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ABSTRACT
Background: Cloud Computing has established itself as an efficient and cost-effective paradigm for the execution of web-based
applications, and scientific workloads, that need elasticity and on-demand scalability capabilities. However, the evaluation of
novel resource provisioning and management techniques is a major challenge due to the complexity of large-scale data centers.
Therefore, Cloud simulators are an essential tool for academic and industrial researchers, to investigate the effectiveness of novel
algorithms and mechanisms in large-scale scenarios.
Aim: This paper proposes CloudSim 7G, the seventh generation of CloudSim, which features a re-engineered and generalized
internal architecture to facilitate the integration of multiple CloudSim extensions within the same simulated environment.
Methods: As part of the new design, we introduced a set of standardized interfaces to abstract common functionalities and carried
out extensive refactoring and refinement of the codebase.
Results: The result is a substantial reduction in lines of code with no loss in functionality, significant improvements in run-time
performance and memory efficiency (up to 25∖% less heap memory allocated), as well as increased flexibility, ease-of-use, and
extensibility of the framework.
Conclusion: These improvements benefit not only CloudSim developers but also researchers and practitioners using the frame-
work for modeling and simulating next-generation Cloud Computing environments.

1 | Introduction

Over the past decade, Cloud Computing has evolved rapidly,
becoming the dominant model for modern computing. Com-
pared to previous paradigms, the characterizing aspects of Cloud
Computing are the illusion of infinite resources available 24/7
on-demand over the network, and of infinitely scalable appli-
cations. This is possible thanks to virtualization technologies,
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which allow the sharing of physical machines, storage, and net-
working devices among multiple customers and organizations. A
plethora of service providers are involved in the provisioning of
Cloud services, including Cloud and Network Service providers,
to enable a wide range of applications being built by customers.
The goal of the Cloud provider is to ensure a satisfying experi-
ence for the customer, usually in terms of performance, reliability,
security, and cost, without compromising profit.
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It is difficult and costly to evaluate policies for Cloud provision-
ing, workload management, and resource handling in a real
environment since a Cloud infrastructure is a large and complex
system comprising interconnected geo-located datacenters. In
this context, simulation toolkits [1–3] mitigate the issue and
play an important role in research communities for testing and
evaluating complex applications and novel resource manage-
ment strategies through inexpensive and repeatable experiments.
Furthermore, simulations provide a controlled environment to
test the performance of resource provisioning policies and to
easily reproduce the results.

CloudSim [4] has been a forefront simulation toolkit, and
the de-facto standard, for evaluating resource management
techniques in Cloud Computing environments, thanks to its
ease-of-use and extensibility. The first iteration of CloudSim
offered a machine virtualization layer to simulate Virtual
Machines (VMs) and test techniques such as provisioning,
scheduling, and consolidation. Thousands of contributions in
the field of Cloud orchestration and resource management use
CloudSim [5–7], as demonstrated by the 6400+ citations to the
seminal paper. Indeed CloudSim is a completely customizable
tool: all its components and related interactions are implemented
in Java and can be extended with minimal effort. For instance,
Cloud researchers can develop a custom scheduling policy, or
embed power-awareness in their VM instances. As the num-
ber and type of services offered by Cloud service providers have
increased, in parallel, simulation toolkits have also evolved. As a
result, CloudSim sports a rich ecosystem of extensions, from now
on referred to as “CloudSim modules”, to model and simulate all
sorts of resource management challenges in the Cloud context.
The rapid growth in Cloud adoption not only relies on machine
virtualization as its main feature, but also on many fundamen-
tal features such as Software Defined Networking (SDN), Net-
work Function Virtualization (NFV), container-based virtualiza-
tion, and serverless application execution models. The CloudSim
research community developed new modules such as Network-
CloudSim [8], CloudSimSDN [9, 10], WorkflowSim [11], and
ContainerCloudSim [12], among others, to accommodate these
advancements.

Since its inception, the CloudSim ecosystem has received con-
tributions from diverse researchers and developers with varying
skill levels and coding styles. As highlighted by other authors
[13–15], these contributions often fail to fully leverage the
toolkit’s extensibility and are typically developed as independent
packages, significantly hampering the reuse of these extensions.
These “single-feature” extensions led to a degree of fragmen-
tation within the ecosystem, making it difficult for CloudSim
users to seamlessly integrate multiple modules into a single
simulated scenario. The culprit is CloudSim’s lack of gener-
alized interfaces for implementing the simulated entities and
their interactions. A module developer creating an entirely new
component had no easy way to maintain compatibility with
components from other, unrelated CloudSim modules: develop-
ers have often been forced to copy-paste existing components
and slightly modify their behaviors, to the detriment of the
extensibility capabilities offered by Object-Oriented (OO) pro-
gramming. For instance, ContainerCloudSim provided a collec-
tion of container scheduling and allocation policies which were
the copy-pasted version of the VM-based ones. This is because

VMs and containers have been portrayed as completely different
components, despite performing the same task (i.e., executing
user workloads). Another example: ContainerCloudSim pro-
vided a collection of host selection policies for placement pur-
poses, whereas the power-aware package offered a collection of
VM selection policies for migration purposes. The policies are
fundamentally the same in both modules (i.e., select an entity
from a list of candidates), but CloudSim does not provide a stan-
dard way to interface with them, forcing redundant code paths:
one to handle migration, and one to handle placement. Moreover,
the latest version of CloudSim (i.e., CloudSim 6G) was released
with a bundle of these independently packaged modules with
no interoperability guarantees, further worsening the readability
and clarity of the codebase.

1.1 | Contributions

This paper proposes the seventh generation of the CloudSim
toolkit, shortened to CloudSim 7G, the biggest re-engineering of
the codebase to date. The major contributions of our proposal are:

1. A set of Java interfaces to standardize the definition, con-
figuration, and creation of new components and their
interactions. Compared to original CloudSim [4], these
interfaces facilitate the integration of several CloudSim
modules, which were previously available independently
and often had compatibility issues, within the same simu-
lated scenario.

2. A re-engineered, refactored, and refined version of several
modules from CloudSim 6G, for a total of more than 13,000
lines of code removed. In particular: (i) NetworkCloudSim
[8], the networking module of CloudSim, has been rewrit-
ten almost completely; and (ii) ContainerCloudSim [12],
which is the container module, and the power module [16]
have been heavily refactored to reduce their codebase and
improve readability as well as extensibility.

3. The ability to simulate scenarios with nested virtualiza-
tion, such as containers within VMs, or even VMs within
VMs. This enables a more accurate simulation of real-world
Cloud infrastructures, where nested virtualization is used to
implement multi-tenancy and enhance isolation.

4. The introduction of the virtualization overhead parameter:
in real-world settings, VMs do not communicate directly
with physical devices, such as network interface cards, but
rather through virtual interfaces, which introduce addi-
tional overhead [17]. This feature can be used to charac-
terize better scenarios involving nested virtualization and
networking.

5. Significant improvements in terms of simulation run-time
performance and memory usage, compared to previous
CloudSim iterations.

The third and fourth contributions are made possible by
the standardized interfaces introduced in CloudSim 7G. The
pre-packaged modules available in CloudSim 6G, which were
unable to work in an integrated manner, have been con-
solidated into a base layer to support the development of
novel multi-module extensions. Moreover, significant attention
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FIGURE 1 | The evolution of CloudSim.

has been given to minimizing the effort required for module
developers to restore compatibility of their contributions with
CloudSim 7G.

In conclusion, CloudSim 7G introduces enhanced functionalities
and extensibility features, along with significant performance
improvements. These innovative capabilities open up new
opportunities for simulating next-generation Cloud Computing
environments, where researchers can experiment with hybrid
scenarios using various computing paradigms (i.e., Cloud, Fog,
Edge, Serverless Computing) and deployment models (i.e.,
VMs only, containers only, containers on VMs, etc.) together.
This ability for different modules to coexist and interact was
previously not possible.

1.2 | Paper Organisation

The rest of the paper is organized as follows: Section 2 recalls
the evolution of the official CloudSim codebase, as released
by researchers of the CLOUDS Lab, in conjunction with the
paradigm shifts in Cloud Computing. Section 3 briefly presents a
collection of external modules not developed within the CLOUDS
Lab, as well as a subset of CloudSim’s competitors in the litera-
ture. Section 4 presents: (i) the proposed architectural change to
the codebase of CloudSim so to allow for multi-extension simula-
tions; (ii) the essential refactoring, refinement, and optimization
steps performed to construct the new base layer of CloudSim;
and (iii) the guidelines to update an old module to CloudSim 7G.
Section 5 presents a performance comparison between CloudSim
6G and CloudSim 7G in terms of run-time and total memory allo-
cated, showcasing the improvements of CloudSim 7G in large
simulations thanks to the massive optimization the codebase
has undergone. Section 6 proposes a simple case study that uses
multiple modules simultaneously, demonstrating the flexibility
of the novel design. Finally, Section 7 concludes the paper with
final remarks and a discussion on future research directions for
modeling and simulating future generation Cloud Computing
environments.

2 | CloudSim Through the Evolution of Cloud
Computing and Related Paradigms

In the landscape of Cloud simulators available in the litera-
ture [1–3], CloudSim, one of the first simulators specialized in

evaluating resource management techniques for Cloud infras-
tructures, has established itself as the de-facto choice for the
research community. This section recalls the major characteris-
tics of the milestones in the evolution of CloudSim, depicted in
Figure 1, as officially released by researchers at the CLOUDS Lab.
Notice that some of the described modules have been integrated
into the base layer of CloudSim 7G.

CloudSim originated as a derivative of GridSim [18], enhancing
its core functionalities with a new discrete-event management
framework that more effectively represents the dynamic nature of
Cloud environments. The first iteration of CloudSim [4, 19] mod-
eled the basic functionalities of machine virtualization described
above, simple network behaviors in the form of a constant prop-
agation delay calculated using a latency matrix, and a power
module for investigating energy-aware VM consolidation poli-
cies. One of the shortcomings of the initial version of CloudSim is
the absence of a proper network model. This limitation precludes
the modeling of realistic scenarios with datacenter network
topologies [20], which is crucial for a range of Cloud application
domains, including scientific, big-data, and High-Performance
Computing (HPC) workloads. In these contexts, applications are
typically composed of several communicating tasks that need
to be distributed across a cluster of interconnected physical
machines. NetworkCloudSim [8] addressed such limitations with
the introduction of a network flow model that simulates an
internal network made of interconnected switches and physi-
cal machines. Consequently, NetworkCloudSim also introduced
a generalized application model for simulating complex work-
flow applications using a message-passing paradigm for commu-
nications. A “networked” cloudlet is structured as a sequence of
stages, where each stage represents either a computational activ-
ity, like a “traditional” cloudlet, or a data transmission depen-
dency (i.e., send/receive data). The communication between
cloudlets that are part of the same workflow application but
reside on different physical hosts is managed through a series of
simulated switches.

