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Abstract—The adoption of cloud computing environments as
the infrastructure of choice for computing services is growing
rapidly, due to features such as scalability and pay-per-use.
As a result, more pressure is put on cloud providers, which
manage the underlying computing platform, to maintain the
Quality of Experience of application users within acceptable
levels. However, the mapping of high-level application metrics,
such as response time, to low-level infrastructure metrics, such
as utilization rate of resources, is a non-trivial task. Many
works present monitoring of processor, memory, and network
utilization. Nevertheless, the monitoring of these resources can
be intrusive to the system that provides the service. This paper
presents a non-invasive approach for estimating the response
time of cloud applications through the mapping of Quality of
Service metrics to operating system counters at the hypervisor
level. We developed a model that estimates the response time
of real-time applications based on Linux Operating Systems
counters that presented an accuracy of 94% in our evaluation.
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I. INTRODUCTION

Cloud computing and cloud storage have become the
preferred methods for distributing information and online
functionality over the Internet [1]. While some cloud service
providers focus on providing customers with a broad range
of features and services, including online shopping, search,
social network, entertainment consumption, and protecting
important documents, other cloud service providers focus on
providing services for small businesses, large corporations,
governments, and other institutions.

Most of these environments need to improve Service
Level Objectives (SLOs) and meet Service Level Agree-
ments (SLAs) in terms of availability, performance, security,
and data protection [2]. This is important, as it impacts
directly on the Quality of Experience (QoE) of users, who
may or may not remain loyal to the offered services [3] [4].

With the aim of offering services that comply with these
high level quality metrics established without excessive
operational costs, cloud service providers use rapid elasticity

provided by cloud computing [5]. Thus, it is possible to
dynamically increase or decrease instances of virtual ma-
chines and/or compute nodes, as well as the applied quota of
CPU, memory, and network bandwidth on a cloud service.
Besides the obvious benefits of cost and performance for
users, cloud providers can also benefit from a more efficient
use of resources.

Elasticity, the capacity to dynamically change the amount
of resources dedicated to a service, for more or less, is
controlled via pre-defined SLAs. When these SLAs limits
are exceeded, new resources are added so that the load
returns to an acceptable level. When resources are underuti-
lized, resources can be freed in order to reduce operational
costs. Nevertheless, the decision on the amount of resources
required to meet high-level metrics defined as SLAs is non-
trivial [6], because some high-level metrics can not be easily
monitored by the infrastructure. As the SLA [7] involves
the definition of minimum acceptable levels of service that
are expected by the customer, it is common the use of
indicators for the quantitative measurement of the Quality of
Service (QoS) received. Some commonly used indicators are
availability, response time, and mean time between failure,
among others.

As services offered by cloud service providers are ac-
cessed over the Internet, it is natural that network QoS
metrics are the most important for user experience [8].
Thus, this work focuses on the response time of cloud
applications. This is a metric that can influence the decision
on the need for more or less resources to maintain an
acceptable level of service, and it is measured by the time
taken from the client request is received by the service
provider until the response by the service provider is sent.
However, this can not be monitored by the Infrastructure-
as-a-Service (IaaS) without the risk of interference on the
communication channel between the client application and
the service provider. Furthermore, there are privacy issues
that should be taken into account, as most users would
not agree with monitoring systems running within their
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virtual machines. In addition, there are applications that
using non-standard software stacks that do not allow reliable
monitoring of the response time.

Therefore, the problem that this paper addresses is how
to estimate the response time of cloud applications, based
only on information that can be accessed through the infras-
tructure, and without being intrusive in the communication
channel of client applications. Accordingly, the hypothesis
tested by this work is that internal operating system counters
at the hypervisor level allow estimation of the client appli-
cation response time based on the history of the load on the
physical machine on which the application is allocated.

The aim of this work is not prediction, i.e., the objective of
the proposed method is not to infer the response time before
it occurs. Rather, our analysis takes place after the event
occurred, and it aims at, based on the observed value, to
estimate the application performance. This enables perform
control actions on scalability, reacting to fluctuations of this
metric.

To this end, tests to measure the response time were per-
formed with a real three-tier cloud application. At the same
time, system counters were monitored to verify the system
load. Finally, we present a model that allows estimating the
response time based on historical information about the load
on the operating system, and some evaluations of this model.

