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Abstract—The efficient cloud resource provisioning for the execution of complex workflow applications has always been one of the

important research issues. Most of the existing approaches focus on the resource provisioning of single-type virtual machine (VM)

instances for the single or multiple workflows, while few consider the situation of provisioning multi-type VM instances simultaneously.

As a result, the executing performance of complex workflows degrades. Different from the existing work, this paper proposes an

adaptive cloud bundle provisioning and multi-workflow scheduling model to dynamically perform both the horizontal and vertical cloud

resource scaling on multi-type VM instances for the execution of complex workflows. Among the model, a depth-first-search coalition

reinforcement learning (DFSCRL) provisioning policy is presented to realize the resource scaling, which integrates the physical

machine (PM) coalition formation with the Q-learning algorithm, then dynamically generates an optimal multi-type VM instance bundle

from the PM coalition, and finally provisions these instances to the concurrent execution of multiple workflows. The theoretical proofs

and various experiments with the multifaceted metrics demonstrate that the performance of the proposed algorithms is superior to that

of the state-of-the-art relevant policies.

Index Terms—Cloud computing, coalition formation, depth-first-search, multi -typeVM instance bundle provisioning, multi-workflow scheduling,

reinforcement learning

Ç

1 INTRODUCTION

LOTS of complex applications (e.g., various domains of sci-
entific workflows) are deployed to cloud computing sys-

tems with abundant resources, especially for public clouds
such as Amazon AWS, Windows Azure and Aliyun. These
cloud service providers build their solid infrastructure serv-
ices based on high-speed interconnected physical machine
(PM) computing nodes similar to server farms in a data cen-
ter that contains a large amount of meta-computing resour-
ces (e.g., CPU cores, Memory sizes, Storage sizes, etc.). These

cloud resources in PMs are virtualized into many virtual
machine (VM) instances with multiple types (combinations)
of resources to the execution of workflow tasks on the pay-
per-use mode over the Internet [1], [2], in the meantime,
guaranteeing the signed service level agreements (SLA) [3]
and minimizing the execution time of workflows and the
resource usage costs. Different from the general business sys-
tems with independent tasks each other, complex workflow
applications consist of many logic-dependent tasks, such
that it is necessary to analyze the task branches and the proc-
essing relationships between tasks when scheduling the
workflow tasks to the VM instances.

In the workflow scheduling and execution, there are some
important issues that need to be addressed, e.g., minimizing
the total execution time and the makespan of workflows,
maximizing the cloud resource execution efficiency, and
minimizing the renting cost of cloud VMs. At the same time,
we should consider both the applications with multiple
types of workflows and the self-scaling capability of multi-
type VM resources before scheduling the workflow tasks.
Even though some studies [4], [5] have been conducted on
the cloud resource provisioning and workflow task schedul-
ing, they are generally based on single workflow applica-
tions and only adjust the number of VM instances of one
type at a time. This makes it difficult to deal with complex
multi-workflow applications, and the cloud resource provi-
sioning efficiency is not high, which greatly impacts on the
performance of the workflow scheduling.

The workflow scheduling is often confronted with the
problem of uncertain task execution time, and the types of
workflows are also diverse, which make the provision of
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cloud resources become dynamic and complex. Some recent
work, such as the stochastic dynamic level scheduling (SDLS)
algorithm [6], the proactive and reactive scheduling meth-
ods [7], and the dynamic cloud resource provisioning and
scheduling algorithm by using the sum of task execution
time expectation and standard deviation [8], can solve the
problem of the task scheduling efficiently, mitigate the
impact of uncertainty on the task scheduling, and meet the
workflow deadline, respectively. However, these approaches
still focus on the task scheduling of the single workflow by
using single type of VM instances. The latest methods
in [9], [10] separately put forward an uncertainty-aware
online scheduling algorithm for dynamic andmultiple work-
flows with deadlines, and a cloud-based workflow schedul-
ing policy for compute-intensive workflow applications.
Although these two methods address the multi-workflow
scheduling problem within a given deadline, the workflow
scheduling performance suffers some degree of degradation
because multi-type VM instances cannot be provisioned dur-
ing each task scheduling process.

In the adaptive cloud resource provisioning for the exe-
cution of multi-workflow tasks, the approaches [11], [12],
[13], [14], [15], [16] based on reinforcement learning (RL)
have been proposed to automatically calculate out the
appropriate number of VM resources by taking the best
action that corresponds to the maximum long-term reward
per decision round. However, the strategy in [11] fails to
consider logic-dependent workflow tasks when allocating
VM instances, and different types of VM instances are only
generated from a PM each time. The method in [12] does
also not take interdependent workflow tasks into account,
and adjusts the number of only one type of VM instances at
a time. The approach in [13] uses the deep RL model to cal-
culate the number of different types of VM instances for
workflow tasks, but these multi-type VM instances are also
from only one server (PM) when provisioning the cloud
resources. The experimental system in [14] was designed by
using RL for the online QoS aware adaptive task allocation
schemes, but the tasks are independent, and have not the
dependencies between them. In [15], a hybrid anomaly-
aware deep RL-based cloud resource scaling (ADRL)
approach was presented only in the single-workflow cloud
setting. Similar to our multi-workflow scenario, a RL-based
scheduler in [16] was proposed to provide heterogeneous
software and hardware resources in the multi-tenant cloud
computing, however, this resource provisioning mode is
also single-type, and cannot more effectively organize the
multi-type VM instances at a time to the workflows.

In view of the limitations of the above approaches, this
paper concentrates on the dynamic multi-type VM instance
provisioning that supports the single- and multi-workflow
scheduling, especially for multi-type scientific workflows,
and proposes an adaptive cloud bundle provisioning and
multi-workflow scheduling model. This model mainly
involves a depth-first-search (DFS) coalition reinforcement
learning (CRL) provisioning policy (abbreviated as the
DFSCRL) that combines the PM coalition formation with
the Q-learning algorithm. The DFSCRL policy changes the
various types of input workflows (i.e., composed of some
complex dependent subtasks) into some DFS queues, then
forms an optimal PM coalition in the existing adjacent PMs

of a data center through multiple rounds of the CRL execu-
tion, and further generates an optimal bundle (group) of
multi-type VM instances from the PM coalition. The trans-
formed DFS workflow task branches are concurrently
scheduled into the optimal VM instance bundle. The pro-
posed theorems and abundant experiments indicate that the
DFSCRL policy has the overall advantage than other poli-
cies in the multifaceted metrics.

The main contributions of this paper are summarized as
follows:

� An adaptive cloud bundle provisioning and multi-
workflow scheduling model is proposed to dynami-
cally perform both the horizontal and vertical cloud
resource scaling for the execution of multiple
workflows.

� A depth-first-search coalition reinforcement learning
(DFSCRL) provisioning policy is put forward, which
integrates the PM coalition formation with the Q-
learning algorithm.

� An optimal multi-type VM instance bundle is gener-
ated from the PM coalition formed by using the
DFSCRL policy, and further scheduled to the concur-
rent execution of multiple workflows.

� Theoretical and experimental results demonstrate
that the proposed algorithms outperform the exist-
ing relevant approaches in the different performance
evaluation metrics.

The rest of the paper is organized as follows. Section 2
outlines the related work. In Section 3, the overall structure
of the proposed adaptive cloud bundle provisioning and
multi-workflow scheduling model and its formulation are
elaborated. Section 4 describes CRL-based cloud resource
provisioning mechanism, and the DFSCRL and multi-work-
flow task scheduling algorithms in detail. In Section 5, the
proposed policy and algorithms are evaluated through the
different performance metrics. Finally, we draw the conclu-
sions and give future work in Section 6.

2 RELATED WORK

There has been much research work on the cloud resource
provisioning and workflow scheduling problem in recent
years. We summarize the existing methods into three cate-
gories: (a) single-type cloud resource provisioning for the single-
workflow scheduling; (b) multi-type cloud resource provisioning
for the single-workflow scheduling; and (c) single-type cloud
resource provisioning for the multi-workflow scheduling.

2.1 Single-Type Cloud Resource Provisioning for
the Single-Workflow Scheduling

Some researches use intelligent optimization algorithms to
realize the resource allocation and task scheduling with
multi-objective constraints. Several multi-objective schedul-
ing approaches based on evolutionary algorithms [4], [17]
were presented to convert multiple QoS constraints into a
single objective optimization constraint. Some types of par-
ticle swarm optimization (PSO) scheduling algorithms [18]
were proposed to minimize the overall execution cost of
workflows when meeting the deadline constraints, while
the other ones such as NSPSO [19] and "-Fuzzy PSO [20]
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used the PSO algorithm to generate the Pareto optimal
tradeoffs between the makespan and cost. The two classical
genetic algorithms-based methods such as NSGA-II and
SPEA2 were explained in [21], which solve the workflow
execution planning problem for different workflow struc-
tures and constraint levels of users.

The above methods can optimize one or more objective
well under the given constraints, however, most of them are
the single-type VM resource provisioning for the single-
workflow scheduling, and were devised in the context of
grid computing environment. Further, the multi-objective
scheduling methods are time consuming and not very suit-
able for large workflow applications, also it is difficult to
cope with the dynamic provisioning of multiple types of
resources for multi-workflow scheduling.

