
CloudAnalyst: A CloudSim-based Visual Modeller for Analysing Cloud

Computing Environments and Applications

Bhathiya Wickremasinghe
1
, Rodrigo N. Calheiros

2
, and Rajkumar Buyya

1

1
The Cloud Computing and Distributed Systems (CLOUDS) Laboratory

Department of Computer Science and Software Engineering

The University of Melbourne, Australia

2
Pontifical Catholic University of Rio Grande do Sul

Porto Alegre, Brazil

Project web - http://www.cloudbus.org/cloudsim/

Abstract—Advances in Cloud computing opens up many new

possibilities for Internet applications developers. Previously,

a main concern of Internet applications developers was

deployment and hosting of applications, because it required

acquisition of a server with a fixed capacity able to handle

the expected application peak demand and the installation

and maintenance of the whole software infrastructure of the

platform supporting the application. Furthermore, server

was underutilized because peak traffic happens only at

specific times. With the advent of the Cloud, deployment and

hosting became cheaper and easier with the use of pay-per-

use flexible elastic infrastructure services offered by Cloud

providers. Because several Cloud providers are available,

each one offering different pricing models and located in

different geographic regions, a new concern of application

developers is selecting providers and data center locations

for applications. However, there is a lack of tools that enable

developers to evaluate requirements of large-scale Cloud

applications in terms of geographic distribution of both

computing servers and user workloads. To fill this gap in

tools for evaluation and modeling of Cloud environments

and applications, we propose CloudAnalyst. It was

developed to simulate large-scale Cloud applications with

the purpose of studying the behavior of such applications

under various deployment configurations. CloudAnalyst

helps developers with insights in how to distribute

applications among Cloud infrastructures and value added

services such as optimization of applications performance

and providers incoming with the use of Service Brokers.

Keywords: Cloud Computing, Modeling, Simulation

I. INTRODUCTION

Cloud computing is an area that is experiencing a rapid
advancement both in academia and industry. This
technology, which aims at offering distributed, virtualized,
and elastic resources as utilities to end users, has the
potential to support full realization of “computing as a
utility” in the near future [15]. Along with the
advancements of the Cloud technology, new possibilities
for Internet-based applications development are emerging.
These new application models can be grouped in to two
parties: on one side, there are the cloud service providers

that are willing to provide large-scale computing
infrastructure at a price based primarily on usage patterns.
It eliminates the initial high-cost for application developers
of environment set up an application deployment. On the
other side there are large-scale software systems providers,
which develop applications such as social networking sites
and e-commerce, which are gaining popularity on the
Internet. These applications can benefit greatly of Cloud
infrastructure services to minimize costs and improve
service quality to end users.

Previously, development of such applications required
acquisition of servers with a fixed capacity able to handle
the expected application peak demand, installation of the
whole software infrastructure of the platform supporting
the application, and configuration of the application itself.
But the servers were underutilized most of the time
because peak traffic occurs only at specific short time
periods. With the advent of the Cloud, deployment and
hosting became cheaper and easier with the use of pay-per-
use, flexible elastic infrastructure services provided by
Cloud providers.

When these two ends are brought together, several
factors that impact the net benefit of Cloud can be
observed. Some of these factors include geographic
distribution of user bases, capabilities of the Internet
infrastructure within those geographic areas, dynamic
nature of usage patterns of the user bases, and capabilities
of Cloud services in terms of adaptation or dynamic
reconfiguration, among others.

A comprehensive study of the whole problem in the
real Internet platform is extremely difficult, because it
requires interaction with several computing and network
elements that cannot be controlled or managed by
application developers. Furthermore, network conditions
cannot be predicted nor controlled, and it also impacts
quality of strategy evaluation.

Study of such dynamic and massively distributed
environments in a controlled and reproducible manner can
be achieved with the use of simulation. CloudSim [5]
allows modeling and simulation of infrastructures
containing Data Centers, users, user workloads, and
pricing models. It enables modeling and simulation of

typical Cloud infrastructures, even though it has been
developed without focusing any specific Cloud provider.