The next evolution step came with the advent of
Containers-as-a-Service (CaaS) offerings in the Cloud mar-
ket. Containers represent a progression towards lightweight
application management [21], hence it became evident the
need for simulating such a novel virtualization paradigm. To
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this end, ContainerCloudSim [12] enriched CloudSim with
new features for the evaluation of allocation, migration, and
scheduling policies in containerized environments. In practice,
ContainerCloudSim adds an additional scheduling layer to the
simulated infrastructure, so that cloudlets are deployed within
containers that are placed inside VMs.

The widespread adoption of virtualization technologies eventu-
ally reached the telecommunications field with the rising inter-
est in Network Function Virtualization (NFV). Together with
Software-Defined Network (SDN) technologies, they enable the
deployment of network services, such as proxy and firewall ones,
on commodity hardware instead of proprietary, expensive hard-
ware appliances, much like virtualization is employed in Cloud
infrastructures to drive higher capacity utilization and reduce
cost. CloudSimSDN [9, 10] enabled the evaluation of resource
management strategies in infrastructures with SDN functional-
ities, such as dynamic network configuration and programmable
controllers. In addition, CloudSimSDN supports the allocation,
migration, autoscaling, and service chaining for NFV. The simu-
lation framework is based on the Open Source NFV Management
and Orchestration (MANO) architecture.

The advent of the Internet-of-things (IoT) paradigm created the
need for pushing computation and storage away from centralized
data centers, and towards the “edge” of the network, to support
the surge of big data. In this regard, iFogSim [22] enabled the
simulation of IoT devices connected to Edge and Fog Computing
environments. The latest version [23] supports also the creation
of complex microservice applications, as well as the simulation
of service migrations for different mobility models of IoT devices
and distributed cluster formation among Edge/Fog nodes of dif-
ferent hierarchical tiers.

The subsequent step in the history of CloudSim was supporting
the evaluation of cloud-native applications [24]. In this context,
Serverless computing gained much popularity thanks to the
simplification it brings to the whole process of acquiring and
managing Cloud resources. The Cloud provider takes on full
responsibility for all operational tasks for provisioning and allo-
cating the required resources to running applications, scheduling
the applications on the infrastructure, and scaling the allocated
resources to adapt to traffic changes. This enables developers
to concentrate solely on the development of their cloud-native
applications without the burden of server administration.
CloudSimSC [25] is a toolkit for modeling serverless computing
environments. This contribution offers a generalized architecture
for function execution, scheduling, and load balancing, as well as
resource scaling and monitoring metrics in terms of application
performance, system throughput, and underlying resource
consumption.

The latest trends in Cloud research are investigating hybrid
quantum computing environments for solving computationally
intractable problems. In this regard, iQuantum [26] extends the
base CloudSim for the evaluation of scenarios with the presence
of quantum resources. The module extracts the features of quan-
tum circuits and then models them as workload entities to be
executed on quantum datacenters.

3 | Related Work

The CloudSim toolkit boasts a rich ecosystem of modules devel-
oped by researchers and institutions not affiliated with the
CLOUDS Lab. These external, or “third-party”, contributions are
orthogonal to the evolution of CloudSim described in the pre-
vious subsection: sometimes an external contribution provides
an alternative implementation of a milestone module or a direct
improvement to it. Finally, we discuss alternative Cloud simula-
tors found in the literature.

3.1 | CloudSim-Driven External/Third-Party
Modules

There are a plethora of external modules in the literature, those
presented in this paper are summarized in Table 1 (first portion).

TABLE 1 | A subset of the landscape of external CloudSim modules
and alternate simulators.

Name Based on Use-case

WorkflowSim
[11]

CloudSim 3G Clustering and failure
modeling for scientific

workflows
CloudSim4DWf
[27]

CloudSim 4G Dynamic workflows

CloudSimDisk
[28]

CloudSim 3G Disk operations modeling

CloudSimSFC
[29]

CloudSim 3G NFV

[30] CloudSim 5G Container orchestration
ACE [31] CloudSim4G Resiliency in Cloud
IoTSim [32] CloudSim 4G IoT for big data processing
edgeCloudSim
[33]

CloudSim 4G Mobility in Edge
Computing

IoTSimEdge
[34]

CloudSim 5G IoT and Edge Computing

CloudSimPlus
[14]

CloudSim 3G Re-engineering of
CloudSim’s core simulation

framework
CloudnetSim
[35]

OMNeT++ Advanced CPU Scheduling

CloudnetSim++
[36]

OMNeT++ Energy consumption

Simcan2Cloud
[37]

OMNeT++ Machine Virtualization

GreenCloud
[38]

NS2 Energy consumption

DSLab IaaS
[15]

DSLab Machine virtualization

DSLab FaaS
[39]

DSLab Serverless Computing

FaaS-Sim [40] SimPy Serverless in Cloud-Edge
scenarios

OpenDC [13] — Datacenter simulation
platform
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One notable contribution is WorkflowSim [11] from the Univer-
sity of Southern California, an alternative to NetworkCloudSim
which focuses on the simulation of the scheduling, clustering,
and provisioning of large-scale scientific workflow workloads. A
scientific workflow is expressed as a set of tasks that are inter-
dependent in terms of data or control flow. In practice, the work-
loads are represented using the DAX format of PegasusWMS [41].
Compared to NetworkCloudSim, WorkflowSim adds an addi-
tional layer of workflow management to CloudSim to evaluate
workflow optimization techniques such as task clustering [42].
Moreover, WorkflowSim supports the generation and monitoring
of failures at run-time. A more recent contribution in this context
is CloudSim4WDf [27] from the University of Sfax. This extension
examines the financial impact of dynamic changes in workflow.
Applications are represented using Business Process Modeling
Notation (BPMN) to facilitate the modeling of workload structure
changes at run-time. In comparison, WorkflowSim only supports
the rigid structure imposed by the DAX file.

CloudSimEx is a set of tools featuring disk operations, the sim-
ulation of MapReduce clusters [43], web sessions, and proba-
bilistic cloudlet arrivals, among others. CloudSimDisk [28] from
Luleå University of Technology is an alternative to the simple
disk features of CloudSimEx that focuses on modeling the energy
consumption of storage systems within a Cloud infrastructure.
Compared to CloudSimEx, CloudSimDisk provides a model for
describing the characteristics of a Hard Disk Drive (HDD), an
integration with the power modeling package of CloudSim, and
a collection of algorithms for energy-aware storage management.
CloudSimSFC [29], developed by Beihang University and based
on CloudSimEx, is an alternative to CloudSimSDN that enhances
the simulation of performance fluctuations in service chaining
within Multi-domain Service Networks.

A contribution from German University in Cairo [30] provides
an improved version of ContainerCloudSim that supports sim-
ulation scenarios with both VMs and containers and dynamic
arrival of cloudlets and workflow applications. However, the
authors re-implemented each feature from scratch. CloudSim 7G
supersedes this contribution since it allows to use VMs, contain-
ers (ContainerCloudSim), workflows (NetworkCloudSim, but
also WorkflowSim), and specify a dynamic cloudlet arrival
(CloudSimEx) in the same scenario without “yet another”
independently-packaged re-implementation of such features.

FTCloudSim [44] from Beijing University of Posts and Telecom-
munications extends CloudSim to evaluate performance in the
event of fault and recovery events using checkpointing [45]. A
related work is ACE [31] from Western University Ontario, which
investigates the resiliency of Cloud infrastructures by enhanc-
ing CloudSim with support to availability-aware placement poli-
cies. ACE allows to inject failures at VM level and recover from
them through a series of recovery and repair policies. Compared
to FTCloudSim, ACE also explores replication as a fault-tolerant
technique.

There is a significant collection of CloudSim modules focusing
on different aspects of Fog and Edge Computing. IoTSim [32]
from Australian National University focuses on the simulation

of IoT devices using the MapReduce model for big data pro-
cessing. EdgeCloudSim [33] from Boğaziçi University is an alter-
native to iFogSim for modeling edge infrastructures. Compared
to the first version of iFogSim, EdgeCloudSim considers mobil-
ity and implements a dynamic network communication model.
IoTSimEdge [34] from Newcastle University focuses on com-
posing IoT applications as microservices and examining energy
consumption implications. Compared to EdgeCloudSim, it offers
enhanced mobility features.

A notable mention goes to CloudSimPlus [14] from Instituto Fed-
eral de Educação Ciência e Tecnologia do Tocantins, which is
proposed as an alternative to the “base” CloudSim. The authors
present a full rewrite of CloudSim3G to reduce code duplication
and increase code reuse by improving several engineering aspects
of CloudSim. The goal of CloudSimPlus is in common with our
work, however, the latter suffers from two shortcomings: (i) it is
a fork of a very old version of CloudSim, and (ii) it is not com-
patible with current CloudSim modules. Therefore, CloudSim-
Plus cannot support the rich ecosystem of contributions devel-
oped for CloudSim thus far. On the contrary, CloudSim 7G is a
re-engineering attempt that stays as faithful as possible to previ-
ous CloudSim versions.

In conclusion, there is a vast array of modules that leverage the
ease-of-use and extensibility of CloudSim to provide support for
several computing paradigms. However, we observed significant
overlap among these contributions (particularly in the context of
Edge Computing): each work is an ex-novo, single-feature exten-
sion to CloudSim. This indicates that CloudSim 7G’s general-
ized interfaces could have facilitated building them on top of one
another, rather than independently packaged modules, creating
a more cohesive and readable framework.

3.2 | Other Simulators

While many contributions to the simulation and modeling of
Cloud Computing are CloudSim modules, the literature also
presents several alternative approaches. CloudSim remains one
of the most comprehensive simulators to date, largely thanks to
the extensive array of modules for experimenting with the full
spectrum of Cloud-related techniques and paradigms, making it
unmatched by any other Cloud simulator in terms of features. By
contrast, related works tend to offer distinct advantages tailored
to specific scenarios.

As highlighted by a recent survey on the topic [2], most alterna-
tive Cloud simulators in the literature are extensions of existing
commercial network simulators. A subset of these contributions
is described in what follows and summarized in Table 1 (second
portion). CloudNetSim [35] was an extension of OMNeT++ [46],
a commercial but open-source network simulator, to support
the simulation of CPU scheduling within physical hosts and
VMs, including hypervisor-level and guest OS-level hierarchical
scheduling. It focused on the simulation of the Completely Fair
Scheduler (CFS) default scheduler in the Linux kernel when
used to schedule KVM VMs onto over-provisioned physical
hosts, as well as to schedule tasks within a Linux guest VM.
CloudnetSim++ [36] was another extension of OMNet++,
developed independently from CloudNetSim, designed to study
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energy consumption of different components spread across
geographically distributed Cloud datacenters. These two plat-
forms exploited OMNeT++ to offer accurate simulation of the
TCP/IP network protocol, but in different contexts: scheduling
algorithms and energy consumption, respectively. Simcan2Cloud
[37] is one of the latest Cloud simulators based on OMNet++,
which focuses on providing a highly-detailed simulated Cloud
infrastructure. It models innovative aspects, including VM rental
extensions, different queues for managing diverse access types,
and prioritized resource allocation.

