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In general, small and medium-scale enterprises (SMEs) face problems of un-
predictable IT service demand and infrastructure cost. Thus, the enterprises
strive towards an IT delivery model which is both dynamic and flexible, and
able to be easily aligned with their constantly changing business needs. In
this context, Cloud computing has emerged as new approach allowing anyone
to quickly provision a large IT infrastructure that can be completely cus-
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tomized to the user’s needs on a pay-per-use basis. This paradigm opens new
perspectives on the way in which enterprises’ IT needs are managed. Thus,
a growing number of enterprises are out-sourcing a significant percentage of
their infrastructure to Clouds.

However from the SMEs perspective, there is still a barrier to Cloud adop-
tion, being the need of integrating current internal infrastructure with Clouds.
They need strategies for growing IT infrastructure from inside and selectively
migrate IT services to external Clouds in a way that enterprises benefit from
both Cloud infrastructure’s flexibility and agility as well as lower costs.

In this chapter, we present how to profitably use Cloud computing tech-
nology by using Aneka, which is a middleware platform for deploying and
managing the executions of applications on different Clouds. This chapter
also presents public resource provisioning policies for dynamically extending
the enterprise IT infrastructure to evaluate the benefit of using public Cloud
services. This technique of extending capabilities of enterprise resources by
leasing public Cloud capabilities is also known as Cloud bursting. The poli-
cies rely on a dynamic pool of external resources hired from commercial IaaS
providers in order to meet peak demand requirements. To save on hiring costs,
hired resources are released when they are no longer required. The described
policies vary in the threshold used to decide when to hire and when to re-
lease; the threshold metrics investigated are queue length, queue time as well
as a combination of these. Results demonstrating that simple thresholds can
provide an improvement to the peak queue times, hence keeping the system
performance acceptable during peaks in demand.

1.1 Introduction

Recently there has been a growing interest in moving infrastructure, software
applications and hosting of services from in-house server rooms to external
providers. This way of making IT resources available, known as Cloud com-
puting, opens new opportunities to small, medium, and large sized companies.
It is not necessary any more to bear considerable costs for maintaining the
IT infrastructures or to plan for peak demand, but infrastructure and appli-
cations can scale elastically according to the business needs at a reasonable
price. The possibility of instantly reacting to the demand of customers with-
out long term infrastructure planning is one of the most appealing features
of Cloud computing and it has been a key factor in making this trend popu-
lar among technology and business practitioners. As a result of this growing
interest, the major players in the IT playground such as Google, Amazon,
Microsoft, Oracle, and Yahoo, have started offering Cloud computing based
solutions that cover the entire IT computing stack, from hardware to appli-
cations and services. These offerings have quickly become popular and led to
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the establishment of the concept of the “Public Cloud”, which represents a
publicly accessible distributed system hosting the execution of applications
and providing services billed on a pay-per-use basis.

Because Cloud computing is built on a massively scalable shared infras-
tructure, Cloud suppliers can in theory quickly provide the capacity required
for very large applications without long lead times. Purchasers of Infrastruc-
ture as a Service (IaaS) capacity can run applications on a variety of virtual
machines (VMs), with flexibility in how the VMs are configured. Some Cloud
computing service providers have developed their own ecosystem of services
and service providers that can make the development and deployment of ser-
vices easier and faster. Adding SaaS capacity can be as easy as getting an
account on a supplier’s website. Cloud computing is also appealing when we
need to quickly add computing capacity to handle a temporary surge in re-
quirements. Rather than building additional infrastructure, Cloud computing
could in principle be used to provide on-demand capacity when needed. Thus,
the relatively low upfront cost of IaaS and PaaS services, including VMs,
storage, and data transmission, can be attractive. Especially for addressing
tactical, transient requirements such as unanticipated workload spikes. An ad-
ditional advantage is that businesses pay only for the resources reserved; there
is no need for capital expenditure on servers or other hardware.

However, despite these benefits, it has become evident that a solution
built on outsourcing the entire IT infrastructure to third parties would not
be applicable in many cases. On the one hand, enterprise applications are
often faced with stringent requirements in terms of performance, delay, and
service uptime. On the other hand, little is known about the performance of
applications in the Cloud, the response time variation induced by network
latency, and the scale of applications suited for deployment; especially when
there are mission critical operations to be performed and security concerns
to consider. Moreover, with the public Cloud distributed anywhere on the
planet, legal issues arise and they simply make it difficult to rely on a virtual
public infrastructure for some IT operation. In addition, enterprises already
have their own IT infrastructures, which they have been using so far.

