
A Web Portal for Management of Aneka-Based MultiCloud
Environments

Mohammed Alrokayan and Rajkumar Buyya

Cloud Computing and Distributed Systems (CLOUDS) Laboratory,
Department of Computing and Information Systems,

The University of Melbourne, Parkville, Victoria 3010, Australia

Emails: a@alrokayan.com, rbuyya@unimelb.edu.au

Abstract

Many Cloud providers offer services with different sets
of configurations and settings. This makes it difficult
for their clients to seamlessly integrate various ser-
vices from different Cloud providers. To simplify, we
developed an extendible Cloud Web Portal (CWP), a
comprehensive open source Cloud management portal
that aims to deliver a foundation for researchers and
developers to prove a research concept, test a code or
deliver a product in a fast and easy to use graphical
user interface. Also, it aims to seamlessly integrate
different Cloud services by providing a flexible archi-
tecture and design system. CWP is based on Aneka,
which allows developers to use a set of .Net-based
APIs for monitoring, billing/accounting, scheduling,
and provisioning. Aneka provision services from pri-
vate, public or hybrid Clouds. Our evaluation results
show that Aneka scheduling algorithm performs ef-
ficiently for executing tasks in distributed machines.

Keywords: Cloud Management, Scheduling, Provi-
sioning, MultiCloud, Portal, Cloud Services.

1 Introduction

Contemporary Cloud computing solutions, both
research projects and commercial products, have
mainly focused on Infrastructure as a Service (IaaS)
model due to the uncertainty in the other models
like Platform as a Service (PaaS). This uncertainty
is caused by the lack of proper standards in the IaaS
level especially in terms of APIs for federated Clouds.
This drives the users to develop their own platforms
and portals from scratch trying to use multiple IaaS
providers’ APIs.

As a result, users need an open portal that is flexi-
ble to adapt this uncertainty and regular variations in
Cloud infrastructures. Our Cloud Web Portal (CWP)
aims to provide an open source portal for easy adjust-
ment to adapt the frequent changes in Cloud comput-
ing technology. CWP has been developed using Mi-
crosoft ASP.NET MVC 41 with Razor syntax (Gal-
loway et al. 2011). It has the capability to build, test,
deploy, and scale applications easily and rapidly.

There are three main common types of Cloud
PaaS: Firstly, PaaS for application deployment, where

Copyright c©2013, Australian Computer Society, Inc. This pa-
per appeared at the 11th Australasian Symposium on Parallel
and Distributed Computing (AusPDC 2013), Adelaide, South
Australia, January-February 2013. Conferences in Research
and Practice in Information Technology (CRPIT), Vol. 140,
Bahman Javadi and Saurabh Kumar Garg, Ed. Reproduction
for academic, not-for-profit purposes permitted provided this
text is included.

1ASP.NET MVC 3: http://www.asp.net/mvc/mvc3

a product is deployed in distributed resources over the
Cloud, for example: web applications, which is the
most common type of application to be deployed on
the Cloud. Secondly, PaaS for batch processing and
scalable grid computing over the Cloud, where a batch
of files is processed in distributed machines to ac-
celerate the application performance. Thirdly, PaaS
for multi and hybrid Cloud management where users
manage multiple resources from different providers
through one interface. CWP is not for application
deployment as in type one of Cloud PaaS. However,
it supports the other two types. It supports the sec-
ond type of Cloud PaaS by using the Aneka frame-
work 2 for three different kind of programming mod-
els: Thread, Task and MapReduce. Also, it supports
the third type of Cloud PaaS by using the provision-
ing library of Aneka which support three different
providers: Amazon AWS, Microsoft Windows Azure
and GoGrid (Wei et al. 2011).

CWP provides several services and components for
developers, researchers and deployment teams to in-
tegrate their work through a graphical web portal.
Those different services and components will be dis-
cussed in Section 4. Our evaluation method, encom-
passing cases with up to 80 experiments using three
different parameters, shows that the Aneka schedul-
ing algorithm perform efficiently for batch processing
in distributed machines, especially when the number
of workers is increased. Surprisingly, with all the net-
work latency and overhead to send and receive data,
the 49 image rendering tasks does not have significant
effect on Aneka performance as shown in Section 8.