GreenCloud [38] was an extension of NS2, one of the most popu-
lar open-source network simulators, for evaluating energy-aware
scheduling algorithms in Cloud environments. It offered detailed
modeling of energy consumption for hardware resources, includ-
ing networking appliances such as switches and links, with
diverse compute and communication capacities, and SLA
requirements. All these approaches have the advantage that they
inherit packet-level accuracy from the underlying network sim-
ulator, but at the cost of long simulation times due to the large
amount of “small” individual simulated components. Addition-
ally, they lack support for simulating per-VM resource allocation
and placement strategies, unlike a “general-purpose” simulator
such as CloudSim.

Regarding ex-novo simulators, the authors in [15] propose DSLab
IaaS, a novel simulator for IaaS infrastructures based on a
general-purpose software framework for simulating distributed
systems. Much like base CloudSim, DSLab IaaS’s focus is on
traditional machine virtualization. The simulator’s standout fea-
ture is its ability to model multiple concurrently operating VM
schedulers within the same host. The same authors also propose
DSLab FaaS [39] for the simulation of the Function-as-a-Service
paradigm. However, there is no evidence that the two simulators
can be used together, even though they originate from the same
underlying framework. The primary drawback of both works is
that they are written in Rust, a programming language with a
much smaller community of developers than Java or C, due to the
steep learning curve. On the contrary, much of CloudSim’s popu-
larity is to be attributed to the ease of use, whose only requirement
is basic knowledge of the Java programming language.

FaaS-Sim [40] is a Python-based, trace-driven stochastic sim-
ulation framework designed to evaluate placement and scal-
ing decisions in serverless computing platforms. Given a net-
work topology, a software architecture spanning the Edge-Cloud
continuum, and workload traces, FaaS-Sim provides estimates
of function execution times and resource usage. Compared to
CloudSimSC, it provides a more accurate resource model vali-
dated with real-world traces in comparison to NS2.

OpenDC [13] is a datacenter simulation platform composed by:
(i) a web-based user interface to interactively construct, share,
and reuse datacenter designs; (ii) a collection of convenience tools
to configure and automate experiments, and set up metric collec-
tors and workload traces, among others; and (iii) a model-driven
discrete-event simulator written in Kotlin. Moreover, OpenDC
comes with a collection of prefabricated scenarios, such as server-
less and HPC infrastructures. However, the platform specifically
focuses on datacenter modeling, and it appears to be primarily

designed for exploring prebuilt use cases in an educational con-
text. Therefore, it is unclear how easily third-party researchers
can extend it to meet their specific needs (i.e., simulating the
Cloud-Edge continuum).

In conclusion, CloudSim has established itself as the tool of
choice for researchers in this landscape thanks to: (i) its ease of
use, by requiring only beginner-level Java knowledge and mini-
mal expertise in specific domains, such as networking or server-
less computing; (ii) its abstraction level, which is well-suited for
simulating key characteristics of Cloud scenarios without having
to perform a fine-grained packet-level, hop-by-hop, simulation
in a distributed worldwide network, as it would be needed with
approaches based on network simulators; and (iii) its wide array
of extensions covering any Cloud-related computing paradigm.

4 | CloudSim 7G

In CloudSim 7G, the codebase has undergone a massive refac-
toring and refinement process to accommodate the generalized
interfaces that enable the coexistence of multiple modules within
the same simulated scenario. As a positive side-effect, the refac-
toring and refinement process allowed us to modernize and
optimize the original codebase, improving the simulation per-
formance, as well as its readability, usability, and flexibility. See
Section 5 for a performance evaluation between CloudSim 6G
and CloudSim 7G. Feature-wise, CloudSim 7G contains refined
versions of many spin-off contributions previously bundled
with CloudSim as independent packages. These contributions
include containers, geo-located services, web load balancing,
and network flow modeling.

Section 4.1 gives an overview of the high-level architecture of
CloudSim 7G. Subsequently, Section 4.2 describes the process of
running a simulation in practice, thus providing context for read-
ers unfamiliar with CloudSim before delving into the technical
changes introduced by CloudSim7G. Section 4.3 explains in detail
the new internal design of CloudSim to implement the integra-
tion layer within the building blocks of CloudSim. Section 4.4 and
Section 4.5 provide a practical description of the refactoring, opti-
mization and refinement process the codebase has undergone to
accommodate the adaptation interface. Lastly, Section 4.6 gives
the guidelines to update an old module to CloudSim 7G.

4.1 | Architecture

Figure 2 shows the up-to-date architectural components of
CloudSim 7G. Each building block has been refactored, and
modernized, and several have been removed or consolidated
(compared to the figure in the seminal paper [4]) thanks to the
generalized interfaces of CloudSim 7G. The overall structure is
the same: a user-facing section for Cloud providers, application
developers, and researchers, called the “User Code”, and a “back-
end” section dedicated to the development of the simulator and
its modules.

The bottom most layer is the simulation engine, which pro-
vides the core functionalities to start, pause, and stop simulated
entities, as well as store and dispatch the discrete events to be pro-
cessed at run-time. The subsequent layers consist of the building
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FIGURE 2 | The architecture of CloudSim 7G. Blue boxes correspond to the CloudSim components of the base layer. Orange boxes correspond to
user-defined policies and configurations, as well as newly created or extended CloudSim components.

blocks required to characterize a Cloud infrastructure: from the
physical layer (i.e., hosts, switches, etc.) up to the orchestra-
tion layer (i.e., VM placement strategies, cloudlet scheduling
policies, etc.).

The top most layer is the “User Code”, which exposes the func-
tionalities to customize each layer and evaluate a workload on
the simulated infrastructure. More specifically, a user specifies:
(i) the characteristics of the Cloud infrastructure in terms of the
number of physical hosts, their hardware specification, and how
they are interconnected (if the user is interested in modeling the
network flow); (ii) the characteristics of the virtual components
and their resource requirements; (iii) the characteristics of the
Cloud applications coupled with optional Quality-of-Service
requirements; and (iv) the characteristics of any installed
CloudSim module. The latter are typically loaded into the user
installation of CloudSim using build automation tools like Maven
or Gradle. Depending on the modules used by the CloudSim user,
an application may be expressed as a workflow (using Network-
CloudSim, for instance), or a host may exhibit energy-awareness
capabilities through the power-aware module. A Cloud
researcher may go a step further and programmatically extend
such functionalities to perform a customized and more complex
evaluation of resource management techniques. These are typi-
cally more “aware” provisioning, placement, or scheduling poli-
cies: a Cloud researcher may implement its own topology-aware
cloudlet scheduling policy to optimize a workflow application
within a networked datacenter, or exploit the migration module
to develop an auto-scaling policy for web sessions.

Subsequently, CloudSim configures the simulation according to
the user specifications, replacing the basic building blocks with

the custom policies and components expressed in the user code.
In particular, CloudSim 7G provides out-of-the-box support for
containers, VMs, “traditional” cloudlets, and workflow applica-
tions (i.e., networked cloudlets constructed as graphs) at the vir-
tual layer. The latter resources are then orchestrated through a
collection of basic placement, scheduling, and migration policies.
For instance, CloudSim’s power-aware package uses migration
policies to optimize the VM placement using statistical analysis of
host load utilization. Throughout the software stack, it is possible
to exploit custom components, such as the serverless capabilities
of CloudSimSC, as long as they are compatible with CloudSim 7G.

4.2 | Running a Simulation in CloudSim

A simple scenario simulated with base CloudSim consists of the
following steps: the service broker submits an inventory to the
datacenter, which comprises the virtual machines (VMs), physi-
cal hosts, and a list of ephemeral activities to be performed. The
latter abstracts the concept of a request submitted to a Cloud
service and in CloudSim jargon they are called cloudlets. Then,
the datacenter deploys the submitted inventory using a variety of
resource provisioning methods and scheduling policies, both at
the VM and cloudlet levels. The simulation terminates when all
the submitted activities have been executed. The physical hosts
and VMs are specified in terms of the number of processing ele-
ments, available RAM, and network bandwidth. Each processing
element (PE) has a specific processing strength measured in mil-
lions of instructions per second (MIPS), and the capabilities of the
physical host limit the hardware resources allocated to each VM.

A cloudlet specifies an execution length, in terms of millions
of instructions (MI), and the number of required processing
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elements to be provisioned. The actual execution time is deter-
mined by the capabilities of the underlying VM, the number
of co-hosted activities on it, and the cloudlet scheduling policy.
Out-of-the-box CloudSim supports two scheduling policies:
space-shared, where only one cloudlet at a time can execute
(others will be on a waiting list), and time-shared, where the
processing strength is shared among cloudlets running simulta-
neously. More specifically, for time-shared scheduling, the start
time of a cloudlet corresponds to the submission time, since
there is no queuing, and the estimated finish time solely depends
on the current processing capacity. For space-shared scheduling,
the estimated start time depends on the cloudlet’s position in the
waiting list, whereas the current processing capacity of the VM
is constant since always only one cloudlet at times is executing.
Refer to the seminal paper at [4] for a more in-depth description
of the simulated entities and their interactions. The power of
CloudSim comes from the framework’s extensibility, which
allows researchers to customize existing components and poli-
cies, or create new ones, at different levels of the infrastructure
(see Figure 2).

4.3 | Design

CloudSim is a toolkit that leverages the features of the Java
programming language to offer a highly extensible and portable
simulation platform. CloudSim modules are developed using
inheritance and composition in Java to enhance existing

components or create new ones. The design changes of CloudSim
7G affected the following Java classes (and their extensions):
Datacenter, DatacenterBroker, Host, Vm, Container,
VmAllocationPolicy, and CloudletScheduler. These
classes implement the building blocks of the simulator depicted
in Figure 2.

