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Abstract—Software-Defined Networking not only addresses
the shortcoming of traditional network technologies in deal-
ing with frequent and immediate changes in cloud data cen-
ters but also made network resource management open and
innovation-friendly. To further accelerate the innovation pace,
accessible and easy-to-learn testbeds are required which estimate
and measure the performance of network and host capacity
provisioning approaches simultaneously within a data center.
This is a challenging task and is often costly if accomplished
in a physical environment. Thus, a lightweight and scalable
simulation environment is necessary to evaluate the network
allocation capacity policies while avoiding such a complicated
and expensive facility. This paper introduces CloudSimSDN,
a simulation framework for SDN-enabled cloud environments
based on CloudSim. This paper develops and presents the overall
architecture and features of the framework and provides several
use cases. Moreover, we empirically validate the accuracy and
effectiveness of CloudSimSDN through a number of simulations
of a cloud-based three-tier web application.

I. INTRODUCTION

Cloud computing [1] has provided economies of scale
through cost-effective and elastic IT service paradigm. Service
providers harness its benefits such as pay-as-you-use pricing
model, elasticity and scalability to improve their quality of
service and to reduce their cost. In cloud environments, elastic-
ity and scalability can be achieved by dynamically increasing
or decreasing virtualized infrastructure resources, e.g. virtual
machines (VMs). In fact, virtualization has increased the
capacity and efficiency of cloud data centers to an extent with
which traditional network paradigms cannot provide.

The demand for scalable and cost-efficient computer net-
works with the support for multi-tenancy has led to the rise
of Software-Defined Networking (SDN). SDN is a new way
of centrally managing network switches with ability of fine-
grained traffic management. SDN enables network elements
to be dynamically programmable and controllable through a
central controller. This is made possible in SDN by moving
the data forwarding plane away from the data control plane.
Controllers in SDN can oversee the entire network and thus
efficiently perform dynamic bandwidth allocation per flow,
faster recovery, and traffic consolidation, all of which can be
exploited to improve QoS and energy efficiency [2][3].

In addition, the major promise of SDN is to accelerate the
innovation pace in networking protocols, traffic management,
virtualization, and software by opening up networking research
to universities and research centers. The move started by the
introduction of OpenFlow [4], a de facto standard interface
for SDN controllers which is a result of the collaboration
between a number of universities. OpenFlow describes an
open interaction protocol in SDN that allows the controller
to communicate with the forwarding plane and make dynamic
changes to the network. This real-time responsiveness to traffic
demands is an effective feature to deal with the dynamic nature
of cloud data centers.

To further foster innovation and development, we require
tools and toolkits that provide a testbed for experimenting with
OpenFlow and Software-Defined Networking systems within
a cloud data center. To this end, Mininet [5] is developed to
emulate the network topology of OpenFlow switches. Thus, it
enables testing different SDN-based traffic management poli-
cies in controller. Nevertheless, Mininet concentrates solely
on network resources and does not provide any environment
to test other cloud resource management techniques such as
VM placement along with network resources consolidation. To
address this shortcoming, we introduce CloudSimSDN that
enables the simulation of policies for the joint allocation
of compute and network resources.

CloudSimSDN is a new simulation tool built on top of
CloudSim [6] that has been briefly discussed in the context of
Software-Defined Clouds [7] where resources are dynamically
managed and configured in a data center via a centralized con-
troller. In this paper, we discuss the essence of CloudSimSDN
and present a detailed description of its design and implemen-
tation. The framework is designed and built in such a way
that is capable of evaluating resource management policies
applicable to SDN-enabled cloud data centers. It simulates
cloud data center, physical machines, switches, network links,
and virtual topologies to measure both performance metrics to
guarantee QoS and energy consumption to assure environment
conservation and cost-reduction. In addition to those features,
CloudSimSDN provides a Graphical User Interface (GUI)
that simplifies the simulation configuration and reduces the
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learning curve.
The CloudSimSDN accuracy is validated and its effec-

tiveness is tested through a number of experiments. The
experiments do not intend to provide a novel algorithm for
traffic prioritization or host-network resource management but
to prove the effectiveness of the simulator in a number of use
case scenarios.