The key contributions of our paper are: 1) an
extensible architecture for Web portal for cloud com-
puting environments, 2) a methodology for creation of
adapters or widgets for monitoring or interacting with
different cloud platforms, 3) a prototype software sys-
tem demonstrating these capabilities and their map-
ping to the Aneka cloud application platform, and 4)
a detailed evaluation and demonstration of our por-
tal functionalities by deploying in a hybrid cloud en-
vironment by utilizing Melbourne private cloud and
Amazon EC2 resources.

The rest of the paper is organized as follows: In
next section, we present various open source cloud
projects and how they are compared to CWP. Then
in Section 3 we discuss the motivations behind CWP.
Section 4 describes the different components and ser-
vices of CWP and how they are integrated with
Aneka. Then we discuss the CWP graphical user in-
terface usability for the end-users and the flexibility
of the underlying code for developers in Section 5.
An example of a page request has been illustrated in
a sequence diagram in Section 6. Then in Section 7,
based on the NIST definition of Cloud Deployment

2Manjrasoft Pty Ltd http://manjrasoft.com

Models, we summarize how CWP and Aneka sup-
port all levels of deployment models. In Section 8, an
evaluation of CWP shows the Aneka scheduling per-
formance using several parameters and statistics. We
close in Section 9 with conclusions and future work.

2 Related Works

Cloud computing has been driven mainly by the in-
dustry; as a result the most common and useful ser-
vices can be found there. This section is a result of a
study researching seven Cloud computing projects. It
shows two main features: the service and deployment
models. A summary of the related works is shown in
Table 1 along with Cloud Web Portal for comparison.
In our research, we focus on the deployment model
which will be explained in Section 7. The following
is a summary of the seven projects:

CloudFoundry3

It is a portal to deploy applications in distributed ma-
chines over a Cloud. It supports limited number of
public Cloud providers. Also, it supports OpenStack4

private Clouds. A commercial public Cloud version
of CloudFoundry project by VMWare can be found at
CloudFoundry.com5, which supports only one public
Cloud provider even though the open source version
of the project supports Multi-Public Cloud. Cloud-
Foundry is for application deployment, not for Mul-
tiCloud management like Delta Cloud project.

Delta Cloud6 and jCloud7

These two projects are different than the others, they
are libraries to manage Multi-Public Cloud providers
and manage hybrid infrastructure services using one
API instead of dealing with multiple APIs for differ-
ent providers. Delta Cloud is written in Ruby and
it supports wide range of private Cloud projects and
public Cloud providers, which allows users to man-
age several instances through one REST-based API
for simple any-platform access. jCloud is almost the
same as Delta Cloud except than it is written in Java.

3 Motivations

Not all Cloud platforms and portals fall into one
category, CloudFoundry, Microsoft Windows Azure8,
CloudBees9, and Google App Engine10, for exam-
ple, are platforms for application deployment and
they vary according to which programming language
the user want to deploy on the Cloud. Other plat-
forms, like RightScale11, is for Multi-Public Cloud
management where multiple VM instances from mul-
tiple providers and monitoring can be provisioned via
one management console.

Cloud Web Portal (CWP) is different from the oth-
ers, on top of Multi-Public Cloud management, it al-
lows users to run batch processing jobs over the Cloud
in parallel and distributed manner leveraging Aneka
framework (Vecchiola et al. 2012). Aneka supports

3Cloud Foundry Open Source: http://cloudfoundry.org
4Apache OpenStack: http://www.openstack.org
5Cloud Foundry: http://cloudfoundry.com
6Apache Deltacloud API: http://deltacloud.apache.org
7Apache jclouds: http://www.jclouds.org
8Microsoft Windows Azure: http://www.windowsazure.com
9CloudBees Java PaaS: http://www.cloudbees.com

10Google App Engine: https://cloud.google.com/products
11RightScale Cloud Management: http://www.rightscale.com

three different programming models: Task, Thread
and MapReduce. CWP provides a flexible user in-
terface for Cloud administrators, developers and re-
searchers to manage multiple nodes in a Cloud. Also,
it aims to give non-technical users an easy to use fully
functional dashboard to view a summary of the cur-
rent system status, and allow them to apply changes
to the Cloud system according to their granted per-
missions. CWP allows the Cloud developers to add
any feature to the portal or develop an application
by implementing what we call ”widgets” (which is
Detailed in Section 5) and add it to the portal to be
used instantly.