In this paper we propose a tool, called CloudAnalyst,
which supports visual modeling and simulation of large-
scale applications that are deployed on Cloud
Infrastructures. CloudAnalyst, built on top of CloudSim,
allows description of application workloads, including
information of geographic location of users generating
traffic and location of data centers, number of users and
data centers, and number of resources in each data center.
Using this information, CloudAnalyst generates
information about response time of requests, processing
time of requests, and other metrics.

By using CloudAnalyst, application developers or
designers are able to determine the best strategy for
allocation of resources among available data centers,
strategies for selecting data centers to serve specific
requests, and costs related to such operations.

II. RELATED WORK

Cloud computing is defined as “a type of parallel and
distributed system consisting of a collection of inter-
connected and virtualized computers that are dynamically
provisioned and presented as one or more unified
computing resources based on service-level agreements
established through negotiation between the service
provider and consumers” [1].

The level on which computing services are offered to
consumer varies according to the abstraction level of the
service. In the lowest level, Infrastructure as a Service
(IaaS), services are supplied in the form of hardware
where consumers deploy virtual machines, software
platforms to support their applications, and the application
itself. An example of an IaaS service is Amazon EC2 [9].

In the next level, Cloud consumers do not have to
handle virtual machines. Instead, a software platform for
hosting applications (typically, web applications) is
already installed in an infrastructure and offered to
consumers. Then, consumers use the platform to develop
they specific application. This strategy is known as
Platform as a Service (PaaS). Examples of this case are
Google App Engine [10] and Aneka [13]. Finally, in
Software as a Service (SaaS), an application is offered to
consumers, which do not have to handle virtual machines
and software platforms that host the application.

Reproducible and controlled experiments on any of
these levels require the use of other experimentation
methodologies than real execution in a real platform.
Simulation is one of such alternatives and this is the focus
of this work.

There have been many studies using simulation
techniques to investigate behavior of large scale
distributed systems, as well as tools to support such
research. Some of these simulators are GridSim [2],
MicroGrid [3], GangSim [14], SimGrid [4] and CloudSim
[5]. While the first three focus on Grid computing systems,
CloudSim is, for the best of our knowledge, the only
simulation framework for studying Cloud computing
systems. Nevertheless, grid simulators have been used to

evaluate costs of executing distributed applications in
Cloud infrastructures [11][12].

GridSim toolkit was developed to address the problem
of performance evaluation of real large scaled distributed
environments (typically Grid systems but it also supports
simulation of P2P networks) in a repeatable and controlled
manner. GridSim toolkit is a Java-based simulation toolkit
that supports modeling and simulation of heterogeneous
Grid resources and users spread across multiple
organizations with their own policies for scheduling
applications. It supports multiple application models and
provides primitives for creation of application tasks,
mapping of tasks to resources, and managing of tasks and
resources.

CloudSim enables seamless modeling, simulation, and
experimenting on Cloud computing infrastructures. It is a
self-contained platform that can be used to model data
centers, service brokers, and scheduling and allocation
policies of large scale Cloud platforms. It provides a
virtualization engine with extensive features for modeling
life-cycle management of virtual machines in a data center,
including policies for provisioning of virtual machines to
hosts, scheduling of resources of hosts among virtual
machines, scheduling of tasks in virtual machines, and
modeling of costs incurring in such operations. CloudSim
framework is built on top of GridSim toolkit.

CloudSim allows simulation of scenarios modeling
IaaS, PaaS, and SaaS, because it offers basic components
such as Hosts, Virtual Machines, and applications that
model the three types of services.

CloudAnalyst is built directly on top of CloudSim
toolkit, leveraging the features of the original framework
and extending some of the capabilities of CloudSim.
CloudAnalyst design and features are presented in the next
section.

