
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2014; 00:1–34
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe

CloudPick: A Framework for QoS-aware and Ontology-based
Service Deployment Across Clouds

Amir Vahid Dastjerdi ∗, Saurabh Kumar Garg†, Omer F. Rana‡, and Rajkumar Buyya ∗

SUMMARY

The cloud computing paradigm allows on-demand access to computing and storage services over the
Internet. Multiple providers are offering a variety of software solutions in the form of virtual appliances
and computing units in the form of virtual machines with different pricing and Quality of Service (QoS) in
the market. Thus, it is important to exploit the benefit of hosting virtual appliances on multiple providers to
not only reduce the cost and provide better QoS but also achieve failure resistant deployment. This paper
presents a framework called CloudPick to simplify cross-cloud deployment and particularly focuses on QoS
modeling and deployment optimization. For QoS modeling, cloud services have been automatically enriched
with semantic descriptions using our translator component to increase precision and recall in discovery and
benefit from descriptive QoS from multiple domains. In addition, an optimization approach for deploying
networks of appliances is required to guarantee minimum cost, low latency, and high reliability. We propose
and compare two different deployment optimization approaches: genetic-based and Forward-Checking-
Based Backtracking (FCBB). They take into account QoS criteria such as reliability, data communication
cost, and latency between multiple Clouds to select the most appropriate combination of virtual machines
and appliances. We evaluate our approach using a real case study and different request types. Experimental
results suggest that both algorithms reach near optimal solution. Further, we investigate effects of factors
such as latency, reliability requirements, and data communication between appliances on the performance
of the algorithms and placement of appliances across multiple Clouds. The results show the efficiency of
optimization algorithms depends on the data transfer rate between appliances.
Copyright c© 2014 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Cloud Computing; Cloud Service Composition; Quality of Service; Multi-Clouds

1. INTRODUCTION

The advantages of cloud computing platform, such as cost effectiveness, scalability, and ease of
management, encourage more and more companies and service providers to adopt it and offer
their solutions via cloud computing models. According to a recent survey of IT decision makers
of large companies, 68% of the respondents expect that by the end of 2014 more than 50% of their
companies’ IT services will be migrated to cloud platforms [1].

∗A.V Dastjerdi and R Buyya are with Cloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of
Computing and Information Systems, The University of Melbourne, Parkville, VIC 3010, Australia. R. Buyya also serves
as a Visiting Professor for the University of Hyderabad, India; King Abdulaziz University, Saudi Arabia; and Tsinghua
University, China.
Email: amir.vahid@unimelb.edu.au and rbuyya@unimelb.edu.au
†S.K. Garg is withDepartment of Computing and Information System, Faculty of Engineering and ICT, University of
Tasmania. Email:Saurabh.Garg@utas.edu.au
‡Omer F. Rana is with School of Computer Science. Cardiff University. Wales, United Kingdom.
Email:o.f.rana@cs.cardiff.ac.uk

Copyright c© 2014 John Wiley & Sons, Ltd.
Prepared using speauth.cls [Version: 2010/05/13 v3.00]



2 A. V. DASTJERDI, S. K. GARG, O. F. RANA, AND R. BUYYA

Figure 1. Service coordination in a multi-cloud environment.

In order to offer their solutions in the cloud, service providers can either utilize Platform-as-a-
Service (PaaS) offerings such as Google App Engine [2], or develop their own hosting environments
by leasing virtual machines from Infrastructure-as-a-Service (IaaS) providers like Amazon EC2
[3]. However, most PaaS services have restrictions on the programming language, development
platform, and databases that can be used to develop applications. Such restrictions can encourage
service providers to build their own platforms using IaaS service offerings.

One of the key challenges in building a platform for deploying applications is to automatically
select and configure necessary infrastructures. If we consider the deployment requirements of a
web application service provider, it will include security devices (e.g. firewall), load balancers,
web servers, application servers, database servers, and storage devices. Setting up such a complex
combination of applications is costly and error prone even in traditional hosting environments [4],
let alone in clouds. Virtual appliances can provide an elegant solution for this problem.

A virtual appliance is a virtual machine image that has all the necessary software components
to meet a specific business objective pre-installed and configured [5] and can be readily used
with minimum effort. Virtual appliances will not only eliminate the effort required to build these
appliances from scratch, but also will avoid any associated issues such as incorrect configuration.
To overcome deployment problems such as root privilege requirements and library dependencies,
virtual appliance technology is adopted as a major cloud component.

As multiple providers are offering different software solutions (appliances) and virtual machines
(units) with different pricing in the market, it is important to exploit the benefit of hosting appliances
on multiple providers to reduce the cost and provide better QoS. However, this can be only possible
if high throughput and low latency could be guaranteed among different selected clouds. Therefore,
the latency constraint between nodes has to be considered as key QoS criteria in the optimization
problem. Amazon EC2, GoGrid, Rackspace, and other key players in the IaaS market, although they
constitute different deployment models using virtual appliances and units (computing instances),
do not provide a solution for composing those cloud services based on users functional and non-
functional requirements such as cost, reliability and latency constraints.

If we make the assumption that service providers prefer IaaS and multi-cloud, they have to go
through a process to select the most suitable cloud offerings to host their services. This process,
which is called cloud service coordination, consists of four phases, namely discovery, Service Level
Agreement (SLA) negotiation, selection, and SLA monitoring as shown in Figure 1. In the service
discovery phase, users with different level of expertise provide their requirements as input for
discovering the best suited cloud services among various repositories of cloud providers. For SLA
Negotiation, discovered providers and the user negotiate on the quality of services. A set of SLA

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



CLOUDPICK: A FRAMEWORK FOR SERVICE DEPLOYMENT ACROSS CLOUDS 3

contracts is selected from a set of made agreements. Then, the acquired services are continuously
monitored in the SLA monitoring phase.

The first step to enable cross-cloud deployment optimization is to model the appliances, virtual
units, and QoS requirements of users. Currently, there is no single directory that lists all the
available virtual appliances and units. Hence, we need an approach to automatically build a directory
of aggregated commonly described virtual appliance and unit information. In the next step, we
have users’ requests (group of connected appliances) with different latency, reliability and budget
constraints, and the objective of minimizing the deployment cost, in one hand and in another
hand we have various combinations of appliances and virtual units in the aggregated repository.
The problem is to find a composition that adheres to user constraints and minimizes the cost of
deployment. After the composition is selected, and the appliances are deployed, a standard cloud-
agnostic format is required for storing the deployment configurations. This format can later be used
for discovering and reconfiguring alternative deployments in the case of failure. To address the
aforementioned challenges, in this work, which is a significant extension of our previous conference
paper [6], we propose a novel framework called CloudPick.

The major contributions of this paper are: 1) proposing an effective architecture that utilizes
ontology-based discovery and deployment descriptor and optimization techniques to simplify
service deployment in multi-cloud environments, 2) proposing an approach to automatically build
an aggregated semantically enriched cloud service (along with their non-functional properties)
repository, 3) modeling of relevant QoS criteria, namely latency, cost (data transfer cost, virtual
unit, and appliance cost), and reliability for selection of the best virtual appliances and units in
cloud computing environment, and 4) presenting and evaluating two different selection approaches,
genetic-based and Forward-checking-based backtracking, (as the major focus of performance
evaluation section) to help users in deploying network of appliances on multiple clouds based on
their QoS preferences.

The remainder of this paper is organized as follows. In the next section, a brief introduction
to necessary concepts related to the paper is given. Related work in contexts of SOA, Grid and
cloud computing is discussed in Section 3 following by Set of questions that motivate our work in
Section 4. Then, we present description of CloudPick components that are addressing cross-cloud
deployment challenges in Section 5. Section 6 contains a translation approach to decrease the human
intervention in the process of converting virtual appliance meta-data to ontology-based annotations.
Section 7 presents QoS criteria and algorithms required for the optimization. Section 8 focuses on
building an experimental testbed and using it to compare the optimization algorithms’ performances
and study appliances placement patterns. Finally, Section 9 concludes the paper and presents future
research directions.

2. PRELIMINARIES

In this section, concepts related to our approach, e.g. Web Service Modeling Ontology (WSMO)
and virtual appliance are described.

2.1. Web Service Modeling Ontology (WSMO)

Web Service Modeling Ontology (WSMO) [7] defines a model to describe Semantic Web Services,
based on the conceptual design set up in the Web Service Modeling Framework (WSMF). WSMO
identifies four top-level elements as the main concepts:

• Ontologies: They provide the (domain specific) terminologies used and is the key element
for the success of Semantic Web services. Furthermore, they use formal semantics to connect
machine and human terminologies.

• Web services: They are computational entities that provide some value in a certain domain.
The WSMO Web service element is defined as follows:

– Capability: This element describes the functionality offered by a given service.

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



4 A. V. DASTJERDI, S. K. GARG, O. F. RANA, AND R. BUYYA

– Interface: This element describes how the capability of a service can be satisfied. The
Web service interface principally describes the behavior of Web Services.

• Goals: They describe aspects related to user desires with respect to the requested functionality,
i.e. they specify the objectives of a client when consulting a web service. Thus they are
individual top-level entities in WSMO.

• Mediators: They describe elements that handle interoperability problems between different
elements, for example two different ontologies or services. Mediators can be used to resolve
incompatibilities appearing between different terminologies (data level), to communicate
between services (protocol level), and to combine Web services and goals (process level).

Besides these main elements, non-functional properties such as cost, deployment time, performance,
scalability, and reliability are used in the definition of WSMO elements that can be used by all its
modeling elements. Furthermore, there is a formal language to describe ontologies and Semantic
Web services called WSML (Web Service Modeling Language) [8] that contains all aspects of Web
service descriptions identified by WSMO. In addition, WSMX (Web Service Modeling eXecution
environment) [9] is the reference implementation of WSMO, which is an execution environment for
business application integration.

2.2. Virtual Appliance

Virtual appliances are pre-configured and read-to-run virtual machine images that can be run
on top of a hypervisor. The main objective of virtual appliances is decreasing the cost and
labor associated with installing and configuring complex stacks of softwares in Cloud computing
environments. In recent designs and implementations of virtualization systems, virtual appliances
get the most attention. The idea has been initially presented [5] to address the complexity of
system administration by making the labor of applying software updates independent of number of
computers on which the software runs. Overall, the work develops the concept of virtual networks
of virtual appliances as a means to reduce the cost of deploying and maintaining software. VMware
[10] introduces a new generation of virtual appliances which are pre-installed, pre-configured,
and ready to run. However, in practical scenarios, pre-configured solutions can not satisfy varying
requirements of users. In addition, those pre-configured virtual appliances require large amount of
storage space, if the system supports variety of operating system and software combinations. And it
is not feasible for all range of users to have huge storage devices to store all those appliances shaped
based on their configuration. Moreover, Amazon has launched AWS Marketplace, which enables
customers to search for appliances from trusted vendors, pay for them in a pay-as-you-go manner,
and run them on the EC2 [3] infrastructure.

3. RELATED WORK

The concept of virtual appliances was originally introduced to simplify their deployment and
management of desktop personal computers in enterprise and home environments [5]. Then they
have been adapted in Grid and Cluster Computing environments to simplify the deployments [11].
With the emergence of cloud Computing, which utilizes virtualization to provide elastic usage
of resources, virtual appliances are becoming the preferred technology to deploy applications on
virtual machines with minimum effort. Hence, virtual appliance deployment has been investigated
in industry and academia from various angles which includes planning, modeling, QoS-based
deployment optimization, and service selection.

Sun et al. [4] showed that, by utilizing virtual appliances, the deployment process of virtual
machines can be made simpler and easier. Wang et al. [12] presented a framework to improve
the efficiency of resource provisioning in large data centers using virtual appliances. Similarly,
a framework for service deployment in cloud based on virtual appliances and virtual machines
has been introduced in our previous work [13]. That research focused on selecting suitable virtual

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



CLOUDPICK: A FRAMEWORK FOR SERVICE DEPLOYMENT ACROSS CLOUDS 5

machines using ontology based discovery model, packaging, and deploying them along with virtual
appliances in the cloud platform, and monitoring the service levels using third parties. In this
work, we are concentrating on QoS-based virtual unit and appliance composition where multiple
appliances need to be deployed across multiple clouds with acceptable latency and reliability to
achieve users’ business objectives.