The remainder of the paper is organized as follows. In
Section II, we describe the related works and highlight the
uniqueness of our simulator. In Section III, we emphasize the
requirements of the simulation, then Section IV provides the
description of overall framework design and its components in
detail. The validation process of the simulator is explained in
Section V, followed by an evaluation with use case scenarios
for three-tier applications in Section VI. Finally, the paper is
concluded with a list of future directions.

II. RELATED WORK

Recently, many cloud environment simulation tools were
proposed to enable reproducible and controlled evaluation
of new algorithms for management of cloud resources and
applications. CloudSim [6] is a discrete event-based cloud
simulator implemented in Java, enabling the simulation of data
centers with a number of hosts. VMs can be placed in a host
in accordance to VM placement policy. After creating VMs,
workloads can be submitted and executed in VMs. Additional
elements can be implemented and added to the simulator to
operate with other entities by receiving and sending events.
CloudSim does not support network evaluation in details.

NetworkCloudSim [8] simulates applications with commu-
nication tasks in CloudSim. In this work, network elements
such as switches and links are implemented and added in
CloudSim and used to estimate network transmission time.
However, they focused on modeling and simulating message-
passing applications in a data center that does not include SDN
and its dynamically configurable features. We emphasize sup-
port of SDN features such as dynamic network configuration
and adjustable bandwidth allocation.

The iCanCloud simulator [9] is a solution aiming at the
simulation of large scale cloud experiments. It focuses on
enabling a cost-performance analysis of applications executing
on the cloud. Network simulation is enabled by the INET
framework, which enables the simulation of network infras-
tructures including devices (such as routes and switches) and
protocols (such as TCP and UDP) [9]. It does not support
the modeling and simulation of SDN controllers and related
features.

GreenCloud [10] is a cloud simulator focusing on energy-
efficiency research. It extends the NS2 simulator [11], and is
able also estimate not only power consumption of computing
resources but also from network resources. As for the previous
cases, it cannot model and simulate features of SDN.

SPECI [12] is a simulator that focuses on modeling and
simulating the data center middleware and failures in the
underlying infrastructure. It focuses on analyzing the perfor-
mance of the middleware under different network conditions.

It does not support modeling of cloud applications or SDN
features.

RC2Sim [13] is a tool for experimentation and functionality
tests of cloud management software via simulation and emu-
lation in a single host. Network is simulated via a module
that calculates expected data transfer times given a user-
supplied cloud network topology. Unlike the previous sim-
ulators, RC2Sim targets analysis of control commands to the
cloud infrastructure (such as request for VM creation) rather
than analysis of the performance of cloud applications using
different policies and cloud environments.

Mininet [5] is a widely used SDN emulation tool to test
SDN controllers. It emulates hundreds of nodes with different
network topologies in a Linux machine using virtualization
techniques provided by the Linux operating system, which
presents more accurate results reflecting delays and congestion
at the OS level. An external OpenFlow controller can be
attached and tested in Mininet. Similarly, Linux programs can
be executed in a virtual node. However, Mininet, similar to
NS-3[14], is not capable of testing cloud-specific features such
as VM placement policies, workload schedulers, etc.

Teixeira et al. [15] introduced a framework to test SDN
cloud-data center controllers using Mininet and POX, a Python
controller for OpenFlow SDN standard [16]. They used
Mininet to manage network topologies and data traffics and
POX to implement the controller of the framework. Thus,
it can provide practical results and provide software that is
ready-to-use in a real SDN environment. However, it does not
allow simulation of cloud-specific features such as different
configuration of VM types and application execution.

III. SOFTWARE-DEFINED CLOUD DATA CENTER
SIMULATION: GOALS AND REQUIREMENTS

Simulation is a valuable tool for initial research of new
policies and techniques in distributed systems, as it enables re-
producible experimentation in a controlled environment, which
is hard to achieve in real cloud infrastructures. Simulation
enables quick evaluation of strategies in different scenarios,
which can be applied as an initial filter against approaches
that underperform compared to existing approaches. As noted
earlier, simulation tools exist to enable evaluation of policies
for cloud infrastructures, although without support for SDN
and all its benefits. Tools exist also that can simulate the effect
of SDN controllers on response time of network packets, but
without supporting cloud features.

