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Abstract—Reliable completion of the computing jobs through
Amazon spot instances (SIs) with proper bargaining is challeng-
ing. Therefore, an SI bidding system is developed for deadline
constrained jobs considering both the conditions of the market
and the condition of the user. The system tries to bargain with
the provider by bidding low when the task is not urgent. After
that, the system increases the price or the price distribution
gradually when the progress is lower than required. To calculate
the bid distribution, we compute the probability density of the
price after five minutes. Then, we apply our developed equations
to compute bid-prices from the probability density function.
Equations are easily interpretable to both humans and machines.
We also consider long-term probability distributions of the prices
for the reliable completion of the job. Tasks with several days
deadline are prescribed to bid considering the daily price-curve.
According to the evaluation of Amazon SI price, the proposed
system effectively saves 79%-87% for jobs with several hours
deadline and saves 82%-100% for jobs with several days deadline
compared to the on-demand instances. Moreover, our algorithm
helps all bidders by keeping the price low.

Keywords—Amazon EC2, Spot Instance Management, Proba-
bility Density, Truthful Bidding, Cloud Bargaining.

I. INTRODUCTION

Computation extensive jobs are increasingly being executed
on public cloud platforms such as the Amazon Elastic Com-
pute Cloud (Amazon EC2) due to several advantages. These
include reliability, security, zero maintenance, meeting variable
demand, the payment for usage only etc. In order to meet the
peak demand of on-demand and reserved instances reliably,
Amazon has installed abundant EC2 instances which have
resulted in a large number of unused EC2 instances. Amazon
has developed an auction-based selling system and through
the system, unused instances, known as spot instances (SIs)
can be used at a much lower price most of the time [1],
[2]. The auction system of Amazon is similar to the uniform
price auction or the clearing price auction [3] that involved
several uncertainties; such as- variable availability of SI and
it is not stated whether providers are looking for the profit
maximization or the resource utilization [4].

Although the spot instances (SIs) are failure prone, their
price is usually 80-90% lower compared to the on-demand in-
stances [5]–[9]. That cost efficiency brings the interest of many
researchers in cloud computing and economics; they develop

algorithms for the efficient use of SIs. Through efficient system
development with the help of checkpointing [10] and bidding
[11] strategies, researchers have executed deadline constrained
jobs with a satisfactory quality of services (QoS) [12]. Re-
searchers are also aiming to finish 80-90% of their job within
the soft deadline and also, trying to finish the rest within the
105% time of the soft deadline. Although the QoS is slightly
degraded with these systems, they are helping others with the
bargaining [13] and keeping the price lower [14]. Many jobs
do not have any hard deadline, such as scientific computing
for research; but a good turnaround time with cost efficiency
is expected and researchers are also developing algorithms for
them [15]. In order to help algorithm development groups and
skilled bidders, some research only characterizes the pricing
of different SIs [16], [17]. In summary, the aim of everyone is
to perform the cost minimization [18]–[20] through SIs with
a desirable QoS.

II. BACKGROUND

A. Importance of the Truthful Bidding: A Numerical Example

Let us consider three bidders bids for two tickets. They
follow rules of the uniform price auction system with the
lowest winning bid payment method. Their bids are $1, $2
& $5 respectively and the ticket seller wants to maximize his
profit without considering the resource utilization. Therefore,
he sets the price at $5 and only the third bidder gets the ticket.
As a result, one ticket is wasted. Moreover, if the third user
bids higher only to ensure the ticket and his utility for the
ticket is lower than $5, he is penalized with the price.

Although the Amazon EC2 SI bidding system considers
a capacity function to provide some incentives to users, the
weight of incentives can be low. In addition, the average
SI price is roughly 10-20% of the on-demand price and the
maximum limit for the bid is 10 times the on-demand price
[1]. As a result, the bidding of 1-2% careless bidders can
potentially raise the spot price to a value 10 times that of the
on-demand price. In a documented situation, the spot price rose
to $999.99 per hour where the average price was about $0.44
per hour [21]. That happened due to a few careless bidders
bidding at that high price to ensure the continuous availability
of SIs with possible price discounts. In such a situation, all
bidders culpable or not suffers.