CloudSim 7G presents a collection of Java interfaces that gener-
alize the definition of some components and facilitate the coex-
istence of multiple CloudSim modules within the same simu-
lated scenario. This design change is one of the biggest shifts
in the codebase. Firstly, CloudSim 7G introduces the concept
of Guest entity and Host entity. A guest entity executes actions
related to the management and processing of cloudlets accord-
ing to a given scheduling policy. A host entity executes actions
related to the management (i.e., allocation, provisioning, and
scheduling) of guest entities within the simulated Cloud infras-
tructure. A guest entity runs inside a host entity which may be
shared among several guest entities. Such sharing affects the abil-
ity of a guest entity to execute its actions. Figure 3 depicts the
UML class diagram of the components affected by the design
change. For instance, the authors of ContainerCloudSim had to
distinguish between the Container and Vm classes. The two
components performed the same actions but were implemented
as completely independent entities. This triggered the need for
further redundant components: an instance of the Container
class required an extension of the Vm class, called ContainerVm
(i.e., a VM that hosts containers). In turn, the latter required an

FIGURE 3 | UML class diagram of host and guest entities in CloudSim. Green boxes depict Java interfaces, and blue boxes represent Java classes.
The relationship arrows follow the UML relations notation style: A dashed line represents a realization/implementation, and a full line represents
inheritance.
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extension of the Host class called ContainerHost, which can
only reside on an extension of the Datacenter class, the Con-
tainerDatacenter. To overcome such structural limitations
of the framework, CloudSim 7G introduces the following Java
interfaces:

1. HostEntity: A Java interface featuring a collection of
abstract methods required to implement a host entity and
its actions. A few methods provide a default, generalized
implementation of an action. Therefore, a possible imple-
mentation of the HostEntity interface corresponds to the
Host class in previous CloudSim versions.

2. GuestEntity: A Java interface featuring a collection of
abstract methods required to implement a guest entity. Sim-
ilarly, a few generalized implementations are provided by
default. Therefore, a possible implementation of the Gues-
tEntity interface corresponds to the Vm and Container
classes in previous CloudSim versions.

3. CoreAttributes: A Java interface that defines the meth-
ods required for implementation by both HostEntity and
GuestEntity classes.

4. VirtualEntity: A placeholder interface to implement
an entity that is simultaneously a HostEntity and a
GuestEntity. This interface is essential to support nested
virtualization.

5. PowerHostEntity and PowerGuestEntity: Ex-
tended interfaces to standardize the integration of
power-aware features into the implementation of host
and guest entities.

The new design has made certain components entirely redun-
dant, such as the ContainerHost and ContainerVm classes
(see Figure 3), while repurposing others. For example, the Net-
workVm class, which served no functional purpose, has been
redesigned to incorporate the new virtualization overhead fea-
ture, which is discussed in Section 4.5. As a result, module devel-
opers must now adhere to the newly defined Java interfaces to be
compatible with CloudSim 7G and leverage its multi-extension
support (More on this in Section 4.6).

Secondly, CloudSim 7G introduces the concept of selection pol-
icy, which generalizes the process of selecting an entity with a
criterion from within a list of candidates. This concept is typi-
cally employed to implement placement and migration policies.
In previous iterations of CloudSim, there is a clear divergence
between a placement policy (i.e., select a host for a VM to be
placed) and a migration policy (i.e., select a VM to be migrated),
despite being essentially the same activity. Therefore, the selec-
tion policy interface in CloudSim 7G serves as the fundamental
building block for implementing placement, migration, or any
policy that involves selecting an entity. This design change signif-
icantly simplifies the codebase, as illustrated in Figure 4, by ren-
dering redundant several Java classes from ContainerCloudSim

FIGURE 4 | UML class diagram of the host and guest selection policies in CloudSim. Green boxes depict Java interfaces, and blue boxes represent
Java classes. The relationship arrows follow the UML relations notation style: A dashed line represents a realization/implementation, and a full line
represents inheritance. Line colors are for presentation purposes only.
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and the power module. Specifically, the amount of Java classes
related to the selection process decreases from 26 to 11.

In conclusion, CloudSim 6G features a large number of unneces-
sary copied-pasted classes. As previously stated, the original ver-
sion of ContainerCloudSim used to treat VMs and containers as
completely independent entities, even if they performed the same
actions. In comparison, CloudSim 7G provides a common collec-
tion of interfaces that unites most modules developed so far, as
long as they are developed correctly using OO principles. The new
internal design of CloudSim 7G helped with code deduplication:
thanks to the new architecture, ContainerCloudSim has under-
gone a 64% reduction in terms of line of code (LoC). Similarly,
the source code of NetworkCloudSim has been reduced by 50%,
and the power module has been reduced by 21%. The next two
sections provide a detailed explanation of the significant changes
to the codebase, in terms of code deduplication, improving time
and space complexity, and adapting the existing components to
the new internal design.

4.4 | Code Refactoring and Optimization

The CloudSim refactoring process focused mainly on code mod-
ernization and deduplication:

1. Removed multiple parts of the codebase that contained
redundant operations, such as leftover code from GridSim
[18] and were marked as deprecated.

2. Removed the synchronized keyword from some data struc-
tures, given the single-threaded nature of the core simula-
tion engine.

3. Removed duplicated and redundant code snippets within
extensions to CloudSim’s core components by leveraging
the new internal design described in the previous section.
This deduplication process encompassed most components,
such as Datacenter, Vm, and DatacenterBroker, as
well as the scheduling and selection components.

4. Performed the necessary code upgrades for supporting the
latest Java Development Kit (JDK), the JDK21, as well as
JUnit 5.

The total amount of LoC removed is more than 13,000, with no
functionality lost during the deduplication process. This was ver-
ified by running tests provided in the CloudSim example folder.
Moreover, these code changes improve code reusability and favor
the enforcement of compliance with OO principles.

The CloudSim code optimization process focused on select-
ing the proper data structures and coding practices to improve
memory usage and reduce run-time, without altering the basic
CloudSim’s functionalities. Indeed, depending on the use-case,
choosing the appropriate data structure significantly improves
the performance of the simulator. For example ArrayList
and LinkedList have strengths and weaknesses in differ-
ent operations: Iterator.remove() and add() have con-
stant complexity in a LinkedList but linear complexity in
an ArrayList; on the other hand, the get() operation has
linear complexity in a LinkedList but constant one in an
ArrayList, on average.

More specifically, CloudSim 7G introduces the following code
optimizations:

1. The simulation core engine previously used a custom
linked-list for event dispatching to simulation entities,
resulting in an inefficient 𝑂(𝑛) time complexity for main-
taining temporal order. This implementation has been
replaced with Java’s PriorityQueue, which guarantees
𝑂(logn) time complexity for queueing methods.

2. Enforced the use of method isEmpty() for lists, instead
of checking the “actual” size, as in certain implementa-
tions (such as LinkedList), determining the size requires
counting the items, which is more time-consuming than
simply checking for emptiness.

3. Optimized string operations by using StringBuffer
and StringBuilder. During a simulation, the simula-
tor prints many logs on the console or outputs them to log
files. For convenience, many developers use the plus oper-
ator to concatenate strings. However, since Java strings are
immutable, this coding behavior caused unnecessary load
on the CPU and memory.

4. CloudSim previously used an ArrayList to store histori-
cal data about CPU utilization for power-awareness. How-
ever, since only the last item is frequently accessed, and new
items are simply appended, a LinkedList is a more effi-
cient choice.

5. Preferred the use of primitive data types (e.g., int.,
long, double) rather than classes (e.g., Integer, Long,
Double) where possible to minimize object creation and
auto-boxing/auto-unboxing overheads.

6. Maximized the reuse of objects to avoid the frequent cre-
ation/destruction of objects from the Java heap. This opti-
mizes memory usage and reduces the frequency and load of
garbage collection (GC).

7. Frequently invoked methods with non-constant computa-
tional complexity were cached in local variables for effi-
ciency. For instance, the calculation of the required per-core
MIPS of VMs and containers used to be performed continu-
ously throughout the simulation, which involved iterating
through multiple arrays. Similarly, getUid() previously
re-constructed the unique identifier from scratch with each
call, involving a string concatenation.

Refer to Section 5 for a performance evaluation between
CloudSim 6G and CloudSim 7G, showcasing the improvements.

4.5 | Code Refinement

The code refinement process involves more than just sim-
ple code deduplication: it requires proper adaptation of the
codebase to fully leverage the new internal design, in the
attempt to enhance both user and developer experience when
using CloudSim. In particular, we targeted: (i) the event han-
dling system within the simulation core engine; (ii) the main
logic of the CloudletScheduler class; and (iii) the entire
NetworkCloudSim module. Detailed descriptions of each bullet
point are provided in the following paragraphs, in order.
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CloudSim employs a set of event tags to indicate an action that
needs to be undertaken by a simulated entity when an event is
triggered at run-time. Each CloudSim module typically creates its
own collection of custom tags, which can potentially lead to col-
lisions if integer values are inadvertently reused, to the detriment
of multi-module scenarios. In CloudSim 7G, the event handling
system has been updated to make use of the Enum Java class for
declaring tags to improve code readability and prevent collisions.

The original version of CloudletScheduler abstract class
was not a generic template that represented the life-cycle of
a cloudlet deployed on a guest entity: any extension to the
CloudletScheduler class needed to re-implement the whole
scheduling logic, causing a lot of redundant code. As a signif-
icant side-effect, different implementations of the Cloudlet
class could not coexist within the same cloudlet scheduler, and
consequently, on the same VM (unless manually managed by the
module developer, for each possible cloudlet implementation).
CloudSim 7G solves this problem by providing a revised cloudlet
scheduling life-cycle represented by Algorithm 1, extracted from
the CloudletScheduler abstract class. Lines 4, 7, and 14
expose 3 handler methods (highlighted in gray) to standardize the
customization of the scheduling behaviors. The first two handlers
are used to customize the update logic and stopping condition
of a cloudlet. Therefore, any extension to the Cloudlet class is
supported out-of-the-box by a CloudletScheduler instance.
For instance, the NetworkCloudlet class exploits these 2 han-
dlers to implement the stages that realize an activity within a
scientific workflow. The cloudlet scheduler uses the third han-
dler to customize the unpause logic for cloudlets that are wait-
ing to be executed. Lines 1–6 update the number of executed
instructions of each active cloudlet in the time interval since the
previous processing update. Lines 7–10 terminate the cloudlets
that finished executing all the instructions. Line 11–13 returns
early if the cloudlet scheduler has no more events (i.e., no active
cloudlets) in the foreseeable future. Lines 14–16 unpause a sub-
set of waiting cloudlets based on a customizable behavior of the
cloudlet scheduler. For instance, CloudletSchedulerTime-
Shared class does not use the handler method, since all the
submitted cloudlets are executed in a time-shared manner. Lines
17–23 estimate the simulation time for the next discrete event for
this cloudlet scheduler, which depends on the finish time of the
earliest finishing cloudlet. Thanks to this refinement process, the
CloudletScheduler class and its extensions have undergone
a 40% LoC reduction.