2.2 Multi-Type Cloud Resource Provisioning for the
Single-Workflow Scheduling

Many studies use the heuristics to solve the efficient cloud
resource provisioning and workflow scheduling problem
with certain constrains of the cloud resources and budget in
grid and cloud systems. Heterogeneous earliest-finish-time
(HEFT) [22] policy is a performance-effective workflow
scheduling method that schedules workflow tasks to the
highest rank of processors on the total task computational
and communication cost of task nodes from a workflow.
Budget-constrained earliest-finish-time (BHEFT) [23] policy
extends the HEFT, which finds a feasible plan for the execu-
tion of the workflow within a certain deadline and budget.
A novel greedy resource provisioning and modified HEFT
(GRP-HEFT) [24] approach was proposed to minimize the
makespan of a given workflow within a budget constraint
for the IaaS clouds. In terms of focusing on the execution
time of workflow tasks, latest work [25] presented a novel
two-stage machine learning approach to predict the execu-
tion time of workflow tasks for varying input data of tasks
in the cloud, and another new method [26] proposed a new
task scheduling algorithm with a weight-based mechanism
to preassign energy consumption for unassigned tasks,
which can minimize the schedule length (the execution time
interval of tasks) for energy consumption.

Although the above approaches can be used for heteroge-
neous processors or multi-type cloud resources, however,
their resource provisioning are mainly for the single-work-
flow scheduling. Moreover, the matching of multi-type
cloud resourceswithmulti-workflow scale is not considered,
whichwill lead to the increase of multi-workflow scheduling
costs.

2.3 Single-Type Cloud Resource Provisioning for
the Multi-Workflow Scheduling

There is little work on the resource provisioning and task
scheduling for multi-workflow or multi-tenant applications.
Kwok et al. [27] addressed the calculations of resource
requirements for multi-tenants with applied constraints, and
proposed the optimal placement of tenants and instances
with maximum cost savings while not violating service level
agreements for all tenants in a set of servers. Tsai et al. [28]
put forward a two-tier SaaS scaling and scheduling architec-
ture to save resources, further proposed the duplication

strategies including the lazy duplication and pro-active
duplication to achieve higher system performance in a clus-
tered cloud environment. To create a cost-effective scalable
environment, the formal measurements were constructed
in [29] for under- and over-provisioning of cloud resources
by considering the multi-tenancy. The recent work in [10]
proposed the novel cloud-based workflow scheduling
(CWSA) policy to minimize the different execution perfor-
mance of workflows for compute-intensive workflow appli-
cations in multi-tenant cloud environments. The other new
work in [9] devised the uncertainty-aware online scheduling
algorithm (ROSA) to schedule dynamic and multiple work-
flows with deadlines. However, these methods do not take
into account the dynamic provisioning of multi-type VM
resources according to the characteristics of multi-workflow
scheduling.

In addition, for the provisioning of multi-type VM
instances, several cloud coalition or federation formation
mechanisms were proposed in the recent work [30], [31],
[32], which use the coalition or federation game model to
generate their appropriate group of multi-type VM instan-
ces that are allocated to the workflow subtasks. The cloud
federation formation mechanism was devised in [30], which
can dynamically form the cloud federation for maximizing
the providers’ profit. Further, the sub-task scheduling
mechanism was proposed in a generated winner coali-
tion [31]. In [32], Marinescu et al. proposed a two-stage pro-
tocol to manage cloud resources, which first dynamically
forms rack-level coalitions of servers to execute a workflow
component, second creates a package of these coalitions to
support all the components of the complete workflow.
However, these mechanisms do not consider multi-work-
flow scheduling and the complex dependencies between
workflow subtasks, and their VM instance coalitions are
only static, which cannot be dynamically adjusted according
to the actual running workflows.

Different from all the above methods, this paper pro-
poses the adaptive multi-type VM instance bundle provisioning
for the multi-workflow scheduling, which simultaneously con-
siders the adaptability of resource bundle provisioning, the
multi-workflow task branches and the processing relation-
ships between tasks, which can effectively improve various
performance metrics of the workflow execution.

3 ADAPTIVE CLOUDBUNDLE PROVISIONINGMODEL

In a cloud computing environment, the task workloads are
often submitted in the form of a number of jobs, each of
which contains some user tasks with dependencies. Since
user jobs consist of the process flows of tasks, this paper
refers to the user jobs as multiple workflows, and a job is
just a workflow. This section presents the adaptive cloud
bundle provisioning model for the multi-workflow schedul-
ing, and gives the formulation of the proposed problem.

3.1 System Model

There are some related researches about cloud workflow
management systems, but many of themmainly focus on the
workflow scheduling algorithms and the limited cloud
resource (e.g., one type of VM instances) provisioning adjust-
ment. To enhance the flexibility of cloud resource allocation
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and adjustment, we propose the adaptive cloud bundle pro-
visioning model that can efficiently perform the scaling of
both horizontal and vertical cloud resources for the multi-
workflow scheduling with the coalition reinforcement learn-
ing (CRL). Fig. 1 depicts a general framework of the pro-
posed system model that comprises four layers, i.e., the
Multiple Workflows (User Jobs) layer, the Adaptive Cloud
Bundle Provisioning and Multi-Workflow Scheduling layer,
the Virtual Machine Resource Pool layer, and the Physical
Machine ResourceNetwork layer.

The Multiple Workflows (User Jobs) layer has a lot of differ-
ent types of workflows initiated by users from diversified
domains. These workflows or jobs consist of many tasks
with some sequential dependency, and are usually added
some constraints such as the deadline of running jobs, the
size of files, and the number of cloud resource plan. Further,
one or more workflows may form a complex user applica-
tion, e.g., a common business application or a scientific com-
puting application.

The Adaptive Cloud Bundle Provisioning and Multi-Workflow
Scheduling layer is the core of the proposed model, which
provides adaptive horizontal and vertical cloud resource
provisioning mechanism to support the multi-workflow

scheduling. It includes four modules which are respectively
Multi-Workflow Analyzer, Adaptive Cloud Resource Allo-
cator, Cloud Workflow Scheduler and Queue Buffer. The
execution flow of these modules is as follows: (1) Multi-
WorkflowAnalyzer receives the different execution requests
of workflows (jobs) from users, analyzes the demand con-
straints and the task process relationships in the multiple
workflows, and dispatches the multiple workflows to differ-
ent task queue buffers. As the key module of performing our
DFSCRL policy, Adaptive Cloud Resource Allocator (2)
receives the depth-first-search task branch information of
each workflow, and (3) conducts cloud resource coalition
reinforcement learning and realizes the dynamically scaling
of both horizontal and vertical cloud resources (i.e., different
sizes of PMs and their respective type of VMs generated) for
the multi-workflow scheduling. (4) An agent that serves as
the allocator figures out an optimal VM instance bundle Bc�

i
from a best PM coalition C�i that will be provisioned to one or
more workflows, and the VM instances come from the Vir-
tual Machine Resource Pool layer. (5) Cloud Workflow
Scheduler schedules the tasks in the Queue Buffer to the opti-
mal VM instance bundle provisioned by the Adaptive Cloud
Resource Allocator. (6) The task branches of each workflow
are sequentially assigned to different types of VMs in an opti-
mal VMBundle for their execution.

The Virtual Machine Resource Pool layer contains some VM
instance bundles Bci separately provided bymultiple groups
of PMs (named as PM coalitions) Ci with different sizes from
the Physical Machine Resource Network layer in a cloud
data center. Each VM instance bundle, created by different
sizes of PMs in advance, is composed of some different types
of VMs such as Small, Medium, Large and Xlarge VM instan-
ces which are respectively a combination of different sizes of
CPU, Memory (RAM) and Storage (Disk) resources. This
layer provides the VM repository for the cloud instance scal-
ing initiated by the upper-layer allocator.

The Physical Machine Resource Network layer consists of a
great number of physical machines which connect with
each other through using some routing devices. In this PM
resource network of a cloud data center, more than one local
areas of PMs, called server farms, link with each other by
their areas of routing devices. We assume that the routing
devices are connected by two-way high speed fibre chan-
nels for guaranteeing the availability of physical machine
resources. In this paper, we name a local area of PMs as an
initial cloud PM coalition that can provide some initial VM
instance bundles. Based on this idea, we reconstruct each
PM coalition using the proposed DFSCRL learning algo-
rithm so as to provision an optimal VM instance bundle for
the execution of multiple workflows.

3.2 Problem Formulation

3.2.1 Multi-Workflow Model

The different types of user workloads are generally com-
posed of multiple workflows (jobs) with some constraints,
and each of workflows has many tasks with sequential
dependencies. Multiple workflows can be represented as
the set of multiple disjoint directed acyclic graphs G ¼
fGm j 1 � m � jGjg, and a workflow is expressed as a graph
Gm ¼ ðV m;EmÞ, where V m ¼ fvmi j 1 � i � jV mjg means the

Fig. 1. Adaptive cloud bundle provisioning and multi-workflow scheduling
model.
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set of tasks in the mth workflow, and Em ¼ femij j vmi ; vmj 2
V m; ði; jÞ 6¼ null; i 6¼ jg denotes the set of data transmitting
edges (or data flows) between two tasks with the sequential
dependency. Let PreðiÞ be the set of predecessors of a task
vmi and SucðiÞ be the set of successors of the task. Assume
that when all of instances of predecessors PreðiÞ of a task vmi
finish their execution, the task can be executed, and after
the execution of all instances of the task are completed, its
successors SucðiÞ can be performed.

The multiple workflows initiated by a user generally con-
tain some constraints, each of which comprises a constraint
tupleCSTm¼ðSizem;DDLm;Pm

cpu; P
m
mem; P

m
stgÞ, where Sizem ¼PjVmj

i¼1 instmi mimi denotes the size of mth workflow in which
instmi and mimi are the number of task instances and millions
of instructions of each task vmi in the mth workflow, respec-
tively,DDLm is the deadline of the running time ofmthwork-
flow, and Pm

cpu, P
m
mem and Pm

stg are separately the planning
quantity of cloud resources CPU, Memory (RAM) and Stor-
age (Disk) formthworkflow.