B. Motivation towards the Bidding Strategy Development

Existing bidding strategies are relying on the point pre-
diction which is a value corresponds to the minimum error
(RMSE, MAPE etc.) [22]–[25]. Bidding at the point prediction
provides roughly a 50% probability of winning the bid. In
addition, an interruption may occur in the middle. Therefore,
spot instances (SIs) are not reliable to execute urgent tasks.
However, the task is accomplishable when the time to the
deadline is much higher compared to the required completion
time. Moreover, users may get free partial hours and the
payment gets reduced. Therefore, both the urgency of the task
and the bid predictions with different assurances of winning
the bid are needed.

C. Probable Optimization Function of Amazon

Although Amazon has not disclosed the optimization func-
tions for the price on their website, several research groups
have developed optimization functions based on the historical
data. The optimization function consists of two major parts
[26], commonly known as revenue maximization and capacity
utilization [27], [28]. The revenue maximization function is the
multiplication of the number of accepted SIs and the price of
SI. In order to increase the user-friendliness of the EC2 bidding
system, Amazon is also considering a capacity maximization
function. Capacity optimization function increases logarith-
mically with the increment of the number of accepted bids.
Equation (1) presents the profit function, equation (2) presents
the capacity function and the Amazon EC2 SI provider’s
probable optimization function is the maximization of the sum
of these functions, presented as equation (3).

Profit Function = π(t)N(t) (1)

Capacity Function = log(1 +N(t)) (2)

max
π(t)

π(t)N(t) + βlog(1 +N(t)) (3)

where, N(t) is the number of accepted SIs, π(t) be the price
per accepted SI, and β is the weight of the utilization term.

The following equation visualizes the subtle difference in
price and the number of users:

max
π(t)

(π(t)+Δπ)(N(t)−ΔN)+βlog(1+N(t)−ΔN) (4)

Here, the number of users is decreased by ΔN due to Δπ
price increase.

Although the capacity utilization function is embedded
with the price optimization equation to reduce unexpected ter-
minations, it does not reflect the user-friendliness when a large
number of users is already available; when ΔN < N(t)/10.
However, when the number of accepted bids is small compared
to the change ΔN > N(t), the capacity function dominates
the optimization equation.

In summary, the optimization equation tries to increase the
number of accepted bids when the number of accepted bids
is too low but the equation only maximizes the profit when a
large number of bids are already accepted.

Fig. 1. Bidding strategy for different users. User-1 and user-2 are the type-1
users; one is using a reliable cloud instance as a master. User-3, user-4, and
user-5 are type-2 users. They can use different masters and the value of their
bid depends on how close the deadline is.

III. SI BIDDING STRATEGY BASED ON USERS DEMAND

AND MARKET CONDITION

The provider’s probable optimization formula is presented
in the previous section (Section II). An individual user can
not change the formula but he can bargain by submitting
bids intelligently. This section presents an efficient bidding
strategy of the user that can bring both profit maximization
and capacity maximization at a slightly lower price compared
to the expected spot price.

A. Who can Bargain through the Bidding

The users do not have any permanent server or a low
configuration computing machine for monitoring bids cannot
go towards the risky SI bidding. A user bids at the on-demand
value may also lose access to the server during the execution
[29]. Jobs with switching masters eventually terminate and
require relaunching because it can also potentially happen that
servers of all configurations are claiming more than the on-
demand value. When there is no computing machine left for re-
bidding and re-launching the job, human involvement requires
for the re-launching. As humans cannot work for 24-hours,
there is a delay for the re-launching and the progress of the
task suffer until the re-launch time. Also, bidding at a too high
price can potentially harm all bidders [30].

The base server or the low configuration bidding and path
forwarding machine is the master or the master of masters.
That machine can be a physical computing machine, owned
by the user or it can be an on-demand or a reserved instance
in the cloud. Through the permanent computing machine, the
users can bid for spot instances (SI). Based on the nature of
their jobs, we classify biddable users into two categories-

1) Users with parallelizable tasks
The users’ task needs to be large enough to place
multiple bids. The user needs to distribute bidding
prices so that the providers’ optimization occurs at



Fig. 2. A rough sketch of the prediction probability (black dashed line),
the cumulative probability distribution (narrow black line) and the bidding
distribution (gray line).

a slightly lower price. In figure 1, user-1 and 2 are
type-1 users.