As cloud infrastructures can benefit considerably from SDN
and its capabilities, a tool that enables design and test of
controller policies and its effect in cloud infrastructures is
desirable, and this is the objective of the tool proposed in
this paper. Thus, to achieve our goals of reproducible and
controlled experimentation of Software-Defined Cloud data
centers, we identified the following requirements:

• Capacity to represent core data center computing ele-
ments;

• Capacity to simulate flows and different policies that can
be implemented per flow in the infrastructure;
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Fig. 1. CloudSimSDN architecture.

• Support for flexible description of virtual networks that
can be deployed on top of the simulated physical network;

• Flexible model of applications, enabling representation
of both data transfer and computational needs of the
application;

• Support for reuse of network descriptions (network
topologies and data flows), possible via some standard
file output format; and

• Intuitive graphical user interface (GUI) for design of
physical and virtual topologies.

The above requirements drove the design and development
of our framework, which we detail in the next section.

IV. FRAMEWORK DESIGN

Our SDN simulator, CloudSimSDN, is built on top of
the CloudSim toolkit [6]. It leverages CloudSim’s capabil-
ities of modeling computational elements of data centers
and CloudSim’s simulation engine. To enable modeling and
simulation of SDN, we added a number of components to
simulate network traffic and SDN controller behaviors.

Figure 1 shows the architecture of CloudSimSDN. Users of
our framework supply user code and scenarios. Physical and
virtual topology configurations can be supplied either as JSON
files or as program codes (which are written in Java). Another
approach for user input is a GUI that translates requirements
into physical and virtual topology configurations.

Besides infrastructure description, end-users’ requests de-
scription, which compose the input workload for the simula-
tion, are supplied in CSV files. Each workload should specify
the submission time along with a list of job processing size

and traffic data size. In addition to workload and topology
configurations, scheduling policies should be provided, such
as VM placement algorithm and network policies. Brokers
can be programmed to simulate the behavior of end-users
or data centers. Regarding these policies, a user can either
utilize built-in policies or can develop their own (by extend-
ing abstract classes). The aforementioned user input feed to
topmost elements of the architecture, namely Virtual Topology
and Workload.

VM Services are in charge of managing VMs and network,
by calculating application execution and packet transmission
time between VMs. The next layer, Resource Provisioning,
is composed of two modules. VM Provisioning is a core
module to provision VMs within data center according to
VM placement policy specified by simulator users. Network
provisioning is performed according to the network policies
in use in the simulation. The next layer, Resource Allocation,
contains modules that allocate resources specified in the bot-
tommost layer of the architecture, Cloud Resources.

Figure 2 contains a simplified class diagram for the main
classes of our approach. These classes are discussed in the rest
of this section.

A. CloudSim core logic

The original CloudSim core logic is used to simulate the
basic compute elements that compose the cloud infrastructure.
On CloudSim, physical hosts can be defined with specific
configurations and VMs are placed on the host that meets
resource requirements such as CPU power, memory, and
storage size. CloudSim simulates a range of elements of the
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cloud architecture, including data center, physical host, VM,
VM scheduler, workload scheduler, etc. Although network
bandwidth is one parameter of the configuration for physical
machines and VMs, bandwidth in CloudSim is used only as a
constraint for VM scheduler, and thus the proposed extension
is necessary for modeling of SDN features for networking
provisioning.

B. Abstracting physical and virtual topology

The physical topology includes hosts, switches, and links.
VMs are placed in physical hosts, and network packets are
transferred between hosts via switches. Hosts are specified
with their computational power, memory, and storage size.
Links connect a host to a switch or connect switches with
specified bandwidth.

Similarly, virtual topology includes VMs and virtual links.
VMs are described with the required computational power,
memory, and storage size. Virtual links connect VMs with
optional bandwidth amount. If the bandwidth is not specified
in a virtual link, then the simulator assumes that communi-
cation between them occurs without bandwidth reservation.
Case users specify virtual links between two points, band-
width reservation between the points need to be enforced.
Because the path connecting such two points could be chosen
among different paths of the physical topology, the problem
of mapping the virtual topology on the physical one needs to
be solved with some objective in mind (such as minimizing
the average path length or minimizing the number of network
devices involved in the solution). This problem is known as
Virtual Network Embedding (VNE) problem. There are various
researches conducted to solve the VNE problem [17], which
can be implemented and tested in our simulator.