In spite of this, the distinctive feature of Cloud computing still remains
appealing to host part of applications on in-house infrastructure and others
can be outsourced. In other words, external Clouds will play a significant role
in delivering conventional enterprise compute needs, but the internal Cloud
is expected to remain a critical part of the IT infrastructure for the foresee-
able future. Key differentiating applications may never move completely out
of the enterprise because of their mission-critical or business-sensitive nature.
Such infrastructure is also called a hybrid Cloud which is formed by com-
bining both private and public Clouds whenever private/local resources are
overloaded. The notion of hybrid Clouds that extend the capabilities of en-
terprise infrastructure by leasing extra capabilities from public Clouds is also
known as Cloud bursting.

For this vision to be achieved, however, both software middleware and



6 Cloud Computing: Methodology, Systems, and Applications

scheduling policies supporting provisioning of resources from both local in-
frastructures and public Clouds are required. So that applications can au-
tomatically and transparently expand into public virtual infrastructures. The
software middleware should offer enterprises flexibility in decision making that
can enable them to find the right balance between privacy considerations, per-
formance and cost savings. Thus, in this chapter we first describe the archi-
tecture of a Cloud middleware called Aneka, which is a software platform for
building and managing a wide range of distributed systems. It allows applica-
tions to use resources provisioned from different sources, such as private and
public IaaS Clouds. Such a hybrid system built with resources from a vari-
ety of sources are managed transparently by Aneka. Therefore, this platform
is able to address the requirements to enable execution of compute intensive
applications in hybrid Clouds.

In summary, in this chapter, we will present the architecture of the Aneka
middleware for building hybrid Clouds by dynamically growing the number of
resources during periods of peak demand. We will then propose and evaluate
three scheduling approaches to manage the external pool of resources and
achieve cost benefits for enterprises.

1.2 Aneka

Aneka [12] is a software platform and a framework for developing distributed
applications in the Cloud harnessing the computing resources of a heteroge-
neous network. It can utilise a mix of resources such as workstations, clusters,
grids and servers in an on demand manner. Aneka implements a Platform as
a Service model, providing developers with APIs for transparently exploiting
multiple physical and virtual resources in parallel. In Aneka, application logic
is expressed with a variety of programming abstractions and a runtime en-
vironment on top of which applications are deployed and executed. System
administrators leverage a collection of tools to monitor and control the Aneka
Cloud, which can consist of both company internal (virtual) machines as well
as resources form external IaaS providers.

The core feature of the framework is its service oriented architecture that
allows customization of each Aneka Cloud according to the requirements of
users and applications. Services are also the extension point of the infrastruc-
ture: by means of services it is possible to integrate new functionalities and to
replace existing ones with different implementations. In this section we briefly
describe the architecture and categorize the fundamental services that build
the infrastructure.

Figure 1.1 provides a layered view of the framework. Aneka provides a
runtime environment for executing applications by leveraging the underly-
ing infrastructure of the Cloud. Developers express distributed applications
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FIGURE 1.1

The Aneka Framework
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by using the APIs contained in the Software Development Kit (SDK). Such
applications are executed on the Aneka Cloud, consisting of a collection of
worker nodes hosting the Aneka Container. The Container is the core build-
ing block of the middleware and can host a number of services. These include
the runtime environments for the different programming models as well as
middleware services. Administrators can configure which services are present
in the Aneka Cloud. Using such services for the core functionality provides an
extendible and customisable environment. There are three classes of services
that characterize the Container:

Execution Services: these services are responsible for scheduling and exe-
cuting applications. Each programming model supported by Aneka defines
specialized implementations of these services for managing the execution
of a work unit defined in the model.

Foundation Services: these services are the core management services of
the Aneka Container. They are in charge of metering applications, allo-
cating resources for execution, managing the collection of available nodes,
and keeping the services registry updated.

Fabric Services: these services constitute the lowest level of the services
stack of Aneka and provide access to the resources managed by the Cloud.
An important service in this layer is the Resource Provisioning Service,
which enables horizontal scaling (e.g, increase and decrease in the number
of VMs) in the Cloud. Resource provisioning makes Aneka elastic and
allows it to grow and shrink dynamically to meet the QoS requirements of
applications

The Container relies on a Platform Abstraction Layer that interfaces with
the underlying host, whether this is a physical or a virtualized resources.
This makes the Container portable over different platforms that feature an
implementation of the ECMA 335 (Common Language Infrastructure) spec-
ification. Two well known environments that implement such a standard are
the Microsoft .NET framework and the Mono open source .NET framework.

1.3 Hybrid Cloud Deployment Using Aneka

Hybrid deployments constitute one of the most common deployment scenar-
ios of Aneka [13]. In many cases, there is an existing computing infrastructure
that can be leveraged to address the computing needs of applications. This
infrastructure will constitute the static deployment of Aneka that can be elas-
tically scaled on demand when additional resources are required. An overview
of such a deployment is presented in Figure 1.2.
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FIGURE 1.2

Aneka Hybrid Cloud
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This scenario constitutes the most complete deployment for Aneka which
is able to leverage all the capabilities of the framework:

• Dynamic Resource Provisioning.

• Resource Reservation.

• Workload Partitioning.