2) Users with nonparallelizable tasks
Although the user cannot set a number of bids, he
can still bid intelligently. However, the user needs
a longer deadline to finish the job to bargain. In
figure 1, user-3, 4 and 5 are type-2 users. When the
remaining parallelizable job is accomplishable in an
SI within one hour, the user may consider himself as
a type-2 user to avoid overbooking.

In figure 1, user-2, 3 and 4 use personal computing machine
and user-1 and 5 use a reliable cloud instance as a master.

B. Bidding Strategy for the Type 1 User

1) Graphical Explanation: Firstly, the bidding strategy is
graphically presented in figure 2 for the ease of readers. The
providers’ optimization formula sets a price which aims the
maximization of benefits with little tolerance for the social
welfare. The value, Profit Function is the multiplication of
the number of users and profit per user. The social welfare
value increases logarithmically with the number of active
users of the corresponding SI. Both of the social welfare and
the profit maximization are maximized at a slightly lower
SI price when a large number of users are bidding at a
slightly lower price. Therefore, we propose the providers’
optimization function presented as the equation (3). Black
dashed curve in figure (2) represents a rough sketch presenting
the probability distribution of an SI price. The thinner black
curve represents the cumulative distribution of probability and
the gray curve represents a wise bidding distribution from the
bidders’ perspective.

Type-1 users should also bid for all of their jobs. If one
user bids for half of the spot instance for the current hour
and keeps half instances for the next hour, his influences the
auction market poorly. Therefore, bidding for more instances
is better unless it is an overbooking.

2) Equation for Automated Bidding: Although the graphi-
cal representation in Fig. 2 is convenient to human, an equation
is handy for automated machines to generate the bidding
distribution from the probability distribution. Eqn. 5 presents
a formulation for calculating the bidding distribution from the
cumulative probability distribution of price.

ith bid = C−1
pp ({ i

NSI + 1
}n) (5)

n = 2× (1− 1

η × TD
) (6)

were, ith bid is the price of ith server of the bidding system,
CPP (Price) means the percent cumulative prediction proba-
bility from 0 to that Price and C−1

PP (x) means the price at
the 100x percent cumulative prediction probability. NSI is the
number of servers currently bidding and n is the skew factor,
TD is the deadline in full hour.

The value i
NSI+1 is always lower than 1 and any power

(n > 1) of that value is less than this value and the bid
distribution in equation (5) becomes lower than the probability
distribution. The skew factor n ≈ 2 set when the deadline is
more than several hours and the value decreases over time,
following the equation (6). The fitting parameter η is kept 1,
but users can change it depending on the situation and their
priority.

Users, working with a large number of SI can increase i
by a certain number a and set the bid of the next a instances
with the same value, calculated by the equation (5).

3) Bidding Again or Not: When a sufficient number of bids
are accepted, the bidder needs to keep bids of lower prices.
That can potentially bring a price reduction. When running SIs
accomplish a significant portion of the task, the user does not
need all of the bids for the next hour. Therefore, he needs to
remove a few unaccepted bids of higher prices. However, when
the user fails to win sufficient bids, he needs to remove some of
the unaccepted bids of lower prices and re-bid maintaining the
new bid distribution after five minutes. Bidding by following
the curve, some of those bids become successful even when
the price is higher than the mean value of the probability
distribution. Therefore, the user finishes a portion of his task
when the price is much higher than the expected [31], [32].

4) Calling On-demand Instances During the Urgency: The
user needs to consider the adverse scenarios to complete jobs
reliably. The deadline can be very close to the minimum time,
required to finish the job. In such situation, the user may
not rely on SIs. He needs to buy one on-demand instance.
However, the probability of happening such situation is quite
low. Suppose the user got 4 hours for completing the job
and therefore, he bids for jobs with n=1.5, probabilistically
37% bids are accepted. When the acceptance rate is low, he
continuously closes open instances and re-bids with 5-minutes
interval. A few tasks or no task wait for the final hour [33].