4 CWP Architecture and Services

CWP has been designed and developed to provide
developers with an easy to understand code struc-
ture. Also, it has a flexible architecture for any future
changes or adjustment to the portal. CWP gives por-
tal users a Multi-Public Cloud support to provision
public VMs from multiple different providers. Also,
it has the capability to execute batch processing jobs
over the Cloud according to the scheduling policy that
the user chooses using Aneka APIs.

The CWP architecture in Figure 1 shows the dif-
ferent CWP services that users and developers can
use and integrate. Aneka provides the main services
for CWP such as monitoring, SLA-Resource man-
agement and resource provisioning whether those re-
sources are local desktop machines, private Cloud,
public Cloud or hybrid Cloud. CWP graphical user
interface and its usability is described in the next sec-
tion.

4.1 Provisioning

CWP provisions resources from all different deploy-
ment models using Aneka (?). Aneka uses differ-
ent scheduling algorithms, for example, the deadline
scheduling algorithm (Vecchiola et al. 2012) which al-
lows Aneka to provision to public Clouds dynamically
when the local desktop grid is not enough to execute
the job within its given deadline. Another example of
an algorithm is the budget-based algorithm that aims
to limit the resources that are provisioned and chooses
a set of resources that can finish the job within the
specific budget.

4.2 Monitoring

Aneka monitors the running nodes through a
heartbeat-based approach that performs periodic
checks on the availability of the node. If one of the
worker nodes fails executing a task, Aneka migrates
that task to another node to be executed. If a master
node fails, a discovery system looks for another mas-
ter within the defined Cloud domain to take over and
continue scheduling the tasks starting from where the
previous master node stopped.

Service Measurements

CWP measures the services from different Cloud
providers. CWP suggests the best service(s) to provi-
sion based on the users’ QoS, budget, and monitored
data. The SMICloud (Garg et al. 2011) algorithm
has been used for multi-criteria selection of differ-
ent Cloud services but has not been integrated with
Aneka yet.

Table 1: Related Works Projects

Project Service Model Deployment Model Language Licence

CloudFoundry Portal for application de-
ployment

Private/Multi-Public
Cloud management

Java Apache

Delta Cloud Ruby Library for Multi-
Public Cloud support

Multi-Public Cloud Ruby Apache

jCloud Java Library for Multi-
Public Cloud support

Multi-Public Cloud Java Apache

Cloud Web Por-
tal

Cloud portal for Multi-
Public Cloud management
and batch processing

Private/Multi-Public
Cloud/Hybride-Cloud

.Net Apache

SLA-Based Resource Allocation and Provi-
sioning

Aneka can allocate resources based on the users’ QoS.
Unfortunately, due to the current limitations, almost
all public Cloud service providers provide a static
SLA, mainly for availability, that can not be nego-
tiated. However, an Aneka prototype performance
results show the feasibility and effectiveness of SLA-
based resource provisioning in Clouds (Buyya et al.
2011).

4.3 Scheduling

Aneka support three different programming models:
Task, Thread, and MapReduce associated with differ-
ent scheduling algorithms based on time (Vecchiola
et al. 2012) and budget. A user or a developer can
implement or execute applications mixing any of the
programming models with any of the scheduling algo-
rithms. This kind of scheduling is important, for ex-
ample, for scientist to execute batch processing type
of applications and for graphical designers to render
images or videos in a shorter time.

4.4 Billing/Accounting

Aneka is Market-oriented system, which can be used
by a Cloud broker. Aneka has a fully functional
billing and accounting system mainly for desktop
grids. There are two different models: Pay-Per-Task
or Pay-Per-Resource. The first one is to set a price
for a task on each node to charge the users or the
brokers depending on how many tasks they have ex-
ecuted. The second model is to set a price for the
hourly usage on a node regardless on how many tasks
the user will execute.