• Accounting, Monitoring, and Reporting.

In a hybrid scenario heterogeneous resources can be used for different pur-
poses. For example, a computational cluster can be extended with desktop
machines, which are reserved for low priority jobs outside the common work-
ing hours. The majority of the applications will be executed on these local
resources, which are constantly connected to the Aneka Cloud. Any additional
demand for computing capability can be leased from external IaaS providers.
The decision to acquire such external resources is made by provisioning poli-
cies plugged into the scheduling component, as this component is aware of
the current system state. The provisioning service then communicates with
the IaaS provider to initiate additional resources, which will join the pool of
worker nodes.

1.4 Motivation: Case Study Example

Enterprises run a number of HPC applications to support their day-to-day
operation. This is evident from the recent Top500 supercomputer applica-
tions [10]. where many supercomputers are now used for industrial HPC ap-
plications, such as 9.2% of them are used for Finance and 6.2% for Logistic
services. Thus, it is desirable for IT industries to have access to a flexible
HPC infrastructure which is available on demand with minimum investment.
In this section, we explain the requirements of one of such enterprise called
GoFront Group, and how they satisfied their needs by using the Aneka Cloud
Platform, which allowed them to integrate private and public Cloud resources.

The GoFront Group in China is a leader in research and manufacture of
electric rail equipment. Its products include high speed electric locomotives,
metro cars, urban transportation vehicles, and motor train sets. The IT de-
partment of the group is responsible for providing support for the design and
prototyping of these products. The raw designs of the prototypes are required
to be rendered to high quality 3D images using the Autodesk rendering soft-
ware called Maya. By examining the 3D images, engineers are able to identify
any potential problems from the original design and make the appropriate
changes. The creation of a design suitable for mass production can take many
months or even years. The rendering of the three dimensional models is one of



Cloud Bursting: Managing Peak Loads by Leasing Public Cloud Services 11

FIGURE 1.3

Aneka Hybrid Cloud Managing GoFront Application

the phases that absorbs a significant amount of time since the 3D model of the
train has to be rendered from different point of views and for many frames. A
single frame with one camera angle defined can take up to 2 minutes to ren-
der. To render one completes set of images from one design takes over 3 days.
Moreover, this process has to be repeated every time a change is applied to
the model. It is then fundamental for GoFront to reduce the rendering times,
in order to be competitive and speed up the design process.

To solve the company’s problem, an Aneka Cloud can be set up by using
the company’s desktop computers and servers. The Aneka Cloud also allows
dynamic leasing of resources from a public Cloud in the peak hours or when
desktop computers are in use. Figure 1.3 provides an overall view of the in-
stalled system. The setup is constituted by a classic master slave configuration
in which the master node concentrates the scheduling and storage facilities
and thirty slave nodes are configured with execution services. The task pro-
gramming model has been used to design the specific solution implemented at
GoFront. A specific software tool that distributes the rendering of frames in
the Aneka Cloud and composes the final rendering has been implemented to
help the engineers at GoFront. By using the software, they can select the pa-
rameters required for rendering and leverage the computation on the private
Cloud.

The rendering phase can be speed up by leveraging the Aneka hybrid
Cloud, compared to only using internal resources. Aneka provides a fully in-
tegrated infrastructure of the internal and external resources, creating, from
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FIGURE 1.4

The task scheduling and resource provisioning scenario.

the users perspective, a single entity. It is however important to manage the
usage of external resources as a direct hourly cost is inured. Hence policies are
needed that can be configured to respond to the demand on the system by
acquiring resources only when it is warranted by the situation. Therefore, we
have designed some scheduling policies which consider the queue of waiting
tasks when deciding to lease resources. These policies are further described in
detail with the analysis of their cost saving benefits in subsequent sections.

1.5 Resource Provisioning Policies

In Aneka, as discussed in the previous section, there are two main compo-
nents which handle the scheduling of task on the hybrid Cloud. They are
the scheduling and provisioning components. The Provisioning component
is responsible for the interactions between Aneka and the external resource
providers, be they commercial IaaS Cloud or private clusters with a Cloud
software stack like Eucalyptus. As each IaaS provider and software stack have
their own API, a pluggable driver model is needed. The API specifics are im-
plemented in what are termed resource pools. A number of these pools have
been implemented to support commercial providers such as Amazon EC2 and
GoGrid. Private Cloud stacks such as Eucalyptus and VMware products are
also supported. The scheduling component is responsible for assigning tasks
to resources, it keeps track of the available resources and maintains a queue of
the tasks waiting to execute. Within this component there is also a pluggable
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scheduling and provisioning interface, so that Aneka can be configured to use
different scheduling policies. The decision to request more resources or release
resources (that are no longer needed) is also made by the selected scheduling
policy. A number of such provisioning policies are implemented and can be
selected for use.