C. Bidding Strategy for the Type 2 User

Type-2 users can bid for only one instance. If they are
bidding for two instances and winning both of the bids, one
instance becomes a waste. Therefore, type-2 users usually bid
for a single instance at a slightly higher price to ensure the
win of the bid. However, if a large number of type-2 users bid
at a higher price, the price can potentially hike following the
providers’ optimization formula. To bargain with the provider
through the bidding of one instance, the user can follow the
equation (7).

Pricebid = C−1
PP (min{TR + TI + TIN + TS

TD
+ θ, 1}) (7)

were, Pricebid is the bidding price. CPP (Price) means the
percent cumulative prediction probability from 0 to that Price



Fig. 3. The method of determining the performance; bid success, interruption,
price etc.

and C−1
PP (x) means the price at 100x percent cumulative

prediction probability. TR is the time required to complete
the remaining job; TI is the initialization time. Figure 2 can
provide the readers an easier understanding about CPP (Price)
and C−1

PP (x) functions. TIN is the interval at which the
progress is saved; TD is the time until the deadline; TS delay
due to each saving operation. Finally a margin θ is kept in order
to ensure that there is a sufficient gap between TR+TI +TIN

and TD. Keeping a large θ (θ > 5%) reduce the probability
of calling an on-demand server. However, keeping a too large
θ can potentially destroy the bargaining. When (θ > 50%),
the users always bids at a higher price compared to the point
prediction. In our previous experiment [34], the value of θ
is kept θ = 10%. However, by doing so, the lowest 10%
part of the cumulative probability remains out of the feasible
bidding region. Therefore the equation 8 is introduced for the
calculation of theta. In this equation, the skew factor n = 2
for normal conditions and a large negative power of 2 is close
to 0.

θ = n
− TD

TR+TI+TIN+TS (8)

According to equation 8, the value of margin (θ) is close
to zero when the deadline (TD) is much higher than the time,
required for completing the job. When the deadline becomes
3 times higher than the sum of (TR + TI + TIN + TS), the
value of theta becomes 12.5% and theta becomes 25% and
50% for TD/(TR + TI + TIN + TS)= 2 and 1 respectively. In
fact, when the ratio becomes less than or equal to 2, the user
starts to bid at 100% cumulative probability distribution value
and the user needs to go for the on-demand instance when the
ratio becomes 1. As a result, the user bargains based on both
the urgency of his task and the condition of the market.

D. Probability Density Calculation for SI Bidding

Currently-available SI bidding techniques mostly use the
point prediction or a sufficiently high value that ensures the
availability of the instance for a certain amount of time
[22]. However, both techniques have several limitations. The

point prediction is a value corresponds to the minimum error
(RMSE, MAPE etc.) and the value is close to the median.
There is roughly a 50% probability that the price is lower
than the point prediction [35]. Point prediction has no relation
to the users’ urgency of the task. The bidders do not have
sufficient amount of time to complete the task cannot rely
on the point prediction. The point prediction does not contain
any information about the heteroscedastic uncertainty [36]–
[39]. Also, bidding at a significantly higher price results in
the absence of negotiation. That can potentially bring the
provider’s optimization at a higher price and the provider can
potentially maximize the revenue with a fewer number of
customers without considering unused instances and waiting
customers. That is why probability density based bidding
strategies are developed, those can negotiate with the provider
depending on the condition of the market and the urgency of
the bidder. The method [40] of constructing probability density
through historical similarities is applied to evaluate the result.

IV. PERFORMANCE EVALUATION

As we design the proposed algorithm in such a way that
everyone gets the benefit when everyone follows the approach.
We can not observe the real advantages when others are not
using the algorithm. On the other hand, no algorithm become
popular unless a few individuals get benefits by following it.
We evaluate the performance with the help of existing Amazon
trace of one high configuration (c4.4xlarge Linux) and one
lower configuration (c4.2xlarge Linux) servers. Figure 3
presents the spot price of a typical hour and cumulative
probability distribution curves from (c4.2xlarge Linux) trace.
Bids at lower than or equal to 30% cumulative probability
values fail. Bids at 40% and 50% values are interrupted after
approximately 25 minutes and bids at higher values progress
without interruption. Random points are picked from the
curves to evaluate performance matrices; such as- bid success,
interruption, and price.