A single virtual appliance on a virtual unit will not be able to fulfill all the requirements of a
business problem. Inevitably, we will require more than one virtual appliance and unit working
together to provide a complete solution. Hence, it is important to develop compositions of virtual
unit and appliances. Konstantinou et al. [14] proposed an approach to plan, model, and deploy virtual
appliance compositions. In their approach, the solution model and the deployment plan for virtual
appliance composition in cloud platform are developed by skilled users and executed by unskilled
users. As discussed by them, the contribution has not proposed an approach for selection of virtual
appliance and machine providers. In our work, however, we consider that users will be only aware of
the high level components that are required for the composition to address their business objectives
and our solution provides an approach to select the best composition based on their functional and
QoS requirements. Similarly, Chieu et al. [15] proposed the use of composite appliances to automate
the deployment of integrated solutions. However, in their work, QoS objectives are not considered
when building the composition.

Characteristics of the deployment optimization and service selection and composition in cloud
differ from works done in other contexts such as Grid and web services. Grid Computing aims to
"enable resource sharing and coordinated problem solving in dynamic, multi-institutional virtual
organizations" [16]. Therefore, the QoS management and composition works in this context
mainly focus on load balancing (applying queuing theory and market driven strategy [17]) and
fair distribution of resources among service requests [18, 19]. Most of these works proposed
Constraint Satisfaction based Matchmaking Algorithm (CS-MM) and other artificial intelligence-
based optimization techniques to improve the performance of scheduling. However, In Service
Oriented Architecture’s (SOA) context, the main concern is defining a QoS language [10, 20] to
express user preferences and QoS properties of the service (e.g. semantic-based QoS description
[21]). In this context, for automated web services composition, various techniques such as workflow
and AI planning have been adapted [22].

However, in the context of cloud computing, the deployment optimization’s objective is not fair
distribution of resources between requesters. Instead, cloud customers have emphasized more on
QoS dimensions such as reliability and cost. Therefore, in this work we present a novel way
to measure composition reliability and suitability based on Service-Level Agreements (SLA). In
addition, the data transfer cost is also included in our deployment cost. The importance of modeling
data transfer cost can be realized by the example of deployment in Amazon cloud where data transfer
costs approximately $100 per terabyte. These costs quickly add up and become a great concern for
the administrator. In the context of cloud computing, there are several works that have focused on
deployment optimization challenges such as Optimis, Mosaic, and Contrail.

Optimis’s [23] main contribution is optimizing the whole service life cycle, from service
construction and deployment to operation. The considered QoS criteria are trust, risk, eco-efficiency
and cost. In Optimis, the evaluation of cloud providers is accomplished through an adoption of
Analytical Hierarchy Process (AHP). In comparison with our approach, works that applied AHP and
Multi-Attribute Utility Theory (MAUT) [24] can only perform well when the number of explicitly
given service candidates is small and the number of objectives is limited. In contrast, as shown in
Section 8.2, our approach can deal efficiently with a large number of cloud services in the repository.

Mosaic project [25] is proposed to develop multi-cloud oriented applications. In Mosaic, cloud
ontology plays an essential role, and expresses the application’s needs for cloud resources in terms
of SLAs and QoS requirements. It is utilized to offer a common access to cloud services in cloud
federations. Compared to our work, which also adopts ontology, Mosaic is not able to create
ontology automatically from information provided through API calls to clouds. In addition, the
provided semantic cloud services in contrast to our work do not contain QoS information.

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



6 A. V. DASTJERDI, S. K. GARG, O. F. RANA, AND R. BUYYA

Contrail [26] is another project which builds a federation that allows users to utilize resources
belonging to different cloud providers. Like our previous work, they use OVF meta-data (in the
format of XML) to acquire resources from multiple cloud providers. However they have not
considered deployment optimization by considering criteria such as cost, latency, and reliability.

CloudGenius [27] is a framework that focuses on migrating single tier Web application to the
cloud by selecting the most appealing cloud services for users. CloudGenius considers different sets
of criteria and dependencies between virtual machine services and virtual appliances to pick up the
most appropriate solution. Like the majority of the works in the cloud computing context, it chooses
AHP for ranking cloud services. Since pair-wise comparisons for all cloud services are computing
intensive, the selection criteria were restricted to numerical criteria.

4. MOTIVATION: SCENARIO AND CHALLENGES

To study user requirements and concerns for deploying a network of appliances on clouds, we
give an example of a real world case study with known network traffic between appliances. A
good example of network of virtual appliances (a set of appliances in the form of a connected
graph which have data communication among them) is multi-tier applications supporting web-based
services. Each tier has communication requirements as characterized by Diniz Ersoz et al. [28].
They considered a data center with 11 dedicated nodes of a 96-nodes Linux cluster and host an
e-business web site encompassing 11 appliances: 2 front-end Web-Servers (WS) in its web tier,
3 Databases (DB) in its database tier and 6 Application Servers (AS) in between. As they have
characterized network traffic between tiers, we selected their work to build our case study. Assume
that the administrator of the e-Business web site might be interested in migrating the appliances
to the cloud in order to save on upfront infrastructure and maintenance costs, as well as to gain
the advantage of on-demand scaling. In addition, to allow disaster recovery and geography-specific
service offering, one may prefer multiple cloud deployment. For such deployment, the administrator
faces several challenges such as:

1. How to automatically build an integrated repository of cloud services so that their functional
and QoS properties are understood by all parties (users, cloud service providers, monitoring
service providers) to avoid low precision and recall in cloud service discovery?

2. What is the best strategy for placing appliances across cloud providers? Should they be placed
based on the traffic they exchange, therefore placing those with higher connectivity closer to
each other to decrease latency and data transfer cost?

3. Is it economically justifiable?
4. If appliances are placed across multiple providers, how the latency between different providers

affects the performance?
5. How can the most reliable cloud services be selected for the deployment?
6. If all appliances and their related deployment meta-data such as auto-scaling policies and

security configuration are placed on the same provider, and that provider fails, the access to
deployment information would not be guaranteed. Consequently, the recovery process would
be significantly delayed.

To address aforementioned issues and enabling cross-cloud service deployment, we introduce
CloudPick.

5. CLOUDPICK ARCHITECTURE

The proposed architecture is depicted in Figure 2 and its main components are explained below:

1. User Portal: All services provided by the system are presented via the web portal to clients.
This component provides graphical interfaces to capture users’ requirements such as software,
hardware, QoS requirements (including maximum acceptable latency between tiers, minimum

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



CLOUDPICK: A FRAMEWORK FOR SERVICE DEPLOYMENT ACROSS CLOUDS 7

Service  

Repository 

1 

Composition Optimizer 

Image Packaging 

 

 

Decommissioning 

 

Failure  

Recovery 

Planning 

 

Deployment Descriptor 

Manager 

Monitoring and SLA 

Management 

Discovery &SLA Negotiation 

 
Discovery 

 

Negotiator 

 

Account 

Manager 

 

Appliance 

Administration 

Service 

 

User Portal 

T
ra

n
sl

a
to

r 

 

T
ra

n
sl

a
to

r 

 

Infrastructure as a Service Providers  

Software, Software,   

QoSQoS  Requirements&Requirements&  

Security constraintsSecurity constraints  

Deployment pattern Deployment pattern  

Figure 2. CloudPick’s main components that enable cross-cloud deployment of virtual appliances.

acceptable reliability, and budget), firewall, and scaling settings. In addition, it transforms user
requirements to WSMO format in the form of goals which are then used for cloud service
discovery and composition. Moreover, it contains an account manager, which is responsible
for user management. For more details regarding the format of goals, readers can refer to our
previous work [13]

2. Translator: Since Web Service Modeling Ontology (WSMO) is used for service discovery,
cloud services information is translated to the Web Service Modeling Language (WSML)
format by the Translator component. This component takes care of building and maintaining
an aggregated repository of cloud services and is explained in detail in Section 6.1.

3. Cloud Service Repositories: They are represented by appliance and virtual unit service
repositories in Figure 2 and allow IaaS providers to advertise their services. For example, an
advertisement of a computing instance can contain descriptions of its features, costs, and the
validity time of the advertisement. From standardization perspective, a common metamodel
that describes IaaS provider’s services has to be created. However, due to the lack of standards,
we developed our own metamodel [13] based on previous works and standards in this area
using WSMO.

4. Discovery and Negotiation Service: Non-logic based discovery systems in grid and cloud
(IBM Smart Cloud Catalog search, Amazon EC2 image search) require exact match between
a client’s goal and a provider’s service description. In a heterogeneous environment such as
cloud, it is difficult to enforce syntax and semantics of QoS descriptions of services and user
requirements. Therefore, applying symmetric attribute-based matching between requirements
and a request is impossible. Building semantics of cloud services, user requirements, and
data would provide an inter-cloud language which helps providers and users share common
understanding regarding the cloud service functionalities, QoS criteria, and their measurement
units. A semantic service that is built by the translator component is a result of a procedure in
which logic-based languages over well-defined ontologies are used to describe functional and
non-functional properties of a service. This allows our ontology-based discovery technique to

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



8 A. V. DASTJERDI, S. K. GARG, O. F. RANA, AND R. BUYYA

semantically match services with user requirements and avoid low recall caused by lack of
common service functionalities and QoS understandings.
As cited by Faratin et al. [29], time-dependent negotiation tactics are a class of functions that
compute the value of a negotiation issue by considering the time factor. They are particularly
helpful for our scenario, where we have to acquire services by a deadline. Therefore, our
negotiation service uses a time-dependent negotiation strategy that captures preferences
of users on QoS criteria to maximize their utility functions. In addition, since in parallel
negotiation a party makes a decision based on the presented QoS values in SLA offers, our
Negotiation Service provides a way to know how reliable the provider is in delivering those
promised QoS values. To this end, the recorded data from monitoring services is analyzed
and converted to reliability information of offers. The monitoring is based on the copy of
the signed SLA, which is kept in the SLA repository. The proposed negotiation strategies are
described in detail in our previous work [30].

5. Composition Optimizer: Once the negotiation completes and eligible candidates are
identified, the composition component, which is the focus of this paper, builds the possible
compositions candidates. Then Composition Optimizer evaluates the composition candidates
using the users’ QoS preferences. The Composition Optimizer takes advantage of the
proposed selection algorithms that are explained in Section 7.3 to provide an elegant solution
to the composition problem.

6. Planning: The Planning component determines the order of appliance deployment on the
selected IaaS providers and plans for the deployment in the quickest possible manner.

7. Image Packaging: The Packaging component builds the discovered virtual appliances and
the relevant meta-data into deployable packages, such as Amazon Machine Image (AMI) or
Open Virtualization Format (OVF) [20] packages. Then the packages are deployed to the
selected IaaS provider using the deployment component.

8. Deployment Component: It configures and sets up the virtual appliances and computing
instances with the necessary configurations such as firewall and scaling settings. For example
in a web application, specific connection details about the database server need to be
configured.

9. Deployment Descriptor Manager: This component persists specifications of required
services and their configuration information such as firewall and scaling settings in a format
called Deployment Descriptor. Besides, it includes the mapping of user requirements to the
instances and appliances provided by the cloud. The mapping includes instance description
(e.g. name, ID, IP, status), image information, etc. This meta-data is used by the appliance
administration service to manage the whole stack of cloud services even if they are deployed
across multiple clouds. Formally described using WSML, the Deployment Descriptor is
located in our system (as a third party service coordinator), and in a cloud-independent format
that is used for discovering and configuring alternative deployments in case of failures. An
example of a Deployment Descriptor is shown in Appendix B. It identifies how firewall and
scaling configurations have to be set for Web server appliances. In addition, Deployment
Descriptor helps to describe the utility function of users for provisioning extra cloud services
when scaling is required. This helps to create scaling policies that utilize the optimization
component on the fly to provision services that maximizes the user’s utility functions. For
example, providers that have the lowest price, latency, and highest reliability are going to be
ranked higher.