C. Network modules

To simulate packet transfer between VMs, we developed a
Switch class performing SDN-enabled switch function man-
aged by a controller. Forwarding rules are installed by the
controller’s Network Operating System, and can be dynami-
cally changed depending on the network traffic. The virtual
links connecting switches and/or VMs are represented with a

Channel class that defines the physical path capacity of such
channels. The class holds a list of physical network elements,
such as switches and hosts, along with physical links between
those elements.

Once a network packet is generated from a VM and sent to
the underlying host, it is forwarded to the destination host
using a channel through forwarding routes. By default, a
channel is shared by all packets if they are sent from the same
source VM to the same destination VM. Since different virtual
channels could share the same physical link, each physical
link also maintains the list of channels passing through the
link itself. If a new channel is created and added to the link,
the link updates the shared bandwidth of all channels which
passes through the link.

By using the Network Operating System, it is also able to
create a dedicated channel for a specific traffic flow. As SDN
allows the controller to differentiate network flows depending
on the type of traffic, our framework also can create a channel
for a specific flow with dedicated bandwidth allocation. In this
case, an extra channel is created in addition to the default
channel, and the packets with specific flow id are forwarded
using the new channel.

Network Operating System class represents the central con-
troller managing the overall network behavior of the simu-
lation. It monitors all the network’s channels and packets,
and decides how to reconfigure each network element. User-
defined network policies can be developed by extending this
class. It also calculates the estimated arrival time for each
packet based on the allocated bandwidth for each channel and
the number of packets sharing the same channel. If there is
more than one channel sharing a link, each channel size is
also included in the bandwidth calculation.

Functions and behaviors supported by SDN are imple-
mented in the Network Operating System class. For example,
if dynamic bandwidth allocation is necessary to be simulated,
policies specifying how to allocate bandwidth to each flow are
implemented in this class.

D. Calculating packet transmission time

Simulation of network requires that the transmission time
for data transferred between hosts is calculated. Calculation is
straightforward if the data is transmitted for one hop that is
not shared with other hosts. However, it is more complicated
to estimate travel time when the packet needs to be transferred
to the host via multiple hops where some are shared by
other hosts. In fact, data is fragmented into several packets
involved in multiple fragmentation process on each network
layer depending on protocols. The fragmentation processes are
complicated and varied on different protocols.

Therefore we simplify the transmission process model and
the estimation of transmission time. We introduce the class
Channel, an end-to-end edge from sender to receiver consisting
of multiple links. It is a path for data packets that are going
through a series of queues of ports in different switches. The
class Link is a physical medium between ports of switches
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or hosts. The class Transmission refers the transferring data
between two hosts which travels through the channel.

In each link, bandwidth is first allocated to the priority
channel if SDN is configured to allocate a specific amount
of bandwidth to the channel. Afterwards, the remaining band-
width is equally shared by the channels passing through the
link. Thus, allocated bandwidth BWc,l for a channel c in the
link l is defined as BWc,l = BWl

Nl
, where the link (l) has

available bandwidth (BWl) shared by the number of channels
(Nl).

As a channel is composed of multiple links, the transmission
speed of the channel basically depends on the least bandwidth
among the links. Even if some links have higher bandwidth,
there would be a bottleneck when packets pass through a link
with lower bandwidth. Thus, for the time period ∆t, when
no channel has been added or removed, the amount of data
Dc transferred from sender to receiver on a channel c can be
calculated with Equation 1:

Dc = ∆t×Min(BWc,l) (1)

When a new channel is added, Network Operating System
informs all links where the new channel passes through, and
existing channels are updated with a new lower bandwidth
value. Channels and links are also updated when a data
transmission is finished and the allocated channel is deleted.
In this case, the remaining channels will have more bandwidth
as there is one less channel using the link. Updated bandwidth
values are used to calculate the size of data transferred for the
next time period.

E. Abstracting user requests

In practice, a job associated with network transport can
be abstracted as a combination of computation processing
interleaved with packet transfers. For example, in a web
service model, when a request is received at the front-end
server, e.g. web server, the front-end server computes the

request and creates another request to the mid-tier server, e.g.
application server. In the same way, when the mid-tier server
receives a request, it processes the request, and sends another
request to the back-end server, e.g. database server.