This paper is organized as follows: Section II introduces
a background on response time and performance counters of
operating systems; Section III presents related work; Section
IV describes preliminary experiments used to fit a new
model; Section V presents evaluations; finally, Section VI
concludes the paper and addresses future work.

II. BACKGROUND

QoE [8] refers to the user’s perception of the quality
of services transactions and may be represented by human
feelings. On the other hand, QoS refers to a systematic
method to evaluate the service, usually via metrics that
can be measured and verified and that directly affect the
perception of the end user. A QoS metric that directly
impacts the QoE is the response time of applications. This
section presents a conceptualization of response time and
shows some involved algorithms for its calculation.

A. Response Time

Response time can be understood and evaluated in several
ways depending on the context. In this section, we will
conceptualize and explain the response time in the context of
a cloud computing infrastructure. Figure 1 presents a three-
tier architecture, in which a customer performs requests to
a service in a cloud, and waits for a response.

The time required to complete the entire process between
the start of the request from a customer up to all of its
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Figure 1. Response Time in Cloud Architectures

response consisting of the total response time as shown in
Figure 1. Thus, the total response time includes the time that
packets must travel between the customer and the cloud. This
means that the cloud manager that is providing the service
has no way to measure and ensure the quality of service of
this external link, unless there is monitoring from the client.
However, a monitoring client-side influences other aspects
such as security, privacy, and the actual cost of monitoring
on the link.

Therefore, when dealing with response time in cloud
infrastructure, we are assuming the Cloud response time. The
time spent in establishing the connection operations can be
seen in (1), where one-way trip (OTT) time is the difference
between the last (ω) synchronization packet (SYN) with
the first (α) acknowledgment packet (ACK), divided by the
number of participants in the connection.

OTT =
αACK − ωSY N

2
(1)

Therefore, the Total Real Time (RT) (Figure 2) of each
request is the sum of the one-way trip times, and the time
that a reply takes to answer a client’s request.
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Figure 2. Total Response Time and Cloud Response Time

Figure 2 shows the one-way trip in the beginning and
end of the connection establishment, and therefore, the
transmission between the client and the server.

In summary, the cloud response time consists of the time
that the customer request takes to be processed by the cloud
service provider. This is counted from the moment it is
received by the cloud application layer, through the business
layer, searching and querying data in the database layer, and
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returning necessary information for the application layer to
be sent to the customer.

B. Operating System Counters

The response time is an ideal metric to verify the quality
of a service offered via the network, but its monitoring may
cause overhead. Estimate the response time of an application
without interference in the channel between the customer
and the service can substantially reduce this impact. To this
end, we hypothesized that operating system counters can
be monitored in order to verify the response time within
the cloud data center, and therefore, allow estimating the
response time between the customer and the data center is
acceptable or not.

In the context of this work, we target real-time Linux
counters as the focus of monitoring due to the fact that Linux
is widely used in IaaS environments, such as Openstack [9].
Linux stores the counters in a virtual file system referenced
in /proc. This directory contains, rather than files, a
runtime information system in which one can monitor the
states and loads of the processor, memory, and devices, in
real-time. In particular, we rely on information available at
the hypervisor level (rather than virtual machine-level) when
the hypervisor is supported by a privileged operating system,
which is the case of Xen [10] (on its Dom0).

Because of this, most system management commands
search for system information into this directory. Since this
information is accessible at the user level, system manage-
ment tools can display mashups that will support decisions
about the use of resources to the system administrator, e.g.,
system and services [11].

To monitor the load average of I/O in our tests, we used
the information provided by /proc/loadavg. This file is
populated with values collected from the run queue of the
operating system. It stores a series of values of load in three
intervals representing the average load of the system in the
last 1, 5, and 15 minutes. These values are updated by the
system every one minute. Since the values are shown in the
time period, it provides a good indication on if the workload
is increasing or decreasing the use of resources. Moreover,
it allows to estimate when the system is overloaded and
impacting on QoS metrics.

III. RELATED WORK

Aceto et al. [12] discusses the difficulty of monitoring
cloud environments with respect to the mapping of high-
level metrics to metrics at the infrastructure level, due to the
fact that high-level metrics may include external parameters
to the infrastructure, which are not controlled by cloud
environment.

Emeakaroha et al. [6] proposed a framework for managing
the mapping of low-level resource metrics to high-level

SLAs. The scalability of the model was validated using
queuing network models, and it was able to detect SLA
violations and notify the manager module of the cloud
environment.