5 CWP Interface and Component Usability

CWP helps developers to create Cloud applications
with decoupled components (input logic, GUI logic,
and business logic). The loose coupling among the
three main components of CWP provides the ability
for parallel development, flexibility in changes and
fast debugging. CWP infrastructure has been de-
signed and implemented not just for the developers
and researchers but also for any non-expert users to
use the portal easily. Also, it brings flexibility in de-
velopment and usability for the end-users to use its
graphical user interface especially the concept of wid-
gets and dashboard. This flexibility and usability in
design allows the Cloud developers to edit any exist-
ing feature, widget or application and add almost any
desired one easily.

The error messages are shown on the top right
corner of the portal, which we call Issues Centre. It

Figure 1: CWP Architecture

gives the portal users a summary and a quick overview
of what are the current errors and warnings. As soon
as the user clicks on any of the errors or warnings it
shows a dialog to solve the problem easily. In addition
to the Issues Centre, CWP has the Activity Centre
that shows to users a summary and a quick overview
on the current running tasks. Next we discuss further
the Widgets, Dashboard, Issues Centre and Activity
Centre.

5.1 Widgets and Dashboard

Widgets give the developers a quicker method to de-
velop Cloud applications leveraging all the compo-
nents that have been mentioned in Section 4. The
concept of widgets gives the users the flexibility to
adjust the graphical user interface and to modify the
business logic easily. Each widget is designed to be
wrapped-up with <article> and <section> HTML
tags; those wrapped-up tags specify the widgets’ con-
figurations, such as the width. A widget creates a
box of information or form depending on the devel-
oper design. The width of a widget is between 1 and
12, so 12 is the full width of the browser window, see
Figure 2 for example.

The HTML code in Figure 2 displays two wid-
gets, each one fills half the width of the user’s browser
window (class=”grid 6”). The first widget that will
be shown is the Clouds controller and ”Details” ac-
tion to shows details for a specific Cloud as shown
in Figure 4 (we are also passing the Cloud id id =
@Model.CloudId). The code of this widget can be
found in the file ”Controllers\ CloudsController.cs”

<article class="container_12">
<section class="grid_6">

<div class="block-border">
@Html.Action("Details", "_Clouds",
new { id = @Model.CloudId })

</div>
</section>

<section class="grid_6">

<div class="block-border">
@Html.Action("CPU_Utilization_Range",
"_Charts",
new { id = @Model.CloudId })

</div>
</section>

</article>

Figure 2: An example of an HTML code to display
two widgets

<div class="block-content">
<h1>New CWP Widget Title</h1>
<div class="infos">

//Any HTML or ASP.Net/RAZOR code
</div>

</div>

Figure 3: An example of a widget code

in function ”Details”, which returns a View object.
The second widget is almost the same as the first
one, it calls the ”CPU Utilization Range” controller
and ” Charts” action to draw a CPU utilization chart
for a specific Cloud as shown in Figure 5. This shows
how easy it is to customize and edit any widget in
CWP. A new widget can be added by creating a new
HTML file and following a specific format to match
the CSS of CWP, for example, an HTML file content
is shown in Figure 3

5.2 Issue and Activity Center

The issues and activity centers were designed to mon-
itor the Cloud resources and to keep checking the sta-
tus of Aneka workers and masters. Also, it shows the
ongoing tasks for the provisioned machines, masters
and/or workers.

Issue Center

The issues centre, as shown in Figure 6, checks the
status of the CWP resources, whether they are active
or failed last execution. Also, it displays an error or
a warning message according to how critical the issue
is. Issue center gives the users the ability to fix any
issue easily by clicking on any of the listed issues to
popup a dialog box to solve it.

Activity Center

The activity centre, as shown in Figure 7, checks if
there is any tasks in progress. Each one of those tasks
is clickable to open a popup dialog box to show the
users more information about the selected task.

6 CWP Sequence Diagram

CWP sequence diagram shows how its components
operate with each other and in what order. The se-
quence diagram in Figure 8 was simplified to show de-
tails of only one widget (Clouds\Details). The rest
of the widgets follow almost the same approach.