These provisioning policies are the core feature of Aneka to enable the
dynamic acquisition and release of external Cloud resources. As such resources
have a cost attached, it is important to maximise their utilisation and at the
same time, request them only when they will be of benefit for the system.
In the most common scenario, Cloud resources are billed according to time
blocks that have a fixed size. In case of peak demands new resources can be
provisioned to address the current need, but then used only for a fraction of
the block for which they will be billed. Terminating these resources just after
their usage could potentially led to a waste of money, whereas they could be
possibly reused in the short term and before the time block expires. In order
to address this issue, we introduced a resource pool that keeps resources active
and ready to be used until the time block expires.

Figure 1.4 describes the interaction between the scheduling algorithm, the
provisioning policy, and the resource pool. Tasks in the queue are processed in
order of arrival. A set of different events such as the arrival of a new task, its
completion, or a timer can trigger the provisioning policy that, according to its
specific implementation, will decide whether to request additional resources
from the pool or release them. The pool will serve these requests, firstly with
already active resources, and if needed by provisioning new ones from the
external provider.

The policies described below rely on the common principle of grow and
shrink thresholds to determine when additional resources will be of benefit.
That is, once a metric passes the defined growth threshold a request for ad-
ditional resources is triggered. Conversely the shrink threshold is used by the
policy to determine if a resource is no longer required.

1.5.1 Queue Length

The Queue Length based policy uses the number of tasks that are waiting in
the queue as the metric for the grow and shrink thresholds. When a task arrives
the number of tasks in the queue is compared to the growth threshold, if the
queue length exceeds the threshold an additional resource is requested. When
a resource in the external Cloud becomes free the queue length is compared
to the shrink threshold. If the number of waiting tasks is less than the shrink
threshold the resource is released back to the pool, otherwise it will be used
to execute the next task.
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Algorithm 1 Queue Length: Task Arrival

if Queue.Length ≥ Growth Threshold then

return RequestResource

else

return NoAction

end if

Algorithm 2 Queue Length: Task Finished

if Queue.Length ≤ Shrink Threshold then

return ReleseResource

else

return KeepResource

end if

1.5.2 Queue Time

The Queue Time based policy uses the time individual tasks have spent in
the queue to determine when additional resources are requested. This policy
periodically checks for how long the task at the head of the queue has been
waiting. If this time exceeds the growth threshold, additional resources are
requested. The number of requested resources is the same as number of tasks
that have exceeded the growth threshold. When a resource in the Cloud be-
comes free, the amount of time the task at the head of the queue has been
waiting is compared to the shrink threshold, if it is less than the threshold the
resource will be released, otherwise it will be used to execute the next task.

Algorithm 3 Queue Time: Periodic Check

requestSize← 0
index← 0
while Queue[index].QueueT ime ≥ Growth Threshold do

requestSize← requestSize+ 1
index← index+ 1

end while

requestSize← requestSize−OutstandingResourceCount

if requestSize > 0 then

RequestResources(requestSize)
end if

1.5.3 Total Queue Time

The Total Queue Time policy sums the queue time of each of the tasks in the
queue, starting from the tail of the queue. When the sum exceeds the growth
threshold, before reaching the head of the queue, a resource is requested for
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Algorithm 4 Queue Time: Task Finished

if Queue[head].QueueT ime ≤ Shrink Threshold then

return ReleseResource

else

return KeepResource

end if

each of the remaining tasks. The releasing of a resource occurs when a task
on a external Cloud resource has finished. At that time the total queue time
is established and compared to the shrink threshold. If it is less than the
threshold the resource is released, otherwise it will be used for the next task.

Algorithm 5 Total Queue Time: Periodic Check

requestSize← 0
totalQueueT ime← 0
for i = 0 to Queue.Length do

totalQueueT ime← totalQueueT ime+Queue[i].QueueT ime

if totalQueueT ime ≥ Growth Threshold then

requestSize← requestSize+ 1
end if

end for

requestSize← requestSize−OutstandingResourceCount

if requestSize > 0 then

RequestResources(requestSize)
end if

Algorithm 6 Total Queue Time: Task Finished

totalQueueT ime← 0
for i = 0 to Queue.Length do

totalQueueT ime← totalQueueT ime+Queue[i].QueueT ime

end for

if totalQueueT ime < ShrinkThreshold then

return ReleseResource

else

return KeepResource

end if

1.5.4 Clairvoyant Variant

In our scenario we consider the execution time of a task an unknown until
the task finishes. Hence these policies can not know if a particular task will
complete before a time block finishes or if charges for additional time blocks
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will be incurred. This makes it difficult to utilise the remaining time of external
resource, which are being released by the policy. However to explore the impact
of better utilising this otherwise wasted time we created clairvoyant variants
of these policies. These variants are able to predict the run time of each task in
the queue. As the policy decides to release a resource the clairvoyant variants
perform a pass over all the tasks in the queue, searching for tasks which will
complete within the remaining time. The best fit task is then assigned to the
resource, which remains in use. If no task is found, which will complete in
time, the resource is released.