In order to model a request containing both workloads and
network transmissions, three classes are implemented: Re-
quest, Processing and Transmission (see Figure 3). Request has
a list of either Processing or Transmission, while Processing
contains a computation workload (Cloudlet) and Transmission
has a network transmission requirement (Package). Several
Processing and Transmission objects can compose a Request
which should appear in order. If Transmission is appeared after
Processing in the Request, the Request is sent to the next VM
that is supposed to execute the following Processing. For easy
use, list of requests can be input in a CSV format in which
has multiple pairs of Processing and Transmission.

In order to estimate network transfer time for each packet,
we introduce a Queue in nodes for each flow. For example, if
a flow is set up between two hosts, the queue should be set
up in the sender’s host as well as in all switches that packets
go through.

F. GUI modules

On top of CloudSimSDN application logic, we also devel-
oped a GUI to enable visualization of the simulation input and
output. The GUI facilitates description of both physical and
virtual topology by drawing elements such as hosts, switches,
VMs, and links. The topologies can be saved and loaded in
JSON file format. It also supports direct execution of the
simulation using the loaded topologies and workload files.

The GUI module consists of three layers: Framework layer,
Business layer, and Interface layer. The Framework layer
consists of the core graphic modules to draw the graphical
user interface and the programming interface to supply the
topologies to the underlying application logic. The Business
layer is in charge of connecting the core logic to the Interface
layer. GraphView is the core part of the Business layer
where network topologies can be drawn by using the graph
visualization library, i.e. Java Swing. SDNExecution performs
CloudSimSDN simulation and presents the output. On top of
it, the Interface layer is used to interact with users by defining
user-friendly interface.

A screenshot of the GUI is shown in Figure 4. In the
center two main panels are to visulize the physical and logical
topologies. The tool bar above the main panels has several
buttons to be selected to draw vertices and edges for each
topology as well as to import and export to files. Management
functions are also executable through the GUI, such as starting
simulation execution, and showing the simulation result.

V. VALIDATION

Validation of CloudSimSDN is a focal point when it comes
to the applicability of the simulation. In order to validate
CloudSimSDN, we have conducted a series of experiments
that compare CloudSimSDN and Mininet with the same
workload. As noted earlier, Mininet is a network emulator
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Fig. 4. Screenshot of the graphical user interface of CloudSimSDN in the network topology design mode. The left panel contains the physical network
topology while the right panel contains the virtual topology.

for the creation of virtual network using the Linux kernel
and measurement of data transmission time sent via OS
protocol stack. Since it uses the actual Linux kernel for the
network emulation, Mininet generates more realistic results,
and is widely used to measure SDN-based traffic management
policies in controller. Our goal is to first build scenarios with
different data sizes and different shortest paths between hosts
(including different network elements). Next, for each scenario
we analyze how close is the data transfer time between hosts
in CloudSimSDN and Mininet which can demonstrate the
accuracy of the CloudSimSDN.

A. Mininet setup

Environment for Mininet experiments is set up in Python
using Mininet Python API [18]. Network topology in Mininet
is created by adding and configuring hosts, switches, and links,
and then each host is scheduled to start data transmission at the
same time with other hosts simultaneously. To achieve it, we
developed: 1) monitoring agents to measure data transmission
time between hosts; 2) Sender agents that generate dummy
data with specified size and send it to the receiver agent.
Before data transmission begins, the program waits until the
given time to make sure all senders start transmission at
the same time. When the receiver agent on the other side
finishes receiving all data, it sends back an acknowledgement.
Once done, the monitoring agent calculates the transmission
time. Time clocks of the emulated hosts within Mininet are
synchronized as they share the same system clock.

B. Testbed configuration

We created a tree topology of depth 2 with four hosts (see
Figure 5). The root is a core switch which has two edge
switches as child nodes. The leaves are four physical machines
connected to the edge switches. Although a tree topology

Core Switch

Edge Switch Edge Switch

Physical machine Physical machine

Controller

VM1 VM2

Physical machine Physical machine

VM3 VM4

Fig. 5. Physical topology configuration for the validation test.

can be effortlessly configured, it can support a number of
scenarios, e.g. data sending from VM1 to VM2 passes through
only an edge switch, while data from VM2 to VM3 passes
through the entire network. In addition, we created one VM
in each physical machine in CloudSimSDN because Mininet
does not allow VM simulation. Hence, each VM represents
a physical machine in Mininet. The configured link speed
between core and edge switches, and between edge switches
and hosts, are shown in Table I.