Dobson and Sanchez-Macian [13] presented a work-in-
progress paper proposing a QoS ontology that can be applied
on several scenarios of cloud/grid. This model is divided into
two parts: QoS monitoring and QoS adaptation.

Rosenberg et al. [14] discussed QoS attributes for web
services, identifying the most important attributes and its
composition from resource metrics. In addition, the study
presented some mapping techniques to compose QoS at-
tributes of resources to generate metrics of SLA parameters
for a specific domain.

D’Ambrogio and Bocciarelli [15] present a model-driven
approach with the intention to incorporate application per-
formance prediction into a service composition process. The
paper shows the composition of SLA parameters, although
it does not consider monitoring the SLA.

Comuzzi et al. [16] propose an architecture for monitoring
SLAs considering two criteria: the availability of historical
data to evaluate the SLA offers and the evaluation of the
ability to monitor an offer of SLA.

What differentiates our work from the other ones dis-
cussed in this section is the fact that we present a method-
ology to estimate the response time without impacting on
user communication channel, either in terms of performance
or in terms of security and privacy. To the best of our
knowledge, no other work has mapped information from
operating system counters, obtained from the hypervisor, in
order to infer the performance of an application running in
a virtual machine that directly influences end users’ QoE.

IV. ESTIMATING APPLICATION PERFORMANCE

For web applications, particularly in the case of e-
commerce, performance tests are essential. A service
provider can not define the needed amount of resources
required by the application to serve a specific workload
based only on average traffic. To ensure that a web ap-
plication meets certain criteria such as performance, data
throughput or response time, test in an environment similar
to the production environment is required.

The focus of this paper is on three-tier cloud applica-
tions, type of most used application on cloud environments.
Therefore, we are targetting a virtualized environment that
supports a web interface that accesses, through a business
logic layer, a database allocated to another computer system.
This architecture is shown in Figure 3.

The first step toward the goal of performance estimation
was conducting experiments to enable the modeling of the
relationship between response time and the load as indicated
by the loadavg counter, which we detail next.
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Figure 3. Three-Tier Cloud Architecture

To this end, we deployed a testbed consisting of two phys-
ical servers connected by a Gigabit Ethernet network. Each
server has two Intel Xeon 2.4 GHz processors (12 cores)
and 16 GB RAM. On each server, we deployed three virtual
machines, each one supporting the web server (Apache),
application server (Tomcat) and database server (MySQL).
The CPUs are dedicated for each VM and disks are shared
between them. Load average is taken from /proc/loadavg file
at the hypervisor level (Dom0).

To represent a multi-layer architecture, the Apache Bench-
mark was used. This benchmark is widely used to test
performance of multi-tier applications. It mimics the users’
access to web servers serving as front end for multi-tier
applications. Aiming to emulate an elastic cloud environ-
ment, we use the HAProxy load balancer that splits the
workload between new nodes, when the response time set
out in a SLA is exceeded. In our tests, 100 clients should
insert 1000 records into a table, query them, and delete
them at a maximum of 300 milliseconds using 50% of the
network throughput. To control the flow of the network, we
use the Linux Traffic Control (TC). This allows adjustment
of the network flow and hence impact the response time of
applications.

The evaluations were conducted in a total of 45 minutes
(2700 seconds). Each test was performed with the size of
15 minutes because this is the maximum time that the
loadavg uses to update its values. For the tested architecture,
the loadavg values can range from 0 (underused) to 22
(overutilized). We set 300 milliseconds as the target response
time of the test application. The values of loadavg and
their corresponding timestamps were recorded in intervals
of 1 second. The application response time was monitored
by a feature of the Apache server, which shows when
a request is received from a customer, and when it was
responded to the customer, which allows the verification
of the infrastructure response time. As Apache requests are
also based on timestamps, it was possible to relate the load
as measured by loadavg with the request response time
as measured by Apache. The experiment was repeated 35
times and the average values obtained on each experiment

time are reported. As the results showed little variance,
35 experiment repetitions allowed statistically significant
analysis of results. In each repetition, the stochastic process
was run with a different seed value. The hypothesis of
correlation between the two measurements was tested using
the Pearson correlation coefficient

A. Evaluation and Discussion

Figure 4 presents the tests results as the average values
collected by loadavg and Apache. The values presented a
small standard deviation, and thus the deviation is not shown.
During the first 15 minutes (900 seconds), the SLA response
time of 300 milliseconds was met in its entirety. In the
next 15 minutes, the network latency has been increased to
enable us to evaluate the effect of resource underutilization
by forcing requests to arrive at a lower rate. Similarly, in
the last 15 minutes the network latency is reduced to induce
a higher request income on the system, causing a longer
response time.