Regarding NetworkCloudSim, it introduced a series of
network-related features that were cumbersome to set up,
and some features were not fully implemented, leading to con-
fusion and difficulty in their use. Moreover, there were plenty
of hard-coded constants that could not be customized. In short,
NetworkCloudSim is presented as a proof of concept, rather than
a usable module. To this end, CloudSim 7G includes a revised
version of NetworkCloudSim, which has been generalized to
function as a proper module, and enriched with several new
features to complete and enhance the user experience, such as
the introduction of virtualization overhead.

For instance, there was no user-friendly way to configure a
network with multiple switches. As a result, a CloudSim user
had to directly access the member variables of a Switch

instance, which was very error-prone. Furthermore, the Net-
workCloudlet class, which implemented the cloudlets with
network capabilities for constructing workflow applications, fol-
lowed a different execution model than the traditional cloudlet,
despite inheriting the properties from the Cloudlet class. A
stage within a networked cloudlet was defined in terms of exe-
cution time (in milliseconds), whereas a traditional cloudlet is
defined in terms of execution length (in millions of instructions).
The payload size of a packet was defined in bytes, but it was not
converted to bits when calculating the packet transmission time.
NetworkCloudSim allowed configuring a deadline to the execu-
tion time of the workflow application, but it did not implement
the logic to check whether the deadline had been met.

Finally, the virtualization overhead feature introduces an
optional delay applied each time a packet traverses a guest
or host entity. This feature is especially useful for assessing
resource management techniques across different virtualization
deployments, including the nested virtualization capabilities
introduced with CloudSim 7G, as demonstrated in Table 3. With-
out accounting for virtualization overhead, CloudSim would
fail to accurately capture the performance differences between
virtual machines (VMs), containers, and nested virtualization.

4.6 | Guidelines for Upgrading a Module
to CloudSim 7G

This section provides the guidelines for restoring the compat-
ibility of older CloudSim modules with the new base layer of
CloudSim 7G. Most re-engineered Java methods within classes
for core CloudSim components have retained their original APIs,
some kept the previous one as a deprecated alternative. While
we aimed to minimize disruptions, the new internal design of
CloudSim 7G necessitated key changes that need to be addressed
by extension developers; Using modern IDEs should make the
upgrade process piloted and straight-forward, as they can detect
dangling code paths and the use of deprecated methods.

Firstly, some classes have been removed or replaced: for
instance, the ResCloudlet class has been completely inte-
grated into the Cloudlet class. Consequently, any extension to
the ResCloudlet class now needs to inherit its properties from
the Cloudlet class. Secondly, some methods using Java gener-
ics require conversion from type Host to HostEntity (or from
Vm to GuestEntity) due to ambiguities caused by the type era-
sure mechanism.

Extensions to allocation and migration policies must adhere to
the novel API offered by the selection policy interface. Lastly,
since the tag system in CloudSim has been entirely rewritten to
use the Enum class instead of integer primitives, extension devel-
opers will need to update their custom tags accordingly. As a
side note: although the novel template-basedCloudletSched-
uler class maintains full backward compatibility, we encour-
age module developers to adhere to the new framework outlined
in Algorithm 1, thus integrating their custom changes to the
scheduling life-cycle through the proposed handler methods.

5 | Performance Evaluation

In CloudSim 7G, the codebase has undergone massive refactor-
ing to improve the readability and performance of the code. This
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ALGORITHM 1 | Revised Logic of the Cloudlet Scheduler Instantiated by the Guest Entities.

Input: 𝑚𝑖𝑝𝑠𝑆ℎ𝑎𝑟𝑒, currently available processing power to the guest entity
Input: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇 𝑖𝑚𝑒, current simulation time
Input: 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑇 𝑖𝑚𝑒, simulation time of the previous scheduling update
Input: 𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝐸𝑥𝑒𝑐𝐿𝑖𝑠𝑡, list of active cloudlets on the guest entity
Input: 𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝑊 𝑎𝑖𝑡𝐿𝑖𝑠𝑡, list of waiting cloudlets on the guest entity
Output: Predicted completion time of the earliest finishing cloudlet, or 0 if there are no active cloudlets left

1: 𝑡𝑖𝑚𝑒𝑆𝑝𝑎𝑛 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇 𝑖𝑚𝑒 − 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑇 𝑖𝑚𝑒

2: for 𝑐𝑙 ∈ 𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝐸𝑥𝑒𝑐𝐿𝑖𝑠𝑡 do
3: 𝑎𝑙𝑙𝑜𝑐𝑀𝑖𝑝𝑠 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑙𝑦𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝑀𝑖𝑝𝑠𝐹𝑜𝑟𝐶𝑙𝑜𝑢𝑑𝑙𝑒𝑡(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇 𝑖𝑚𝑒, 𝑚𝑖𝑝𝑠𝑆ℎ𝑎𝑟𝑒, 𝑐𝑙)
4: cl.update()
5: 𝑐𝑙.𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝐿𝑒𝑛𝑔𝑡ℎ𝑆𝑜𝐹𝑎𝑟 ← 𝑐𝑙.𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝐿𝑒𝑛𝑔𝑡ℎ𝑆𝑜𝐹𝑎𝑟 + (𝑡𝑖𝑚𝑒𝑆𝑝𝑎𝑛 ⋅ 𝑎𝑙𝑙𝑜𝑐𝑀𝑖𝑝𝑠)
6: if cl.isFinished() then
7: 𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝐸𝑥𝑒𝑐𝐿𝑖𝑠𝑡.𝑟𝑒𝑚𝑜𝑣𝑒(𝑐𝑙)
8: end if
9: end for

10: if 𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝐸𝑥𝑒𝑐𝐿𝑖𝑠𝑡.𝑒𝑚𝑝𝑡𝑦() ∧ 𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝑊 𝑎𝑖𝑡𝐿𝑖𝑠𝑡.𝑒𝑚𝑝𝑡𝑦() then
11: return 0
12: end if
13: 𝑢𝑛𝑝𝑎𝑢𝑠𝑒𝑑𝐶𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝐿𝑖𝑠𝑡 ← unpauseCloudlets(cloudletWaitList)
14: 𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝑊 𝑎𝑖𝑡𝐿𝑖𝑠𝑡.𝑟𝑒𝑚𝑜𝑣𝑒𝐴𝑙𝑙(𝑢𝑛𝑝𝑎𝑢𝑠𝑒𝑑𝐶𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝐿𝑖𝑠𝑡)
15: 𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝐸𝑥𝑒𝑐𝐿𝑖𝑠𝑡.𝑎𝑑𝑑𝐴𝑙𝑙(𝑢𝑛𝑝𝑎𝑢𝑠𝑒𝑑𝐶𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝐿𝑖𝑠𝑡)
16: 𝑛𝑒𝑥𝑡𝐸𝑣𝑒𝑛𝑡 ← 𝐷𝑜𝑢𝑏𝑙𝑒.𝑀𝐴𝑋_𝑉 𝐴𝐿𝑈𝐸

17: for 𝑐𝑙 ∈ 𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝐸𝑥𝑒𝑐𝐿𝑖𝑠𝑡 do
18: 𝑒𝑠𝑡𝐹 𝑖𝑛𝑖𝑠ℎ𝑇 𝑖𝑚𝑒 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇 𝑖𝑚𝑒 + 𝑐𝑙.𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝐿𝑒𝑛𝑔𝑡ℎ−𝑐𝑙.𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝐿𝑒𝑛𝑔𝑡ℎ𝑆𝑜𝐹𝑎𝑟

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑙𝑦𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝑀𝑖𝑝𝑠𝐹𝑜𝑟𝐶𝑙𝑜𝑢𝑑𝑙𝑒𝑡(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇 𝑖𝑚𝑒,𝑚𝑖𝑝𝑠𝑆ℎ𝑎𝑟𝑒,𝑐𝑙)
19: if 𝑒𝑠𝑡𝐹 𝑖𝑛𝑖𝑠ℎ𝑇 𝑖𝑚𝑒 < 𝑛𝑒𝑥𝑡𝐸𝑣𝑒𝑛𝑡 then
20: 𝑛𝑒𝑥𝑡𝐸𝑣𝑒𝑛𝑡 ← 𝑒𝑠𝑡𝐹 𝑖𝑛𝑖𝑠ℎ𝑇 𝑖𝑚𝑒

21: end if
22: end for
23: return 𝑛𝑒𝑥𝑡𝐸𝑣𝑒𝑛𝑡

section presents a series of experiments conducted on an x86-64
server with Intel(R) Xeon(R) Gold 6238R CPU, 80 MB L3 cache,
58 MB L2 cache, 128GB RAM, and Ubuntu 22.04 LTS. The goal
is to evaluate the performance improvements of CloudSim 7G,
compared to CloudSim 6G, using large trace datasets, despite the
introduction of new abstraction layers. We utilized OpenJDK21
in both CloudSim 6G and CloudSim 7G, namely OpenJDK 64-Bit
Server VM build 21.0.5+ 11-Ubuntu-1ubuntu122.04. All exper-
iments are conducted with JVM parameters -Xms4G -Xmx4G
(i.e., fixed heap size to avoid dynamic resizing at run-time) using
the default garbage-first garbage collector [47].

We collected the total memory allocated by each experiment at
run-time by aggregating the reclaimed heap memory reported
in Java Garbage Collection log messages (i.e., JVM parameter
-Xlog:gc*). The wall-clock run-time is obtained from the exe-
cution summary provided by Maven, the build automation tool
used by CloudSim. All experiments are conducted with CPU fre-
quency blocked at 2.20 GHz (the base frequency suggested by the
vendor), and no turbo or dynamic boosting. For each algorithm
and metric combination, we conducted the experiment 3 times
and computed the average heap usage and wall-clock run-time.

For the sake of reproducibility, we evaluate the performance
improvements of CloudSim 7G using a collection of simple
heuristic algorithms from the power module [48] and work-
load traces sampled from the PlanetLab package [49], both of

which are readily available within the CloudSim package. Each
experiment involves a distinct VM allocation and selection policy
for the study of energy and performance-efficient dynamic con-
solidation of VMs within a Cloud datacenter.

Table 2 depicts the results of the performance comparison:
CloudSim 7G consistently outperforms CloudSim 6G in terms
of average total heap usage and wall-clock run-time. In selected
experiments, CloudSim 7G reduces run-time by up to 9 s and low-
ers the total memory allocated by as much as 10,000 MB, greatly
improving the performance of the simulator.

6 | Case Study

This section presents a simulation scenario that uses multiple
CloudSim modules. In particular, the following entities will
interact in a multi-module scenario: (i) “traditional” VMs pro-
vided by CloudSim since the first version; (ii) containers from
the refactored version of ContainerCloudSim; (iii) the network,
virtualization overhead, and workflow application model of the
overhauled NetworkCloudSim, and (iv) the service broker of
CloudSimEX for simulating realistic cloudlet arrivals. We will
use the term “guest” to refer to a VM or container as a general
virtual component, “nested” when a container is placed on a VM
instead of a physical host directly, and denote the individual vir-
tualization technologies by the symbols, 𝐶 and 𝑁 , respectively,
when necessary. Notice that the goal of this section is not to
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TABLE 2 | Performance comparison of CloudSim 6G and CloudSim 7G in terms of total allocated memory and run-time.

