infrastructure of the serverless computing environment. It
receives forwarded requests by the load balancer and handles
their execution. The datacenter manages the operation of the
bare metal host nodes, the virtual machines that run on their re-
sources and also the separate sandbox environments created for
request executions such as containers. The FunctionScheduler

Algorithm 1 Load Balancer
1: procedure LOADBALANCING(r)
2: v ← getV MsCreatedList()
3: if scalePerRequest then
4: createNewContainer()
5: else
6: contTypeExists← false
7: contAllocated← false
8: for vm := v do
9: contList ←

vm.getFunctionContainerMap(r.type)
10: if contList! = null then
11: contTypeExists← true

12: for c := contList do
13: if resourceavailc ≥ resourcereqr then
14: r.setContainer(c)
15: contAllocated← true
16: submitRequest(r)
17: break
18: if contAllocated = true then
19: break
20: if contAllocated = false then
21: if contTypeExists = false then
22: pendingContList ←

vm.getFunctionContainerMapPending(r.type)
23: if pendingContList! = null then
24: contTypeExists← true

25: if contTypeExists = true then
26: reScheduleRequest(r)
27: else
28: createNewContainer(r)

Algorithm 2 Function Auto-Scaler
1: procedure CONTAINERSCALINGTRIGGER
2: rL ← getFunctionTypes()
3: v ← getV MsCreatedList()
4: for vm := v do
5: contMap← vm.getFunctionContainerMap()
6: for r := rL do
7: for c := contMap(r) do
8: fnDataMap← c.getResourceData

9: return fnDataMap

10: procedure HORIZONTALSCALER(fnDataMap, rL)
11: for r := rL do
12: for c := fnDataMap(r) do
13: dr ← calculateDesiredReplicas(fnDataMap)
14: nr ← calculateNewReplicas(dr)
15: if nr>0 then
16: for i = 1 to nr do
17: createScaledContainer()

18: else
19: for i = 1 to nr do
20: destroyIdleContainers()

and FunctionAutoScaler are initialized as objects within the
ServerlessDatacenter class. All cluster infrastructure resource
metrics are also constantly gathered and stored within the
datacenter.

D. FunctionScheduler

The function scheduler is tasked with selecting a suitable
VM for scheduling a newly created container. An object
of this class is initialized with the creation of an instance
of the datacenter, which identifies the allocation policy for
containers on VMs. Since serverless systems are multi-tenant
environments, functions of multiple users could reside on the
same VM. These different applications would have varying
resource requirements and thus the occurrence of resource
pressure on VM resources is quite prevalent. Further, the
sensitivity of these multitude of applications to various re-
source conditions too could have vast differences. Hence the
strategy for selecting a VM to run a function instance should
ideally take into account all these factors. The container to be
scheduled could already be reserved for executing a particular
user request or it could be a new container request triggered
by the auto-scaler component. The container could also be an
instance with the capacity to host multiple concurrent user
requests or a single request at a time. Depending on the
vCPU and memory requirements and availability in the cluster
VMs, the function scheduling logic is to be incorporated under
the findVmForContainer method. The default implementation
consists of the Round Robin (RR), random and bin-packing
policies.

E. FunctionAutoScaler

A distinct property of the serverless computing paradigm
is its fine grained auto-scaling capabilities, which aims to

follow workload traffic patterns closely and create only the
resources that are needed, when they are needed. This adhoc
creation of resources results in unprecedented delays in func-
tion execution. As such, different strategies are employed by
commercial and open-source platforms to have ready-to-serve
instances for incoming requests, without compromising too
much on resource wastage. These techniques are either focused
on retaining used instances for future reuse or on proactively
creating new instances by predicting the load levels. Existing
commercial serverless platforms mostly manage function auto-
scaling by maintaining used containers for a certain time
duration to serve any new requests. The open-source serverless
platforms which are based on kubernetes follow threshold
based horizontal scaling where the user can select to scale
resources when the average resource utilization across the
function instances or the requests per second for a function
exceeds a set threshold.