Algorithm 7 Clairvoyant Variants: Task Finished

remainingT ime← ResourceToBeReleased.RemainingT imeInBlock

bestF itRunTime← 0
bestF itTask ← NULL

for i = 0 to Queue.Length do

task ← Queue[i]
runT ime← task.RunT ime

if runT ime ≤ remainingT imeANDrunTime > bestF itRunTime

then

bestF itTask ← task

bestF itRunTime← runT ime

end if

end for

if bestF itTask 6= NULL then

AssignTask(bestF itTask,ResourceToBeReleased)
return KeepResource

else

return ReleseResource

end if

1.6 Performance Analysis

The policies described in the previous section have been implemented in Aneka
and have been used to observe the behaviour of the system for small and real
workloads. In order to extensively test and analyse these policies we built
a discrete event simulator that mimics the Aneka scheduling interfaces, so
that that polecies can be easaly ported between the simulator and Aneka.
We also identified a performance metric that will drive the discussion of the
experimental results presented in this section.
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1.6.1 Simulator

To analyse the characteristics of these provisioning policies it is necessary to
construct a simulator. Using a simulator in this case allows policies to be com-
pared with exactly the same workload. It also means that any interruptions to
production Aneka environments are avoided. But most importantly the simu-
lations can be run much faster than real-time, so that a whole month or year
can be simulated in minutes.

The simulator used here is especially constructed to reflect the internal
interfaces of Aneka, so that implementation of scheduling and provisioning
policies could be easily ported from the simulator the Scheduling module in
Aneka. In the simulator design, the fundamental goal was to gain an insight
in to these policies while keeping the design as simple as possible. Hence the
simulator does not attempt to capture all the complexities of a distributed
environment, instead it focuses on exposing the behaviour of the policies.

1.6.2 Performance Metric

To examine and compare the performance characteristics of the policies we use
a metric which we termed the Top Queue Time Ratio. This metric comprises
the average of the 5000 longest queue times, which is then divided by the
average execution time of all the tasks.

We consider the average of the largest queue times rather than an overall
average as our focus is on managing the spikes in demand rather then improv-
ing the average case. We decided to consider as a reference the top 5000 largest
queue times. The reason for this choice is that this number represents about
15% of the workload used for the analysis. In our opinion the acceptability of
a waiting time is to some extent relative to the execution time of the task.
Hence, we use the ratio between the largest queue times and the average task
duration. Using a metric which is relative to the average duration of the tasks
also allows us to scale time in the workload without affecting the metric, thus
making direct comparisons possible.

1.6.3 Workload

To drive the simulation we use a trace from the Auver Grid [1]. It was chosen
as it only consists of independent tasks, which reflects the scenario described
in the motivation section (Section 1.4). This trace covers the whole of 2006
and has been analysed in [5]. The Auver Grid is a production research grid
located in France including 475 Pentium 4 era CPUs distributed over six sites.

We divided the trace into calendar months to compare periods with high
and low demand on the system. As it is clear from Table 1.1, October ex-
perienced the greatest load on the system. This is also reflected in the Top
Queue Times of the months shown in Figure 1.5. Hence, we used the trace of
October to carry out the experiments.
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Top Queue Time Ratio of each month.

Av.RunTime(min) Task Count Total RunTime
Jan 318 10,739 3,415,002
Feb 255 15,870 4,046,850
Mar 242 39,588 9,580,296
Apr 484 27,188 13,158,992
May 493 32,194 15,871,642
Jun 361 35,127 12,680,847
Jul 311 46,535 14,472,385
Aug 605 28,934 17,505,070
Sep 552 30,002 16,561,104
Oct 592 33,839 20,032,688
Nov 625 14,734 9,208,750
Dec 382 24,564 9,383,448

TABLE 1.1

Characteristics of each month
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Scaling Factor 1 10 20 40
Av. Task Duration (minutes) 592 59 29 15

TABLE 1.2

The average task duration, during October, for scaling factors used.

The average duration of a task in this workload during the month of Oc-
tober is almost 10 hours. This is a significantly longer time period than the
one hour blocks, which form the de-facto atomic unit for buying time in the
Cloud. We felt that the relationship between the average task duration and
the size of the blocks in which time is bought is worth exploring. Hence, we
used a scaling factor to divide the task duration and arrival interval times, es-
sentially compressing time. This reduced the average task duration (see table
1.2) while maintaining the same load on the system. The Top Queue Time
Ratio is also left unaffected by the scaling, thus allowing it to be used to com-
pare the results with different scaling factors. The cost, on the other hand,
is affected by the scaling as the absolute total amount of task time is scaled
down. As less time is required to process tasks less time ends up being bought
from the Cloud provider. To allow cost comparisons of different scaling factors
we multiply the cost by the scaling factor such that the cost is representative
of the entire month rather than the scaled down time.