10. Appliance Administration Service: After the deployment phase, this component helps end
users to manage their appliances (for example starting, stopping, or redeploying them). It uses
the Deployment Descriptor to manage the deployed services.

11. Monitoring and SLA Management: This component provides health monitoring of
deployed services and provides the required inputs and data for failure recovery and scaling.
A monitoring system is provided by this component for fairly determining to which extent an
SLA is achieved as well as facilitating a procedure taken by a user to receive compensation
when the SLA is violated. The monitoring is based on the copy of signed SLA, which

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



CLOUDPICK: A FRAMEWORK FOR SERVICE DEPLOYMENT ACROSS CLOUDS 9

is kept in SLA repository. The component provides an approach to discover and rank
necessary third party monitoring services. Third party monitoring results can be similar to
what the CloudStatus∗ service reports. Hyperic’s CloudStatus is the first service to provide
an independent view into the health and performance of the most popular cloud services,
including Amazon Web services and Google App Engine. CloudStatus gives users real-time
reports and weekly trends on infrastructure metrics including service availability, response
time, latency, and throughput that affect the availability and performance of cloud-hosted
applications. More details on this component is provided in our previous paper [31].

12. Failure Recovery: It automatically backs up virtual appliance data and redeploys them in the
event of cloud service failure.

13. Decommissioning: In the decommissioning phase, cloud resources are cleaned up and
released by this component.

14. IaaS Providers: They are in both fabric and unified resource level [16] and contain resources
that have been virtualized as virtual units. A virtual unit can be a virtual computer, database
system, or even a virtual cluster. In addition to virtual units, IaaS providers offer virtual
appliances to satisfy software requirements of users.

5.1. Execution workflow of CloudPick

Consider a user request that includes two machines: A and B. The machine A is required a minimum
CPU capacity of 2 GHz, RAM capacity of 2 GB, Hard Disk capacity of 200 GB, and AIX operating
system. The machine B has similar requirements, however it entails a minimum RAM capacity of 4
GB, and a UNIX-based operating system. The maximum acceptable latency between two machines
is set to 5 ms.

5.2. Initial phases

First, every user should have an account in the system. The account is used for userâĂŹs
authentication and authorization; besides, it stores all user information regarding their requests.
In CloudPick, information regarding the machine A and B requirements, network and firewall
settings are stored in the form of Deployment Descriptor. This information can help the systems
to offer better quality of service to the user. For example consider a scenario that a user face the
failure in deploying his appliances on a specific Cloud in the previous interaction with system, this
information which is stored in a Cloud agnostic format passes to the deployment service to rapidly
provision resources in another service provider. As mentioned earlier, it is necessary to build a
service repository which contains semantic description of Cloud services, such as their capabilities
(pre-conditions, post-conditions, assumptions and effects), interfaces (choreography) and non-
functional properties. This is the place for all IaaS providers to advertise their virtual units as a
service. Ontology repository is built up to contain ontologies for describing semantics of particular
domains. Any components might wish to consult ontology, but in most of the cases ontologies will
be used by the mediator related components to overcome data and process heterogeneity problems.
In our case, semantic has to be described for operating systems, virtual hardwares, and other QoS
domains, etc.

5.3. Execution phases

Once user requirements in the form of Deployment Descriptor is received, it may just describe some
of needed resources for example only CPU and storage. In this situation, default values for other
requirements are assigned by the portal. These default values are presented by the portal and could
be assigned according to the software requirements and previous requested virtual units of users. In
the next phase the Deployment Descriptor for machine A and B are used by Discovery component
as an input for searching the best suited virtual appliances and machines. The Discovery component

∗ Hyperic. http://www.hyperic.com/products/Cloud-monitoring.html

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe

http://www.hyperic.com/products/Cloud-monitoring.html


10 A. V. DASTJERDI, S. K. GARG, O. F. RANA, AND R. BUYYA

Figure 3. CloudPick’s dashboard.

as explained in the previous section checks the capabilities of virtual units and appliances against
the resource requirements in the Deployment Descriptors of machine A and B. For machine B,
Since the knowledge base (KB) specifies that both Linux family and OpenSolaris are types of
Unix, therefore not only X (supplying Linux virtual appliances) but also Y (supplying OpenSolaris
virtual appliances) IaaS provider, pass the virtual appliance and virtual machine requirement criteria.
For machine A, only provider Z can supply AIX virtual appliance in its infrastructure. After the
discovery phase, if providers support bargaining, the Negotiation Service is called to negotiate for
the minimum cost and the highest QoS with provider X, Y and Z. The result of negotiation along
with achieved QoS and cost are passed to the Composition Optimizer component. Composition
optimizer then, using the proposed optimization techniques, search the problem space. It returns
X and Z as they could stratify latency constraints of 5 ms and the total cost of deployment is
minimum among the other candidates (that is less than the budget in the Deployment Descriptor).
Once the cloud services are selected they are passed to Deployment Manager to be mapped to
deployment descriptor requirements. After that deployment manger provision the cloud services
and configure them based on user preferences and calls monitoring services with Service Level
Objectives obtained during negotiation. In a case of any SLA violations and when real source
of failure is detected, the monitoring service updates related QoS information of services in the
repository.

5.4. Implementation

In order to realize the proposed architecture, a number of components and technologies are utilized.

• Development Framework: CloudPick is built using Spring MVC Framework † and it benefits
from Spring Security and Data projects to develop a extensible, secure, and modular web
application. It is worth mentioning that major components of CloudPick are designed to
expose their functionalities via RESTful services [32] using Spring MVC framework. This
provides a standard way and enforces simple and yet powerful rules for communicating to
users and also other services.

†Spring MVC Framework http://spring.io/

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe

http://spring.io/


CLOUDPICK: A FRAMEWORK FOR SERVICE DEPLOYMENT ACROSS CLOUDS 11

Figure 4. Capturing user requirements in CloudPick.

• Portal: A light-weight portal is built for CloudPick using Twitter Bootstrap ‡ and jQuery § to
create an elegant interface on every device as well as speed up development time. Figures 3
and 4 demonstrate how the dashboard and a form for acquiring user requirements are designed
in CloudPick.

• Process Management: As the deployment of appliances has to be accomplished through
a multi-step process Bonita [33] is used to orchestrate and compose aforementioned tasks.
In cloudPick, Bonita helps us to manage a process that coordinates between end users, our
frameworks, and utilized service, maintain process state, and log all process events.

• Cloud Service Discovery and Translation: The WSMO Discovery Engine [34] is utilized
to provide dynamic cloud service discovery. It exploits WSMO formal descriptions of user
requirements and services that is built by the translator component (refer to Section 6.1 for
more details).

• Connecting to Multiple clouds: To deploy selected appliances on the selected IaaS provider,
we have to utilize cloud APIs (either in the form of command line or web service requests).
Although there are efforts to derive standard APIs to access and configure cloud services,
those standards have not yet resulted in a dependable product. To resolve that issue, we
adopted the jclouds API, which provides an option to use either portable abstractions or cloud-
specific features. It supports a number of cloud providers including Amazon, GoGrid, Azure,
vCloud, and Rackspace. It is an open source library that helps users to easily manage the
public and private cloud platforms using their existing Java and development skills.

• Image Packaging: This component is implemented to utilize sets of APIs provided by cloud
providers through jclouds (dynamically and based on the source and destination providers) to
create virtual appliance packages and convert them to different formats. For example, if it is
required to deploy a VMDK virtual machine image on Amazon EC2, the component uses the
Import/Export Tools¶ of Amazon EC2 to convert it to AMI format.

• Monitoring: This service use the CloudHarmony RESTful API ‖ to monitor cloud services.
More specifically, as we are particularly interested in collecting information regarding
availability, the "getAvailability" service is used to obtain information regarding outages that
occurred over the specified time period. The collected information includes downtime which
is the total number of minutes for a particular outage.

‡Twitter Bootstrap. http://bootstrapdocs.com/v3.0.0/docs/
§jQuery. http://jquery.com/
¶EC2 Import/Export Tools. https://aws.amazon.com/ec2/vm-import/
‖CloudHarmony. http://cloudharmony.com/ws/api

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe

http://bootstrapdocs.com/v3.0.0/docs/
http://jquery.com/
https://aws.amazon.com/ec2/vm-import/
http://cloudharmony.com/ws/api


12 A. V. DASTJERDI, S. K. GARG, O. F. RANA, AND R. BUYYA

• Optimization: For Implementation of our optimization algorithm based on Genetic
Algorithm, Java Genetic Algorithm Package (JGAP) [35] is used. It offers a number of
fundamental genetic mechanisms that can be used to apply evolutionary principles to our
cloud service deployment optimization problem.

6. CLOUD SERVICE MODELING

There are two major phases in the cloud deployment optimization process. First, the cloud virtual
units and appliances information, including their QoS values, has to be collected, aggregated,
and translated to the format which is commonly understood by all the parties. As discussed by
Kritikos [36], this can be achieved by the adoption of semantic services, which is known as the most
expressive way of describing QoS. For this purpose, we extended WSML to support description of
cloud service QoS. Currently, virtual appliances and units meta-data are defined in the form of XML,
however to get the advantages of Ontology-based discovery, they have to be described conceptually
using WSMO ontologies in the form of WSML. The manual translation of cloud appliance and
virtual unit offerings’ descriptions is not a feasible approach. Therefore, we propose an approach
that minimizes human intervention to semantically enrich cloud offerings.

6.1. Automated Construction of Semantic-Based Cloud Service and Their Quality of Services

Currently, there is no integrated repository of semantic-based services for virtual appliances and
units. The first step towards describing services and their QoS is to communicate with clouds
and the cloud monitoring services through their APIs and gather required meta-data for building
the repository. The process of metadata translation is demonstrated in Figure 5. The components
involved in this process are:

6.1.1. Integrity Checking This component first merges output messages of API calls for acquiring
cloud services description using Extensible Stylesheet Language Transformations (XSLT)∗∗ and
then compares them with the previously merged messages using a hash function. If the outputs of
the hash function are not equal, the component triggers the Sync component to update the semantic
repository.

6.1.2. Sync Component The goal of this component is to keep the semantic-based repository
consistent with the latest metadata provided by cloud providers. As the synchronization
is computing intensive, it is avoided unless the integrity checking component detects any
inconsistency. In this case, the component receives the output message that is required for
synchronization and finds the corresponding semantically rich services and updates them with the
output of the translator component.

6.1.3. Translator Component During the communication of a semantic-level client and a syntactic-
level web service, two directions of data transformations (which is also called grounding) are
necessary: the client semantic data must be written in an XML format that can be sent as a request
to the service, and the response data coming back from the service must be interpreted semantically
by the client. We use our customized Grounding technique on WSDL operations (that are utilized
to acquire virtual appliance and unit metadata) output to semantically enrich them with ontology
annotations. WSMO offers a package that utilizes Semantic Annotations for WSDL (SAWSDL)
for grounding [37]. It provides two extensions attribute namely as Lifting Schema Mapping and
Lowering Schema Mapping. Lowering Schema Mapping is used to transfer ontology to XML
and lifting Schema Mapping does the opposite. In our translator component, the lifting mapping
extension has been adopted to define how XML instance data obtained from clouds API calls is
transformed to a semantic model.

∗∗XSLT. http://www.w3.org/TR/xslt

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe

http://www.w3.org/TR/xslt


CLOUDPICK: A FRAMEWORK FOR SERVICE DEPLOYMENT ACROSS CLOUDS 13

Figure 5. The process of translation of virtual appliances and units descriptions to WSML.