In each scenario in Table II, each host is configured to send
data with different sizes to the other hosts at the same time,
which makes links be shared among multiple connections. As
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TABLE I
LINK CONFIGURATION FOR THE VALIDATION EXPERIMENTS.

Link Bandwidth

Core ↔ Edge switches
10 Mbps

(1.25 MBytes/sec)

Edge switches ↔ Hosts
10 Mbps

(1.25 MBytes/sec)

TABLE II
VARIOUS SCENARIOS FOR VALIDATION.

Scenario Sender Receiver Data size

Scenario 1
VM1 VM4 10 MBytes
VM2 VM4 10 MBytes
VM3 VM4 10 MBytes

Scenario 2
VM1 VM4

Varied in uniform distribution
(a = 10 MBytes, b = 20 MBytes)

VM2 VM4
VM3 VM4

Scenario 3
VM1 VM2 10 MBytes
VM2 VM3 10 MBytes
VM3 VM1 10 MBytes

Scenario 4
VM1 VM2

Varied in uniform distribution
(a = 10 MBytes, b = 20 MBytes)

VM2 VM3
VM3 VM1

shown in Table II, scenarios differ in the path that the data
travels. All transmissions are set up to start at the same time,
hence if the data size is not the same, some transmissions finish
earlier than other transmissions, and then the links, which are
shared by terminated transmission, will have more bandwidth
for the rest of connections.

C. Validation results

Figure 6 shows the measured transmission time in
CloudSimSDN and Mininet for the four scenarios described
in Table II. In Scenario 1 for the fixed data size, the difference
between CloudSimSDN and Mininet is at most 2.5%. When
we have variable data size and the same path in Scenario
2, for the majority of cases (for each of which data size
is randomly generated based on the distribution described
in Table II) the differences is below 4.6%. In Scenario 3,
where the path includes more network elements, the difference
slightly increased compared to Scenario 1. For the case of
Scenario 4, with the same path as Scenario 3 and variable data
size, there is only a narrow increase in the difference. This is
because factors that affect the network performance, such as
TCP window size, OS layer delay, fragmentation latency, etc.,
are abstracted away from the simulation model. However, this
slight loss of accuracy comes with extra advantage of enabling
larger-scale evaluation (as our framework does not limit the
number of simulated hosts) and also representation of the
whole software stack (including the application running on the
cloud platform) in the evaluation scenario, as we demonstrate
in the next section.
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Fig. 6. Comparison of CloudSimSDN with Mininet for average transmission
time for each scenario.

VI. USE CASE EVALUATION

We focus on two use cases (built in the context of multi-
tier web applications) to demonstrate the simulator capabilities
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TABLE III
VM CONFIGURATIONS USED FOR JOINT HOST-NETWORK ENERGY

EFFICIENT RESOURCE ALLOCATION USE CASE.

VM Type Cores MIPS Bandwidth

Web Server 2 2000 100 Mbps

App Server 8 1500 100 Mbps

DB Server 8 2400 100 Mbps

Proxy 8 2000 500 Mbps

Firewall 8 3000 500 Mbps

TABLE IV
ENERGY CONSUMPTION AND THE MAXIMUM NUMBER OF

SIMULTANEOUSLY UTILIZED HOSTS FOR DIFFERENT VM PLACEMENT
POLICIES.

Algorithm
Energy consumption (Wh) Max Nodes

Hosts Switches Total Hosts Switches

Worst Fit (A) 2,396,380 112,492 2,508,871 100 11

Best Fit (B) 1,848,038 92,493 1,940,532 30 4

Energy saving
(A-B)

548,341
(23%)

19,999
(18%)

568,340
(23%)

- -

and to highlight the advantages of adopting SDN in data
centers. The use cases are joint host-network energy efficient
resource allocation and traffic prioritization to improve QoS
of priority users. Note that such evaluation can only be done
with CloudSimSDN (not Mininet) as our simulator supports
both compute and network simulations.