3.2.2 Cloud Resource Allocation and Provisioning

Model

Due to the uncertain arrival of multi-workflow execution
requests from cloud users, the requirements on cloud resour-
ces constantly change. Thus, we construct an adaptive cloud
resource allocation and provisioningmodel for the execution
of cloud workflows while satisfying the requirement con-
straints of users. All of workflows initiated by a user need to
be allocated some suitable cloud resources that are usually
specified as some different types of VMs. To accelerate the
execution of cloud workflows and reduce the using cost of
VM resources, the system can derive an optimal VM instance
bundle provided by a suitable PM coalition, and allocate the
VM instance bundle to theworkflows before running them.

Assume that there are nc PM coalitions Ci, 1 � i � nc,
each of which can provide a VM bundle Bci that consists of
nv different types of VM instance combination Bci ¼
ðy1ci ; y2ci ; . . . ; ykci ; . . . ; ynvci Þ, where ykci denotes the number of
the kth type of VM instances (Small, Medium, Large or
Xlarge type, etc.) in this VM bundle. In general, each type of
VM instance has a fixed resource configuration represented
by a vector ðrkcpu; rkmem; r

k
stgÞ, and 1 � k � nv. We let a work-

flow Gm ¼ ðV m;EmÞ be scheduled to a VM bundle Bci , and
it means that each task vmi in the workflow must obtain one
type of VM instances. Thus, we give Eq. (1) as the indicator
function of the cloud VM resource allocation

Iðvmi ykciÞ ¼
1 if kth type of VM instances ykci

are allocated to task vmi in the
workflowGm;

0 otherwise.

8>><
>>: (1)

The required amount of different types of VM instan-
ces, which are used to execute a workflow Gm on the tth
decision-making time point, are represented as RmðtÞ ¼
ðx1

mðtÞ; x2
mðtÞ; . . . ; xk

mðtÞ; . . . ; xnv
m ðtÞÞ, where xk

mðtÞ denotes
the required number of the kth type of VM instances for
the workflow Gm in a VM bundle provided. The decision
parameter vector RmðtÞ realizes the scaling of both hori-
zontal and vertical cloud resources for the execution of a

workflowGm on the tth time point. Note that each task vmi in
the workflow Gm will be allocated its actual VM instances
from the required number xk

mðtÞ of the kth type of VM instan-
ces in the task scheduling phase (see Section 4.3). To ensure
the sufficient cloud resources, the model needs to consider
the constraints of the cloud resource usage amount and the
execution time of workflows, respectively. Moreover, the
indicator function in Eq. (1) needs to be added when VM
instances are allocated, so xk

mðtÞ can be calculated by Eq. (2)

xkmðtÞ ¼
XjVmj

i¼1
½sm;k

i ðtÞ � Iðvmi ykciÞ�; (2)

where sm;k
i ðtÞ denotes the number of the kth type of VM

instances that are actually allocated to a task vmi of the work-
flow Gm on the tth time point. Assume that the required
amount of CPU, Memory and Storage in each type of VM
instances for a workflow Gm is expressed as a vector
ðxk

mðtÞrkcpu; xk
mðtÞrkmem; x

k
mðtÞrkstgÞ where rkcpu; r

k
mem and rkstg are

the fixed sizes of CPU, Memory and Storage in the kth type of
VM instances advertised by a public cloud provider’swebsite.
The provisioned amount of CPU, Memory and Storage in a
PM coalition Ci is represented as a three tuple ðRci

cpu;
Rci

mem;R
ci
stgÞ. Thus, the model is subject to the three limitations

before the cloud resources are allocated to tasks in a work-
flow such as

Pnv
k¼1 x

k
mðtÞrkcpu � Rci

cpu � Pm
cpu,

Pnv
k¼1 x

k
mðtÞrkmem �

Rci
mem � Pm

mem, and
Pnv

k¼1 x
k
mðtÞrkstg � R

ci
stg � Pm

stg.

Response time. The whole running time of a workflow Gm

is called its response time respTm that includes the execution
time execTm running tasks and the data transmission time
between dependent tasks of the workflow after being allo-
cated VM instances. Because the PM network in a cloud data
center generally reaches above gigabit bandwidth, the data
transmission time between VM instances from the same PM
can be negligible, and this time is also very little between dif-
ferent PMs that connect to the same or nearby routing devices
in the same data center. Thus, the response time running a
workflow mainly depends on the execution time on the path
of dependent tasks, and the data transmission time on this
path can be not considered in the same cloud data center. In
addition, because the model provisions a bundle of different
types of VM instances to tasks of a workflow, each task in the
workflow is scheduled to a type of VM instance such that all
of tasks run in parallel in the VM instance bundle. As a result,
the execution time execTm depends on the maximum com-
pletion time of tasks in the VM instance bundle. Based on the
above reasons, we use Eq. (3) to express the response time
respTm or the execution time execTm of theworkflowGm

respTm � execTm ¼ max
nv

k¼1

Xhnv
i¼1
ðinstmi � execTm;k

i Þ
( )

; (3)

where nv is the number of VM instance type, hnv is the num-
ber of tasks from the workflow Gm in the nvth type of VM
instances provisioned, and instmi denotes the number of task
instances of the task vmi in the workflowGm.

In light of the process of the resource provisioning and
multi-workflow scheduling above, we suppose all of tasks in
a workflow Gm have been scheduled to a provisioned VM
instance bundle on the tth time point, and the tasks of next
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workflow Gmþ1 are left in the Queue Buffer and wait for
being scheduled. When a task vmi of the workflow Gm on the
tth time point is allocated to a VM instance, the task starts to
execute. According to the definition of constraint element
Sizem of the workflowGm in Section 3.2.1, the execution time
execTm

i of the task vmi can be calculated by Eq. (4)

execTm;k
i ¼ mimi

mipsm;k
; (4)

where mimi denotes the number of millions of instructions
owned by the task vmi , and mipsm;k is the number of millions
of instructions per second executed by the kth-type VM
instance in the workflowGm. From Eq. (4), we can derive that
given mk VM instances of the kth type for executing a task
branch of the workflowGm, when increasing nk VM instances
of this type, the quantitative relationship between the new
execution time execTm

br;new of the task branch and the previous
execution time execTm

br;old is execTm
br;new ¼ mk

mkþnk execT
m
br;old.

Conversely, when decreasing nk VM instances of the kth type,

the above relationship is execTm
br;new ¼ mk

mk�nk execT
m
br;old.

Cloud resource utilization rate. Since a PM coalition Ci pro-
vides a bundle of VM instances to a workflow Gm in our
model, the utilization rates of the CPU, Memory and Stor-
age are represented as Uci

cpu; U
ci
mem and U

ci
stg, which are the

percentages of the three cloud resources in the VM instances
from the PM coalition Ci used by the workflow Gm. We
describe the integrated cloud resource utilization rate Uci of
a PM coalition Ci by using Eq. (5)

Uci ¼ a � Uci
cpu þ b � Uci

mem þ g � Uci
stg

¼ a

Pnv
k¼1x

k
mðtÞrkcpu

R
ci
cpu

þb
Pnv

k¼1x
k
mðtÞrkmem

R
ci
mem

þ g

Pnv
k¼1x

k
mðtÞrkstg

R
ci
stg

; (5)

where a, b and g are the weights of CPU, Memory and Stor-
age in theUci of the PM coalition Ci, respectively, and aþ bþ
g ¼ 1. For compute-intensive workflow applications, we
may set the values of a, b and g as 0.4, 0.4 and 0.2, respec-
tively. For data-intensive ones, the three corresponding
weight values can be set as 0.2, 0.4 and 0.4.

3.2.3 Reward Model for Cloud Resource Provisioning

Due to the widespread use of pay-as-you-go billing mode
on VM instances, for saving usage cost of cloud resources,
the amount of VM instances provisioned to each workflow
needs to be adjusted according to the using case of the pre-
vious workflows. In the process of cloud resource allocation
and provisioning, the immediate reward will be obtained
when the cloud system adopts a new action policy to adjust
the amount of VM instances. To achieve the optimal provi-
sioning scheme on a VM instance bundle, we construct the
reward function for the resource reinforcement learning
and the formation of cloud resource coalition in Section 4.

In light of the requirement constraintCSTm of a workflow
Gm and Eqs. (1), (2), (3), (4), and (5), we define the immediate
reward function RW

ci
tþtci in the time interval ½t; tþ tci � by

using Eq. (6) in which a PM coalition Ci will be formed before
provisioning a VM instance bundle

RW
ci
tþtci ¼ dci � ½tci Pnv

k¼1 prkx
k
mðtÞ�

tci ¼ respTm

dci ¼ ð1� respTm

DDLm Þ � Uci

8<
: (6)

where prk denotes the price of the kth type of VM instance,
xkmðtÞ represents the actual number of the kth type of VM
instances in a VM bundle provisioned to the workflow Gm

on the tth time point, tci is the actual running time of the
workflow Gm of renting the VM instance bundle from a PM
coalition Ci, and dci denotes the discount rate of the reward.
dci indicates the running cost of provisioned VM instances,
which is influenced by two factors, the response time
respTm of running the workflow Gm and the cloud resource
utilization rate Uci of the PM coalition Ci. Note that only if
respTm < DDLm(i.e., meeting the deadline of running the
mth workflow), RWci

tþtci > 0, otherwise, RWci
tþtci ¼ 0. From

Eq. (6), we can see that the less response time respTm and the
higher cloud resource utilization rate Uci , the more immedi-
ate reward.

4 CRL-BASED CLOUD RESOURCE PROVISIONING

MECHANISM AND ALGORITHMS

In this section, we propose the key cloud resource provision-
ing mechanism base on coalition reinforcement learning
(CRL). The mechanism first gives the concept and formation
method of cloud resource coalitions, then presents adaptive
cloud resource provisioning mechanism using the CRL, and
finally proposes multi-workflow task scheduling scheme to
the best-matched VM bundle provided by an optimal PM
coalition.