  

wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-full"
ontology _"http://www.CloudsLab.org/ontologies/VirtualAppliance"
       annotations
              _"http://www.CloudsLab.org/ontologies/VirtualAppliance#title" hasValue " 
Auto-generated Virtual Appliance Ontology"
       EndAnnotations

       concept _"
http://www.CloudsLab.org/ontologies/VirtualAppliance#VirtualAppliance"
_"http://www.CloudsLab.org/ontologies/VirtualAppliance#imageId" ofType _string
                     
              _"http://www.CloudsLab.org/ontologies/VirtualAppliance#imageLocation" 
ofType _string
                     
              _"http://www.CloudsLab.org/ontologies/VirtualAppliance#isPublic" ofType 
{boolean}
…..

<?xml version="1.0" encoding="ISO-8859-1"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
</xs:complexType>
      <xs:complexType 
name="DescribeImagesResponseItemType">
        <xs:sequence>
          <xs:element name="imageId" type="xs:string"/>
          <xs:element name="imageLocation" type="xs:string" 
minOccurs="0"/>
          <xs:element name="imageState" type="xs:string"/>
          <xs:element name="imageOwnerId" type="xs:string"/>
          <xs:element name="isPublic" type="xs:boolean"/>
  </xs:sequence>
      </xs:complexType>
  </xs:schema>

WSMO Ontology XML Schema

Figure 6. The mapping of the XML Schema to Virtual Appliance ontology concept.

As the first step in grounding, from output message schema, the necessary ontology is created for
virtual units and appliances. The basic steps to build the ontology from XML schema using WSMO
grounding is explained by Kopecky et al. [37]. In our implementation, we defined conceptual
mappings between the XML Schema conceptual model and the WSMO Ontology model and build
an engine that uses these mappings and automatically produces cloud service WSMO ontology out
of an acquired XML Schema. The implemented engine maps the primary types of XML Schema
elements to WSML-supported types. A simple mapping of such kind is provided in Figure 6. In this
step our contribution lies on building the ontology from multiple output message schemas. It means
that the monitoring service output message schema is used to extend the ontology to encompass
non-functional properties. This can be accomplished by merging two schemas to construct an output
message that describes the format of the elements that has functional and non-functional properties
such as price and reliability.

Having the ontology available, the next step is to add the necessary Mapping URI for all element
declarations. For this purpose Modelreferences are used, which are attributes whose values are
lists of URIs that point to corresponding concepts in the constructed ontology. Subsequently,
we need to add schema mappings that point to the proper data lifting transformation between
XML data and semantic data. For this purpose, two attributes, namely liftingSchemaMapping
and loweringSchemaMapping, are offered by SAWSDL. These aforementioned attributes are then
utilized to point from cloud virtual appliance meta-data schema to a XSLT, which shows how meta-
data is transferred from XML to WSML.

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



14 A. V. DASTJERDI, S. K. GARG, O. F. RANA, AND R. BUYYA

We tested this approach for cloud service repositories with variety of sizes, and present the
experimental result in Section 8.2.1. The ontology listed in Appendix A was partially created by
the described translator component. For example, it shows how an appliance meta-data with ID of
"aki00806369" has been translated to WSMO format.

Semantic service toolkits and libraries based on OWL-S and WSMO use XML based grounding.
This XML mapping approach cannot deal with the growing number of cloud provider’s interfaces
that use non-SOAP and non-XML services. The main reason that we have used XML is to follow
the path that was suggested by WSMO, standard libraries and documentation provided by WSMO,
and that major IaaS providers currently have a full support for XML-based services. For alternative
approaches of grounding for non-XML services, readers can refer to studies conducted by Lambert
et al. [38]. It is worth mentioning that there are other specifications such as Open Cloud Computing
Interface (OCCI) [39] that aims at providing a standard way for describing cloud resources.

7. DEPLOYMENT OPTIMIZATION

After the discovery phase –which is explained in our previous works [6,10,13] along with semantic-
based virtual appliance and units description in WSML– the discovered services are passed to
the deployment optimization component. The deployment optimization step consists of finding
the composition of appliances and virtual units for the customers that minimizes the deployment
cost and adheres to reliability and latency constraints. The deployment problem maps to multi-
dimensional knapsack problem due to multiple QoS constraints. The Multidimensional Knapsack
problem is classified as an NP-hard optimization problem [40]. It consists of selecting a subset of
alternatives in a way that the total profit of the selected alternatives is maximized while a set of
knapsack constraints are satisfied. First, the QoS criteria are described and then the optimization
problem is formally defined.

7.1. QoS Criteria

The three QoS criteria considered in the deployment optimization problem are reliability, cost, and
latency.

1. Reliability: For measuring cloud providers reliability, we introduce SLA Confidence Level
(SCL), which is a metric to measure how reliable are services of each provider based on
the SLAs and their performance history. SCL values are computed by a third party that is
responsible for monitoring the SLA of providers based on Equation (1):

SCL =
k

∑
j=1

(I j×SCL j) (1)

Where SCL j is the SLA confidence level for QoS criteria j of a cloud service; I j is the
importance of the criteria j for the user; k is the number of monitored QoS criteria.
We utilized the beta reputation system [41] to assess the SCL for each criterion. The reason
is that the Monitoring Outcome (MO jt) of a particular quality of service criteria j in the
period t in the SLA contract can be modeled as shown in Equation (2), and therefore it is a
binary event. Consequently, the beta density function, which is shown in Equation (3), can
be efficiently used to calculate posteriori probabilities of the event. As a result, the mean or
expected value of the distribution can be represented by Equation (4).

MO jt = {SLAnotviolated,SLAviolated} (2)

f (x|ρ,τ) = Γ(ρ + τ)

Γ(ρ)Γ(τ)
xρ−1 (1− x)τ−1

where 0≤ x≥ 1,ρ < 0,τ > 0,
and ρ , and τ are beta distribution parameters

(3)

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



CLOUDPICK: A FRAMEWORK FOR SERVICE DEPLOYMENT ACROSS CLOUDS 15

µ = E (x) = ρ/(ρ + τ) (4)

As mentioned earlier in Section 5, in our architecture a component is responsible for
monitoring SLA contracts. If we assume that the monitoring component has detected that
SLA violation occurred v times for provider p (for the total number of n monitored SLAs).
Considering that p = n− v+1 τ = v+1 and, the SCL is equal to the probability expectation
that SLA is not going to be violated and is calculated as shown in Equation (5).

SCL j =
n− v+1

n+2
(5)

We modeled availability for SCL generation, as current cloud providers only include
availability in their SLAs. The reliability in our work is considered as a user constraint for
each cloud service.

2. Cost: Cost is a non-functional requirement of a user who wants to deploy a network of
appliances. In our problem, minimization of deployment costs is considered as the objective
of users. The deployment cost includes monetary cost of leasing virtual units as well as
appliances and communication costs. The communication monetary cost for connected virtual
appliances depends on how much data they exchange and can be determined by the following
factors: 1) One time communication message size and 2) Communication rate (how often two
appliances communicate), which can be calculated based on request inter-arrival rate.
In this work, we focused on computing and data transfer cost. However, a comprehensive cost
model can take into consideration many other forms of costs including:

• Storage: This includes replication and backup cost and can vary based on number of
reads and writes operation.

• Content Delivery Network (CDN): The CDN cost is generally calculated based on per
GB of data transferred through CDN edges and the geographical location of edges.

• Load balancing: This cost is also calculated based on volume of data transferred through
the load balancer.

• Monitoring: The monitoring cost grows based on number of instance and monitoring
frequency.

3. Latency: Latency can have a significant impact on e-Business web sites performance and
consequently on the end user experience. Therefore, we have considered it in the problem
as one of the users’ constraints. It is assumed that customers have different constraints for
the latency between appliances that have to be satisfied with the selection of proper cloud
providers.

7.2. Deployment Problem Formulation

7.2.1. Provider model Let m be the total number of providers. Each provider is represented in
Equation (6).

Pk : ({a} ,{vm} ,Cdatainternal(Pk),Cdatain(Pk),Cdataout(Pk)) (6)

Where a, vm, Cdatainternal(Pk), Cdatain(Pk), and Cdataout(Pk) denotes appliance, virtual
machine, cost of internal data transfer and cost of external data transfer to and from cloud
respectively. A virtual appliance a can be represented by a tuple of four elements: appliance type,
cost, license type, and size as represented in Equation (7).

a : {ApplianceType;Cost;LicenseType;Size} (7)

A virtual machine vm can be formally described as a tuple with two elements as shown in
Equation (8).

vm : {MachineType;Cost} (8)

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



16 A. V. DASTJERDI, S. K. GARG, O. F. RANA, AND R. BUYYA

 

Figure 7. An Example of Request Graph.

7.2.2. User request model The user request for deployment of his application can be translated into
a graph G(V,E) where each vertex represents a server (virtual appliance running on a virtual unit).
Server corresponding to a vertex v is represented in Equation (9).

Sv = {appliance,virtualunit}= {av,vmv} ,∀v ∈V (9)

Each edge e{v,v′} indicates that vertex v and v′ are connected. The data transfer between these
connected vertices (i.e., one server to another) is given by “DSize". An example of a user request
(for 3 nodes) with its major attributes is illustrated in Figure 7. The objective of a user is to minimize
the deployment cost of his whole application on multiple cloud providers’ infrastructures, given a
lease period of T and budget B. Users have constraint for reliability (SCLv) of the provider on which
server should be hosted and also latency constraint (L(e{v,v′})where v,v′ ∈ V ) that represents
the maximum acceptable latency between servers. The cost of renting a server includes the cost of
virtual unit and virtual appliance.

Let an appliance for Sv be rented from provider Pk and a virtual unit from provider Pl . The cost
of server Sv as shown in Equation (10) is the cost of the appliance (cost(av,pk)) and virtual unit
(cost(vmv,pl )) plus cost of transferring the appliance if the appliance and virtual unit providers are
not the same.

Cost (Sv) =


(
Cost

(
av,Pk

)
+Cost

(
vmv,Pl

))
×T if k = l;(

Cost
(
av,Pk

)
+Cost

(
vmv,Pl

))
×T +Size

(
av,Pk

)
∗

Cdataout (Pl) if k 6= 1.
(10)

Let Sv =
{

av,Pk,vmv,pl
}

and S′v =
{

av′,Pk′ ,vmv′,pl′
}

be two connected vertices (servers) by edge
e{v,v′} ∈ E ; and Pk , Pl , Pk′ and Pl′ are the providers using whose resources Servers Sv and
Sv′ are deployed. The data transfer cost between the two servers is given by Equation (11). The
data transfer between connected vertices can be measured from the current production environment
(before migrating to cloud data centers) as shown in [28]. Alternatively, this data can be collected
via emulation of user’s inputs and mouse clicks.

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



CLOUDPICK: A FRAMEWORK FOR SERVICE DEPLOYMENT ACROSS CLOUDS 17

DCost
(
e
{

v,v′
})

=


DSize(e)× (CDataout (pl)+CDatain (pl′))×T
if l 6= l′

DSize(e)×CDatainternal (pl)×T
if l = l′

(11)

where CDatain counts for the cost of data transferred to a cloud provider; CDataout is the cost of
data transferred out of cloud provider (refer to node C in Figure 7 ); and CDatainternal stands for
cost of internal data transfer.

Therefore, the total cost of hosting users application on the multiple clouds is given by Equation
(12).

TC = ∑
v∈V

Cost (Sv)+ ∑
e∈E

v,v′∈V

DCost
(
e
{

v,v′
})

(12)

7.2.3. Deployment Optimization Objectives The objective of the user is to minimize the
deployment cost of his whole application on multiple cloud infrastructures (Pk 0 < k < m). Thus,
the mathematical model is given by Equations (13), (14) , and (15).