A. Performance Evaluation of Jobs with Shorter Deadline
(<24 hr.)

Results of bidding at different cumulative probabilities of
the price after 5 minutes are analyzed from Amazon traces
are presented as Table-I and Table-II. The average results are
similar to the results of conventional techniques, resulting in
about 85% savings on average compared to the on-demand
prices. In addition, the proposed method helps all users by
keeping the price lower. However, extreme bargaining degrades
the quality of service (QoS) through bid-failure and unexpected
terminations. Thus our result analysis section considers two
major concerns- the QoS and the cost efficiency.

1) Quality of Service (QoS): A certain number of dedicated
servers can provide the optimum QoS. However, unreliable
spot instances are selected due to the cost efficiency and that
results in a slightly degraded QoS. An acceptable degradation
of QoS depends on a certain amount of bid acceptance and
less-interrupted service of the instance. When an instance is
terminated due to the price increase, the job requires saving
the progress during an unexpected termination. Due to these
facts, the percentage of successful bids, the percentage of
interruption, and the average availability are computed as
indicators of QoS.



TABLE I.
ANALYSIS OF BIDDING AT DIFFERENT CUMULATIVE PROBABILITY

ON c4.4xlarge Linux SPOT INSTANCES OF US EAST (N. VIRGINIA)

Cumulative Successful Interr- Average Effective Savings
Probability Bids uption Lifetime Price

(%) (%) (minutes) (per hr.) (%)

0% 0.014 99.89 0.6 $0.0008 99.89

10% 11.91 99.50 3.5 $0.0021 99.73

20% 36.83 97.08 4.4 $0.0140 98.24

30% 48.75 71.47 18.0 $0.0977 87.73

40% 53.21 70.32 20.30 $0.1169 85.31

50% 63.71 54.66 30.16 $0.1265 84.10

60% 81.63 43.91 33.75 $0.1410 82.28

70% 90.59 29.46 37.77 $0.1470 81.53

80% 99.55 4.001 58.38 $0.1574 80.23

90% 99.86 0.858 59.80 $0.1708 78.54

100% 99.91 0.438 59.82 $0.1722 78.37

Average 61.52 46.85 29.80 $0.1042 86.91

TABLE II.
ANALYSIS OF BIDDING AT DIFFERENT CUMULATIVE PROBABILITY

ON c4.2xlarge Linux SPOT INSTANCES OF US EAST (N. VIRGINIA)

Cumulative Successful Interr- Average Effective Savings
Probability Bids uption Lifetime Price

(%) (%) (minutes) (per hr.) (%)

0% 0.009 100 0.005 $0.00 100

10% 06.91 72.13 04.49 $0.0066 98.34

20% 18.91 54.74 10.94 $0.0140 96.48

30% 27.87 35.36 11.84 $0.0479 87.96

40% 36.87 31.22 16.45 $0.0525 86.80

50% 45.87 21.22 26.15 $0.0626 84.27

60% 54.83 12.22 28.89 $0.0757 80.98

70% 72.67 11.89 36.30 $0.0752 81.11

80% 81.63 07.07 45.81 $0.0783 80.32

90% 81.63 02.98 50.53 $0.0781 80.37

100% 99.89 0.455 59.95 $0.0844 78.79

Average 48.93 22.84 25.33 $0.0577 85.50

Although the cumulative prediction probability of a certain
percentage means the probability of the acceptance of the bid,
that does not happen in most of the scenarios due to several
reasons. There are two different cumulative probabilities- from
the curve fitting and from the daily and weekly patterns.
Among these two approaches, the curve fitting based prediction
closely maintains the relationship between the bid acceptance
and the cumulative probability. However, only the curve fitting
is not reliable, as it is vulnerable to the market manipulation.
As a result, a different acceptance distribution is observed
compared to the cumulative probability density. The second
column of both Table-I and Table-II present the percentage
of successful bids. The percentage of successful bids always
increases with the increase in the cumulative probability.

Less interruption is required for a high QoS. The third
column of both Table-I and Table-II present percentage in-
terruption for the corresponding spot instance. The percent-
age interruption is calculated as the ratio of the number
of instances, interrupted within one hour of the acceptance
and the number of accepted bids. According to our results,
the percentage interruption is usually very high (close to
100%) while bidding at a very low price (0%-10% cumulative
probability). Although the percentage interruption degrades the
QoS, it is economically beneficial due to free partial hours.