4.1 Cloud Resource Coalition Formation for the
Best-Matched VM Bundle

The cloud resource coalition refers to a group of physical
machines (PMs) from the physical machine resource net-
work in a data center. Due to the limitation of a physical
machine’s computing capacity, we need to combine suitable
number of machines to provide a variety of computing
resources (e.g., a bundle of VM instances) for speeding up
the execution of user tasks while maximizing the cloud
resource utilization.

Suppose that an initial grand PM coalition GPC ¼ fp1; p2;
. . . ; pi; . . . ; pNg that consists of N different PMs. To search
an optimal cloud resource set, we generally need to parti-
tion the GPC to some independent and disjoint subsets.
Thus, a PM coalition structure is defined as PC ¼ fC1; C2;
. . . ; Ci; . . . ; Cncg which is a set of nc PM coalitions, wherePnc

i¼1 jCij ¼ N , and for all i 6¼ j 2 ½1; nc�; Ci \ Cj ¼ ? . In gen-
eral, searching the optimal PM coalition structure is an
exhaustive job through all PM coalition structures, and it is
not very feasible for the cloud resource provisioning. To
obtain an optimal PM coalition, we propose a PM coalition
formation game based on the hedonic game [30] with the
players’ preference selection between different coalitions as
follows.

PM Coalition Formation Game is defined as a tuple ðPC;	Þ,
where 	i is a reflexive, antisymmetric and transitive prefer-
ence selection relation on the disjoint coalitions Ci and Cj, and
Ci; Cj 2 PC 
 GPC. Specifically,	iþj means that if the PM coa-
lition Ci [ Cj can obtain higher reward, the PM coalition Ci
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prefers to merge with Cj, i.e., vðCi [ CjÞ � vðCiÞ and vðCi [
CjÞ � vðCjÞ, where vð�Þ denotes the PM coalition reward.
Conversely,	ijj indicates that if the reward of themerged PM
coalition decreases, the PM coalition Ci [ Cj prefers to be split
into two PM coalitions Ci and Cj, i.e., vðCiÞ � vðCi [ CjÞ or
vðCjÞ � vðCi [ CjÞ.

In the process of the PM coalition formation game, the
merging or splitting action depends on which action maxi-
mizes the immediate reward RW

ci
tþtci of the merged or split

PM coalition on the time t. Assume that the actions of the
current coalition formation are taken during the execution
time of the previous workflow prior to that of the current
workflow. Thus, on the basis of Eq. (6), the best coalition
action policy on the time t is formulated by Eq. (7)

a�t ¼ arg max
a2f	iþj;	ijjg

RW
ci
tþtci ðaÞ; (7)

where i in the set of the action selection denotes the coalition
Ci. When a�t is the merging action, j represents the coalition
Cj that does not intersect Ci. When a�t is the splitting action, j
means a PM in the coalition Ci, and the PM pj is split out of
Ci, i.e., the PM pj is removed from Ci.

The Principles of the PM Coalition Formation. To simplify
the complexity of the problem, we assume that a PM can
generate multiple VMs of just one type (e.g., Small,
Medium, Large or Xlarge type) that fit the size of the PM’s
resources, and when a PM is joined into the resource pro-
visioning coalition, all of VMs generated by the PM must
be allocated to the execution of multiple workflows, on
the contrary, only if all of VMs from the PM are in the
unoccupied idle states, the PM can be removed from the
provisioning coalition. Furthermore, suppose that in the
beginning phase before any action is taken, each of the PM
coalitions is a single PM different with each other, e.g.,
Ck ¼ fpkg. Each of PMs has a certain amount of CPU, Mem-
ory and Storage, and the respective current utilization
rates of these resources. After performing the merging or
splitting actions, the adjusted PM coalition will contain a
group of different PMs that come preferentially from adja-
cent physical machines connected to the same router, and
then from physical machines on adjacent routers. The rea-
son for this setup is to take into account the cost of com-
munication between machines for tasks to be performed.
According to this order, the initial PM coalition structure
PC ¼ fC1; C2; . . . ; Ci; . . . ; Cncg is formed where a PM coali-
tion is a PM, i.e., Ci ¼ fpig. Through our coalition rein-
forcement learning, a maximum long-term reward vðC�i Þ
will be gained as described in Section 4.2, and an optimal
PM coalition C�i ¼ C1 [ � � � Ci�1 [ Ci ¼ fp1; p2; . . . ; pi�1; pig
will be also obtained to provide the best-matchedVMbundle
Bc�

i
for the execution of multiple workflows. The PM coali-

tion reward vðC�j Þ is equal to vðC1 [ � � � Ci [ CjÞ for somemerg-
ing actions when these coalitions do not intersect each other,
or the PM coalition reward vðC�i0 Þ is equal to vðCiÞ � � � � �
vðpjÞ for the splitting actions on some PMs when the split
(removed) PMs are members of the PM coalition Ci. As the
changes of multiple workflows and their VM requirements
can take place, the optimal PM coalition needs to be adjusted
dynamically.

4.2 CoalitionReinforcement LearningModel and
Algorithm for theAdaptiveResource Provisioning

In this section, we propose a coalition reinforcement learning
(CRL) model that adds the dynamic coalition formation into
the reinforcement learning process for realizing the adaptive
cloud resource provisioning. Thewhole CRLmodel is shown
in Fig. 2.

The Adaptive Cloud Resource Allocator (Agent) learns
the optimal VM resource provisioning scheme (the optimal
VM instance bundle) for the execution ofmultipleworkflows
by using a coalition reinforcement learning algorithm. The
Agent first receives the resource request from a cloud work-
flow (a Job of users) in a certain period of time, and thiswork-
flow has previously been decomposed into several different
task queues by the Multi-Workflow Analyzer. Then, the
Agent observes the states of the cloud resource environment
that contains some physical machines. Next, the Agent takes
an action to form an initial PM coalition for performing the
tasks of the cloudworkflow according to the states observed,
and finally it gains an immediate expected reward from the
environment. The learning process continues until the opti-
mal PM coalition is formed, i.e., the optimal VM instance
bundle is obtained, which contains some different types and
number of best-matched VMs generated from the PM coali-
tion. In the coalition reinforcement learning algorithm, we
integrate the PM coalition formation from Section 4.1 into the
Q-learning algorithm.

In the CRL algorithm, the action space is represented as
A ¼ f	1

iþj;	1
ijj; add

1
Vik

; subtract1Vik ; . . . ;	t
iþj;	t

ijj; add
t
Vik

; subtracttVik ;

. . .g, where 	t
iþj or 	t

ijj is the action of merging or splitting
the PM coalition, addtVik or subtract

t
Vik

is the action of adding

or subtracting a VM belonging to kth PM in the ith PM
coalition at the time step t, and the action at ¼ f	t

iþj;	t
ijj;

addtVik ; subtract
t
Vik
g. The state space is indicated as S ¼

fs1; a1; s2; a2; . . . ; st; at; . . .gwhere st denotes the state of cloud
environment that involves the current workflow’s task
queues that will be executed, the available resources of the

Fig. 2. The coalition reinforcement learning (CRL) model.
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previous PM coalition Ci, and the rest of PMs in the PM net-
work. In order to reduce thread conflicts for different work-
flows’ tasks in the VMs, we assume that the PM coalition for
the execution of a new workflow’s tasks will be adjusted (or
formed)when all tasks of a workflowhave been completed.

The goal of the learning Agent is to maximize the long-
term reward vðC�i Þ through taking a sequence of actions of
merging or splitting PMs that form the PM coalition Ci as
well as actions of adding or subtracting the kth VM in the
ith PM coalition at the time step t. After taking an action at
at the current state st, the learning system will transfer to a
new state stþ1 and then gain an immediate reward RW

ci
tþtci

in the time interval ½t; tþ tci � by using Eq. (7). Note that t is
the learning time step, and tci is the time interval of renting
the VM instance bundle provided by the PM coalition Ci
starting from the time point t. We use Q-learning process to
realize the proposed CRL algorithm which considers the
required actions to form an optimal PM coalition when
choosing a random action or an optimal action maximizing
Q-value at each learning time step. According to Eq. (7) and
the PM coalition formation game in Section 4.1, we get the
judgment formula Eq. (8) to take the best coalition forming
action policy at the time step t

a�t ¼
f	t

iþjg if RW
ci[cj
tþtci[cj � RW

ci
tþtci

f	t
ijjg if RW

ci�pj
tþtci�pj � RW

ci
tþtci

8><
>: (8)

At each time step of learning episodes, the coalition form-
ing actions taken at all of time steps in Eq. (8) determine how
many different types of PMs are formed in the optimal coali-
tion, and a PM has only one type of multiple VMs as
described in Section 4.1. The coalition forming actions realize
the adaptive horizontal cloud resource scaling up or down
by adding (i.e., 	t

iþj) or subtracting (i.e., 	t
ijj) a certain num-

ber of PMs according to their current states.
Specifically speaking, the learning Agent updates the

Q-value table by employing the Bellman equation as Eq. (9)
in which each Q-value score is just the maximum expected
future reward maxQtþ1ðstþ1; atþ1Þ that the learning Agent
obtains when it takes the best action policy at the state stþ1.
During the whole updating process of the Q-value table, all
of maximum expected future rewards are obtained through
adding (i.e., 	t

iþj) or subtracting (i.e., 	t
ijj) a certain number

of PMs at their current states, and the two actions achieve
the adaptive horizontal cloud resource scaling up or down

Qtðst; atÞ  Qtðst; atÞ
þ arðRWc�

i

tþtc�i
ðst; atÞ þ grmaxQtþ1ðstþ1; atþ1Þ �Qtðst; atÞÞ; (9)

where Qtðst; atÞ is the current Q-value at the current state st

and action at,RW
c�
i

tþtc�i
ðst; atÞ ¼ dc

�
i tc
�
i ðPnjc�

i
j

k¼1 prkx
k
mðtÞÞ denotes

the immediate reward after taking the action 	t
iþj or 	t

ijj that
forms the PM coalition C�i provisioned to a workflow Gm of

users at the current state st, maxQtþ1ðstþ1; atþ1Þ means the

maximum expectedQ-value given all of new possible actions
atþ1 at the new state stþ1, ar is the learning rate and gr is the

discount rate. After updating the Q-value table at the time

step t, the learning system takes the action that adds (i.e.,

addtVik ) or subtracts (i.e., subtract
t
Vik

) a VM of each PM pk in
the PM coalition C�i provisioned to each depth-first task

branch of the workflow Gm at the current state st, and the

two actions achieve the adaptive vertical cloud resource scal-

ing up or down.