Min(TC)Sub ject to 0 < TC < B (13)

f or all e
{

v,v′
}

in E : Latency(Sv,Sv′)< L
(
e
{

v,v′
})

(14)

f or all v in V : SCL(Sv)> SCLv (15)

Where, Latancy(Sv,Sv′)is the latency between cloud infrastructures where server Sv and Sv′ are
hosted, and SCL(Sv) is the reliability of the cloud infrastructure where server Sv is hosted.

7.3. Deployment Optimization Algorithms

To tackle the aforementioned problem, one may consider a greedy selection algorithm [42]. By
greedy selection algorithm, we mean a simple heuristic approach that for each node, the cloud
service candidate that offers the highest score compared to the other candidates is selected. With
this approach, it is not possible to consider a user’s constraints which is applied to the whole service
composition (such as budget) or even latency constraints between vertices. Another approach which
can be used to solve the problem is finding all possible compositions using exhaustive search,
comparing their overall cost, and selecting the composition with the lowest cost that satisfies
budget, reliability, and latency constraints. This approach can find the optimal solution; however,
the computation cost of the algorithm is high due to NP hardness of the problem [42]. In order
to deal with the aforementioned challenges in following we describe two algorithms: Forward-
checking-based backtracking (FCBB) and the genetic-based cloud virtual appliance deployment
optimization.

7.3.1. Forward-checking- based -backtracking (FCBB) In FCBB, the process of searching
providers begins from a start node (vertex) Sv which has minimum deployment cost (including
appliance and virtual unit cost) and for all its children there can be found at least one provider
that satisfies all constraints (partial forward checking) [Algorithm 2 lines:12-14]. The partial
forward checking on the problem constraints is added to the algorithm to avoid back jumps in the
circumstances where latency constraints of the users are comparatively tight.

Then, Sv is added to the processed node list. After that, the algorithm processes all the children
of Sv which are not processed, and for each child of Sv′ , providers are selected using the selection
function [ Algorithm 1 lines:8-11] such that 1) latency and SCL constraints are satisfied with all
the connected processed nodes (backward checking), 2) they can pass forward checking and 3) they
have minimum communication (to already processed nodes) and combination cost [ Algorithm 2
lines:16-19 ]. After selection of all the unprocessed children of the start node Sv′ , the similar search
and selection process is applied recursively for all the grand children of start node Sv [Algorithm 1

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



18 A. V. DASTJERDI, S. K. GARG, O. F. RANA, AND R. BUYYA

Algorithm 1: FCBB
Input: Sv, RequestG(V,E)
Output: selected []

1 if Sv = theFirstStartNode then
2 Sv← getStartNode(RequestG(V,E), processedSet);
3 processedSet← processedSet ∪Sv ;
4 selected [Sv]← selection(Sv);
5 if selection(Sv′) = null then
6 backtrack;

7 connectedNotProcessed←
getConnectedNotProcessed(parentNode,RequestG(V,E), processedSet);

8 foreach Sv′ in connectedNotProcessed do
9 selected [Sv′ ]← selection(Sv′);

10 if selection(Sv′)=null then
11 backtrack;

12 foreach Sv′ in connectedNotProcessed do
13 FCBB(Sv′);

lines: 12-13]. If the selection function does not find any set of providers, it moves back and replaces
the parent node with the second best set of providers in the Combination list (Backtrack) [ Algorithm
1 lines: 7 and 11].

7.3.2. Genetic-Algorithm based Virtual Unit and Appliance Provider Selection Since genetic
approaches have shown potential for solving optimization problems [43], this class of search
strategies was utilized in our problem. The adoption of genetic-based approaches for the deployment
problem involves 4 steps.

The f irst step is to plan the chromosome, which consists of multiple genes. In our problem,
each vertex in the graph of request is represented by a gene. The second step is to create the
population, hence each gene represents a value which points to a combination of virtual unit and
appliance service (which satisfies requirements of corresponding vertex) in a sorted (based on the
combination cost) list. Implementation of fitness function is the third step. The fitness values are
then used in a process of natural selection to choose which potential solutions will continue on to
the next generation, and which will die out. The fitness function as shown in Equation 16 is equal
to the total cost of the solution. However, if constraints are violated, the penalty function is applied.

Designing penalty function for genetic-based approach is not a trivial task. Several forms of
penalty functions have been proposed in literature [44], including rejection of infeasible solutions
or giving the death penalty. However, those solutions could make the search ineffective when the
feasible optimal solutions are close to infeasible solutions. For our problem, the penalty function
is constructed as a function of the sum of the number of violations for each constraint multiplied
by constants as shown in Equation 17. In the penalty function, Age is the age of chromosome, ki
constant, NVi is number of cases that violates the constraints, and NNVi is the number of cases that
do not violate the constraints. In addition, to discard the infeasible solutions in early generations (for
our case where we have adequate sampling of the search space), infeasible solutions with lower age
are penalized heavier. We realized that using a modest penalty in the early stages, although ensures
larger sampling, leads to infeasible solutions more frequently. Finally, the last step is the evolution
of the population based on the genetic operator. The genetic operator adopted for our work is the
Java Genetic Algorithm Package (JGAP) natural selector [35].

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



CLOUDPICK: A FRAMEWORK FOR SERVICE DEPLOYMENT ACROSS CLOUDS 19

Algorithm 2: Selection
Input: Sv
Output: selectedCombination

1 minCost← ∞;constraintsViolated← f alse; f easible← true;selectedCombination← null;
2 foreach combination in getAllCombinationSorted(Sv) do
3 . getAllCombinationSorted returns combinations sorted using quick sort.
4 if SCL(Sv)< SCL(combination.getVUProvider()) and

SCL(Sv)< SCL(combination.getAppProvider()) then
5 connectedProcessed←

getConnectedProcessed(startNode,RequestG(V,E), processedSet);
6 if connectedProcessed = null then
7 foreach Sv′ in connectedProcessed do
8 if Latency(Sv,sv′)> L(e{Sv,sv′}) then
9 constraintsViolated← true;

10 if constraintsViolated = f alse then
11 connectedNotProcessed←

getConnectedNotProcessed(startNode,RequestG(V,E), processedSet);
12 foreach sv′ in connectedNotProcessed do
13 if /∈ combination in getAllCombinationSorted(Sv) that

Latency(Sv,sv′)> L(e{Sv,sv′}) then
14 f easible← f alse . Forward Checking;

15 if f easible = true then
16 cost← communicationCost + combination.getCost();
17 if cost < minCost and cost + totalCost < request.getBudget() then
18 minCost← cost;
19 selectedCombination←

{combination.getVUProvider(),combination.getAppProvider()};

20 return selectedCombination;

f itness =



(∑i∈V Cost (Genei)+

∑ e∈E
i, j∈V

DCost (e{Genei,Gene j})
)
∗T if constarints are not viloated

(∑i∈V Cost (Genei)+

∑ e∈E
i, j∈V

DCost (e{Genei,Gene j})
)
∗T +Penalty() if constraints are violated

(16)

Penalty() =
n

∑
i=1

(
NVi

NVi+NNVi
× ki

)
×
(

1
Age

)
× f itnessvalue (17)

7.3.3. Additional issues One may require the optimization algorithm to take into account latency
constraints between end users (in different geographical locations) and particular servers. This can
be easily modelled by considering users a special case of server that has latency requirements but
no software, hardware, and reliability requirements.

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



20 A. V. DASTJERDI, S. K. GARG, O. F. RANA, AND R. BUYYA

Table I. Latency between clouds and SCL input data.

Cloud A Cloud B Latency
(ms)

Cloud B
Monitored
Availability

Cloud B
Promised
Availability

Ec2 Rackspace 49.8 99.996% 100%
Ec2 GoGrid 8.9 99.996% 100%
Ec2 Lindoe 5.01 99.996% 100%

Table II. Request types.

Request Type
Request
Graph
Density

Request Inter
Arrival Rate DB
↔ AS

Request Inter
Arrival Rate WS
↔ As

Strongly con-
nected 0.85 Log-normal

(1.4719,2.2075)
Weibull
(0.70906,10.185)

Moderately
connected 0.5 Log-normal

(1.1695,1.9439)
Weibull
(0.41371,1.1264)

Poorly
connected 0.25 Log-normal

(0.8912,1.6770)
Weibull
(0.24606,0.03548)

8. EXPERIMENTAL TESTBED CONSTRUCTION AND PERFORMANCE EVALUATION

To evaluate the proposed algorithms and study the placement of appliances, essential input data
using real experiments was collected. The collected data can be classified either as data for providers
modeling or data for user request modeling.

1. Providers modeling: A set of 12 real cloud providers are selected, namely: Amazon, Zerigo,
Softlayer, VMware, Bitnami, rpath, Turnkeylinux, Rackspace, GoGrid, ReliaCloud, Lindoe,
and Prgmr. Their virtual units and appliances have been modeled in our system. In addition,
latency data between cloud providers and SCL for each of them have been measured. The
following subsections describe the data collected in detail.

2. Virtual unit and appliance modeling: We built an aggregated repository of virtual appliances
and virtual unit services based on the advertised services by cloud providers. Services contain
information regarding cost, virtual appliance size, and data communication cost inside and
outside of clouds.

3. Latency and reliability (SCL) calculation: We first setup testing nodes in 12 different
infrastructure/server clouds as mentioned earlier. Next, the nodes initiate latency network
tests (hourly) with each of the other nodes that are placed in other infrastructures. This
includes pinging to other nodes to determine latency. For the experiment purpose, we calculate
the mean from all of these tests that ran for three months. Table I shows mean latency
between EC2 and 3 different virtual unit providers as an example. From the collected data,
we can identify which clouds are best connected. For example, EC2 is best connected with
Lindoe and GoGrid. Max, min and average of latency between providers are 58.94, 2.51
and 29.88 (ms) respectively. However, the real implementation of CloudPick uses Cloud
Harmony RESTful API, which provides real-time latency information among more than 30
infrastructure providers. In addition, Panopta (a monitoring tool) is used to supply SCL input
data. Table I demonstrates how a sample of SCL input data looks like for 3 cloud Providers
for a 365 days period.

8.1. Generation of requests for experiments

The request generation involves three steps. Firstly, number of servers requested by the user and
requirements of each server in terms of virtual unit and appliance types are determined. Next,

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



CLOUDPICK: A FRAMEWORK FOR SERVICE DEPLOYMENT ACROSS CLOUDS 21

connected vertices in the request are identified. Finally, data transfer rates between connected
appliances are identified. For experimental evaluation two classes of requests are used, i.e., a real
case study and randomly generated requests.

1. Modeling user requests using a real case study For the real case study example, we use
the three-tier data centre scenario presented by Ersoz et al. [28]. The required virtual units
and appliance types for each vertex is assigned based on the scenario. They implemented
an e-Business web site that encompasses 11 appliances: 2 front-end web-servers (WS) in its
web tier, 3 databases (DB) in its database tier, and 6 application servers (AS) in between. In
their work, a three-tier data centre architecture was used to collect the network load between
appliances. Two different workloads, RUBiS [45] and SPECjApp-Server2004, are used by
them. However, our focus is on the RUBiS, which implements an e-Business web site. That
web site includes 27 interactions that can be carried out from a client browser. Their analysis
of experiments results has been represented by various distributions of request inter-arrival
times, and data size between tiers for 15 minutes runs of the RUBiS workload with 800, 1600,
and 3200 clients. This data, which is shown in Table II, is used to calculate the network traffic
between connected appliances.

2. Modeling user requests for extensive experiment study Three classes of user requests
(network of appliances) namely strongly, moderately, and poorly connected are created as
shown in Table II, which differs from each other in communicated message sizes, message
inter-arrival rates, and graph density (proportion of the number of edges in request graph to
total possible number of edges) of the request graph. The reason for building 3 classes of
requests is to study the effect of network traffic and request graph density on performance
of algorithms and placement of appliances. It is worth mentioning that having variations
in graph density, latency constraint, and data transfer rate can examine how effectively an
algorithm can handle budget and latency constraints in different circumstances. For each
vertex, we randomly assign a required virtual unit and appliance type, and then we use random
graph generation technique to identify which vertices are connected. All generated network
of appliances follow the topology presented by Ersoz et al. [28]. Based on appliances that are
connected to each other, data transfer rates are assigned. For example, if one appliance is a
database and the other one is an application server and the request is in category of strongly
connected, then the request inter-arrival rate is Log-normal(1.4719, 2.2075). In addition, to
investigate effects of message size, two classes of requests with different message sizes are
created using workload "a" [28] (e-Business application with small message size) and "b" [46]
(98 World cup with large message size).