The average availability value is calculated as the ratio of
the sum of the lifetime of accepted bids in minutes (without
the extra 2 minutes) and the total number of bids. As the
result of the average duration can be significantly increased by

a few longer-lasting bids. To overcome that limitation, when
an instance survives for more than 60 minutes the lifetime
is considered to be 60 minutes. When the average time is x
minutes for a certain bid, the rough statistical progress from
the bid is also x minutes. The fourth column of both Table-I
and Table-II presents the average lifetime.

2) Cost Efficiency: The average price per hour in dollars is
evaluated as the ratio of associated cost from non-terminated
instances and the summation of lifetimes in hours. As a result,
the average effective price becomes much lower when the
percentage of interruption is higher. However, the result may
vary from time to time. For example, while bidding at 0%
cumulative probability, c4.2xlarge instance received one bid
and the bid is terminated after 10 minutes. Although bidding at
such low cumulative probability results in a very poor QoS, the
corresponding cost can be zero. Moreover, bidding at a lower
value usually costs less but bidding at the median value can
be more beneficial due to the partially used cost-free hours.

The last column of both Table-I and Table-II presents the
percentage saving compared to the on-demand instances. The
prices of c4.2xlarge and c4.4xlarge on-demand instances of
US East (N. Virginia) location are $0.398 and $0.796 re-
spectively. The proposed algorithm saves 86.91% and 85.50%
respectively compared to the cost of the on-demand instances.

B. Performance with Distributed Bids

The information provided in Table-I and Table-II can
directly help the type-2 user, bidding for a single instance.
However, many customers of the Amazon SI are cloud brokers.
Many of them have small tasks with varying deadlines. They
also need a number of instances at a time. Some other users of
scientific calculations can take multiple instances and perform
the parallel execution but they want to complete the job within
a few hours. These users are the type-1 users, according to
our definition. They are prescribed to follow equation 5 for
the calculation of their bid prices. The type-1 user gets the
average performance when n = 1. The value of n varies
over time based on the urgency of the task. When the task is
not urgent, the value of n becomes close to 2. The proposed
bidding system is designed to keep the value of n greater than
1 for most of the time, that helps all bidders by lowering the
SI price. The left skewness is also observed in figure 4(a)-
(c). The bid distributions in these figures are obtained as the
percentile probability distribution according to equation (9); a
part of the equation (5).

ith Bid in Cumulative Probability = { i

NSI + 1
}n (9)

NSI is assumed as 1000 and the value of i is iterated from
1 to 1000. Bar charts are drawn from the bid distribution. As
the user may approach with any arbitrary number of bids, bar
charts, containing the bid count are normalized by the total
number of bids. When the probability distribution function is
a Gaussian one, n > 1 makes the bid distribution a negatively
skewed Gaussian distribution, n < 1 results in a positively
skewed Gaussian distribution, and n = 1 makes the bid
distribution the same as the probability distribution.



Fig. 4. Effective performance analysis for different bid distribution. Normalized bid distributions are obtained from equation 5. (a) n = 2, (b) n = 1.5, (c)
n = 1.2, (d) n = 1, (e) n = 0.5, and (f) n = 0.25.

TABLE III.
MINIMUM BID PRICES REQUIRED FOR CERTAIN AVAILABILITY OF THE INSTANCE DURING A DAY (24 HOUR PERIOD)

Required Availability of the Instance in Hours During One Day (24 hours) for c4.4xlarge Linux Spot Instances of US East (N. Virginia)
Date 1 hr. 2 hr. 4 hr. 8 hr.