Algorithm 1. Depth-First-Search Coalition Reinforcement
Learning Algorithm

Input: The current cloud resource environment and
multi-workflow task queues initiated by users

Output: The optimal cloud resource provisioning action set
A�, the optimal PM coalition C�i and its VM instance
bundle Bc�

i
1 Initialize Qðs; aÞ;
2 A�  null, C�i  null, Bc�

i
 null;

3 foreach episode ¼ 1; 2; . . . ; E do
4 L the number of the depth-first-search task branches of

a workflow Gm to be run;
5 Initialize state space S;
6 Initialize a PM coalition C1  fp1; p2; . . . ; pLg, C�i  C1, and

each of PMs in the coalition generates a VM instance;
7 foreach t ¼ 1; 2; . . . ; T , and i; j 2 ½1; L�; i 6¼ j do
8 Choose a random action at = 	t

iþj or 	t
ijj with probability

�, otherwise at ¼ argmaxaQðst; aÞ;
9 if at = 	t

iþj; Cj ¼ fpjg; RW
ci[cj
tþtci[cj � RW

ci
tþtci then

10 C�i  Ci [ Cj, take the action at = 	t
iþj ,

A�  A� [ f	t
iþjg, k j;

11 Take nk actions at = addtVik on the changed pk for nk

tasks of the kth depth-first-search task branch match-
ing with the sizes of the tasks;

12 A�  A� [ nkat, Bc�
i
 Bc�

i
[ nkVMik;

13 end
14 if at = 	t

ijj; pj 2 Ci; RW
ci�pj
tþtci�pj � RW

ci
tþtci then

15 C�i  Ci � pj, take the action at =	t
ijj ,A�  A� [ f	t

ijjg,
k j;

16 Take nk actions at = subtracttVik one by one;

17 A�  A� [ nkat, Bc�
i
 Bc�

i
� nkVMik;

18 end
19 Observe the next state stþ1 and reward

RW
c�
i

tþtc�i
ðst; atÞ ¼ dc

�
i tc
�
i ðPnjc�

i
j

k¼1 prkx
k
mðtÞÞ;

20 Qt  Qt þ arðRW
c�
i

tþtc�i
þ grmaxQtþ1 �QtÞ;

21 st  stþ1;
22 if jC�i j > L or beyond the limitation of cloud resources then
23 break;
24 end
25 end
26 end
27 return A�, C�i , Bc�i ;

In light of the CRL model, we devise the corresponding
CRL algorithm for the adaptive cloud resource provisioning
as shown in Algorithm 1. Lines 1 and 2 initialize theQ-value
table and the optimal result sets A�, C�i and Bc�i . Line 3 gives
the rounds of the Q-training in the learning system. Next,
Line 4 obtains the number of the depth-first-search task
branches of a workflow Gm to be run. Lines 5 and 6 initialize
the state space and a PM coalition. The following statements
from Lines 7 to 25 are the key parts of the proposed adap-
tive cloud resource provisioning procedures using the CRL
method. Line 8 selects an action through a random or
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maximal Q-value way. In Lines 9 to 10, the algorithm real-
izes the PM coalition merging (i.e., the horizontal cloud PM
scaling up) for different task branches of the workflow Gm

through employing the PM coalition formation principles in
Section 4.1 and Eq. (8). Lines 11 to 12 implement the vertical
cloud VM scaling up on each PM for each depth-first task
branch of the Gm, and update the A� and Bc�

i
. On the con-

trary, Lines 14 to 15 perform the PM coalition splitting (i.e.,
the horizontal cloud PM scaling down), and Lines 16 to 17
conduct the vertical cloud VM scaling down. After the for-
mation of the PM coalition and the generation of corre-
sponding VMs, Lines 19 to 21 update the Q-value table and
current state by Eq. (9). Lines 22 to 24 give the ending condi-
tion of T steps in an episode of Q-training. Finally, the algo-
rithm outputs the optimal result set A�, C�i and Bc�i .

The time complexity of Algorithm 1 is OðjSj � jAjÞ =
OðEPL

k¼1 nkÞ, where jSj ¼ E denotes the maximum num-
ber of states (i.e., the training episodes), jAj ¼PL

k¼1 nk is the
maximum number of actions taken (i.e., merging or splitting
the PM coalition, and adding or subtracting a VM). The
space complexity is OðPL

k¼1 nkÞ for storing the actions that
form the PM coalition.

To illustrate the validity of the CRL algorithm, we pres-
ent the first theorem and its proof as follows.

Theorem 1. The proposed depth-first-search coalition reinforce-
ment learning (DFSCRL) algorithm can converge to the optimal
cloud resource provisioning scheme (i.e., the optimal PM coali-
tion C�i and VM bundle Bc�

i
) for the execution of multiple work-

flows through learning the current cloud resource environment.

Proof. The entire proof of the theorem is given in the supple-
mentary material, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TC.2022.3191733. tu

4.3 Multi-Workflow Scheduling Scheme to the
Optimal VM Bundle and Its Algorithm

The Multi-Workflow Analyzer shown in Fig. 1 decomposes
different workflows into many task sets by the way of the
breadth-first-search (BFS) graph traversal, and dispatches
them into different task queues according to the order of BFS.
Based on the maximum task queue length among all the task
queues of a workflow, the DFSCRL algorithm in Section 4.2
first calculates the matched PM coalition C�i , then generates
the different types and number of suitable VMs in PMs of the
coalition, and finally obtains the optimal VM instance bundle
for the execution of a workflow. After obtaining the VM pro-
visioning scheme, all of the workflow tasks in the queues will
form some task branch groups using the depth-first-search
(DFS) graph traversal way, and the Cloud Workflow Sched-
uler then schedules the tasks of the same workflow into the
matched PMs of the PM coalition C�i through dequeuing one
by one from the head of each task queue.

To show the above process more clearly, we give a case
that tasks of a workflow are scheduled to the optimal VM
instance bundle as depicted in Fig. 3. From this figure, we
can see that all the tasks of a workflow in the left side are dis-
patched into five task queues in the breadth-first traversal
mode, and they are subsequently fetched by the way of
depth-first traversal. These depth-first task branches are

respectively scheduled into the PMs p1 and p2 of the optimal
PM coalition C�i with the principle of amaximum task branch
to a maximum size of PM, where a type of PM is virtualized
into a group of same-type VM instances. After that, another
new workflow’s tasks move forward to the queue spaces
occupied by the previous workflow’s tasks. Before the tasks
are scheduled, the optimal PM coalition C�i has been gener-
ated by the DFSCRL algorithm, and the PMs p1 and p2 in the
coalition have been virtualized into n1 VMi1 and n2 VMi2,
respectively. Finally, all the above tasks are divided into two
groups of the most relevant tasks, and executed in parallel.
Through the above-mentioned processes, the proposed
method can maximize the VM resource utilization, reduce
the task execution time, and save the system operation cost.

According to the task scheduling scheme,we presentAlgo-
rithm 2, a scheduling and executing algorithm of the work-
flow tasks allocated into the optimal VM instance bundle.
Because of the limitation of space, Algorithm 2 and its expla-
nation are given in the supplementary material, available
online.

To further demonstrate the effectiveness of the DFSCRL
method for the multi-workflow task scheduling, we give
the second theorem and its proof as follows.

Theorem 2. Using the optimal VM instance bundle Bc�
i
to exe-

cute multi-workflow tasks can achieve less execution time and
higher cloud resource utilization rate of the optimal PM coali-
tion C�i . This enables the system to obtain more total rewards in
the proposed algorithms.

Proof. The entire proof of the theorem is given in the sup-
plementary material, available online. tu

5 PERFORMANCE EVALUATION

In this section, we conducted eleven groups of simulation
experiments based on the real-world scientific workflow
application dataset to evaluate our algorithms. Six groups
of these experiments run in the cloud workflow simulator -
WorkflowSim,1 and the other five groups used the real con-
tainer cloud - Kubernetes.2 The Kubernetes is deployed on a
local physical server with the configuration of six cores of
Intel Xeon CPU and 16 GB RAM, and runs in a Docker

Fig. 3. A case that tasks of a workflow are scheduled to the optimal VM
instance bundle Bc�

i
= {n1VMi1, n2VMi2}.

1. https://github.com/WorkflowSim/WorkflowSim-1.0
2. https://kubernetes.io/releases/download/
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container connected to an external Aliyuncs storage mirror.
Through comparing with the existing six relevant methods
about the cloud resource provisioning and multi-workflow
scheduling, our solution shows the better performance.