8.2. Experimental results

The experiments aim at:

1. Evaluating the performance of the translation approach to find out how effectively it can build
an aggregated semantically-enriched service repository for a multi-cloud environment;

2. comparing the proposed heuristics with Exhaustive Search (ES) using the real case study to
determine how effectively CloudPick can satisfy user requirements;

3. evaluating effects of variation in request types on algorithms performance;
4. analyzing effects of variation in request types and constraints on deployment cost and

distribution factor which shows how users’ applications distributed across multiple cloud;
and

5. investigating the effects of number of iterations an population size on the performance of the
genetic algorithm to tune the optimizer component of CloudPick.

8.2.1. Performance of translation approach for different sizes of Cloud service repositories Major
cloud providers have large repository of virtual appliance and unit services. For example, Amazon
Web Service’s repository’s size alone is greater than 10.6 MB. To increase the efficiency of
CloudPick we only perform synchronization when the translation service is triggered by the integrity

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



22 A. V. DASTJERDI, S. K. GARG, O. F. RANA, AND R. BUYYA

checking component. We increased the number of services in the repository by merging repositories
from various cloud providers to investigate the scalability of our approach in terms of execution time
needed for the translation. For each case of repository size, we repeated the experiment 30 times
and the results are plotted in Figure 8. Regression analysis shows that there is positive and linear
relationship between the repository size and the translation time. The evidence confirms that the
regression coefficient is 0.6621, which suggests that if the data size to be translated increases by 1
MB, translation time increases roughly by 0.6 second. Consequently, synchronization function can
be executed online in an acceptable time even if a considerable percentage of virtual appliance and
unit properties is updated.

Figure 8. Execution time of translation for different repository sizes.

8.2.2. Comparison with Exhaustive Search (ES) Figuer 9 shows how close the proposed algorithms
are to the Exhaustive Search (ES) for the case study. Both of them could reach the same solution
achieved with ES. As evidenced by Table III, the mean execution time for finding the solution using
exhaustive search of the solution space is extremely high comparing to our proposed algorithms.
The execution time for the ES approach rises further exponentially as well as the computational
effort for larger number of servers and providers. Therefore, it cannot be considered as a practical
solution for the problem. To further examine the near-optimality of FCBB and the genetic approach,
we conducted experiments with 10 different requests (in terms of service requirements, graph
density, message size, and request inter-arrival time) for each category of 10, 15, and 20 servers.
The results are shown in Table IV, where we observe that on average, the difference in deployment
cost compared with ES is 7% for the FCBB and 1% for genetic approach. Therefore, both FCBB
and genetic approach can reach a near-optimal solution without much computational cost.

Figure 9. Performance Evaluation for Case Study.

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



CLOUDPICK: A FRAMEWORK FOR SERVICE DEPLOYMENT ACROSS CLOUDS 23

Table III. Mean execution time for case study.

Algorithm Mean Execution time(s)
FCBB 0.102
genetic 36.393
Exhaustive Search (ES) 3248.152

Table IV. Mean exhaustive search(es) costs/algorithms costs.

Algorithm Number of servers
10 15 20

ES/FCBB 0.9841 0.9175 0.9013
ES/genetic 0.9952 0.9868 0.9923

Table V. Mean execution time (s).

Algorithm Number of servers
10 25 50 75 100

FCBB 0.103 0.115 0.288 0.407 0.841
Discard
subset

0.138 0.271 0.849 2.339 6.091

genetic 31.997 144.426 497.377 1288.056 1814.488

8.2.3. Impacts of variation in request types on algorithms performance and execution time Figures
10 and 11 depict the performance of the proposed algorithms for different request types (strongly,
moderately, and loosely connected) with different number of servers. These experiments particularly
examine the efficiency of CloudPick for applications with different workloads. Moreover, by varying
the number of servers, the experiments investigate and compare the scalability of FCBB and
the genetic algorithm. In the case of workload "a", as the message size is small, differences are
comparatively small, except for strongly connected requests (Figure 10a and especially for the case
of 100 servers where genetic-based approach can save approximately 3% of cost. In other cases
of workload "a" when vertices are moderately or poorly connected, the genetic-based approach
has better or relatively same performance (regarding the cost) compared to the FCBB algorithm.
However, when the message size is larger (workload "b"), as shown in Figure 11a, the genetic
algorithm in almost all cases outperforms the FCBB algorithm. In Table V, mean execution times
for 20 experiments in relation to the number of servers for groups of requests are given. It shows
that the execution time of FCBB is negligible compare to genetic’s one. It also shows that adding
"forwards checking" feature successfully decreases execution time, especially for the requests which
require more than 10 servers and therefore it outperform the "discard subset" algorithm proposed
in [42] (the algorithm proposed to solve the web service composition optimization problem with
multiple constraints) regarding the execution time while they both could result in the same objective
values for all cases.

Therefore, the performance of the algorithms differs from one workload to another and when
there exists a workload with small message size (like the e-Business workload "a"), performance
difference of algorithms is low. In such cases, FCBB can be used to save on execution time.
However, when the message size increase, they show comparatively higher differences. As a result,
when users look for minimizing cost instead of the execution time, the genetic-based approach is
the most appropriate solution.

8.2.4. Effects of variation in request types and latency constraints on distribution factor in multi-
cloud environments In this experiment, the objective is to study the possibility of placing a network
of appliances on different providers rather than one in a multi-cloud environments when the only
concerns are latency and deployment cost. For this purpose, a metric named "distribution factor"

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



24 A. V. DASTJERDI, S. K. GARG, O. F. RANA, AND R. BUYYA

(a) Strongly connected

(b) Moderately Connected

(c) Loosely Connected

Figure 10. Change in Connectivity for Workload a.

is designed, which shows the proportion of the number of different providers selected to the total
number of providers. Table VI shows how a request type (data transfer rate and graph density,
as explained in Table II) affects the distribution factor. For the loosely connected requests with
loose latency requirement, we conclude that considering multiple cloud providers decreases the
deployment cost while still maintaining the minimum performance requirements (by adhering to
the latency constraint). For all cases from 10 to 100 servers, when there is a higher data transfer
and number of connection between vertices, the distribution factor decrease dramatically. For the
majority of cases, it decreases by more than 75%. It means that FCBB selection algorithms have
a tendency to select the same virtual unit provider for all vertices to save on communication
cost. The same trend can be observed for the genetic-based approach. However, when the latency
constraints are tight, if we consider multiple providers for deployment, the cost will be lower. But
still the distribution factor decreases by 25%. Consequently, the experiments show that network

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



CLOUDPICK: A FRAMEWORK FOR SERVICE DEPLOYMENT ACROSS CLOUDS 25

(a) Strongly connected

(b) Moderately Connected

(c) Loosely Connected

Figure 11. Change in Connectivity for Workload b.

of appliances with higher graph densities and data transfer are less likely to be distributed across
multiple providers and they are expected to have higher deployment cost.

8.2.5. Effects of variation of reliability constraints on deployment cost This experiment is designed
to help us understand how characteristics of network of appliances affect the deployment cost when
they are migrated to the cloud. As illustrated in Table VII, the deployment cost increases by almost
10% on average when latency requirement is tighter as less number of providers could satisfy such
requirement (lower distribution factor). In addition, demanding providers with higher reliability
slightly increases the cost of deployment, which is less than the increase in the case when the
latency constraint is tighter.

8.2.6. Varying iteration number and population size Figure 12 and 13 represent the effects of
increasing the number of iterations and population size on improvement of the objective function.

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



26 A. V. DASTJERDI, S. K. GARG, O. F. RANA, AND R. BUYYA

Table VI. Distribution factor.

Request type Number of servers
10 25 50 75 100

Loosely connected
& loose latency

44% 55% 55% 55% 44%

Strongly connected 11% 11% 11% 11% 11%
Tight latency 22% 44% 33% 33% 33%

Table VII. Effects of the deployment constraints on the cost.

Request type Average percentage of cost increase
High reliability 5.8117414
Tight latency 10.1966957

Figure 12. Population size versus cost.

Figure 13. Number of iteration versus cost.

The examined request has 100 highly connected vertices from workload "b". The aim is to show to
what extent increasing the number of iterations and population size improves performance of the
genetic approach. It can be observed that increasing the number of iterations and population size
contribute to the objective function. However, from a certain point (for population size 1000 and for
iteration number 500), the improvement is marginal and negligible.

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



CLOUDPICK: A FRAMEWORK FOR SERVICE DEPLOYMENT ACROSS CLOUDS 27

9. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we proposed a framework called CloudPick to simplify the process of service
deployment in multiple cloud environments and mainly focused on its cross-cloud service modeling
and deployment optimization capabilities. We investigated the cloud provider selection problem for
deploying a network of appliances. We proposed new QoS criteria, and the problem of deployment is
formulated and tackled by two approaches namely FCBB and genetic-based selection. We evaluated
the proposed approaches by a real case study using real data collected from 12 cloud providers,
which showed that the proposed approaches deliver near-optimal solution. Next, they were tested
with different types of requests. The results show that when message size increases, approaches
present comparatively higher differences, and if execution time is not the main concern of users,
genetic-based selection in most cases achieves better value for the objective function. In contrast,
if the massage size between appliances is small, FCBB can be used to save on execution time.
Further, based on the conducted experiments, we found out that network of appliances with higher
graph density and data transfer are less likely (in contrast to requests with lower data transfer)
to be distributed across multiple providers. However, for requests with tight latency requirements,
appliances are still placed across multiple providers to save on deployment cost. Further, we show
how the iteration number and population size affect the performance of the genetic algorithm. And
finally, the performance of the translation approach was measured for different repository sizes
which demonstrates its scalability.

Future work will focus on identifying challenges in designing cross-cloud scaling policies when
users have budget, deployment time, and latency constraints. We will further investigate the scaling
optimization algorithm that not only minimizes the cost but also has the current knowledge of virtual
appliance placement (inter-cloud latency and throughput) and maximizes the performance metrics
such as end user response time. Another promising research topic is discovering and selecting
resources for back up and then a deployment pattern that facilitates the recovery in a speedy and
cost-optimal manner when failure happens.

By emergence of spot instances in cloud computing, IaaS providers like Amazon offer their
virtual unit services with dynamic pricing. Therefore, the cross-cloud deployment optimization can
investigate approaches for bidding and market selection that minimizes the deployment cost. In
addition, as number of cloud services offered by IaaS are increasing, future research can investigate
more detailed cost model to enhance the accuracy of provider selection algorithms.

Acknowledgments The authors wish to thank Rodrigo N. Calheiros and Kurt Vanmechelen for their
constructive and helpful suggestions.

REFERENCES

1. Narasimhan B, Nichols R. State of cloud applications and platforms: The cloud adopters’ view. Computer 2011;
44(3):24–28.

2. Google. Google app engine. http://code.google.com/appengine/.
3. Varia J. Best practices in architecting cloud applications in the aws cloud. Cloud Computing: Principles and

Paradigms, Wiley Press, New Jersey, USA 2011; :459–490.
4. Sun C, He QWL, Willenborg R. Simplifying service deployment with virtual appliances. Proceedings of the 2008

IEEE International Conference on Services Computing, 2008; 265–272.
5. Sapuntzakis C, Brumley D, Chandra R, Zeldovich N, Chow J, Lam M, Rosenblum M. Virtual appliances for

deploying and maintaining software. Proceedings of the 17th USENIX conference on System administration, 2003;
181–194.