Figure 5: Live CPU utilization widget

Figure 6: Different issues have been addressed by
CWP Issue Center

Figure 7: Activity Center shows different stages of
ongoing tasks

The sequence diagram in this section
is an example of a request to this page:
”\CloudManagement\CloudDetails\1”, where
the web server calls ”CloudDetails” action in ”Cloud-
Management” controller passing the Cloud id ”1”.
The controller requests a Cloud object from the
Entity Framework (EF) to send it to the CWP view:
”CloudManagement\CloudDetails”. This view calls
three widgets as shown in Figure 8. The first widget
is: ” Clouds\Details\1”, which shows the master and
a list of workers along with some information about
the selected Cloud, like running services. The widget
sends several requests to the Entity Framework
to get such information. Then the widget returns

Figure 4: Cloud Details widget shows 10 workers and one master in a Cloud

HTML content to the view. The view repeats the
same approach to get the HTML content from all the
widgets. Finally, after the view wraps all the HTML
contents, it sends the completed HTML page to the
user.

Components in Figure 8 are decoupled to be re-
placed or extended. This gives the portal users and
developers a flexibility to build adapters to suit their
work or research.

7 Deployment Models

NIST defines four different Cloud deployment mod-
els (?), which CWP supports via Aneka along with
the Desktop Grid model.

7.1 Desktop Grid

Aneka utilizes the unused computational power of
desktop Personal Computers (PCs) connected on lo-
cal area networks (LAN), virtual LAN, or over the
Cloud. The main objective of a desktop grid is to ac-
celerate application execution, especially distributed-
aware applications that split a job into tasks. Aneka
provides several .Net libraries for developers to de-
velop this type of applications to be distributed
among Aneka workers. Desktop grid allows organi-
zations to utilize unused PCs resources without af-
fecting the productivity of PC users.

7.2 Public Cloud

This is the most common model of the Cloud which
allows several users to share the same infrastructure
to reduce the cost and utilize the shared resources.
The main features of the public Cloud are the resource
availability, elasticity and cost efficiently. NIST de-
fines public Cloud as ”The Cloud infrastructure is
provisioned for open use by the general public” (?).
Aneka provisions public Cloud resources from Ama-
zon EC2, Microsoft Windows Azure and GoGrid (Wei
et al. 2011) to execute batch processing among them.

Multi-Public Cloud

Research on MultiCloud (Xiong et al. 2011), Inter-
Cloud and Cloud Federation (Celesti et al. 2010) have
emerged questioning the openness of the Cloud and
discussing avoiding vendor lock-in. Also, deploying
application on MultiCloud reduces the chance of out-
age by leveraging multiple running application servers
on different providers, and switching to the most ef-
ficient one in case of any failure. In web applica-
tions, for example, MultiCloud application servers al-
low the system to redirect the users requests to where
they can get the best experience by shortening the re-
sponse time and increasing the availability12. CWP
uses Aneka to provision infrastructure Multi-Public
Cloud resources from any of Amazon EC2, Microsoft
Windows Azure and/or GoGrid (Wei et al. 2011).
Those resources can be managed in a single resource
pool or multiple resource pools.

12Cedexis: http://www.cedexis.com/country-reports/

Figure 8: CWP Sequence Diagram Requests Page: ”\CloudManagement\CloudDetails\1”

7.3 Private Cloud

Many open source projects (Cloud Stack13, Delta-
cloud, Eucalyptus (Nurmi et al. 2009), Open Neb-
ula14, Open Stack, and Cloud Foundry) emerged giv-
ing organizations the opportunities to host a private
Cloud. It provides more control on the data and
increases security. NIST defines private Cloud as:
”The Cloud infrastructure is provisioned for exclu-
sive use by a single organization comprising multiple
consumers (e.g., business units).” (?). Almost any
private Cloud project can be public when hosted and
exposed to the general public as a service. Manjrasoft
Aneka has an ongoing project to support automated
provisioning for OpenStack private Cloud.

Outsourced Private Cloud

Private Cloud usually refers to the on-premise pri-
vate Cloud where an organization hosts the head node
locally and the reset of the resources on the public
Cloud. However, some providers offer private Cloud
service that can be almost 100% outsourced, which
is basically a public Cloud service that has been ad-
justed to isolate the infrastructure of the service to
be dedicated to single organization. This model of-
fers the security strength of the private Cloud and the
availability, elasticity and cost efficient of the public
Cloud.