Algorithm

Total heap usage (MB) Run-time (s)

6G 7G Improvement 6G 7G Improvement

Dvfs 2590.895 2092.710 19% 8.863 7.787 12%
MadMmt 43139.817 42299.257 2% 88.666 84.333 5%
ThrMu 42404.056 33157.480 22% 83 73 12%
IqrRs 41237.034 31038.492 25% 84.666 74.333 12%
LrrMc 40777.280 33584.612 18% 79.333 70.666 11%

Note: Each experiment is performed 3 times, and the average result is shown in the table. The “Improvement” column displays the percentage decrease for each metric.

FIGURE 5 | Case-study: A simple workflow application with end-to-end deadline deployed on a datacenter of interconnected physical hosts.

thoroughly evaluate a set of placement or scheduling strategies
to optimize a deployment, but to demonstrate CloudSim 7G’s
new multi-module feature with a simple scenario.

In the following, we take the viewpoint of a private Cloud
provider that needs to deploy a workflow application of inter-
connected tasks, represented as a simple Directed Acyclic Graph
(DAG). The provider’s goal is to estimate the end-to-end (E2E)
deadline for its application, formally called the makespan of the
DAG, based on some known parameters: (i) application-wise,
the number of instructions per task, the payload to be trans-
ferred between tasks, and the inter-arrival time of new requests;
and (ii) infrastructure-wise, the datacenter topology, the link
bandwidths, and the overhead introduced by virtualization when
using the network. This use-case is notoriously faced by telco
providers in the context of Industry 4.0, where time-critical appli-
cations, characterized by strict timing and reliability constraints,
are being deployed on contemporary Cloud infrastructures. The
multi-tenant nature of traditional Cloud infrastructures poses a
challenge for such an emerging use-case due to the “noisy neigh-
bor” problem [50, 51]. Notice that previous versions of CloudSim
do not support the simulation of such a peculiar scenario.

In our experimental evaluation, we will analyze how the
makespan is affected by varying the cloudlet placement strategy,
the network delay, the payload size, the overhead introduced by
different virtualization configurations (i.e., VMs, containers, or
nested containers), and the computational noise of co-located
cloudlets.

The private datacenter in Figure 5a comprises 4 homogeneous
physical hosts interconnected via 2 switches. The network topol-
ogy resembles a basic tree-like structure: the hosts are split
equally between 2 different racks, and each group of hosts is

connected to a Top-of-Rack (ToR) switch using a symmetrical
gigabit connection. The ToR switches communicate through an
Aggregate Switch via a symmetrical gigabit connection as well.
Figure 5b showcases the type of virtualization deployment under
study, each distinguished by a corresponding symbol, with 𝑁

denoting the “Container-on-VM” nested virtualization.

The logical representation of the workflow application is depicted
in Figure 5c: a simple DAG with two tasks, 𝑇 0 and 𝑇 1, the source
and sink node of the graph, respectively, connected in a chain
by a data transfer dependency. The DAG is “activated” by user
requests that trigger periodically. Therefore a DAG activation is a
periodic event that refers to the following chain of activities: (i)
𝑇 0 and 𝑇 1 are submitted for execution to the datacenter; (ii) 𝑇 0
executes for a pre-fixed amount of millions of instructions 𝐿𝑇 0;
(iii) 𝑇 0 transmits a payload to 𝑇 1 of fixed-size payloadSize; and
(iv) 𝑇 1 executes for a pre-fixed amount of 𝐿𝑇 1. The requests are
simulated in CloudSim by submitting two networked cloudlets
interconnected according to the application topology.

For the sake of simplicity, we will only focus on the effect of
cloudlet scheduling, placement, and virtualization overhead (as
depicted in Figure 5b), using two payload sizes for data trans-
mission. In particular, the experimental evaluation focuses on 3
possible placement configurations for the cloudlets: (i) 𝑇 0 and
𝑇 1 are co-located, meaning that data is transmitted locally with-
out using the physical network; (ii) 𝑇 0 and 𝑇 1 are located on
the same rack, but different physical hosts, meaning that data is
routed through a ToR switch only; and (iii) 𝑇 0 and 𝑇 1 are located
on different racks so that data must be transmitted through the
aggregate switch as well.

We assume physical hosts with hardware capabilities that meet
the guests’ requirements in terms of CPU, memory, and network
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TABLE 3 | Simulation parameters used in the experimental evaluation.

VM Container Nested Virt.

Alloc. processing power mips𝑉 = mips𝐶 = mips𝑁 = 7800 MIPS
Alloc. network bandwidth bw𝑉 = bw𝐶 = bw𝑁 = 1 Gb/s
Virt. overhead 𝑂𝑉 = 5 s 𝑂𝐶 = 3 s 𝑂𝑁 = 𝑂𝑉 + 𝑂𝐶

Cloudlet scheduler Time-shared
Guest scheduler Time-shared — Time-shared

Application

Topology 𝑇 0 → 𝑇 1
Execution length 𝐿𝑇 0 = 𝐿𝑇 1 = 10000 MI
Negligible payload 1 bytes
Non-neglibile payload 1 GB
Request inter-arrival Exp (2.564)

bandwidth. Additionally, the guests are big enough to accom-
modate together all the cloudlets representing the workflow
application, if necessary. Table 3 summarizes the parameter
configurations used for the experiment evaluation. We employ
time-shared cloudlet scheduling to simulate computational noise
for co-located cloudlets. The inter-arrival time of the cloudlets
is sampled from an exponential probability distribution with
rate parameter 𝐿𝑇 0

mips𝑉
+ 𝐿𝑇 1

mips𝑉
= 2.564 so that there are overlaps

between DAG activations only when the network is in use.

The VMs are modeled after the new AWS “m7g.medium”
general-purpose EC2 instances1, which are single-core VMs pow-
ered by the AWS Graviton3 processor where the virtual CPU is
a physical core running at 2.6 GHz. Containers are modeled as a
“slice” of the underlying hosting component, which can be either
a VM or the physical host, depending on the configuration; How-
ever, for the sake of simplicity, such slice corresponds to the entire
hosting VM’s compute capability when in nested virtualization.
The processing powers can be approximately estimated in MIPS
using the following formula, which is derived from the textbook
definition of CPU time [52]:

mips𝑉 = mips𝐶 = mips𝑁 = clk_rate ⋅ IPC
106 = 7800 MIPS, assuming IPC = 3

(1)
where clk_rate is the CPU frequency in Hz, and IPC is the number
of instructions per cycle. The execution length of the cloudlets is
configured as 𝐿𝑇 0 = 𝐿𝑇 1 = 10000 MI to ensure a sufficiently long
completion time for presentation purposes. For the same reason,
the virtualization overhead is configured to be exceedingly high
(i.e., over 1 s).

The deployed workflow application must meet the desired E2E
latency specified by the Cloud provider as a deadline. The tight-
est possible deadline equals the makespan of a DAG activation,
which takes into account the compute times, as well as the trans-
mission times due to the network switching delay. It can be esti-
mated as:

𝑀𝛼 =
∑
𝑖

(
𝐿𝑖

mips𝛼
+ 𝜌 ⋅ 𝑂𝛼

)
+ networkHops ⋅

∑
𝑖

(
payloadSize

bw𝛼

)
,

where𝜌 =

{
1 networkHops > 0
0 otherwise

,

(2)

where  = {𝑇 0, 𝑇 1} denotes the set of tasks in the DAG, and
𝛼 ∈ {𝑉 , 𝐶,𝑁} represents the virtualization configuration. The
symbol 𝐿𝑖 is the length of the 𝑖-th cloudlet, in MI; mips𝛼 is the
processing power of the underlying guest entity (configured with
virtualization configuration 𝛼), in MIPS; and 𝑂𝛼 is the associ-
ated virtualization overhead, in seconds. The symbol bw𝛼 is the
network bandwidth allocated to the guest entity, which is equiv-
alent to 1 gigabit for sending and receiving packets. The network
bandwidth is the same across each virtualization configuration,
as determined by the components of the simulated datacenter in
Figure 5a. The packets exchanged between nodes include either
a negligible payload of 1 byte, or a non-negligible payload of 1
gigabyte of data. The number of network hops required to realize
the communication networkHops depends on the cloudlet place-
ment: 0 hops for Configuration I, 1 for Configuration II, and 2 for
Configuration III.

Other factors can degrade the processing power and the average
network bandwidth of VMs, containers, and switches, such as:
(i) the interference of co-located cloudlets; (ii) components with
heterogeneous hardware capabilities; and (iii) more complex net-
work and DAG topologies. A detailed analysis is necessary in
such cases to determine the worst-case execution time for each
cloudlet and appropriately “inflate” the expected makespan of the
activation [53]. However, this is out-of-scope, hence why for such
a simple scenario the makespan estimated with Equation (2) is
good enough.

Figure 6 illustrates some preliminary experiments where only a
single DAG activation is simulated. The left-most plot presents
the result for the edge-case where the virtualization overhead
feature is disabled. In this scenario, for negligible payload sizes,
all placement configurations perform the same since the net-
work delay is insignificant. For a non-negligible payload size,
each network hop adds a delay of ̃16 s. The simulated network
delay aligns with the estimation from Equation (2) without vir-
tualization overhead, such that: ∀𝛼 ∈ {𝑉 , 𝐶,𝑁} ∶ 𝑀𝛼 = 2.564 +
networkHops ⋅ 16. The remaining three plots depict the grow-
ing impact of virtualization overhead across the deployments
depicted in Figure 5b. The results for negligible payload sizes
remain similar to the edge-case for Placement Configuration I,
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FIGURE 6 | Makespan of a single activation of the workflow application. The black dots correspond to the theoretical makespan estimated with
Equation (2).

FIGURE 7 | Empirical Cumulative Distribution Function of the makespan for 20 activations of the workflow application. The first row depicts the
scenarios with negligible payload size, the second row corresponds to the scenario with non-negligible payload size. The dashed lines highlight the
latency shift compared to the baseline scenario (i.e., virtualization overhead disabled).

but scaled up for Configuration II and III due to the virtualiza-
tion overhead. However, there is no distinction between the two
configurations that use the network, because the virtualization
overhead affects the sending and receiving guests, while physi-
cal components like switches remain unaffected. Consequently,
for negligible payload sizes, the increase in makespan is solely
attributable to the additional overhead introduced by the virtu-
alization deployment, and not by network hops (which remain
insignificant), as predicted by the theoretical model.