1.6.4 Experimental Setup

Although our simulations do not intend to replicate the Auver Grid (see Work-
load Section 1.6.3) we referred to it when configuring the simulated environ-
ment. In particular, the number of permanent local resources in the simulation,
is set to 475, reflecting the number of CPUs in the Auver Grid. Also, when
considering the relative performance between the local and Cloud resources
the Pentium 4 era CPUs of the Auver Grid were compared to Amazon’s def-
inition of their EC2 Compute Unit [11] and it was concluded that they are
approximately comparable.

Hence, a Small EC2 Instance was used as the reference point, which has
one EC2 compute unit. Thus for all the simulations the relative performance
was configured such that a particular task would take that same amount of
time to run locally or in the Cloud. To calculate a cost for the use of Cloud
resources we again use a Small EC2 Instance as a reference point with an
hourly cost of USD $0.10 1. Although the true cost of using Cloud resources
includes other costs such as network activity both at the providers end and
the local end as well as data storage in the Cloud. We have not attempted to
establish these costs as they are dependant on the individual case. Hence, the

1Amazon has since reduced its prices.



20 Cloud Computing: Methodology, Systems, and Applications

cost for using Cloud resources in this work is solely based on the amount of
billable time.

When requesting resources from a Cloud provider, there is generally a time
block which represents an atomic billable unit of usage. In the case of Amazon’s
EC2 this time block is one hour. Meaning that if a resource is used for 1.5
hours the cost will be that of two time blocks. This behaviour is reflected
in the simulations where the size of the time block is also set to one hour.
As requested resources take time to come on line we have set a three minute
delay between a resource being requested and it becoming available to execute
tasks. Our own usage of EC2 has shown this to be a reasonable amount of
time for a Linux instance to become available. Although these times can vary
considerably on EC2 we do not anticipate getting a better insight into the
policies by introducing random delays to the simulation.

1.6.5 Experimental Results

In this section we explore the effects of the parameters on the performance
of the policies. First we examine the effects of the settings associated with
the policies. Later we look at the impact the task size has on the efficiency in
terms of the unused time of resources in the Cloud.

First of all we take a look at the Growth Threshold’s impact. A low Growth
Threshold means that the policy will request additional resources sooner. As
the Growth Threshold increases the burden on the system needed to trigger a
request for additional resources also increases. Hence, as the Growth Threshold
increases the time some tasks spend waiting in the queue also increases. The
graph in Figure 1.6(a) demonstrated this trend showing the Top Queue Time
as the Growth Threshold increases. In this figure the Growth Threshold is
expressed as a percentage of the maximum Growth Threshold, which is a
threshold so high that the workload we are using does not trigger a request
for additional resources. Such a threshold has been determined by repeatedly
increasing the value set until no more additional resources are requested.

As one would expect the Growth Threshold to cost relationship (see Fig-
ure 1.6(b)) is inversely proportional to that of the Top Queue Time Ratio
(see Figure 1.6(a)). As a high Top Queue Time Ratio means that less external
resources were requested resulting in a lower cost. The graph in Figure 1.6(c)
shows the cost per unit reduction of the Top Queue Time Ratio. The most
striking feature of this graph are the two spikes of the Queue Length based
policy. When the growth threshold reaches the size where these spikes occur
there is only one instance of high demand in the workload, which is large
enough to causes additional resources to be requested. The Queue Length
based policy in this case requests more resources than would be ideal, hence
incurring costs, which are not reflected in a reduction of the Top Queue Time
Ratio. The Queue Time based policy on the other hand triggers fewer addi-
tional resources to be requested, which means that the cost is in proportion to
the improvement in the Top Queue Time Ratio. As at that point (around 80%)
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FIGURE 1.6

The performance of the Queue Time and Queu Length based policies as the
growth threshold increases.
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FIGURE 1.7

Demonstrating the relationship between the Top Queue Time and the Cost.
The Growth Threshold is varied between the points on a line. The scaling
factor is changed between lines.

the cost and improvement in the Top Queue Time Ratio are quite small, the
graph comparing these two values becomes more sensitive to small changes, re-
sulting the large size of these spikes. Apart from the spikes Figure 1.6(c) shows
that the inverse relationship between the Top Queue Time Ratio and the Cost
has a slight downward trend until around the middle of the growth threshold
range. Meaning that the best value is with a growth threshold around the
middle of the range of values.

Figure 1.6 also demonstrates that the Queue Length and Queue Time
based policies behave very similarly when the task size is large compared to
the size of the time blocks purchased from the Cloud provider. Comparing
the lines of scale factor one in Graph 1.7(a) and 1.7(b) further confirm this
by indicating that the cost of achieving a particular Top Queue Time Ratio
is virtually identical.