Function scaler in CloudSimSC is capable of both horizontal
and vertical scaling of function resources. Horizontal scaling is
associated with increasing or decreasing the number of replicas
of a function, i.e., scaling in or out. Vertical scaling on the
other hand handles the increase and decrease of the resource
capacities of a single instance of a function (container).
Adjusting resource capacities in this way is useful for when
the time needed for creating new resources with the horizontal
scaler is not tolerable for an application. Further, this allows to
improve resource utilization levels of the provider VM nodes.
Thus using vertical scaling in conjunction with horizontal scal-
ing increases the opportunity of achieving better resource effi-
ciency for the cloud provider and better function performance
for the end users. In CloudSimSC, when the scaling func-
tionality is enabled, the function scaler periodically performs
the scaling functionalities as per the implemented policies.
The default implemented policy for triggering function scaling
follows a threshold based logic. Whenever the average cpu
utilization level of function instances of a particular type rises
beyond the set threshold, the scaler is invoked.

1) Horizontal Scaler: Once triggered, the horizontal scaler
could follow any logic for creating new replicas, as required
by different users. The default policy follows a simple logic
of calculating the number of replicas required to bring the
utilization level to the set threshold.

2) Vertical Scaler: For the vertical scaler, we define a set
of cpu and memory increment levels that a function could
refer to. Accordingly, for each function type we need to
identify the cpu and memory incremental actions, that could
be successfully performed considering resource restrictions in
the host nodes and the requests that are already in execution in
the existing instances. The default implementation includes the
selection of a random scaling action from the viable options.

Algorithm 2 presents the default auto-scaler logic inlcuding
the threshold based horizontal scaling policy implementation.

IV. SAMPLE SIMULATION USING CLOUDSIMSC

In this section we present the step by step execution of
a sample simulation scenario in CloudSimSC. Simulation

Fig. 3. Sample code snippet for creating a ServerlessDatacenter

Fig. 4. Sample code snippet for creating a vm cluster

parameters corresponding to a particular scenario are to be
configured in the Constants class file.

Step1. Initialize the CloudSim core operations using the
CloudSim.init() function.

Step2. Create a ServerlessController instance. The controller
handles all communication to and from the user and the
serverless cluster environment.

Step3. Create a ServerlessDatacenter instance along with a
set of host nodes within it. Objects of the FunctionScheduler
component which identifies the containerAllocationPolicy and
also the FunctionAutoScaler are also initialized together with
it.

Step4. Create a VM cluster and add to the datacenter. Here
we create a simple 4 VM serverless cluster with 4 vCPUs and
3 GB of memory each.

Step5. Create a new instance of the loadBalancer, which
determines the execution flow for incoming function requests.

Step6. Create the request workload. We consider an example
with user requests arriving at the ServerlessController for a
single function deployed in the cluster. First the ServerlessRe-
quest objects are created and submitted to the controller. Once
the simulation starts, SimEvents are created for each of them
at their particular arrival times when the controller entity starts
its functionality.

Step7. Determine the load balancing policy. For this ex-
ample we consider a serverless architecture without container
concurrency and creating a new container for every new
request (this is achieved by enabling ’scale per request’ in the
configuration file). Thus a container creation request is sent to
the ServerlessDataCenter with every new request.

Fig. 5. Sample code snippet for creating a function request workload

Fig. 6. Sample code snippet for routing the requests

Step 8. Determine the function scheduling policy. We use the
default implemented RR policy for this example. Accordingly,
every new container created is scheduled on the created VMs
in a RR manner.

Step 9. Finally, start the simulation when all simulation
parameters are set as needed. Once the execution of all the
requests is complete, stop the simulation. If monitoring is
enabled, a summary of the VM resource usage details and
the request execution details during simulation will be printed
on the console.

Note that in the scenario considered here, we did not have
to specify a policy for function auto scaling since we followed
’scale per request’ where every container accommodates only
one request during its life time and the cluster maintains no
idling instance pools. Users are encouraged to enable and
explore horizontal as well as vertical function scaling by
defining their own logic for triggering the scaling functionality
and implementing custom policies for both horizontal and
vetical scaling.

V. PERFORMANCE EVALUATION

In this section we present the simulation of two serverless
computing use cases which use the developed components
of CloudSimSC. These examples demonstrate the usability
of the presence of a generalized simulation environment for
serverless computing, in order to evaluate the feasibility of
potential resource management techniques prior to deployment
in a practical testbed. The first scenario is designed to ex-
ecute serverless functions following the architecture seen in
commercial serverless platforms with a function scheduling
algorithm which aims to optimize the usage of cluster VM
resources. The second scenario illustrates the execution flow
seen in the majority of open-source frameworks, along with
the enabled auto-scaling feature.