5.1 Experimental Settings

5.1.1 Experimental Environment and Dataset

Our simulation experiments used and extended the Work-
flowSim [33] which is implemented by Java, and based on the
discrete event cloud simulator - CloudSim [34]. We have
added some new Java classes which mainly involve the pro-
posed DFSCRL and scheduling algorithms, the PM coalition,
and the compared methods’ core algorithms. The experimen-
tal dataset adopts the Pegasus Workflows3 which include
many different fields of real-world scientific workflow appli-
cations generated from different DAX (Directed Acyclic
Graph of XML format) files. Each DAX file contains a large
number of tasks described in XML format which have depen-
dencies on each other with different average runtime time
and input/output data sizes. Because the complexity of vari-
ous scientific workflows is generally large and their calcula-
tion processes are similar, we randomly selected two types of
workflows in the Pegasus Workflows, Montage and SIPHT
[35]. The former is used to generate custom spatial mosaics of
the sky, and calculates the geometry of the output. The latter,
from the bioinformatics project at Harvard University, is
employed to automatically search the sRNA encoding-genes
for all of the bacterial replicons in the National Center for Bio-
technology Information (NCBI) database. Each of these work-
flows consists of three different sizes of tasks, such as Small,
Medium and Large types, which are respectively shown in
Table 1.

5.1.2 The Brief Description of the Compared Methods

In this subsection, we briefly describe all of the compared
methods as follows.

DFSCRL, namely the proposed policy, is the adaptive
cloud bundle provisioning method for multi-workflow
scheduling.

RLC [16] adopts a reinforcement learning-based control-
ler to schedule the computational workflow for multi-tenant
cloud computing. This method only uses the single type of
VM provisioning for the workflow scheduling, while our
approach employs the multi-type VM instance bundle

provisioning through the PM coalition for multi-workflow
scheduling.

ROSA [9] is an uncertainty-aware online scheduling algo-
rithm that is designed to schedule dynamic and multiple
workflows with deadlines.

CWSA [10] denotes a cloud-based workflow scheduling
algorithm that makes use of the gaps between scheduled
workflow tasks for scheduling other tasks to reduce the
overall makespan of workflows.

MCT [36] is a minimum completion time scheduling pol-
icy in which each task of workflows is assigned in an arbi-
trary order to the cloud resource such that the task has the
minimum expected completion time.

HEFT [22] refers to a heterogeneous earliest finish time
policy that belongs to a heuristic algorithm.

FCFS [37] denotes a first-come-first-serve algorithm in
which the first arrival workflow task is first fulfilled other-
wise the task waits until the resources become idle.

5.1.3 Performance EvaluationMetrics and Experimental

Parameters

In terms of the performance evaluation metrics, we assume
that all of PMs are deployed in a cloud data center. As men-
tioned in Eq. (3), due to the gigabit bandwidth of the PM net-
work within the same data center, the data transmission time
between VM instances can be negligible. Thus, we focus on
the analysis of execution time and cost of multiple workflows
in the given scenario, and utilize six evaluation metrics as
follows.

VM Instance Number Provisioned. Before executing multi-
ple workflows, the DFSCRL algorithm in the proposed pol-
icy can provision the optimal VM instance bundle which
contains a group of different types of VM instances from the
formed PM coalition, and each type of VMs has a certain
number. The other compared methods, however, provide
only a single type of number of VM instanceswhen thework-
flows are scheduled.

Execution Time. It denotes the total execution time of all
tasks forming multiple workflows after they are scheduled
to execute.

Makespan. This metric is used to calculate the maximum
completion time of multiple workflows. On the basis of
Eq. (3), the makespan of any executed multiple workflows
G can be expressed as follows:

MakespanG ¼ max
nb

k¼1

(XjGj
m¼1

Xhnb
i¼1
ðinstmi � execTm;k

i Þ
)
; (10)

where nb is the total number of depth-first-search task
branches in the multiple workflows G, hnb is the number of
tasks in the nbth depth-first-search task branch of a work-
flow Gm, and instmi denotes the number of task instances of
the task vmi in the workflow Gm.

Makespan Standard Deviation (MSD). It is a metric that
measures the sensitivity and stability of different schedul-
ing algorithms. This metric can be represented as follows:

MSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N � 1

XN
i¼1
ðXi �XÞ2

vuut ; (11)

TABLE 1
The Experimental Dataset of Montage and SIPHT

From Pegasus Workflow Applications

Workflow
Type

Workflow
Name

Number
of Tasks

Average All Tasks’
Total Runtime (MS)

Small Montage
SIPHT

25, 50
30, 60

2733, 6054
71894, 169051

Medium Montage
SIPHT

100
100

12748
243283

Large Montage
SIPHT

1000
1000

133898
2336151

3. https://confluence.pegasus.isi.edu/display/pegasus/
WorkflowHub
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where Xi, N and X refer to the ith sample of the makespan,
the total number of samples, and the average value of the
makespan, respectively. The smallerMSD value is, the more
stable the scheduling algorithm is.

Resource Execution Efficiency (REE). This metric defines the
overall efficiency that the used VM instances perform the
tasks of multiple workflows G in different scheduling algo-
rithms.We can express it as follows:

REE ¼ 1� realETG

minðpredictedETG; requiredETGÞ ; (12)

where realETG, predictedETG, and requiredETG denote mul-
tiple workflows G’s real execution time, predicted (average)
execution time, and required execution time (deadline),
respectively.

Total Renting Cost (TRC). It measures the total renting
cost of different types of VM instances used for performing
multiple workflows, which is calculated as follows:

TRC ¼
Xnv
k¼1

XjGj
m¼1

xk
m � Pricek �

Xhnv
i¼1
ðinstmi � execTm;k

i Þ; (13)

where nv is the number of VM instance type, hnv means the
number of tasks from the workflow Gm in the nvth type of
VM instances provisioned, instmi is the number of task
instances of the task vmi in the workflow Gm, xk

m denotes the
number of the kth type of VM instances used for the work-
flow Gm, and Pricek is the advertised price of the kth type of
VM instance. When calculating the renting cost of VM
instances, we adopted the hourly billing way, and less than
one hour is counted as one hour.

Our experimental simulation platform is assumed to be
deployed in a real data center that contains the selected four
types of the Amazon EC2 On-Demand Pricing Instances [38]
as listed in Table 2.

On the basis of the different types of resource instances in
Table 2, we further set the running parameters of the pro-
posed DFSCRL algorithm as shown in Table 3. Since each VM
running a task, in the used simulator-WorkflowSim, is
marked with the occupied status (i.e., VM STATUS BUSY )
while VMs of unassigned tasks take the unoccupied status
(i.e., VM STATUS IDLE), we assume that the resources of
each VM assigned to a task are fully utilized. Thus, the cloud
resource utilization rate Uci of a PM coalition Ci is set as 1 in
the simulation experiments. In addition, all of the experi-
ments on the seven compared algorithms are implemented 10
rounds at random, and the final experimental results take the
approximatemean value on the 10 rounds of results when not
violating the parameter constraints in Table 3.

5.2 Experimental Results

5.2.1 The Experiments Only Running in the Cloud

Workflow Simulator

In this section, six groups of experiments with the different
metrics are implemented in the cloud workflow simulator -
WorkflowSim, and compared with the six existing methods
mentioned in Section 5.1.2.

(1) VM Instance Number Provisioned
In this part, we conducted the experimental comparisons

on the cloud VM instance provisioning quantity. The pro-
posed DFSCRL provisioning policy calculated out the opti-
mal VM instance bundle that consists of different types and
number of VM instances from the optimal PM coalition gen-
erated. From Fig. 4, we can see that when inputting the
Montage workflow dataset from Small size (25) to Large
one (1000) of tasks, three groups of different types of VM
instances, corresponding to three PMs (PM1, PM2 and
PM3) in the optimal PM coalition, have been formed. The
number of VM instances of each type increases with the
growth of task sizes. From another dimension of this cubic
graph, we can also observe that the number of VM instances
goes up from the first types of VM instances in the PM1 to
the third ones in the PM3. Notice that, in this paper, the first
type of VMs in PM1, the second ones in PM2, and the third
ones in PM3 correspond to t2.xlarge, t2.large and t2.
medium Instance types, respectively. The t2.small Instance
type was not chosen because it did not match with any cur-
rent task sizes in the experiments.

We also did experiments of the other six compared algo-
rithms through using the same dataset and required parame-
ters. We compared the total number of VM instances
provisioned. Fig. 5 depicts that the total number of VM instan-
ces in these methods are almost the same in the cases of 25 to
100 task sizes of Montage workflow application, while that of
VM instances in the proposed DFSCRL policy is slightly
higher than other methods in the case of the Large size (1000
tasks) of the Montage workflow. This is because that the large
size of workflows are parsed into more depth-first-search
(DFS) task branches such that many different types of VM
instances are generated when the DFSCRL algorithm calcu-
lates the optimal PM coalition and corresponding VMbundle.
We can also see that the VM instance number of the RLC
method is most when there are 1000 tasks, since it only uses
the single type of VM provisioning and scheduling, thus this
policy must rent more VM instances to achieve the effect of
multi-typeVMprovisioning and scheduling capabilities.

TABLE 2
On-Demand Instance Types and Prices From

Amazon EC2, US East (Ohio)

Instance
Type

CPU
Core

Memory
(GB)

Storage
(GB)

Processing
Speed (MIPS)

Price
($/H)

t2.small 1 2 16 1000 0.023
t2.medium 2 4 32 2000 0.0464
t2.large 2 8 64 2000 0.0928
t2.xlarge 4 16 128 4000 0.1856

TABLE 3
Experimental Parameters for the Proposed DFSCRL Algorithm

Parameter Value or Value Range

� (greedy factor) 0.8
ar (learning rate) 0.2
gr (discount rate) 0.8
MAX � EPISODES (training number) 100

SizeG (Million Instructions, MI) 1� 106

DDLG (Millisecond, MS) 1� 104 � 5� 105

PG
cpu 100

PG
mem (GB) 200

PG
stg (GB) 5000

WANG ETAL.: ADAPTIVE CLOUD BUNDLE PROVISIONING AND MULTI-WORKFLOW SCHEDULING VIA COALITION REINFORCEMENT 1051

Authorized licensed use limited to: University of Melbourne. Downloaded on June 05,2023 at 08:08:25 UTC from IEEE Xplore.  Restrictions apply. 