However, as the scale factor is increased the cost of reaching a particular
Top Queue Time Ratio also increases in Figure 1.7. In this Figure the cost has
been multiplied by the scaling factor, as scaling reduces the total amount of
work that needs to be done, which we have to normalise against to be able to
compare the results using different scaling factors (see section 1.6.3). Hence
a smaller task size increases the amount of time that needs to be purchased
from the Cloud to reach a particular Top Queue Time Ratio. Comparing the
graphs in Figure 1.7 also shows that the Queue Time based policy performs
slightly better at lower Top Queue Time Ratios and that the Queue Length
bases policy has a slight edge at higher Top Queue Time Ratios. But these
slight differences only become apparent as the tasks become smaller.
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FIGURE 1.8

Shows the utilisation of the time bought on the Cloud. The utilisation is
calculated using only time available for executing tasks and not start up times
for resources in the Cloud. The Growth Threshold is varied between the points
on a line. The scaling factor is changed between lines.

To examine the increased cost with the smaller task size we firstly look at
the utilisation of the time that is bought from the Cloud provider in Figure
1.8. We see that with smaller tasks a significant proportion of the available
resource time in the Cloud goes unused. Comparing Figures 1.7 and 1.8 it can
be noticed that some features correlate between the cost and utilisation. In
particular for the Queue Length based policy the lines move closer for larger
Top Queue Time Ratios. The Queue Time based policy on the other hand
maintains a more consistent separation in both the cost and utilisation graphs.
Hence, we attribute the increased cost with smaller tasks to the decreased
efficiency with which resources in the Cloud are used.

In Figure 1.9(a) we compare the utilisation of the Queue Time based policy
to its clairvoyant variant. This graph is essentially Figure 1.8(b) with the
clairvoyant results superimposed. We can see that at very low Top Queue
Time Ratios the clairvoyant variant performs only marginally better. At higher
queue time ratios the clairvoyant variant is able to significantly improve the
utilisation of the time bought in the Cloud. However in Figure 1.9(b), which is
derived form Figure 1.7(b) we see that the improvement in utilisation has not
lead to a comparable reduction of cost for achieving a particular Top Queue
Time Ratio. This is because the clairvoyant policy uses backfilling to utilise
otherwise wasted time of resources being released. Hence, it does not directly
change the growing of resources in the Cloud. Its effect on cost is only indirect
by removing some tasks from the queue, which will effect when the thresholds
are crossed. Also our metric focuses on the longest queue times, where as the
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FIGURE 1.9

Contrasts the Queue Time based policy with its clairvoyant variant. Scale
factor 20 is omitted in the interest of clarity.

clairvoyant variant allows more tasks to be processed when resources are being
released. Hence the benefit of the clairvoyant variant comes at a time where
the queue has already reached an acceptable size and will only have a limited
effect on the largest queue times.

Hence, to impact cost we need to be looking at when additional resources
are requested. The Total Queue Time policy is in essence a combination of the
simpler Queue Length and Queue Time based policies. In Figure 1.10 the cost
is compared to that of the Queue Time based policy discussed previously. We
see that for lower Top Queue Time Ratios and bigger tasks a clear improve-
ment is possible. But once the average task duration becomes less than the
time blocks being purchased in the Cloud the advantage disappears. For small
average task durations (scaling factor 40) this policy can perform significantly
worse when aiming at higher Top Queue Time Ratios.

Up to now our investigation has focused on the month of October in the
2006 Auver Grid trace. We will now take a look at how both the Queue
Time and Queue Length based policies behave in the other months of the
trace. For this comparison we configured both policies with a growth threshold
value that for October resulted in a Top Queue Time Ratio close to 0.7 and
did not apply any scaling of the trace. Figure 1.11 presents the Top Queue
Time Ratio and corresponding cost for each month. Clearly during October
and May the system is under the greatest load, which is considerably higher
than any other month. Hence as expected these policies have their greatest
impact during these month. There is however an interesting observations to
make. During November both policies trigger requests for additional resources,
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Contrasts the Queue Time Total policy with the Queue Time policy.

however during July, which has a slightly higher Top Queue Time Ratio, the
policies do not trigger any requests.

To understand this behaviour we need to look at the average task duration
and task count for each month, which are presented in Table 1.1. First we note
that the average task duration of November is almost exactly double that of
July. The Top Queue Time Ratio is relative to the average task size. Hence as
both July and November have similar Top Queue Time Ratios, the actual top
5000 queue times in November are almost double the length of those in July.
The Queue Time based policy hoverer, uses a fixed growth threshold, which
leads it to trigger requests for additional resources. The Queue Length based
policy is affected to a lesser extent.

1.7 Related Work

This work considers the case where an enterprise wants to provision resources
from an external Cloud provider to meet its peak compute demand in the
form of Bag-of-Tasks applications. To keep the queue waiting time of HPC
tasks at an acceptable level, the enterprise hires resources from public Cloud
(IaaS) providers.