Bid Price Payment Savings Bid Price Payment Savings Bid Price Payment Savings Bid Price Payment Savings

11-03-’17 $0.1606 $0 100% $0.1648 $0.1641 89.7% $0.1687 $0.1641 94.9% $0.1744 $0.3289 94.8%

12-03-’17 $0.1643 $0 100% $0.1670 $0 100% $0.1713 $0.1643 94.8% $0.1797 $0.6812 89.3%

13-03-’17 $0.1693 $0.1677 78.9% $0.1706 $0.1677 89.5% $0.1769 $0.1677 94.7% $0.1816 $0.3457 94.6%

14-03-’17 $0.1707 $0 100% $0.1727 $0 100% $0.1775 $0.1725 94.06% $0.1819 $0.5278 86.5%

15-03-’17 $0.1547 $0 100% $0.1563 $0.1551 90.3% $0.1591 $0.1545 95.1% $0.1662 $0.6372 90.0%

16-03-’17 $0.1479 $0 100% $0.1485 $0.1475 90.7% $0.1508 $0.4453 86.1% $0.1562 $1.0556 83.4%

17-03-’17 $0.1582 $0 100% $0.1634 $0 100% $0.1687 $0 100% $0.1740 $0.6159 90.3%

11-04-’17 $0.2726 $0 100% $0.2748 $0 100% $0.2767 $0.5477 82.8% $0.2779 $1.3732 78.4%

TABLE IV.
PERFORMANCE EVALUATION OF JOBS WITH LONGER DEADLINE:

BIDDING AT A PRICE, PROVIDED CERTAIN COVERAGE ON THE PREVIOUS-DAY.

Date Bid Price Availability (Previous Day) Availability (Current Day) Payment Savings min(
AvailabilityCurrent

AvailabilityPrevious

, 1)× Savings

12-03-’17 $0.1687 4 hr. 00 min. 2 hr. 15 min. $0 100% 56.25%
$0.1744 8 hr. 00 min. 5 hr. 30 min. $0.1692 96.1% 66.07%

13-03-’17 $0.1713 4 hr. 05 min. 2 hr. 35 min. $0.169 91.8% 58.08%
$0.1797 8 hr. 00 min. 6 hr. 30 min. $0.169 96.7% 78.57%

14-03-’17 $0.1769 4 hr. 00 min. 4 hr. 10 min. $0 100% 100%
$0.1816 8 hr. 10 min. 7 hr. 50 min. $0.3489 94.6% 09.74%

15-03-’17 $0.1775 4 hr. 10 min. 18 hr. 15 min. $1.9559 86.5% 86.50%
$0.1819 8 hr. 15 min. 20 hr. 40 min. $3.0034 81.7% 81.70%

16-03-’17 $0.1591 4 hr. 00 min. 10 hr. 45 min. $1.0499 87.7% 87.70%
$0.1662 8 hr. 25 min. 15 hr. 25 min. $1.5099 87.7% 87.70%

17-03-’17 $0.1508 4 hr. 05 min. 0 hr. 10 min. $0 100% 04.08%
$0.1562 8 hr. 10 min. 0 hr. 50 min. $0 100% 10.20%

18-03-’17 $0.1508 4 hr. 05 min. 3 hr. 15 min. $0 100% 79.59%
$0.1562 8 hr. 00 min. 4 hr. 25 min. $0.1676 95.3% 52.61%

Average – 4 hr. 04 min. 5 hr. 54 min. $0.4535 90.3% 90.33%
Performance – 8 hr. 08 min. 8 hr. 44 min. $0.7908 88.6% 88.56%



Figure 4 presents the bar chart of the normalized bid
distribution for different values of n. According to graphs, the
bidding density decreases with the increment the cumulative
probability exponentially with the higher value of n and
increases with the increment of cumulative probability expo-
nentially with the lower value of n. Figure 4(a) presents the bar
chart of the normalized bid distribution for n = 2. As most of
the bids are at a lower cumulative probability many instances
are terminated in the middle of an execution as a result, the
savings compared to the on-demand is higher. However, the
average lifetime of the bid is only 20.9 minutes. Figure 4(b)
presents the bar chart of the normalized bid distribution for
n = 1.5. Savings is slightly lower compared to n = 2, but
the average lifetime of instances have increased to 25 minutes
due to the low termination probability. Similarly, figure 4(c)-
(f) are presenting bar charts of the normalized bid distribution
for n = 1.2, n = 1, n = 0.5, and n = 0.25 respectively. The
savings decreases and the average lifetime increases with the
decrement of n. We do not suggest any particular value of n
but the user needs to start bidding from a higher value of n
and move towards lower values of n for the social welfare and
proper bargaining.