(2) Execution Time
Total execution time of all tasks of multiple workflows

measures the whole performance of running the workflow
scheduling algorithms. To verify the scheduling perfor-
mance of the different algorithms on different types and
sizes of workflows, we carried out two groups of experi-
ments by using single type of Montage and two types of
Montage and SIPHT multi-workflow applications.

Fig. 6 shows that the execution time of all of policies on
the Montage workflow gradually increases with the growth
of task sizes. This is a reasonable rising trend as a whole. In
the cases of Small (25 and 50) and Medium (100) task sizes,
the execution time is close and lower than 2500 MS.
Whereas, the time quantity becomes larger when there is
Large (1000) task size. The execution time of FCFS algorithm
arrives at 30000 MS, that of other algorithms are all less than
30000 MS, and this value of the proposed DFSCRL algo-
rithm is always least in most cases. This is due to the fact
that our method computes a group of different types and
quantity of VMs, i.e., the optimal VM instance bundle
matching with the sizes of tasks, to concurrently perform
the different DFS task branches of workflows, such that the
execution time is greatly reduced. However, the other six
methods only use one type of VMs or mainly support the
single-workflow scheduling by the static or dynamic selec-
tion to execute all tasks in sequence, thus, it will cause these
algorithms to consume more time. Interestingly, the RLC
strategy consumes the least amount of execution time, this
may be due to the better performance of scheduling by

reinforcement learning in the scenario of combing the single
workflow and maximum number of VM instances.

There is the similar situation in Figs. 7a and 7b. The differ-
ence is that using two types of Montage and SIPHT work-
flows makes the scale and complexity of the calculation
bigger in Fig. 7. Therefore, the execution time of all compared
algorithms becomes longer correspondingly, i.e., the time is
from rough 5000MS (55 tasks) to 37500MS (200 tasks), and it
is from rough 1:25� 105 MS to 4� 105 (2000 tasks). However,
our DFSCRL algorithm still takes the least time in all cases.
This also indicates that our algorithm can adapt well to the
input workloads of multiple complex types of workflows.

(3) Makespan
This experiment compares the makespan of executing

multiple workflows by using Eq. (10), and still adopts the
single type of Montage and two types of Montage and
SIPHT multi-workflow applications as the input dataset.
Fig. 8 reveals that with an increase of task sizes from the sin-
gle type of workflows, the makespan obtained by the pro-
posed DFSCRL policy is lowest in all of ones, i.e., our
algorithm achieves best key performance improvement.
The makespan of the RLC and ROSA policies is the closest
to that of ours, and the FCFS algorithm has the worst result.
The reason for the results is similar to the analysis of the
execution time in the previous subsection.

In the scenario of multi-type input workflows as shown in
Fig. 9, even though the task sizes have doubled in comparison
with the single type of workflows, the total trends of make-
span in all of policies are increasing with the growth of task
sizes. However, we can also see that there is a respective low-
est point of the makespan in the six polices except the
DFSCRL under theMedium (200) task sizes from two types of
workflows. This is because that all the compared six algo-
rithms select one type of VM instances or mainly favor the

Fig. 4. The different types of cloud VM instances provisioned by the pro-
posed DFSCRL policy.

Fig. 5. The total number of cloud VM instances generated by the differ-
ent cloud provisioning and scheduling policies.

Fig. 6. Execution time of all tasks forming single type of workflows when
performing the different scheduling algorithms in the cases of Small (25,
50), Medium (100) and Large (1000) task sizes of Montage workflow
applications.

Fig. 7. Execution time of all tasks forming multiple types of workflows
when performing the different scheduling algorithms in the cases of
Small (55, 110), Medium (200) and Large (2000) task sizes of Montage
and SIPHTmulti-workflow applications.
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single-workflow scheduling such that the task scheduling and
execution in the complex multi-type workflow scenario can-
not be handled very stably. The proposed DFSCRL policy has
always a stable minimummakespan value due to the concur-
rent scheduling mode of task branches allocated the respec-
tive suitable types and number of VM instances. Thereinto,
the result of the RLC policy is very close to ours in the case of
Large (2000) task sizes of the multi-workflow applications,
this is because both approaches use the reinforcement learn-
ing method to adaptively provision VM instances for the
workflow scheduling, but as mentioned in the previous sec-
tions, the RLC policy organizes VM instances for the single
type of VMprovisioning, our DFSCRL policy can calculate an
optimal PM coalition to formVM instance bundles for a more
efficient way to organize cloud resources.

(4) Makespan Standard Deviation
Since the limitation of space, we describe this section in

the supplementary material, available online.
(5) Resource Execution Efficiency
Due to the limited space, this section is depicted in the

supplementary material, available online.
(6) Total Renting Cost
As the limitation of space, this section is also expounded

in the supplementary material, available online.

5.2.2 The Experiments Using the Real Container Cloud

In order to carry out the simulation experiments in the real
cloud environment, we adopted the popular container cloud -
Kubernetes as the cloud resource provisioning pool for the
workflow scheduling. The smallest unit of creation, schedul-
ing and management in Kubernetes is called Pod, and a Pod
can contain one or more containers. In the Kubernetes envi-
ronment, different types of Pods resembling VM instances
can be generated to perform multi-workflow scheduling.
Since the results of resource provisioning for the scheduling
of single workflow are similar to those in the case of the cloud
simulator alone, in this section, we only conducted five
groups of comparative experiments in the same multi-work-
flow scenarios, and our DFSCRL policy shows better overall
performance when using real Pod scaling instances. Because
of the limitation of space, the entire experiments of this section
are given in the supplementarymaterial, available online.

6 CONCLUSIONS AND FUTURE WORK

The dynamic provisioning of multi-type resources is a chal-
lenge for the execution of multiple workflows, and there is

not much existing work in this aspect. Toward this end, in
this paper, we put forward an adaptive cloud bundle provi-
sioning and multi-workflow scheduling model to dynami-
cally perform both the horizontal and vertical cloud resource
scaling for the execution of multiple workflows. The DFSCRL
provisioning policy is proposed to realize the resource scaling
according to the inputworkflows,which generates an optimal
multi-type VM instance bundle from the PM coalition formed
in advance. The VM instance bundle is afterwards provi-
sioned to the concurrent execution of multiple workflows.
Theoretical proofs and various experiments show that our
policy and algorithms have better performance than the exist-
ing related methods. The future work will consider the time
cost of data transmission between complex workflow tasks
amongmultiple data centers, aswell as the addition of distrib-
uted agent reinforcement learning to improve the efficiency of
cloud resource provisioning and to further reduce the work-
flow scheduling cost.

REFERENCES

[1] R. Buyya, C. S. Yeo, and S. Venugopal, “Market-oriented cloud
computing: Vision, hype, and reality for delivering it services as
computing utilities,” in Proc. 20th Int. Conf. High Perform. Comput.
Commun., 2008, pp. 5–13.

[2] H. M. Fard, R. Prodan, and T. Fahringer, “A truthful dynamic
workflow scheduling mechanism for commercial multicloud envi-
ronments,” IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 6,
pp. 1203–1212, Jun. 2013.

[3] L. Wu, S. K. Garg, S. Versteeg, and R. Buyya, “SLA-based resource
provisioning for hosted software-as-a-service applications in
cloud computing environments,” IEEE Trans. Serv. Comput.,
vol. 7, no. 3, pp. 465–485, Jul.–Sep. 2014.

[4] Z. Zhu, G. Zhang, M. Li, and X. Liu, “Evolutionary multi-objective
workflow scheduling in cloud,” IEEE Trans. Parallel Distrib. Syst.,
vol. 27, no. 5, pp. 1344–1357, May 2016.

[5] T. Sun, C. Xiao, andX. Xu, “A scheduling algorithmusing sub-dead-
line for workflow applications under budget and deadline con-
strained,”Cluster Comput., vol. 22, no. 1, pp. 5987–5996, Jan. 2018.

[6] K. Li, X. Tang, B. Veeravalli, and K. Li, “Scheduling precedence
constrained stochastic tasks on heterogeneous cluster systems,”
IEEE Trans. Comput., vol. 64, no. 1, pp. 191–204, Jan. 2015.

[7] H. Chen, X. Zhu, H. Guo, J. Zhu, X. Qin, and J.Wu, “Towards energy-
efficient scheduling for real-time tasks under uncertain cloud comput-
ing environment,” J. Syst. Softw., vol. 99, pp. 20–35, Jan. 2015.

[8] Z. Cai, X. Li, R. Ruiz, and Q. Li, “A delay-based dynamic scheduling
algorithm for bag-of-task workflows with stochastic task execution
times in clouds,” Future Gen. Comput. Syst., vol. 71, pp. 57–72, Jun. 2017.

[9] H. Chen, X. Zhu, G. Liu, and W. Pedrycz, “Uncertainty-aware
online scheduling for real-time workflows in cloud service envi-
ronment,” IEEE Trans. Serv. Comput., vol. 14, no. 4, pp. 1167–1178,
Jul./Aug. 2021.

[10] B. P. Rimal and M. Maier, “Workflow scheduling in multi-tenant
cloud computing environments,” IEEE Trans. Parallel Distrib.
Syst., vol. 28, no. 1, pp. 290–304, Jan. 2017.

Fig. 8. Makespan of running single type of workflows in the cases of
Small (25, 50), Medium (100) and Large (1000) task sizes of Montage
workflow applications.

Fig. 9. Makespan of running multiple types of workflows in the cases of
Small (55, 110), Medium (200) and Large (2000) task sizes of Montage
and SIPHTmulti-workflow applications.

WANG ETAL.: ADAPTIVE CLOUD BUNDLE PROVISIONING AND MULTI-WORKFLOW SCHEDULING VIA COALITION REINFORCEMENT 1053

Authorized licensed use limited to: University of Melbourne. Downloaded on June 05,2023 at 08:08:25 UTC from IEEE Xplore.  Restrictions apply. 