Figure 7 depicts the empirical Cumulative Distribution Function
(eCDF) of the makespan for a series of DAG activations. In partic-
ular, the DAG is activated 20 times with exponential inter-arrival
times so that the computational noise increases incrementally
due to the number of concurrent activations. The first row repre-
sents scenarios using a negligible payload size, whereas the sec-
ond one depicts scenarios using a non-negligible payload size.
Each column indicates a different virtualization deployment,
including the no overhead edge-case.

Placement Configuration I demonstrates consistent behavior
across all scenarios, since the network is not used, thus ren-
dering each virtualization deployment identical. Moreover, in
the first column of plots, there is no difference between Place-
ment Configuration II and III due to the negligible payload (as

previously depicted in Figure 6). Hence why, for presentation
purposes only, the orange curve has been slightly shifted upwards
to eliminate the overlap. Placement Configuration I shows sig-
nificant computational noise compared to the other configura-
tions for the edge-case scenario. More specifically, its median
value is 25% higher than those of II and III for the no over-
head edge-case (top-left plot). This occurs because all cloudlets
reside on the same VM: the exponential inter-arrival time of
user requests triggers increasingly overlapping activations of both
the source and sink nodes of the DAG, leading to high con-
tention. Consequently, the VM becomes progressively congested
due to the shared processing power. On the other hand, distribut-
ing the workload across two separate VMs significantly reduces
the pressure, resulting in less contention and therefore shorter
makespans, even with the exponential inter-arrival time. How-
ever, this is gradually overshadowed by the virtualization over-
head, as evident when examining the plots from left to right in
both the first and second rows.

The second row of plots shows the result for a non-negligible
payload size. Configuration II and III exhibit similar behavior as
before, but the curves are shifted further to the right and sepa-
rated from each other, showcasing the higher makespans of Con-
figuration III due to the additional network hop. In this scenario,
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Placement Configuration I is the optimal choice for achieving a
minimal makespan.

These experiments give some leverage to the Cloud provider in
estimating an end-to-end deadline to minimize the number of
missed deadlines. For instance, a deadline of 90 s would likely
guarantee no misses in every possible scenario, though it might
be too lax depending on the specific context. A deadline of 50 s
is optimal only with Placement Configuration I, however, the
configuration presents shortcomings in terms of fault-tolerance
(i.e., single-point-of-failure) and performance (i.e., it cannot
admit a high throughput of concurrent DAG activations due to
co-location interferences).

7 | Conclusions and Future Outlook

This article unveils a revival of the CloudSim project [4] with the
release of its seventh iteration. CloudSim 7G is the release with
the most internal changes to date: it offers a novel base layer com-
prising multiple past modules that have undergone a massive
refactoring, optimization and refinement process to accommo-
date the proposed design changes. Module developers can now
integrate, and customize as needed, the essential building blocks
of CloudSim, such as physical hosts, VMs and scheduling policies
[4], containers [12], power-awareness [16] and simple network
modeling [8], within the same simulated scenario. Therefore,
CloudSim 7G facilitates the integration of multiple modules,
opening new opportunities for the evaluation of scheduling and
resource management techniques for next-generation Cloud
Computing environments. Furthermore, we have empirically
demonstrated the improved performance of CloudSim 7G
thanks to the aforementioned refactoring and refinement pro-
cess. Thanks to our recent optimization effort, CloudSim 7G uses
up to 25% less total memory allocated in selected experiments
and overall saves 4–10 s compared to CloudSim 6G.

In what follows, we describe a series of future courses of action
that we hope will improve CloudSim with the help of the research
community. A number of researchers [14, 15, 54] have criti-
cized the cloudlet scheduling component accuracy for evaluating
production-quality Cloud components. In this regard, CloudSim
7G represents a significant advancement for accelerating the
development of new extensions, including one offering a com-
prehensive overhaul of the scheduling component so to replace
the overly simplistic default models. However, there is a need
in this area to support more realistic time-shared CPU schedul-
ing policies for virtual cores of multi-core VMs and parallel pro-
cesses. Moreover, the network simulation components should
be further evolved and extended, in order to provide a richer
simulation of the network behavior within distributed Cloud
infrastructures.

A further development step of CloudSim’s internals concerns
the merging of the host and guest entity components into one
standardized interface. Indeed, the two concepts realize the
same activities, but at different layers: a host entity resides
on the “physical” layer, whereas a guest entity resides on the
“virtual” layer. Such a paradigm shift is currently too catas-
trophic for restoring compatibility with older modules. In this
regard, CloudSim 7G serves as an intermediate step toward the

realization of a fully generic physical/virtual entity component in
future releases. Secondly, CloudSim might be updated to specify
the computational capabilities of hosts and virtual machines in
terms of clock frequency, in addition to the current MIPS perfor-
mance metric. Lastly, CloudSim requires a more comprehensive
test suite to ensure its correctness and prevent software regres-
sions between releases.

Given the large research work on approaches based on Machine
Learning (ML), Artificial Intelligence (AI) and Reinforcement
Learning (RL) [55], it may be useful to explore the possibility of
integrating within CloudSim additional components to train and
evaluate AI/ML models, to simulate AI-enhanced resource man-
agement strategies in Cloud Computing. This will require the
realization of new interfaces to interact with ML/AI accelerators
and development frameworks.

To conclude, we encourage the research community to develop
new modules that take advantage of the design shift intro-
duced with CloudSim 7G and to investigate novel schedul-
ing policies with hybrid scenarios using network modeling,
power, serverless, NUMA architectures, quantum computing,
and VM-container-host placement policies. On a similar note,
we kindly request experienced module developers to update their
contributions following the guidelines provided in this paper to
leverage the novel features of CloudSim 7G.

Software Availability

The source code and examples of the CloudSim7G toolkit are
accessible on GitHub2 as an open-source tool under the GPL-3.0
license.
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Endnotes
1 See: https://aws.amazon.com/ec2/instance-types/m7g/.
2 See: https://github.com/Cloudslab/cloudsim/releases/tag/7.0.

References

1. I. Bambrik, “A Survey on Cloud Computing Simulation and Modeling,”
SN Computer Science 1, no. 5 (2020): 249.

2. N. Mansouri, R. Ghafari, and B. M. H. Zade, “Cloud Computing Sim-
ulators: A Comprehensive Review,” Simulation Modelling Practice and
Theory 104 (2020): 102144.

3. A. Markus and A. Kertesz, “A Survey and Taxonomy of Simulation
Environments Modelling Fog Computing,” Simulation Modelling Practice
and Theory 101 (2020): 102042.

4. R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and
R. Buyya, “Cloudsim: A Toolkit for Modeling and Simulation of Cloud
Computing Environments and Evaluation of Resource Provisioning Algo-
rithms,” Software: Practice and Experience 41, no. 1 (2011): 23–50.

5. A. Awan, M. Aleem, A. Hussain, and R. Prodan, “Dfarm: A
Deadline-Aware Fault-Tolerant Scheduler for Cloud Computing,” Cluster
Computing 27, no.7 (2024): 9323–9344.

6. A. Satpathy, M. N. Sahoo, C. Swain, M. Bilal, S. Bakshi, and H. Song,
“Gamap: A Genetic Algorithm-Based Effective Virtual Data Center
Re-Embedding Strategy,” IEEE Transactions on Green Communications
and Networking 8, no. 2 (2023): 791–801.

7. L. Wu, S. K. Garg, and R. Buyya, “Sla-Based Resource Allocation for
Software as a Service Provider (saas) in Cloud Computing Environments.”
2011 In Proceedings of the 2011 11th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, 195–204.

8. S. K. Garg and R. Buyya, “Networkcloudsim: Modelling Parallel Appli-
cations in Cloud Simulations.” 2011 In Proceedings of the 2011 Fourth
IEEE International Conference on Utility and Cloud Computing, 105–113.

9. J. Son, A. V. Dastjerdi, R. N. Calheiros, X. Ji, Y. Yoon, and R. Buyya,
“Cloudsimsdn: Modeling and Simulation of Software-Defined Cloud
Data Centers.” 2015 In Proceedings of the 2015 15th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing, 475–484. IEEE.

10. J. Son, T. He, and R. Buyya, “Cloudsimsdn-Nfv: Modeling and Simula-
tion of Network Function Virtualization and Service Function Chaining
in Edge Computing Environments,” Software: Practice and Experience 49,
no. 12 (2019): 1748–1764.

11. W. Chen and E. Deelman, “Workflowsim: A Toolkit for Simulating
Scientific Workflows in Distributed Environments.” 2012 In Proceedings
of the 2012 IEEE 8th International Conference on E-science, 1–8. IEEE.

12. S. F. Piraghaj, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya, “Contain-
ercloudsim: An Environment for Modeling and Simulation of Containers
in Cloud Data Centers,” Software: Practice and Experience 47, no. 4 (2017):
505–521.

13. F. Mastenbroek, G. Andreadis, S. Jounaid, et al., “Opendc 2.0: Con-
venient Modeling and Simulation of Emerging Technologies in Cloud
Datacenters.” 2021 In 2021 IEEE/ACM 21st International Symposium on
Cluster, Cloud and Internet Computing (CCGrid), 455–464. IEEE.

14. M. C. Silva Filho, R. L. Oliveira, C. C. Monteiro, P. R. M. Inácio, and
M. M. Freire, “Cloudsim Plus: A Cloud Computing Simulation Frame-
work Pursuing Software Engineering Principles for Improved Modu-
larity, Extensibility and Correctness.” 2017 In Proceedings of the 2017
IFIP/IEEE Symposium on Integrated Network and Service Management
(IM), 400–406.

15. O. Sukhoroslov and A. Vetrov, “Towards Fast and Flexible Simulation
of Cloud Resource Management.” 2022 In 2022 International Conference
on Modern Network Technologies (MoNeTec), 1–8.

16. A. Beloglazov and R. Buyya, “Managing Overloaded Hosts for
Dynamic Consolidation of Virtual Machines in Cloud Data Centers
Under Quality of Service Constraints,” IEEE Transactions on Parallel and
Distributed Systems 24, no. 7 (2013): 1366–1379.

17. L. Chen, S. Patel, H. Shen, and Z. Zhou, “Profiling and Understand-
ing Virtualization Overhead in Cloud.” 2015 In 2015 44th International
Conference on Parallel Processing, 31–40. IEEE.

18. R. Buyya and M. Murshed, “Gridsim: A Toolkit for the Modeling and
Simulation of Distributed Resource Management and Scheduling for Grid
Computing,” Concurrency and Computation: Practice and Experience 14,
no. 13–15 (2002): 1175–1220.