7.4 Hybrid Cloud

NIST defines hybrid Cloud as: ”The [hybrid] Cloud
infrastructure is a composition of two or more distinct
Cloud infrastructures (private, community, or public)
that remain unique entities, but are bound together
by standardized or proprietary technology that en-
ables data and application portability (e.g., Cloud
bursting for load balancing between Clouds)” (?).
Aneka has the ability to provision resources in hybrid
Cloud (Vecchiola et al. 2012) where multiple tasks are

13Cloud Stack: http://cloudstack.org/
14Open Nebula: http://opennebula.org

distributed between local desktop grid PCs and also
Multi-Public Cloud.

8 Performance Evaluation

We evaluate Aneka performance, and the efficiency of
its scheduling algorithm. Aneka schedules jobs that
consist of groups of tasks among workers via a master
node.

Seven small size Amazon EC2 instances were used,
one master and six workers. All the machines have the
same specification. Our evaluation method encom-
passes cases with up to 80 experiments using three
different parameters: number of workers, program-
ming models, and number of tasks. The parameter of
interest is the time in seconds that Aneka takes to fin-
ish executing a job. Four different numbers of work-
ers have been used: one (representing the sequential
execution), two, four and six workers. Two program-
ming models were used: Thread, using the Mandel-
brot application, and Task using a distributed version
of POV-Ray application. Both applications, Mandel-
brot and POV-Ray, use Aneka APIs for scheduling.
Two number of tasks have been used: 25 tasks (which
is rendering an image with 5 columns and 5 rows) and
49 (which is 7x7 image rendering).

Comparing the sequential execution of a job (num-
ber of workers = 1) with the parallel execution (num-
ber of workers = 2, 3, and 6), Tukey simultaneous
tests shows P-Values close to zero, which means sta-
tistically that there is a significant difference between
the different number of workers. Also, ANOVA Gen-
eral Linear Model test for the time in second ver-
sus the number of workers shows P-Value <0.001,
which means that the time and number of workers
are strongly related and each one of them affects the
other, so having more workers means a huge reduction
in time for executing a job.

Also, Two-Sample T-Test for the time and number
of tasks shows a P-Value <0.001 and 95% CI for dif-
ference (34.51, 61.35), which means that the number
of the tasks effects significantly the time that Aneka
needs to execute a job. As a result, both number
of workers and number of tasks have a great impact

For Task Programming Model:
Time = 60.1007 - 9.56779 * Num of workers
+ 0.780371 * Num of tasks

For Thread Programming Model:
Time = 12.1695 - 9.56779 * Num of workers
+ 0.780371 * Num of tasks

Figure 9: Regression analysis for the two program-
ming models with the number of tasks and the num-
ber of workers

6421

90

80

70

60

50

40

30

20

10

0

Number of workers

M
e
a
n
 o
f
T
im
e
 i
n
 s
e
c
o
n
d

25

49

of tasks

Number

Line Plot of Mean (Time in second)

Figure 10: LinePlot of mean time in second

on the time for Aneka to finish executing a job, and a
correlation analysis has been preformed that supports
this result.

Looking at the two programming models, the re-
gression analysis shows the equations in Figure 9.
That means both models have the same spread but
the thread programming model (60.1007) always
executes faster than the task programming model
(12.1695).

The line plot (Figure 10) shows how the increase of
the number of workers to execute the tasks in parallel
reduces the time that Aneka took to execute a job.
Also, the sequence execution (number of workers =
1) has a wide gap between 25 and 49 tasks, while it
is the opposite on parallel execution when we have 2,
4 or 6 workers, and the gap get closer when we have
more workers.

The box plot (Figure 11) of the time Aneka takes
to execute a job grouped in the number of tasks and
the number of workers - shows how the number of
workers decreased the time the Aneka takes to execute
a job significantly. Also, the difference between the
two box plots within the same number of workers is
large in the sequence execution (number of workers
= 1) while it becomes narrower when we increase the
number of workers.