Figure 4. Response Time vs. LoadAVG Evaluation

Figure 5 shows that the load values given by loadavg
accompany the application response time behavior. The
Pearson correlation coefficient between the behavior of the
application response time and load values of the operating
system displayed by loadavg was 0.9965. This shows that
there is a strong positive correlation between the two behav-
iors.

Figure 5. Correlation Plot between Response Time and LoadAVG Values
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Based on these results, we can estimate, from the infras-
tructure, how much the response time is being influenced,
and if there is the need for more or less resources so that an
SLA is met. The next step towards enabling the estimation of
the application response time using loadavg was building a
model that captures the relation between these two variables.
The modeling process is discussed next.

B. Modeling

Because loadavg values are stored for logging purposes
over time, these values can be analyzed to verify that the
environment is going towards overutilization or underuti-
lization. This data can be used to automatically scale the
application resources to an amount that meets application
needs.

The correlation plot from Figure 5 provided some evi-
dence that a linear regression model would be a good fit
for our model to estimate the response time. The purpose
of multiple regression is to predict or estimate a dependent
variable y, in response to the values taken by a set of inde-
pendent variables X . In this case, we assume our dependent
variable Y to be the response time, and we estimate it using
the value of loadavg from the last 1 minute, 5 minutes, and
15 minutes (our independent variables).

Rt = c0 + c1 · avg1 + c2 · avg5 + c3 · avg15, (2)

Where Rt represents the estimated cloud response time of
applications in the entire nodes. The coefficients c0, c1 and
c2 are the weights assigned to each variable, in each loadavg
times. avg1, avg5, and avg15 are monitored available values
in /proc/loadavg, for 1, 5, and 15 minutes, respectively.
The c0, c1, c2, and c3 (4.133, 1.005, 1.478, and 1.597,
respectively) values serve to the best fit of the model, and
show the curve in the correlation plot.

Figure 6. Model Accuracy Test

An important validation aspect of the model is the residue
analysis, which shows the model significance and evaluates
the contributions of regression variables. In the proposed
model, it is possible to assert that all the points follow the

behavior of the line, indicating that the errors are normally
distributed.

V. MODEL EVALUATION

This section presents an evaluation of our model applied
in a real environment, aiming to validate the proposed model.

A. Testbed

For conducting the evaluation of our model, we used
HammerDB, because it is a tool that reproduces the behavior
of most applications offered by cloud environments as a
service. It supports multiple clients accessing a three-tier
service. Another advantage of HammerDB is its flexibility
for tests configuration. Both the number of users and the
number of simultaneous connections can be set and changed
on-the-fly during the test. This allows a script to be created to
describe the desired behavior. The client-server environment
was deployed on the same two physical servers used in pre-
liminary experiments, and using the same network between
them.

As the HammerDB allows controlling the client appli-
cation behavior (increasing or decreasing the number of
users and connections), we choose three behaviors that
represent routine situations in environments that support
cloud services: The first scenario represents an environment
in which the arrival rate of requests is low, and gradually
increases over the time; The second scenario represents an
environment in which initially the arrival rate of requests is
low, and gradually increases over the time, and then returns
to a low rate; The third test represents an arbitrary behavior
fluctuating between moments of slow and high rates of
requests.

Each test was performed for 30 minutes, and the results
of the real environment tests and the results generated by
the model based on loadavg data were compared. All tests
were performed 35 times, and the repetitions did not show
a significant variation in the results less than 0.03%.

B. Results

Figure 7 depicts the results for the first scenario, where
the increase in application demand causes the response
time to worsen until the end of the test. We can see that
the behavior of the proposed model follows the real trace
behavior. Importantly, we can notice that the estimating
response time presents variations between real and model
results. This difference is due to loadavg update times, which
features a refresh rate of 1 minute. Thus, the model responds
at least at 1 minute later on the real response time. This
update time is inherent to the Linux kernel, and perhaps in
future versions, if that time is reduced, the model can track
more quickly the application response time.
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Figure 7. Scenario starting from a situation of an acceptable rate to a
gradual increase in the number of requests

Although there is a delay in the model in relation to the
real response time, it remains faithful to the real trace, as we
can see in Figure 8. Even when the response time worsens
and returns to an acceptable level, the model can track all
changes and represent, with a very little difference, the real
behavior of the response time.