19. R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and Simulation
of Scalable Cloud Computing Environments and the Cloudsim Toolkit:
Challenges and Opportunities.” 2009 In Proceedings of the 2009 Interna-
tional Conference on High Performance Computing & Simulation, 1–11.
IEEE.

20. Y. Liu, J. K. Muppala, M. Veeraraghavan, D. Lin, and M. Hamdi, Data
Center Networks: Topologies, Architectures and Fault-Tolerance Character-
istics (New York, NY: Springer Science & Business Media, 2013).

21. C. Pahl, A. Brogi, J. Soldani, and P. Jamshidi, “Cloud Container Tech-
nologies: A State-Of-The-Art Review,” IEEE Transactions on Cloud Com-
puting 7, no. 3 (2019): 677–692.

22. H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “Ifogsim:
A Toolkit for Modeling and Simulation of Resource Management Tech-
niques in the Internet of Things, Edge and Fog Computing Environ-
ments,” Software: Practice and Experience 47, no. 9 (2017): 1275–1296.

23. R. Mahmud, S. Pallewatta, M. Goudarzi, and R. Buyya, “Ifogsim2: An
Extended Ifogsim Simulator for Mobility, Clustering, and Microservice
Management in Edge and Fog Computing Environments,” Journal of Sys-
tems and Software 190 (2022): 111351.

24. D. Gannon, R. Barga, and N. Sundaresan, “Cloud-Native Applica-
tions,” IEEE Cloud Computing 4, no. 5 (2017): 16–21.

25. A. Mampage and R. Buyya, “Cloudsimsc: A Toolkit for Modeling and
Simulation of Serverless Computing Environments.” 2023 In Proceed-
ings of the 2023 IEEE 25th International Conferences on High Performance
Computing and Communications (HPCC). IEEE.

26. H. T. Nguyen, M. Usman, and R. Buyya, “Iquantum: A Toolkit for
Modeling and Simulation of Quantum Computing Environments,” Soft-
ware: Practice and Experience 54, no. 6 (2024): 1141–1171.

27. F. Fakhfakh, H. H. Kacem, and A. H. Kacem, “Cloudsim4dwf: A
Cloudsim-Extension for Simulating Dynamic Workflows in a Cloud Envi-
ronment.” 2017 In 2017 IEEE 15th International Conference on Software
Engineering Research, Management and Applications (SERA), 195–202.
IEEE.

28. B. Louis, K. Mitra, S. Saguna, and C. Åhlund, “Cloudsimdisk:
Energy-Aware Storage Simulation in Cloudsim.” 2015 In Proceedings of
the 2015 IEEE/ACM 8th International Conference on Utility and Cloud
Computing (UCC), 11–15. IEEE.

29. J. Sun, T. Wo, X. Liu, et al., “Cloudsimsfc: Simulating Service Func-
tion Chains in Multi-Domain Service Networks,” Simulation Modelling
Practice and Theory 120 (2022): 102597.

30. N. Saleh and M. Mashaly, “A Dynamic Simulation Environment for
Container-Based Cloud Data Centers Using Containercloudsim.” 2019 In
Proceedings of the 2019 Ninth International Conference on Intelligent Com-
puting and Information Systems (ICICIS), 332–336.

31. M. Jammal, H. Hawilo, A. Kanso, and A. Shami, “Ace:
Availability-Aware Cloudsim Extension,” IEEE Transactions on Network
and Service Management 15, no. 4 (2018): 1586–1599.

32. X. Zeng, S. K. Garg, P. Strazdins, P. P. Jayaraman, D. Georgakopoulos,
and R. Ranjan, “Iotsim: A Simulator for Analysing Iot Applications,”
Journal of Systems Architecture 72 (2017): 93–107.

17 of 18

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3413 by R

ajkum
ar B

uyya - T
he U

niversity O
f M

elbourne , W
iley O

nline L
ibrary on [04/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://aws.amazon.com/ec2/instance-types/m7g/
https://github.com/Cloudslab/cloudsim/releases/tag/7.0


33. C. Sonmez, A. Ozgovde, and C. Ersoy, “Edgecloudsim: An Environ-
ment for Performance Evaluation of Edge Computing Systems,” Trans-
actions on Emerging Telecommunications Technologies 29, no. 11 (2018):
e3493.

34. D. N. Jha, K. Alwasel, A. Alshoshan, et al., “Iotsim-Edge: A Simulation
Framework for Modeling the Behavior of Internet of Things and Edge
Computing Environments,” Software: Practice and Experience 50, no. 6
(2020): 844–867.

35. T. Cucinotta and A. Santogidis, “CloudNetSim—Simulation of
Real-Time Cloud Computing Applications.” 2013 In Proceedings of the 4th
International Workshop on Analysis Tools and Methodologies for Embed-
ded and Real-time Systems (WATERS 2013).

36. A. W. Malik, K. Bilal, K. Aziz, et al., “Cloudnetsim++: A Toolkit for
Data Center Simulations in Omnet++.” 2014 In Proceedings of the 2014
11th Annual High Capacity Optical Networks and Emerging/Enabling
Technologies (Photonics for Energy), 104–108.

37. P. C. Cañizares, A. Núñez, A. Bernal, M. E. Cambronero, and
A. Barker, “Simcan2cloud: A Discrete-Event-Based Simulator for Mod-
elling and Simulating Cloud Computing Infrastructures,” Journal of
Cloud Computing 12, no. 1 (2023): 133.

38. D. Kliazovich, P. Bouvry, and S. U. Khan, “Greencloud: A Packet-Level
Simulator of Energy-Aware Cloud Computing Data Centers,” Journal of
Supercomputing 62 (2012): 1263–1283.

39. Y. Semenov and O. Sukhoroslov, “Dslab Faas: Fast and Accurate Sim-
ulation of Faas Clouds,” Physics of Particles and Nuclei 55, no. 3 (2024):
485–488.

40. P. Raith, T. Rausch, A. Furutanpey, and S. Dustdar, “Faas-Sim:
A Trace-Driven Simulation Framework for Serverless Edge Comput-
ing Platforms,” Software: Practice and Experience 53, no. 12 (2023):
2327–2361.

41. E. Deelman, G. Singh, M.-H. Su, et al., “Pegasus: A Framework for
Mapping Complex Scientific Workflows Onto Distributed Systems,” Sci-
entific Programming 13, no. 3 (2005): 219–237.

42. H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-Effective and
Low-Complexity Task Scheduling for Heterogeneous Computing,” IEEE
Transactions on Parallel and Distributed Systems 13, no. 3 (2002):
260–274.

43. J. Dean and S. Ghemawat, “Mapreduce: Simplified Data Processing on
Large Clusters,” Communications of the ACM 51, no. 1 (2008): 107–113.

44. A. Zhou, S. Wang, C. Yang, L. Sun, Q. Sun, and F. Yang, “Ftcloudsim:
Support for Cloud Service Reliability Enhancement Simulation,” Interna-
tional Journal of Web and Grid Services 11, no. 4 (2015): 347–361.

45. P. Kumari and P. Kaur, “A Survey of Fault Tolerance in Cloud Comput-
ing,” Journal of King Saud University, Computer and Information Sciences
33, no. 10 (2021): 1159–1176.

46. A. Varga and R. Hornig, “An Overview of the Omnet++ Simulation
Environment.” 2010 In Proceedings of the 1st International ICST Confer-
ence on Simulation Tools and Techniques for Communications, Networks
and Systems.

47. D. Detlefs, C. Flood, S. Heller, and T. Printezis, “Garbage-First
Garbage Collection.” 2004 In Proceedings of the 4th International Sympo-
sium on Memory Management, 37–48.

48. A. Beloglazov and R. Buyya, “Optimal Online Deterministic Algo-
rithms and Adaptive Heuristics for Energy and Performance Efficient
Dynamic Consolidation of Virtual Machines in Cloud Data Centers,”
Concurrency and Computation: Practice and Experience 24, no. 13 (2012):
1397–1420.

49. K. Park and V. S. Pai, “Comon: A Mostly-Scalable Monitoring System
for Planetlab,” ACM SIGOPS Operating Systems Review 40, no. 1 (2006):
65–74.

50. L. Abeni, R. Andreoli, H. Gustafsson, R. Mini, and T. Cucinotta, “Fault
Tolerance in Real-Time Cloud Computing.” 2023 In Proceedings of the
2023 IEEE 26th International Symposium on Real-Time Distributed Com-
puting (ISORC), 170–175.

51. M. Garca-Valls, T. Cucinotta, and C. Lu, “Challenges in Real-Time Vir-
tualization and Predictable Cloud Computing,” Journal of Systems Archi-
tecture 60, no. 9 (2014): 726–740.

52. D. A. Patterson and J. L. Hennessy, Computer Organization and Design
ARM Edition: The Hardware Software Interface (Cambridge, MA: Morgan
Kaufmann, 2016).

53. R. Andreoli, H. Gustafsson, L. Abeni, R. Mini, and T. Cucinotta, “Op-
timal Deployment of Cloud-Native Applications with Fault-Tolerance
and Time-Critical End-to-End Constraints.” 2024 In Proceedings of the
IEEE/ACM 16th International Conference on Utility and Cloud Comput-
ing, UCC’23. New York, NY, USA: Association for Computing Machinery.

54. A. Pucher, E. Gul, R. Wolski, and C. Krintz, “Using Trustworthy Sim-
ulation to Engineer Cloud Schedulers.” 2015 In 2015 IEEE International
Conference on Cloud Engineering, 256–265.

55. G. Lanciano, R. Andreoli, T. Cucinotta, D. Bacciu, and A. Passarella,
“A 2-Phase Strategy for Intelligent Cloud Operations,” IEEE Access 11
(2023): 96841–96853.

18 of 18 Software: Practice and Experience, 2025

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3413 by R

ajkum
ar B

uyya - T
he U

niversity O
f M

elbourne , W
iley O

nline L
ibrary on [04/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense


	CloudSim 7G: An Integrated Toolkit for Modeling and Simulation of Future Generation Cloud Computing Environments
	ABSTRACT
	1 | Introduction
	1.1 | Contributions
	1.2 | Paper Organisation

	2 | CloudSim Through the Evolution of Cloud Computing and Related Paradigms
	3 | Related Work
	3.1 | CloudSim-Driven External/Third-Party Modules
	3.2 | Other Simulators

	4 | CloudSim 7G
	4.1 | Architecture
	4.2 | Running a Simulation in CloudSim
	4.3 | Design
	4.4 | Code Refactoring and Optimization
	4.5 | Code Refinement
	4.6 | Guidelines for Upgrading a Module to CloudSim 7G

	5 | Performance Evaluation
	6 | Case Study

	7 | Conclusions and Future Outlook
	Software Availability
	Author Contributions
	Acknowledgments
	Conflicts of Interest
	Data Availability Statement
	Endnotes
	References