A key provider of on-demand public Cloud infrastructure is Amazon Inc.
with its Elastic Compute Cloud (EC2) [11]. EC2 allows users to deploy VMs
on Amazon’s infrastructure, which is composed of several data centres located
around the world. To use Amazon’s infrastructure, users deploy instances
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Month by Month performance

of pre-submitted VM images or upload their own VM images to EC2. The
EC2 service utilises the Amazon Simple Storage Service (S3), which aims at
providing users with a globally accessible storage system. S3 stores the user’s
VM images and, as EC2, applies fees based on the size of the data and the
storage time.

Previous work has shown how commercial providers can be used for scien-
tific applications. Deelman et al. [4] evaluated the cost of using Amazon EC2
and S3 services to serve the resource requirements of a scientific application.
Palankar et al.[8] highlighted that users can benefit from mixing Cloud and
Grid infrastructure by performing costly data operations on the grid resources
while utilising the data availability by the Cloud.

The leading IaaS provider, Amazon, charges based on one hour time block
usages. In our scenario we consider unbounded tasks, which can produce a
small amount of wasted computation time with the hired resources, detailed
evaluation is given in Section 1.6. For example, the policy hires a resource
for one hour and the scheduled task on it takes 40 minutes, as the demand is
lower the scheduler does not schedule any other task on it. Therefore in the
next section, we describe a clairvoyant policy that relies on an adaptation of
backfilling techniques to give an indication of the impact of wasting this time.
We consider the conservative backfilling [7]. In that case the scheduler knows
the execution time of tasks beforehand, the scheduler allows a reservation for
each tasks when they arrive in the system, and tasks are allowed to jump
ahead in the queue if they do not delay the execution of other tasks. Hence,
the scheduler can execute smaller task on hired resources that will be next
released.

Our work is based on a similar previous work [3] that evaluates differ-
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ent strategies for extending the capacity of local clusters with commercial
providers. Their strategies aim to schedule reservations for resource requests.
A request has a given ready time, deadline, walltime, and a number of re-
sources needed. Here, we consider unbounded tasks that requires a single
container to be executed. Tasks are also executed on First-Come-First-Served
manner.

Several load sharing mechanisms have been investigated in the distributed
systems realm. Iosup et al. [6] proposed a matchmaking mechanism for en-
abling resource sharing across computational Grids. Wang and Morris [14] in-
vestigated different strategies for load sharing across computers in a local area
network. Surana et al. [9] addressed the load balancing in DHT-based P2P
networks. Balazinska et al. [2] proposed a mechanism for migrating stream
processing operators in a federated system.

Market-based resource allocation mechanisms for large-scale distributed
systems have been investigated [15]. In this work, we do not explore a market-
based mechanism as we rely on utilising resources from a Cloud provider that
has cost structures in place. We evaluate the cost effectiveness of provisioning
policies in alleviating the increased waiting times of tasks during periods of
high demand on the local infrastructure.

1.8 Conclusions

In this chapter, we discuss how a Aneka based hybrid Cloud can handle the
sporadic demand on IT infrastructure in enterprises. We also discussed some
resource provisioning policies that are used in Aneka to extend the capacity
of a local resources by leveraging external resource providers. Once requested,
these resources become part of a pool until they are no longer in use and
their purchased time block expires. The acquisition and release of resources
is driven by specific system load indicators, which differentiate the policies
explored.

Using a case study example of Go-Front, we explained how Aneka can
help in transparent integration of public Clouds with local infrastructure.
It then introduced two policies based on queue length and queue time. We
analysed their behaviour from the perspective of the growth threshold, which
is in the end responsible of the acquisition of new resources from external
providers. The experiments conducted by using the workload trace of October
2006 from Auver Grid show that the best results in term of top queue time
and cost are obtained when the growth threshold ranges from 40% to 60%
of the maximal value. The behaviour is almost the same for both of the two
policies. Being that the average task duration in the October trace is almost 10
hours, we decided to scale down the trace by different factors and explore the
behaviour of the policies as the average task size changes. We concluded that
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smaller tasks size lead to more wastage when trying to maintain the queue
time comparable to average task duration. We then compared the performance
of the Queue Time policy with its clairvoyant variant that performs backfilling
by relying on the task duration. The experiment show that the improvement
in utilisation obtained does not reflect in a corresponding cost improvement.
We also introduced a Total Queue Time policy that, in essence combines, the
original two policies and studied its performance at different scale factors of
the workload. There is only a marginal improvement at the original scale of
the trace, where as for smaller task sizes the behaviour is similar.

A comparison with the execution of the same trace without any provision-
ing capability, clearly demonstrates that the policies introduced are effective
in bringing down the Top Queue Time Ratio during peak demands. The cost
spent on buying computation time on EC2 nodes to obtain such a reduction in
one year can roughly accommodate the purchase of a single new server for the
local cluster that definitely does not guarantee the same performance during
peak.
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