(a) Average Request Response Time (ARRT) (b) Average VM Utilization

Fig. 7. Case Study 1: Comparison of the Average RRT and Average VM Utilization

A. Case Study 1: Request load balancing and function
scheduling

Here we consider a scenario where every function request
is accommodated on a separate container, which is able to
execute only a single request at a time. For every new request,
either a new container (scale per request) is created or an idle
warm instance is used. Once a new container is initiated with
the function code and dependencies installed, a decision has
to be made on selecting a VM to deploy it. This is known as
the function scheduling problem which is explored in many
research works [14], [15], [3]. The decision on selecting a node
for execution affects the efficiency of resource usage, while the
reuse of used instances saves up on request scheduling delays.

1) Simulation environment: We simulate a cluster of 20
homogeneous VMs, each with 4 vCPUs and 3GB of memory
and having the clock speed of Intel E5-2666, a configuration
seen within AWS Lambda infrastructure [16]. We consider
an average startup time for a container to be 500ms. A
workload with real-world arrival patterns is created by using
trace snippets from Wikipedia [17]. These are combined with
container size and execution time data from Azure functions
data set [18]. The created workload consists of traffic arriving
for 8 single request applications for a period of one hour, with
a peak load of 16x requests per second per application.

2) Comparing policies: As per the generalized architectural
features introduced in CloudSimSC, a user could choose to
follow the overall request execution flow they wish to simulate.
Within the chosen process flow, they could implement and
compare the load balancing and instance scheduling policies
based on their optimization objectives. Accordingly we con-
duct experiments using the below policies and compare their
results.
SPR-FF - A new container is created for every new request.
The container is deployed on the first VM which satisfies the
resource requirements, out of the set of VMs
CR-BF - Containers are retained in an idle state after request
executions for a set time duration. New requests either choose
the first available idle container of that function type or create
a new instance and get scheduled on VMs following a bin
packing policy of best-fit, where the VMs with higher resource
utilization get packed first.

3) Results: The lower average Request Response Time
(RRT) for CR-BF in graph 7(a) indicates that the response
time latency could be reduced by retaining used containers
for future use, which reduces the frequency of cold starts. In
contrast, creating a new container for each new request adds
a delay factor for each execution. In graph 7(b), it is seen
that the CR-BF policy increases the resource utilization too.
This is partially due to the selection of the VMs with highest
utilization for container scheduling, in addition to the retention
of used containers.

B. Case Study 2: Function Auto-scaling

In the second scenario we explore the serverless architecture
followed in the majority of kubernetes based open-source
platforms. Here a single function instances accommodates
multiple requests at a time based on its resource capacities.
Since resources are not scaled per request under this scenario,
we implement an auto-scaling policy for expanding resources
allocated for a particular application, based on the traffic
demand levels.

1) Simulation environment: Our simulation environment
consists of 12 homogenous VMs with the same configuration
as in scenario 1. Traces from Azure functions data set are
extracted for workload creation for 8 applications receiving
requests simultaneously. We maintain a maximum cpu and
memory allocated to a function instance at 1 vCPU and 3 GB
respectively.

2) Comparing policies: CloudSimSC allows the
implementation of both horizontal and vertical scaling
policies. Here we implement and compare a few policies,
evaluating their effectiveness in terms of function performance
and provider resource efficiency. .
HSO - Whenever the average cpu utilization across instances
of an application exceeds beyond a set threshold, a set of
new replicas are created in order to maintain the utilization
at the required level. Down scaling of idling instances is too
done following the same logic.
VSO - Upon reaching step resource utilization thresholds,
the cpu and memory capacity of a function instance is
incremented or decremented by a pre-defined step value as
allowed by the capacity of the VM hosting the instance.

(a) Average Request Response Time (ARRT) (b) Average VM Utilization

Fig. 8. Case Study 2: Comparison of the Average RRT and Average VM Utilization

3) Results: A lower ARRT is seen in graph 8(a) for VSO.
This is due to the lack of new resource creation time for
vertical scaling, compared to the time spent for new replica
creation that is involved with horizontal scaling. Since vertical
scaling encourages utilizing the already active VM resources
more, it leads to a higher VM utilization level on average, as
seen in graph 8(b).