A. Joint host-network energy efficient resource allocation

The first use case evaluates the energy savings in SDN-
enabled cloud data center via VM consolidation. If resources
are consolidated, unused hosts and switches can be switched
off by the controller, which maximizes energy efficiency. In
this experiment, we tested different VM placement policies
and estimated the energy consumption of hosts and switches.
For the test, a data center with 100 hosts and 11 switches
is created in CloudSimSDN. Each host is configured with 16
processing cores, and each of them has a capacity of 4000
MIPS. The link bandwidths of host-network connections are
set to 1 Gbps.

500 VM creation requests are generated based on randomly
selected VM types specified in Table III, and each request has
different start time and lifetime following exponential distri-
bution and Pareto distribution respectively [19]. The network
workload is also created for the execution time of VMs to
ensure switches are working throughout the VM lifetime. We
assumed that VMs are fully utilized and continuously generate
network traffic.

We evaluated two commonly used heuristics for VM place-
ment: Best Fit and Worst Fit. The Best Fit policy selects a
host whose resources are the most utilized but still available to
accommodate allocation requests. In this approach, VMs tend
to be consolidated to a smaller number of hosts, and network
traffic between hosts can be reduced as more VMs are placed
within a host. In contrast, the Worst Fit algorithm selects the
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Fig. 7. Physical topology for traffic prioritization use case evaluation.

TABLE V
VM CONFIGURATIONS FOR TRAFFIC PRIORITIZATION USE CASE.

VM Type Cores MIPS

Web Server 2 2000

App Server 2 1500

DB Server 8 2400

freest host which has the maximum available resources, in
which VMs can maximize their computational power. To find
the most or the least utilized host, we used a normalized unit
to combine CPU requirements (total MIPS) and bandwidth
constraints, since the two dimensional requirements should be
considered at the same time. Power consumption for hosts and
switches are modeled based on the works by Pelley at al. [20]
and Wang et al. [21], respectively.

We compared the result of the two algorithms in terms of
two metrics: energy consumption of hosts and switches, and
the maximum number of simultaneously utilized nodes. As
shown in Table IV, the result depicts that overall 23% of
energy consumption of the data center can be saved when the
Best Fit is applied for VM placement. Although this result is
mainly attributed to the hosts that saved 23% of their power
consumption in Best Fit, consolidation of network traffic and
deactivation of idle switches also saved 18% of energy usage
from switches.

B. Traffic prioritization

In traditional cloud data center networks, prioritizing net-
work traffic based on the user type was difficult due to
complexity and overhead of configuring network elements in
such a dynamic environments. However, it is viable in SDN-
enabled cloud data center to allocate bandwidth to premium
users. This is because the controller is fully aware of network
topology and traffic and is capable of controlling queues in
SDN switches and dynamically assigning flows to network
paths. In this use case, we demonstrate how CloudSimSDN
effectively models this capability of SDN.

In simulation, we modeled a data center with depth 3
tree topology and 100 hosts (see Figure 7). That is, one
core switch connected to 10 edge switches, and each edge
switch connected to 10 hosts. Each host is configured with 16
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TABLE VI
CHARACTERISTICS OF REQUESTS USED FOR TRAFFIC PRIORITIZATION

EVALUATION. REQUESTS ARE BASED ON THE MODEL PROPOSED BY
ERSOZ ET AL. [22].

Distribution Parameters

Request inter-
arrival times

Log-normal Dist. µ=1.5627, σ=1.5458

Packet sizes Log-normal Dist. µ=5.6129, σ=0.1343 (Ch1)
µ=4.6455, σ=0.8013 (Ch2)
µ=3.6839, σ=0.8261 (Ch3)
µ=7.0104, σ=0.8481 (Ch4)

Workload
sizes

Pareto Dist. location=12.3486, shape=0.9713

processing cores and 8000 MIPS processing capacity. Physical
links are configured with 1Gbps (125 MBytes/sec) bandwidth
and 0.5 msec latency.