Figure 8. Scenario with fluctuation in the number of requests following a
normal distribution

The last test is shown in the Figure 9, where the response
time behavior is very diverse, often fluctuating and forcing
the model to fit faster way to these changes. Still, the model
could represent the fluctuations of the response time fairly
well.

Figure 9. Scenario with arbitrary fluctuation in the number of requests

The model proved to be adjusted during the execution of
the three tests against real environments (Figures 7, 8, and
9). To confirm the trend of the model results against the real
tests, again we used the Pearson’s correlation coefficient.
Thus, we can see in Table I, the results for each set of tests.
The results showed that on average, the model is accurate
to represent the cloud response time up to 94%. The three
tests showed P-value < 0.01, what enables us to reject the
null hypothesis that both variables are independents.

TABLE I. PEARSON CORRELATIONOF THE TESTS

Test Scenario Correlation Coefficient P-Value
1) 0.944 p < 0.01
2) 0.968 p < 0.01
3) 0.932 p < 0.01

C. Limitations

Models, in most cases, present some limitations to repre-
sent real production environments. Our model presents lim-
itations about the accuracy during runtime, because the load
values show a delay when compared to the real executions.
This is not exactly a limitation of the model, but an operating
system counter feature that displays a delay of 1 minute
between each update. Unlike High Performance Computing
(HPC) jobs that must have a finite time, cloud services
mostly keep running throughout the service run time. Thus,
cloud services do not have a time of total execution time. So
the operating system counter update time (and model) can
be neglected, because one minute will not impact strongly
on the final result. In addition, the update time is a choice by
kernel architects, and this time can be reduced in the future,
either on a future release of the Linux kernel. Furthermore,
as Linux is an Open Source software, its source code can
be easily modified and a new kernel generated that provides
more frequent updates in the loadavg.

The second important point to note consists of the archi-
tecture used to feed and create the model. The preliminary
and final tests were based on one hardware/software archi-
tecture. However, the model allows weights adjustment in
their c1, c2 and c3 coefficients, which will allow the fitting
for each new environment.

The most important feature of the model is to estimate,
at one point, what is the application response time. With
this information at hand, the infrastructure manager can
make decisions in order to maintain an acceptable response
time in case of overuse, through the new entities deploy in
the resource pool, or in the case of underutilisation, save
costs with removal of these. However, although there are
limitations set forth above, the main advantage of this model
consists of not requiring access to the virtual machine nor
interfering directly in the channel between the client and the
server, which could cause overhead during a measurement
process, slowing the channel.
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We believe that our methodology applies, because in cases
of flash crowd, the excess requests do not cause excessive
utilization of resources in the same proportion: the metrics
analyzed in our work displaying the machine’s point of view,
then the utilization of resources can not go beyond 100%.
In this case the excess requests are rejected.

VI. CONCLUSION AND FUTURE WORK

Cloud computing environments are rapidly becoming a
standard platform to support computational services. As the
access to these services is performed via the network, this
becomes a decisive factor for the quality of services of-
fered. Among the performance metrics and quality involving
quality of users’ experience of services, one of the most
important is the response time. In addition to impact on
the user experience, the response time could indicate that
available resources may be insufficient to ensure the proper
functioning of the service to users, impacting both users’
cost and the total cost of ownership.

High-level metrics, such as response time is often mea-
sured between the customer and the cloud provider. How-
ever, the infrastructure that supports cloud environments
(IaaS) typically monitors low-level metrics, such as CPU,
memory, and network usage. Therefore, the translation be-
tween high-level metrics to low-level metrics is a very
complex challenge in today’s cloud environments. Moreover,
monitoring high-level metrics are quite difficult, and impact
performance and privacy issues of the user. Furthermore, the
communication channel between the customer and the cloud
listener cannot be monitored by the cloud infrastructure
without overhead on the communication channel.

In this paper, we proposed the use of loadavg, a counter of
the operating system that stores information on-the-fly on the
load of the node, as a parameter to estimate the behavior of
the response time. Based on this, we developed a model that
analyzes the loadavg values, and estimates what the response
time of applications with 94% of accuracy. Such model
allows to estimate the time to process the cloud application
request within the infrastructure and without any impact on
the users or their communication channel. As a future work,
we intend to explore other operating system counters such
as iostat and netstat, to develop more complete models.
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