As a result of this experiment, Aneka scheduling
algorithm has been proven to perform efficiently for
executing tasks in distributed machines, especially
when the number of workers is increased. Surpris-
ingly, with all the network latency and overhead to
send and receive data, the 49 image rendering tasks
does not have significant effect on Aneka performance
compared to 25 tasks as shown in the box plot Figure
11.

9 Conclusion and Future Work

Cloud Web Portal (CWP) is an open source Cloud
management portal for researchers and developers to

Number of workers

Number of tasks

6421

4925492549254925

160

140

120

100

80

60

40

20

0

T
im
e
 i
n
 s
e
c
o
n
d

Boxplot of Time in second

Figure 11: Boxplot of time in second

prove a research concept, test a code or deliver a
product. CWP uses Aneka as it is framework, which
gives CWP several features especially in monitoring,
billing/accounting, scheduling, and provisioning of lo-
cal desktop PCs, private, public or hybrid Cloud.
Aneka can be used by the developers using its APIs.
Our evaluation method encompassing cases with up
to 80 experiments using three different parameters
show that Aneka scheduling algorithm perform effi-
ciently for executing tasks in distributed machines,
especially when the number of workers is increased.
Surprisingly, with all the network latency and over-
head to send and receive data, the 49 image rendering
tasks do not have significant effect on Aneka perfor-
mance compared to the 25 tasks.

As CWP is extendible, it is possible to build
adapters for mapping its capability to other Cloud
platforms. One of the undergoing and future works
is the support for Multi-Public Cloud service mea-
surement and keep tracking of the Cloud condition
to select and allocate Multi-Public Cloud resources
more accurately based on the users QoS and budget
– by implementing SMICloud (Garg et al. 2011) on
CWP.

Software Availability

A software of Cloud Web Portal (CWP) repre-
sented in this paper can be downloaded from
http://www.cloudbus.org/cwp.

Acknowledgements

The authors would like to thank Dr.Rodrigo Calheiros
and Nikolay Grozev for their valuable comments for
improving the paper.

References

Buyya, R., Garg, S. & Calheiros, R. (2011), SLA-
Oriented Resource Provisioning for Cloud Comput-
ing: Challenges, Architecture, and Solutions, in
‘Cloud and Service Computing (CSC), 2011 Inter-
national Conference on’, pp. 1 –10.

Celesti, A., Tusa, F., Villari, M. & Puliafito, A.
(2010), How to Enhance Cloud Architectures to
Enable Cross-Federation, in ‘Cloud Computing
(CLOUD), 2010 IEEE 3rd International Confer-
ence on’, pp. 337 –345.

Galloway, J., Haack, P., Wilson, B. & Allen, K. S.
(2011), Professional ASP.NET MVC 3, 1 edn,
Wrox. The book in Kindle.

Garg, S., Versteeg, S. & Buyya, R. (2011), SMICloud:
A Framework for Comparing and Ranking Cloud
Services, in ‘Utility and Cloud Computing (UCC),
2011 Fourth IEEE International Conference on’,
pp. 210 –218.

Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G.,
Soman, S., Youseff, L. & Zagorodnov, D. (2009),
The Eucalyptus Open-Source Cloud-Computing
System, in ‘Cluster Computing and the Grid, 2009.
CCGRID ’09. 9th IEEE/ACM International Sym-
posium on’, pp. 124 –131.

Vecchiola, C., Calheiros, R. N., Karunamoorthy, D.
& Buyya, R. (2012), ‘Deadline-Driven Provisioning
of Resources for Scientific Applications in Hybrid
Clouds with Aneka’, Future Generation Computer
Systems 28, 58 – 65.

Wei, Y., Sukumar, K., Vecchiola, C., Karunamoorthy,
D. & Buyya, R. (2011), ‘Aneka Cloud Application
Platform and Its Integration with Windows Azure’,
CoRR abs/1103.2590.

Xiong, N., Rindos, A., Russell, M. L., Robin-
son, K. P., Vandenberg, A. & Pan, Y. (2011),
‘Sharing Computing Resources to Satisfy Multi-
Cloud User Requirements’, International Journal
of Cloud Computing 1, 81–100.