III. CLOUD ANALYST

Even though Clouds make deployment of large scale
applications easier and cheaper, it also creates new issues
for developers.

Because Cloud infrastructures are distributed,
applications can be deployed in different geographic
locations, and the chosen distribution of the application
impacts its performance for users that are far from the data
center.

Because Internet applications are accessed by users
around the world, and because popularity of applications
varies along the world, experience in the use of application
will also vary. Quantifying impact of number of
simultaneous users, geographic location of relevant
components, and network in applications is hard to achieve
in real testbeds, because of the presence of elements that
cannot be predicted nor controlled by developers.
Therefore, other methodologies that allow quantification
of such parameters must be used.

To allow control and repeatability of experiments,
simulators such as CloudSim are used. Simulation
experiments apply models of both applications and
infrastructures [7]. So, simulation requires some effort

from application developers to model both the target
infrastructure and the software in a language that is
interpreted by the simulator. Even though simulators offer
support to model such scenarios, they are conceived to be
applied in general experiments, and so modeling of
specific scenarios may be time demanding.

One of the main objectives of CloudAnalyst is to
separate the simulation experimentation exercise from a
programming exercise, so a modeler can focus on the
simulation complexities without spending too much time
on the technicalities of programming using a simulation
toolkit. The CloudAnalyst also enables a modeler to
repeatedly execute simulations and to conduct a series of
simulation experiments with slight parameters variations
in a quick and easy manner.

The main features of CloudAnalyst are the following.
Easy to use Graphical User Interface (GUI).
CloudAnalyst is equipped with an easy to use graphical
user interface (see Figure 1) that enables users to set up
experiments quickly and easily.
Ability to define a simulation with a high degree of
configurability and flexibility. Simulation of complex
systems such as Internet applications depends on many
parameters. Typically, values for those parameters
need to be arbitrarily assumed or determined through a
process of trial and error. CloudAnalyst provides
modelers with a high degree of control over the
experiment, by modeling entities and configuration
options such as: Data Center, whose hardware
configuration is defined in terms of physical machines
composed of processors, storage devices, memory and
internal bandwidth; Data Center virtual machine
specification in terms of memory, storage and
bandwidth quota; Resource allocation policies for Data
Centers (e.g., time-shared vs. space-shared); Users of
the application as groups and their distribution both
geographically and temporally; Internet dynamics with
configuration options for network delays and available
bandwidth; Service Broker Policies that control which
segment of total user base is serviced by which Data
Center at a given time; and simulation duration in
minutes, hours or days.
Repeatability of experiments. CloudAnalyst allows
modelers to save simulation experiments input
parameters and results in the form of XML files so the
experiments can be repeated. The underlying
CloudSim simulation framework ensures that repeated
experiments yield identical results.
Graphical output. CloudAnalyst is capable of
generating graphical output of the simulation results in
the form of tables and charts, which is desirable to
effectively summarize the large amount of statistics
that is collected during the simulation. Such an
effective presentation helps in identifying the
important patterns of the output parameters and helps
in comparisons between related parameters. In the
current version of CloudAnalyst, the following
statistical metrics are produced as output of the
simulation: Response time of the simulated

application; overall average, minimum and maximum
response time of all user requests simulated; Response
time arranged by user groups, located within
geographical regions; response time arranged by time,
showing the pattern of changes in application usage
during the day; usage patterns of the application;
number of users arranged by time or regions of the
world, and the overall effect of that usage on the data
centers hosting the application; time taken by data
centers to service a user request; overall request
processing time for the entire simulation; average,
minimum and maximum request processing time by
each data center; response time variation pattern during
the day as the load changes; and details of costs of the
operation.
Use of consolidated technology and ease of
extension. CloudAnalyst is based on a modular design
that can be easily extended. It is developed using the
following technologies: Java (the simulator is
developed 100% on Java platform, using Java SE 1.6);
Java Swing (the GUI component is built using Swing
components); CloudSim (CloudSim features for
modeling data centers is used in CloudAnalyst); and
SimJava [6] (some features of this tool are used
directly in CloudAnalyst).