C. Performance Evaluation of Jobs with Longer Deadline
(≥24 hr.)

Many scientific computations take several weeks in a low
configuration server. Moreover, most research organizations do
not need a high-end server for the whole year. They need time
to plan the experiment and their bought servers become unuti-
lized during the planning. Moreover, more researchers want to
use the computing machine when the deadline for any project
submission becomes close. These scientific computations, such
as neural network training and atomistic simulations can allow
several days of delay when the price is much cheaper. They
require a certain amount of the instance occupancy for the
completion. Therefore, the performance is evaluated in terms
of the availability and the cost efficiency.

The proposed strategy for longer deadline jobs is to bid
at a value that ensured certain availability on the previous
day. Table III presents minimum bid prices required for certain
availability of the instance during a day, corresponding pay-
ments, and savings. However, the price-curve varies from day
to day. As the price curve of the next 24 hours is unknown,
a successful example of previous day may fail to ensure the
same availability. We suggest users for bidding at a price that
covered two-time availability of the instance on the previous
day compared to the required availability. Table IV presents
the availability of the instance and corresponding savings while
bidding with the 4hr. and 8hr. availability prices; obtained in
the Table III.

1) Availability: The daily price-curve does not follow the
exact pattern due to some random inauguration of jobs, weekly
patterns, and yearly patterns. The fourth column of Table
IV presents the availability of the instance while bidding at
the 4-hour and 8-hour availability of the previous day. When
the same pattern is repeated, the availability is also repeated.
When the price becomes lower, the availability increases.
When the price increases, the availability decreases. When
a job is submitted considering the bid of the previous day,
the job may fail to finish. Therefore, the user needs to re-bid

after 24 hours by considering the price of recent 24 hours.
Moreover, when the deadline is just several hours higher than
the required time for the completion, the user needs to bid
considering probability density of price, as mentioned in the
first subsection.

2) Cost Efficiency: The fifth column of Table IV presents
the payment and the sixth column presents the percentage
savings. Through the process, we achieved 82% to 100%
savings compared to the on-demand price($0.796). However,
the savings are higher due to free partial hours. In some
situations, the payment is $0 but the instance is available for
less than one hour. To evaluate the performance, the savings is
multiplied by the percentage availability and we achieve 4% to
100% performance. In one day the instance was available for
more than the expected availability with frequent interruption.
Therefore, no charging is experienced. We can expect that
performance parameter effective when the job can be saved
within the two-minute warning period.

D. Comparison between c4.2xlarge and c4.4xlarge Bidding

The functional difference between c4.2xlarge and
c4.4xlarge instances are their capability. The c4.4xlarge
have 2 times the virtual central processing unit, memory and
bandwidth compared to a c4.2xlarge instance. According to
the pricing curve analysis of different Amazon EC2 spot
instances, the higher configuration servers have higher fluc-
tuations in price. Therefore, the rate of interruption is higher
for the c4.4xlarge spot instances compared to c4.2xlarge;
respectively 46.85% and 22.84% on average. However, main-
taining a reasonable QoS with a high-performance non-reliable
machine is more challenging, as a long time is required for the
initialization of the job and saving the progress. As a result,
many users of a high configuration machine agrees to increase
the bid price when there is a slight price increase. It is good
to increase the price when a significant amount of progress is
not saved. The user needs to save the task immediately and
needs to leave the instance during the further increase of the
price. When users do not terminate, the bargaining does not
exist.

V. CONCLUSION

The bargainer needs to know both the conditions of the
market and his urgency. A proper bargaining can only bring
the social welfare, resulting in an optimal profit to all users.
In fact, there is no optimum thing in the market of bargaining.
The user may refuse to pay a lower price when the task is
not urgent. The user is willing to complete the task at a higher
price when the task becomes urgent. Users need both short and
long-term predictions for both the market and users’ incoming
tasks for a cost-efficient and reliable completion of their task.
Our proposed algorithm proposes easily interpretable formulas
for the bidding with the consideration of all of these issues.

From the providers’ point of view, the provider can always
modify their optimization function and a minimum acceptable
bidding price to keep a certain profit margin. Moreover,
when the spot market becomes larger due to its popularity,
providers can serve on-demand and reserved instances more
conveniently.
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