6. Dastjerdi AV, Garg S, Buyya R. Qos-aware deployment of network of virtual appliances across multiple clouds.
2011 IEEE Third International Conference on Cloud Computing Technology and Science (CloudCom), IEEE, 2011;
415–423.

7. Fensel D, Facca F, Simperl E, Toma I. Web service modeling ontology. Semantic Web Services 2011; :107–129.
8. De Bruijn J, Lausen H, Polleres A, Fensel D. The web service modeling language wsml: An overview. in

Proceedings of the 3rd European conference on The Semantic Web: research and applications (ESWC06) 2006;
:590–604.

9. Haller A, Cimpian E, Mocan A, Oren E, Bussler C. Wsmx-a semantic service-oriented architecture. Proceedings
of the IEEE International Conference on Web Services (ICWS), IEEE, 2005; 321–328.

10. VMWare. Virtual appliance marketplace. http://www.vmware.com/appliances/.

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe

http://code.google.com/appengine/
http://www.vmware.com/appliances/


28 A. V. DASTJERDI, S. K. GARG, O. F. RANA, AND R. BUYYA

11. Keahey K, Freeman T. Contextualization: Providing one-click virtual clusters. eScience, 2008. eScience’08. IEEE
Fourth International Conference on, IEEE, 2008; 301–308.

12. Wang X, Du Z, Chen Y, Li S, Lan D, Wang G, Chen Y. An autonomic provisioning framework for outsourcing data
center based on virtual appliances. Cluster Computing 2008; 11(3):229–245.

13. Dastjerdi AV, Tabatabaei SG, Buyya R. An effective architecture for automated appliance management system
applying Ontology-Based cloud discovery. Proceedings of the 2010 10th IEEE/ACM International Conference on
Cluster, Cloud and Grid Computing, 2010; 104–112.

14. Konstantinou A, Eilam T, Kalantar M, Totok A, Arnold W, Snible E. An architecture for virtual solution
composition and deployment in infrastructure clouds. Proceedings of the 3rd international workshop on
Virtualization technologies in distributed computing, ACM, 2009; 9–18.

15. Chieu T, Mohindra A, Karve A, Segal A. Solution-based deployment of complex application services on a cloud.
Service Operations and Logistics and Informatics (SOLI), 2010 IEEE International Conference on, IEEE, 2010;
282–287.

16. Foster I, Zhao Y, Raicu I, Lu S. Cloud computing and grid computing 360-degree compared. Grid Computing
Environments Workshop, 2008. GCE’08, Ieee, 2008; 1–10.

17. Wang X, Yue K, Huang J, Zhou A. Service selection in dynamic demand-driven web services. Web Services, 2004.
Proceedings. IEEE International Conference on, IEEE, 2004; 376–383.

18. Guha T, Ludwig S. Comparison of service selection algorithms for grid services: Multiple objective particle swarm
optimization and constraint satisfaction based service selection. Tools with Artificial Intelligence, 2008. ICTAI’08.
20th IEEE International Conference on, vol. 1, IEEE, 2008; 172–179.

19. Ludwig S, Reyhani S. Selection algorithm for grid services based on a quality of service metric. High Performance
Computing Systems and Applications, 2007. HPCS 2007. 21st International Symposium on, IEEE, 2007; 13–13.

20. DMTF. Open virtualization format. http://www.dmtf.org/standards/ovf.
21. García J, Ruiz D, Ruiz-Cortés A, Parejo J. Qos-aware semantic service selection: An optimization problem. IEEE

Congress on Services-Part I, IEEE, 2008.
22. Rao J, Su X. A survey of automated web service composition methods. Semantic Web Services and Web Process

Composition 2005; :43–54.
23. Kiran M, Jiang M, Armstrong D, Djemame K. Towards a service lifecycle based methodology for risk assessment

in cloud computing. Dependable, Autonomic and Secure Computing (DASC), 2011 IEEE Ninth International
Conference on, IEEE, 2011; 449–456.

24. Tran V, Tsuji H, Masuda R. A new qos ontology and its qos-based ranking algorithm for web services. Simulation
Modelling Practice and Theory 2009; 17(8):1378–1398.

25. Di Martino B, Petcu D, Cossu R, Goncalves P, Máhr T, Loichate M. Building a mosaic of clouds. Euro-Par 2010
Parallel Processing Workshops, Springer, 2011; 571–578.

26. Carlini E, Coppola M, Dazzi P, Ricci L, Righetti G. Cloud federations in contrail. Euro-Par 2011: Parallel
Processing Workshops, Springer, 2012; 159–168.

27. Menzel M, Ranjan R. Cloudgenius: decision support for web server cloud migration. Proceedings of the 21st
international conference on World Wide Web, ACM, 2012; 979–988.

28. Ersoz D, Yousif M, Das C. Characterizing network traffic in a cluster-based, multi-tier data center. Distributed
Computing Systems, 2007. ICDCS’07. 27th International Conference on, IEEE, 2007; 59–59.

29. Faratin P. Automated service negotiation between autonomous computational agents. PhD Thesis, University of
London 2000.

30. Dastjerdi AV, Buyya R. An autonomous reliability-aware negotiation strategy for cloud computing environments.
Cluster, Cloud and Grid Computing (CCGrid), 2012 12th IEEE/ACM International Symposium on, IEEE, 2012;
284–291.

31. Dastjerdi AV, Tabatabaei S, Buyya R. A dependency-aware ontology-based approach for deploying service level
agreement monitoring services in cloud. Software: Practice and Experience 2011; 42(4):501–518.

32. Fielding RT, Taylor RN. Principled design of the modern web architecture. ACM Transactions on Internet
Technology (TOIT) 2002; 2(2):115–150.

33. Valdes M, Charoy F. Bonita: Workflow cooperative system. objectweb consortium 2004.
34. Keller U, Lara R, Lausen H, Polleres A, Predoiu L, Toma I. Wsmo discovery engine 2004.
35. Meffert K, Rotstan N, Knowles C, Sangiorgi U. Jgap-java genetic algorithms and genetic programming package.

URL: http://jgap. sf. net 2008; .
36. Kritikos K, Plexousakis D. Semantic qos metric matching. Web Services, 2006. ECOWS’06. 4th European

Conference on, IEEE, 2006; 265–274.
37. Kopeckỳ J, Moran M, Roman D, Mocan A. Wsmo grounding. wsmo working draft v0. 1, 2005. Available at:

http://www.wsmo.org/TR/d24/d24.
38. Lambert D, Benn N, Domingue J. Integrating heterogeneous web service styles with flexible semantic web

services groundings. First International Future Enterprise Systems Workshop (FES2010) at The 3rd Future Internet
Symposium (FIS2010) Berlin, Germany, 20-22 Sept 2010.

39. Metsch T, Edmonds A, Nyrén R, Papaspyrou A. Open cloud computing interface–core. Open Grid Forum, OCCI-
WG, Specification Document. Available at: http://forge. gridforum. org/sf/go/doc16161, 2010.

40. Chvatal V. A greedy heuristic for the set-covering problem. Mathematics of operations research 1979; 4(3):233–
235.

41. Jsang A, Ismail R. The beta reputation system. Proceedings of the 15th bled electronic commerce conference, 2002;
41–55.

42. Jaeger M, Rojec-Goldmann G. Seneca–simulation of algorithms for the selection of web services for compositions.
Technologies for E-Services 2006; :84–97.

43. Coello C. A comprehensive survey of evolutionary-based multiobjective optimization techniques. Knowledge and
Information systems 1999; 1(3):129–156.

44. Michalewicz Z. Genetic algorithms+ data structures= evolution programs. springer, 1996.

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe

http://www.dmtf.org/standards/ovf
http://www. wsmo. org/TR/d24/d24


CLOUDPICK: A FRAMEWORK FOR SERVICE DEPLOYMENT ACROSS CLOUDS 29

45. Cecchet E, Marguerite J, Zwaenepoel W. Performance and scalability of ejb applications. ACM Sigplan Notices
2002; 37(11):246–261.

46. Arlitt M, Jin T. A workload characterization study of the 1998 world cup web site. Network, IEEE 2000; 14(3):30–
37.

A. PORTION OF DEVELOPED ONTOLOGY

1 wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-flight"
2 namespace { _"http://www.cloudslab.org/CloudProvider#"
3 }
4 ontology CloudProviderOntology
5 c o n c e p t VMFormat
6 hasName ofType _string
7 c o n c e p t place
8 hasName ofType _string
9 c o n c e p t state subConceptOf place

10 c o n c e p t country subConceptOf place
11 c o n c e p t l o c a t i o n
12 hasState ofType state
13 hasCountry ofType country
14

15 c o n c e p t cloudService
16

17 c o n c e p t monitoringMetric
18 hasName ofType _string
19 i n s t a n c e CPUUtilization memberOf monitoringMetric
20

21 c o n c e p t loadBalancer subConceptOf cloudService
22 hasPort ofType _integer
23 hasProtocol ofType _string
24 isHealthcheckEnabled ofType _boolean
25 checkInterval ofType _integer
26 hasTimeOut ofType _integer
27 hasThreshold ofType _integer
28

29 c o n c e p t virtualAppliance subConceptOf cloudService
30 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#imageId" ofType

_string
31

32 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#
imageLocation" ofType _string

33

34 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#
imageState" ofType _string

35

36 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#
imageOwnerId" ofType _string

37

38 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#
isPublic" ofType {_string, _boolean}

39

40 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#
architecture" ofType _string

41

42 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#
imageType" ofType _string

43

44 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#
kernelId" ofType _string

45

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



30 A. V. DASTJERDI, S. K. GARG, O. F. RANA, AND R. BUYYA

46 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#
ramdiskId" ofType _string

47

48 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#
platform" ofType _string

49

50 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#
imageOwnerAlias" ofType _string

51

52 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#name"
ofType _string

53

54 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#
description" ofType _string

55

56 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#
rootDeviceType" ofType _string

57

58 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#
rootDeviceName" ofType _string

59

60 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#
virtualizationType" ofType _string

61

62 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#
hypervisor" ofType _string

63

64 hasProvider ofType cloud
65 isCompatipleWith ofType virtualUnit
66 hasName ofType _string
67 hasFormat ofType VMFormat
68

69 i n s t a n c e aki00806369 memberOf virtualAppliance
70 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#imageId

" hasVa lue "aki-00806369"
71 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#

imageLocation" hasVa lue "karmic-kernel-zul/ubuntu-kernel
-2.6.31-300-ec2-i386-20091001-test-04.manifest.xml"

72 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#
imageState" hasVa lue "available"

73 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#
imageOwnerId" hasVa lue "099720109477"

74 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#
isPublic" hasVa lue "true"

75 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#
architecture" hasVa lue "i386"

76 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#
imageType" hasVa lue "kernel"

77 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#
rootDeviceType" hasVa lue "instance-store"

78 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#
virtualizationType" hasVa lue "paravirtual"

79 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#
hypervisor" hasVa lue "xen"

80 hasProvider hasVa lue {AmazonCalifornia}
81 hasName hasVa lue "aki00806369"
82 hasFormat hasVa lue AMI
83 i n s t a n c e aki00896a69 memberOf virtualAppliance
84 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#imageId

" hasVa lue "aki-00896a69"

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



CLOUDPICK: A FRAMEWORK FOR SERVICE DEPLOYMENT ACROSS CLOUDS 31

85 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#
imageLocation" hasVa lue "karmic-kernel-zul/ubuntu-kernel
-2.6.31-300-ec2-i386-20091002-test-04.manifest.xml"

86 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#
imageState" hasVa lue "available"

87 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#
imageOwnerId" hasVa lue "099720109477"

88 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#
isPublic" hasVa lue "true"

89 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#
architecture" hasVa lue "i386"

90 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#
imageType" hasVa lue "kernel"

91 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#
rootDeviceType" hasVa lue "instance-store"