There are 50 different customers using the cloud infras-
tructure in total, 10 users among them are premium users.
Each user has an application running on three VMs: Web
Server, App Server, and DB Server. Configuration of each VM
is shown in Table V. As this experiment aims at evaluating
application processing and network performance, the sizes of
RAM and storage are not considered as constraints. In the sim-
ulation environment, the controller can create separate virtual
channels for different data flows. The idea is to allow priority
traffic to consume more bandwidth than normal traffic. Thus,
virtual channels between VMs are dynamically segmented into
two different channels: priority channel and standard channel.
By default, without traffic prioritization (when SDC is not
used) a standard channel is used to transfer data between VMs
regardless user priority where the bandwidth is evenly shared
among all packets in the same channel. In contrast, by enabling
traffic prioritization feature, a specific amount of bandwidth is
exclusively and dynamically allocated for the priority channel,
and thus such a bandwidth becomes unavailable for other
channels.

For each user, different workloads are generated synthet-
ically based on a typical web service model [22]. Table VI
shows the characteristics of synthetic data used for the eval-
uation. Each request consists of five application processing
and four data transmissions in between. At first, processing
is done in the Web Server, and then the request is passed to
App Server via network transmission. Similarly, App Server
has processing and requests data to DB Server. DB Server
processes data and return to App Server. Finally, Web Server
receives processed data from App Server and responds to the
end-user.

When traffic prioritization is enabled, for each priority chan-
nel we exclusively provide minimum of 333 Mbps bandwidth.
If the bandwidth demand from priority channels exceeds the
link capacity, it is equally shared among the priority channels,
and no bandwidth is allocated to the standard channels. To
make the experiment simple, traffic prioritization is simplified
in the simulation without considering sophisticated traffic
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Fig. 8. Effect of traffic prioritization.

shaping methods. We measured the response time for each
request from submission at the Web Server until return to the
end-user.

Figure 8a shows detailed performance improvement for each
premium user when traffic prioritization is enabled. While
response times for Premium User 5 to 10 have remained
almost same, Premium User 1 to 4 experienced improvement
in application performance. The reason is when the Premium
User 1 to 4 are entered, the system experienced higher load
and therefore assigning the exclusive bandwidth to the flow of
priority requests decreased the response time. This dynamic
allocation of bandwidth per-flow is an important feature of
SDN to control the QoS in data centers.

In addition, as shown in Figure 8b, average application
response time for premium users decreased from 1.636 to
1.325 seconds when traffic prioritization is enabled, in which
performance is improved by 19.0% on average. On the other
hand, overall response time for normal users is slightly in-
creased from 1.929 to 2.009 seconds.

Via this use case, we show how cloud providers can
use SDN flow management capability to offer services with
various QoS levels. As demonstrated, there is a certain amount
of bandwidth reserved for the priority channel that allows
priority requests to be served in much shorter time. However,
still policies need to be developed to dynamically derive this
certain amount of bandwidth based on the changes in the
workload, the user QoS requirements (maximum response
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time), and the priorities of users.

VII. CONCLUSIONS AND FUTURE WORK

To accommodate the increasing demand for cloud
computing-related services, there is an increasing need of
scalable and cost-efficient data center computer networks sup-
porting multi-tenancy. Software-Defined Networking enables
such features in cloud data centers by allowing network ele-
ments to be dynamically controlled through the programmable
controller that can overlook the entire network.

Given that the infrastructures where SDN operates are large-
scale, methods that enable evaluation of SDN configurations
before the controller configurations are crucial, and it can
be achieved via simulation. To this purpose, we introduced
in this paper the design and implementation of a simulation
framework for Software-Defined Cloud infrastructures. The
SDN controller is programmable in the simulator, as well as
VM management policies and workload scheduling algorithms
can be tested in the same framework.

We described our framework design and its components in
detail. Validation experiments showed that our simulator is
comparable to Mininet in terms of accuracy, and provides the
extra features of supporting the arbitrary number of simulated
hosts and the simulation of the whole cloud software stack
up to the application layer. We also discussed two use cases
demonstrating the potential of joint host and network energy-
efficient resource allocation and three-tier application, to pri-
oritize data traffic depending on the user type.

As future work, we will combine a practical SDN emulator
that supports direct plug-in of OpenFlow SDN controller, e.g.
Mininet, with our framework to improve the ease of testing and
the accuracy of the network model. We will also add support
for modeling and simulation of middleboxes and Virtualized
Network Functions.
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