[11] D. Cui, Z. Peng, X. Jianbin, B. Xu, and W. Lin, “A reinforcement
learning-based mixed job scheduler scheme for grid or IaaS
cloud,” IEEE Trans. Cloud Comput., vol. 8, no. 4, pp. 1030–1039,
Oct.–Dec. 2020.

[12] A. Alsarhan, A. Itradat, A. Y. Al-Dubai, A. Y. Zomaya, and G.
Min, “Adaptive resource allocation and provisioning in multi-ser-
vice cloud environments,” IEEE Trans. Parallel Distrib. Syst.,
vol. 29, no. 1, pp. 31–42, Jan. 2018.

[13] M. Cheng, J. Li, and S. Nazarian, “DRL-cloud: Deep reinforcement
learning-based resource provisioning and task scheduling for
cloud service providers,” in Proc. 23rd Asia South Pacific Des. Auto-
mat. Conf., 2018, pp. 129–134.

[14] L.Wang andE.Gelenbe, “Adaptive dispatching of tasks in the cloud,”
IEEETrans. Cloud Comput., vol. 6, no. 1, pp. 33–45, Jan.–Mar. 2018.

[15] S. Kardani-Moghaddam, R. Buyya, and K. Ramamohanarao,
“ADRL: A hybrid anomaly-aware deep reinforcement learning-
based resource scaling in clouds,” IEEE Trans. Parallel Distrib.
Syst., vol. 32, no. 3, pp. 514–526, Mar. 2021.

[16] D. S.Kumar andR. J.Kannan, “Reinforcement learning-basedcontroller
for adaptive workflow scheduling in multi-tenant cloud computing,”
Int. J. Elect. Eng. Educ., 2020, doi: 10.1177/0020720919894199.

[17] G. Ismayilov and H. R. Topcuoglu, “Dynamic multi-objective
workflow scheduling for cloud computing based on evolutionary
algorithms,” in Proc. IEEE/ACM Int. Conf. Utility Cloud Comput.
Companion, 2019, pp. 103–108.

[18] M.A.Rodriguez andR. Buyya, “Deadline based resource provisionin-
gand scheduling algorithm for scientific workflows on clouds,” IEEE
Trans. CloudComput., vol. 2, no. 2, pp. 222–235, Apr.–Jun. 2014.

[19] R. Garg and A. K. Singh, “Multi-objective workflow grid schedul-
ing based on discrete particle swarm optimization,” in Proc. Int.
Conf. Swarm, Evol., Memetic Comput., 2011, pp. 183–190.

[20] G. Ritu and A. Singh, “Multi-objective workflow grid scheduling
using "-fuzzy dominance sort based discrete particle swarm opti-
mization,” J. Supercomput., vol. 68, no. 2, pp. 709–732, 2014.

[21] J. Yu, M. Kirley, and R. Buyya, “Multi-objective planning for
workflow execution on grids,” in Proc. 8th IEEE/ACM Int. Conf.
Grid Comput., 2007, pp. 10–17.

[22] H. Topcuoglu, S. Hariri, and M. Y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,”
IEEE Trans. Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274,Mar. 2002.

[23] W. Zheng and R. Sakellariou, “Budget-deadline constrained
workflow planning for admission control,” J. Grid Comput.,
vol. 11, no. 4, pp. 633–651, Dec. 2013.

[24] H. R. Faragardi, M. R. S. Sedghpour, S. Fazliahmadi, T. Fahringer,
and N. Rasouli, “GRP-HEFT: A budget-constrained resource pro-
visioning scheme for workflow scheduling in iaas clouds,” IEEE
Trans. Parallel Distrib. Syst., vol. 31, no. 6, pp. 1239–1254, Jun. 2020.

[25] T. P. Pham, J. J. Durillo, and T. Fahringer, “Predicting workflow task
execution time in the cloud using a two-stage machine learning
approach,” IEEE Trans. Cloud Comput., vol. 8, no. 1, pp. 256–268,
Jan.–Mar. 2020.

[26] Z. Quan, Z. J. Wang, T. Ye, and S. Guo, “Task scheduling for
energy consumption constrained parallel applications on hetero-
geneous computing systems,” IEEE Trans. Parallel Distrib. Syst.,
vol. 31, no. 5, pp. 1165–1182, May 2020.

[27] T. Kwok and A. Mohindra, “Resource calculations with con-
straints, and placement of tenants and instances for multi-tenant
saas applications,” in Proc. Int. Conf. Serv.-Oriented Comput., 2008,
pp. 633–648.

[28] W. T. Tsai, X. Sun, Q. Shao, and G. Qi, “Two-tier multi-tenancy scal-
ing and load balancing,” in Proc. 7th IEEE Int. Conf. e- Bus. Eng., 2010,
pp. 484–489.

[29] J. Espadas,A.Molina, G. Jimenez,M.Molina, R. Ramirez, andD. Con-
cha, “A tenant-based resource allocation model for scaling software-
as-a-service applications over cloud computing infrastructures,”
Future Gen. Comput. Syst., vol. 29, no. 1, pp. 273–286, Jan. 2013.

[30] L. Mashayekhy, M. M. Nejad, and D. Grosu, “Cloud federations in
the sky: Formation game and mechanism,” IEEE Trans. Cloud
Comput., vol. 3, no. 1, pp. 14–27, Jan.–Mar. 2015.

[31] J. Zhu, H. Song, Y. Jiang, and B. Li, “On complex tasks scheduling
scheme in cloud market based on coalition formation,” Comput.
Elect. Eng., vol. 58, pp. 465–476, Feb. 2017.

[32] D. C. Marinescu, A. Paya, and J. P. Morrison, “A cloud reservation
system for Big Data applications,” IEEE Trans. Parallel Distrib.
Syst., vol. 28, no. 3, pp. 606–618, Mar. 2017.

[33] W. Chen and E. Deelman, “WorkflowSim: A toolkit for simulating
scientific workflows in distributed environments,” in Proc. IEEE
8th Int. Conf. e- Sci., 2012, pp. 1–8.

[34] R.N.Calheiros, R. Ranjan,A. Beloglazov,C.A.DeRose, andR. Buyya,
“CloudSim: A toolkit for modeling and simulation of cloud comput-
ing environments and evaluation of resource provisioning algo-
rithms,” Softw. Pract. Experience, vol. 41, no. 1, pp. 23–50, Jan. 2011.

[35] H. Chen, J. Wen, W. Pedrycz, and G. Wu, “Big data processing
workflows oriented real-time scheduling algorithm using task-
duplication in geo-distributed clouds,” IEEE Trans. Big Data,
vol. 6, no. 1, pp. 131–144, Mar. 2020.

[36] F. Dong and S. G. Akl, “Scheduling algorithms for grid comput-
ing: State of the art and open problems,” Tech. Rep. Open Issues
Grid Scheduling Workshop, School of Computing, Queen’s Uni-
versity, Kingston, Ontario, CA, Tech. Rep. 2006–504, 2006.

[37] W. Li and H. Shi, “Dynamic load balancing algorithm based on
FCFS,” in Proc. IEEE 4th Int. Conf. Innov. Comput., Inf. Control,
2009, pp. 1528–1531.

[38] Amazon. Amazon ec2 on-demand pricing. Jul. 2020. [Online].
Available: https://aws.amazon.com/ec2/pricing/on-demand/

Xiaogang Wang (Member, IEEE) received the
PhD degree in computer science and technology
from Shanghai Jiao Tong University, China, in
2018. He is currently an associate professor with
the School of Electronics and Information, Shang-
hai Dianji University, Shanghai, China. He was a
visiting research scholar with the CLOUDS Labora-
tory in the School of Computing and Information
Systems, University of Melbourne, Australia, from
September 2019 to September 2020. He has pub-
lished more than 20 papers in some journals and

conferences such as the IEEE Transactions on Services Computing, the
Journal of Systems and Software, Future Generation Computer Systems,
Applied Intelligence, WI-IAT, APSCC, CSCWD, and ICSAI. His main
research interests include cloud computing, edge computing, service com-
puting and multi-agent systems. He is a member of the China Computer
Federation.

Jian Cao (Senior Member) received the PhD
degree from the Nanjing University of Science and
Technology, in 2000. He is currently a professor
with the Department of Computer Science and
Engineering, Shanghai Jiao Tong University. His
main research interests include service computing,
cloud computing, cooperative information systems
and software engineering. He has published more
than 150 papers in prestigious journals, such as
IEEE Transactions on Parallel and Distributed
Systems, IEEE Transactions on Mobile Comput-

ing, Journal of Systems and Software, Future Generation Computer Sys-
tems. He is a distinguishedmember of theChinaComputer Federation.

Rajkumar Buyya (Fellow, IEEE) received the PhD
degree in computer science and software engineer-
ing from Monash University, Melbourne, Australia,
in 2002. He is a Redmond Barry distinguished pro-
fessor and director of the Cloud Computing and
Distributed Systems (CLOUDS) Laboratory, the
University of Melbourne, Australia. He served as a
Future fellow of the Australian Research Council
during 2012-2016. He has authored more than 625
publications and seven textbooks. He is one of the
highly cited authors in computer science and soft-

ware engineering worldwide (h-index=155, g-index=334, 126,300+ cita-
tions). He served as the founding editor-in-chief of the IEEE Transactions
onCloudComputing. He is currently serving as co-editor-in-chief of Journal
of Software: Practice and Experience.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

1054 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 4, APRIL 2023

Authorized licensed use limited to: University of Melbourne. Downloaded on June 05,2023 at 08:08:25 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1177/0020720919894199
https://aws.amazon.com/ec2/pricing/on-demand/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