92 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#
virtualizationType" hasVa lue "paravirtual"

93 _"http://www.CloudsLab.org/ontologies/VirtualAppliance#
hypervisor" hasVa lue "xen"

94 hasProvide hasVa lue {AmazonVirginia}
95 hasname hasVa lue "aki00896a69"
96 hasFormat hasVa lue AMI
97 c o n c e p t virtualUnit subConceptOf cloudService
98 hasName ofType _string
99 hasProvider ofType cloud

100

101 i n s t a n c e largeInstance memberOf virtualUnit
102 hasName hasVa lue "largeInstance"
103 hasProvider hasVa lue AmazonCalifornia
104

105

106 c o n c e p t state subConceptOf place
107 c o n c e p t country subConceptOf place
108

109 i n s t a n c e USA memberOf country
110 hasName hasVa lue "USA"
111 i n s t a n c e Singapor memberOf country
112 hasName hasVa lue "Singapor"
113 i n s t a n c e Canada memberOf country
114 hasName hasVa lue "Canada"
115 i n s t a n c e Ireland memberOf country
116 hasName hasVa lue "Ireland"
117 i n s t a n c e Brazil memberOf country
118 hasName hasVa lue "Brazil"
119 i n s t a n c e Japan memberOf country
120 hasName hasVa lue "Japan"
121 i n s t a n c e China memberOf country
122 hasName hasVa lue "China"
123 i n s t a n c e Australia memberOf country
124 hasName hasVa lue "Australia"
125 i n s t a n c e England memberOf country
126 hasName hasVa lue "England"
127

128 i n s t a n c e Toronto memberOf state
129 hasName hasVa lue "Toronto"
130 i n s t a n c e Tokyo memberOf state
131 hasName hasVa lue "Tokyo"
132 i n s t a n c e Dublin memberOf state
133 hasName hasVa lue "Dublin"
134 i n s t a n c e Virginia memberOf state
135 hasName hasVa lue "Virginia"

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



32 A. V. DASTJERDI, S. K. GARG, O. F. RANA, AND R. BUYYA

136 i n s t a n c e Oregon memberOf state
137 hasName hasVa lue Oregon
138 i n s t a n c e California memberOf state
139 hasName hasVa lue "California"
140 i n s t a n c e Hongkong memberOf state
141 hasName hasVa lue "Hongkong"
142 i n s t a n c e Victoria memberOf state
143 hasName hasVa lue "Victoria"
144 i n s t a n c e London memberOf state
145 hasName hasVa lue "London"
146 i n s t a n c e Singapor memberOf state
147 hasName hasVa lue "Singapor"
148

149 c o n c e p t cloud
150 hasName ofType _string
151 supportVmFormat ofType VMFormat
152 hasCountry ofType country
153 hasState ofType state
154

155 i n s t a n c e AMI memberOf VMFormat
156 hasName hasVa lue "AMI"
157

158 i n s t a n c e OVF memberOf VMFormat
159 hasName hasVa lue "OVF"
160

161 i n s t a n c e GSI memberOf VMFormat
162 hasName hasVa lue "GSI"
163

164 i n s t a n c e VMDK memberOf VMFormat
165 hasName hasVa lue "VMDK"
166

167 i n s t a n c e TerremarkCanada memberOf cloud
168 hasName hasVa lue "TerremarkCanada"
169 supportVmFormat hasVa lue {OVF, VMDK }
170 hasCountry hasVa lue Canada
171 hasState hasVa lue Toronto
172

173 i n s t a n c e TerremarkEngland memberOf cloud
174 hasName hasVa lue "TerremarkEngland"
175 supportVmFormat hasVa lue {OVF, VMDK }
176 hasCountry hasVa lue England
177 hasState hasVa lue London
178

179 i n s t a n c e TerremarkChina memberOf cloud
180 hasName hasVa lue "TerremarkChina"
181 supportVmFormat hasVa lue {OVF, VMDK }
182 hasCountry hasVa lue China
183 hasState hasVa lue Hongkong
184

185 i n s t a n c e TerremarkAuastralia memberOf cloud
186 hasName hasVa lue "TerremarkAustralia"
187 supportVmFormat hasVa lue {OVF, VMDK }
188 hasCountry hasVa lue Australia
189 hasState hasVa lue Victoria
190

191 i n s t a n c e AmazonVirginia memberOf cloud
192 hasName hasVa lue "AmazonVirginia"
193 supportVmFormat hasVa lue {AMI}
194 hasCountry hasVa lue USA
195 hasState hasVa lue Virginia
196

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



CLOUDPICK: A FRAMEWORK FOR SERVICE DEPLOYMENT ACROSS CLOUDS 33

197 i n s t a n c e AmazonSingapor memberOf cloud
198 hasName hasVa lue "AmazonSingapor"
199 supportVmFormat hasVa lue {AMI}
200 hasCountry hasVa lue Singapor
201 hasState hasVa lue Singapor
202

203 i n s t a n c e AmazonIreland memberOf cloud
204 hasName hasVa lue "AmazonIreland"
205 supportVmFormat hasVa lue {AMI}
206 hasCountry hasVa lue Ireland
207 hasState hasVa lue Dublin
208

209 i n s t a n c e AmazonCalifornia memberOf cloud
210 hasName hasVa lue "AmazonCalifornia"
211 supportVmFormat hasVa lue {AMI}
212 hasCountry hasVa lue USA
213 hasState hasVa lue California
214

215 i n s t a n c e AmazonJapan memberOf cloud
216 hasName hasVa lue "AmazonJapan"
217 supportVmFormat hasVa lue {AMI}
218 hasCountry hasVa lue Japan
219 hasState hasVa lue Tokyo
220

221 relation compatible (ofType virtualAppliance, ofType virtualUnit )
222

223 axiom compatbilewith
224 de f inedBy
225

226 ?x memberOf virtualAppliance and ?x [hasProvider hasVa lue ?p ] and ?y
memberOf virtualUnit and ?y [hasProvider hasVa lue ?pvu ] and

227 ?p [hasCountry hasVa lue ?capp ] and ?pvu [hasCountry hasVa lue ?cvu ] and ?capp [
hasName hasVa lue ?cappName ] and ?cvu [hasName hasVa lue ?cvuName ] and

228 stringEqual (?cvuName,?cappName )
229 implies ?x [isCompatibleWith hasVa lue ?y ] .

B. DEPLOYMENT DESCRIPTOR

1 wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-flight"
2 namespace { _"http://www.cloudslab.org/Deployment#"}
3 ontology Deployment
4 importsOntology _"http://www.cloudslab.org/CloudProvider#

CloudProviderOntology"
5

6 c o n c e p t ScalingPolicy
7 hasName ofType _string
8 hasUpperBoundThreshold ofType _integer
9 hasLowerBoundThreshold ofType _integer

10 hasPeriod ofType _integer
11 hasMetric ofType _"http://www.cloudslab.org/CloudProvider#monitoringMetric"
12

13 c o n c e p t ScalingGroup
14 hasName ofType _string
15 hasVirtualUnit ofType _"http://www.cloudslab.org/CloudProvider#virtualUnit"
16 hasVirtualAppliance ofType _"http://www.cloudslab.org/CloudProvider#

virtualAppliance"
17 hasMinSize ofType _integer
18 hasMaxSize ofType _integer
19 hasLocation ofType _"http://www.cloudslab.org/CloudProvider#location"
20 hasLoadBalancer ofType _"http://www.cloudslab.org/CloudProvider#loadBalancer

"

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



34 A. V. DASTJERDI, S. K. GARG, O. F. RANA, AND R. BUYYA

21 hasPolicy ofType ScalingPolicy
22 hasSecurityGroup ofType SecurityGroup
23

24 c o n c e p t SecurityGroupRule
25 hasName ofType _string
26 hasProtocol ofType _string
27 hasPort ofType _integer
28 HasSourceIP ofType _string
29 hasAuthorizedSecurityGroup ofType SecurityGroup
30 isAuthorizingSecurityGroup ofType _boolean
31

32 c o n c e p t SecurityGroup
33 hasName ofType _string
34 hasLocation ofType _"http://www.cloudslab.org/CloudProvider#location"
35 hasRules ofType SecurityGroupRule
36

37 c o n c e p t DeploymentDescriptor
38 hasScalingGroup ofType ScalingGroup
39 hasSecurityGroup ofType SecurityGroup
40

41 i n s t a n c e WSRule1 memberOf SecurityGroupRule
42 hasName hasVa lue "WSRule1"
43 hasProtocol hasVa lue "TCP"
44 hasPort hasVa lue 80
45 HasSourceIP hasVa lue "0.0.0.0/0"
46 isAuthorizingSecurityGroup hasVa lue false
47

48 i n s t a n c e WSSecurityGroup memberOf SecurityGroup
49 hasName hasVa lue WSSecurityGroup
50 hasLocation hasVa lue _"http://www.cloudslab.org/CloudProvider#California"
51 hasRules hasVa lue WSRule1
52

53

54 i n s t a n c e WSLoadBalancer memberOf _"http://www.cloudslab.org/CloudProvider#
loadBalancer"

55 hasName hasVa lue "WShasLoadBalancer"
56

57 i n s t a n c e WSScalingPolicy memberOf ScalingPolicy
58 hasName hasVa lue "WSScalingPolicy"
59 hasUpperBoundThreshold hasVa lue 80
60 hasLowerBoundThreshold hasVa lue 10
61 hasPeriod hasVa lue 600
62 hasMetric hasVa lue _"http://www.cloudslab.org/CloudProvider#CPUUtilization"
63

64 i n s t a n c e webServerScalingGroup memberOf ScalingGroup
65 hasName hasVa lue "webServerScalingGroup"
66 hasVirtualUnit hasVa lue _"http://www.cloudslab.org/CloudProvider#

largeInstance"
67 hasVirtualAppliance hasVa lue _"http://www.CloudsLab.

org/ontologies/VirtualAppliance#aki-00806369"
68 hasMinSize hasVa lue 1
69 hasMaxSize hasVa lue 3
70 hasLocation hasVa lue _"http://www.cloudslab.org/CloudProvider#California"
71 hasLoadBalancer hasVa lue WSLoadBalancer
72 hasPolicy hasVa lue WSScalingPolicy
73 hasSecurityGroup hasVa lue WSSecurityGroup
74

75 i n s t a n c e DDsample memberOf DeploymentDescriptor
76 hasScalingGroup hasVa lue webServerScalingGroup
77 hasSecurityGroup hasVa lue WSSecurityGroup

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe


	Introduction
	PRELIMINARIES
	Web Service Modeling Ontology (WSMO)
	Virtual Appliance

	RELATED WORK
	MOTIVATION: SCENARIO AND CHALLENGES
	ClOUDPICK ARCHITECTURE
	Execution workflow of CloudPick
	Initial phases
	Execution phases
	Implementation

	CLOUD SERVICE MODELING
	Automated Construction of Semantic-Based Cloud Service and Their Quality of Services
	Integrity Checking
	Sync Component
	Translator Component


	DEPLOYMENT OPTIMIZATION
	QoS Criteria
	Deployment Problem Formulation
	Provider model
	User request model
	Deployment Optimization Objectives

	Deployment Optimization Algorithms
	Forward-checking- based -backtracking (FCBB)
	Genetic-Algorithm based Virtual Unit and Appliance Provider Selection
	Additional issues


	EXPERIMENTAL TESTBED CONSTRUCTION AND PERFORMANCE EVALUATION
	Generation of requests for experiments
	Experimental results
	Performance of translation approach for different sizes of Cloud service repositories
	Comparison with Exhaustive Search (ES)
	Impacts of variation in request types on algorithms performance and execution time
	Effects of variation in request types and latency constraints on distribution factor in multi-cloud environments
	Effects of variation of reliability constraints on deployment cost
	Varying iteration number and population size


	CONCLUSIONS AND FUTURE DIRECTIONS
	Portion of Developed Ontology
	Deployment Descriptor