VI. CONCLUSIONS AND FUTURE WORK

Simulation based experiments are instrumental in the in-
vestigation of the viability of cloud resource management
techniques, specially when dealing with testbed environments
which are less scalable and too costly for testing purposes.
Serverless computing is a novel computing paradigm which
has attracted much interest in the cloud computing com-
munity recently. To this end, in this paper, we presented
CloudSimSC, a toolkit for modeling a serverless computing
environment, developed as an extension to the CloudSim
simulator. In contrast to a number of other simulators in the
area, CloudSimSC holds the flexibility in following multiple
serverless platform architectures as per the user requirement,
in addition to the ability to incorporate custom load balancing,
scheduling and scaling policies. The case studies discussed in
the paper demonstrate the usability of this simulation environ-
ment for testing and evaluating various resource management
techniques with different optimization objectives.

As part of future work, we plan to extend CloudSimSC
to support multi-function applications with complex Directed
Acyclic Graph (DAG) based workflow structures.

Software availability: The source code of
the CloudSimSC toolkit is accessible from:
https://github.com/Cloudslab/CloudSimSC

REFERENCES

[1] “State of serverless 2023 report suggests increasing serverless adoption,”
https://www.infoq.com/news/2023/09/state-serverless-report/, (Accessed
on 10/26/2023).

[2] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya,
“Cloudsim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,” Soft-
ware: Practice and experience, vol. 41, no. 1, pp. 23–50, 2011.

[3] A. Mampage, S. Karunasekera, and R. Buyya, “Deadline-aware dynamic
resource management in serverless computing environments,” in Pro-
ceedings of the 21st IEEE/ACM International Symposium on Cluster,
Cloud and Internet Computing (CCGrid). IEEE, 2021, pp. 483–492.

[4] N. Mahmoudi and H. Khazaei, “Simfaas: A performance simulator
for serverless computing platforms,” arXiv preprint arXiv:2102.08904,
2021.

[5] “What is aws lambda? - aws lambda,” https://docs.aws.amazon.com/
lambda/latest/dg/welcome.html, (Accessed on 05/22/2023).

[6] “Google cloud documentation — documentation,” https://cloud.google.
com/docs, (Accessed on 05/22/2023).

[7] “Azure functions – serverless functions in computing — microsoft
azure,” https://azure.microsoft.com/en-au/products/functions/, (Accessed
on 05/22/2023).

[8] H. Jeon, C. Cho, S. Shin, and S. Yoon, “A cloudsim-extension for
simulating distributed functions-as-a-service,” in Proceedings of the
20th International Conference on parallel and distributed computing,
applications and technologies (PDCAT). IEEE, 2019, pp. 386–391.

[9] F. Mastenbroek, G. Andreadis, S. Jounaid, W. Lai, J. Burley, J. Bosch,
E. Van Eyk, L. Versluis, V. Van Beek, and A. Iosup, “Opendc 2.0:
Convenient modeling and simulation of emerging technologies in cloud
datacenters,” in Proceedings of the 21st IEEE/ACM International Sym-
posium on Cluster, Cloud and Internet Computing (CCGrid). IEEE,
2021, pp. 455–464.

[10] OpenFaas, “Home — openfaas - serverless functions made simple,”
https://www.openfaas.com/, 2021, (Accessed on 11/22/2021).

[11] Kubeless, “Kubeless,” https://kubeless.io/, 2021, (Accessed on
11/22/2021).

[12] “Fission — fission,” https://fission.io/docs/, (Accessed on 05/23/2023).
[13] “Kubernetes,” https://kubernetes.io/, (Accessed on 05/23/2023).
[14] K. Kaffes, N. J. Yadwadkar, and C. Kozyrakis, “Centralized core-

granular scheduling for serverless functions,” in Proceedings of the ACM
Symposium on Cloud Computing, 2019, pp. 158–164.

[15] A. Suresh, G. Somashekar, A. Varadarajan, V. R. Kakarla, H. Upadhyay,
and A. Gandhi, “Ensure: Efficient scheduling and autonomous resource
management in serverless environments,” in Proceedings of the IEEE
International Conference on Autonomic Computing and Self-Organizing
Systems (ACSOS). IEEE, 2020, pp. 1–10.

[16] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking behind
the curtains of serverless platforms,” in Proceedings of the Annual
Technical Conference, 2018.

[17] “Wikipedia access traces — wikibench,” http://www.wikibench.eu/
?page id=60, (Accessed on 12/02/2020).

[18] M. Shahrad, R. Fonseca, Í. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini, “Serverless
in the wild: Characterizing and optimizing the serverless workload at a
large cloud provider,” in Proceedings of the USENIX Annual Technical
Conference, 2020, pp. 205–218.