A. CloudAnalyst design

As depicted in Figure 2, CloudAnalyst is built on top
of CloudSim toolkit, by extending its functionalities with
the introduction of concepts that model Internet and
Internet Application behavior. The design of CloudAnalyst

Figure 1. CloudAnalyst GUI.

Figure 2. CloudAnalyst architecture.

is shown in Figure 3. The main components and their
responsibilities are discussed next.

GUI Package. It is responsible for the graphical user
interface, and acts as the front end controller for the
application, managing screen transitions and other UI
activities.
Simulation. This component is responsible for holding
the simulation parameters, creating and executing the
simulation.
UserBase. This component models a group of users
and generates traffic representing the users.
DataCenterController. This component controls the
data center activities.
Internet. This component models the Internet and
implements the traffic routing behavior.
InternetCharacteristics. This is used to define the
characteristics of the Internet applied during the
simulation, including the latencies and available
bandwidths between regions, the current traffic levels,
and current performance level information for the data
centers.
VmLoadBalancer. This component models the load
balance policy used by data centers when serving
allocation requests. Default load balancing policy uses
a round robin algorithm, which allocates all incoming
requests to the available virtual machines in round
robin fashion without considering the current load on
each virtual machine. Additionally, it is also offered a
throttled load balancing policy that limits the number
of requests being processed in each virtual machine to

a throttling threshold. If requests are received causing
this threshold to be exceeded in all available virtual
machines, then the requests are queued until a virtual
machine becomes available.
CloudAppServiceBroker. This component models the
service brokers that handle traffic routing between user
bases and data centers. The default routing policy
routes traffic to the closest data center in terms of
network latency from the source user base. In addition
an experimental brokerage policy for peak load sharing
is implemented on CloudAnalyst. This routing policy
attempts to share the load of a data center with other
data centers when the original data center’s
performance degrades above a pre-defined threshold.
An important design decision we made was grouping

simulation elements to improve the efficiency of
simulation. In CloudAnalyst the events are grouped at
three levels. In the first level, there are user bases, which
represent a cluster of users which are handled as a single
unit. In the next level, user requests generated from each
regional user base are grouped based on a grouping factor,
which is kept independent of the user base size. In the last
level, requests simultaneously processed by a single virtual
machine are grouped. The last two grouping factors are
configurable by CloudAnalyst users, and it is also possible
not to group simulation elements.

Figure 3. CloudAnalyst Class Diagram.

Another important component of CloudAnalyst is the

network model. Modeling of bandwidth is probably the
most complex task, especially considering the nature of a
network such as the Internet. In the current version of
CloudAnalyst we use a parameter, available bandwidth,
which is assumed to be the quota of Internet bandwidth
available for the application being simulated, ignoring
other external factors. Events such as traffic generation are
produced based on a Poisson distribution.

IV. A CASE STUDY: SIMULATION OF A LARGE SCALE

SOCIAL NETWORK APPLICATION

A typical large scale application on the Internet that
can benefit from Cloud technology is social networking
applications. These applications may benefit from Clouds
because they typically present non-uniform usage patterns.
Access to such services varies along the time of the day,
and geographic location from sources of service requests
also varies. Furthermore, a new functionality in the service
may cause a sudden increase in interested by the service,
leading to an increase in number of requests arriving to
servers that may be only temporary. Cloud allows
infrastructures to dynamically react to increase in requests,
by dynamically increasing application resources, and
reducing available resources when the number of requests
reduces. So, SLAs between Cloud providers and
consumers are met with a minimal cost for consumers.

One well-known social networking site is Facebook
[8], which has over 200 million registered users
worldwide. On 18/06/2009 the approximate distribution of
the Facebook user base across the globe was the following:
North America: 80 million of users; South America: 20
million of users; Europe: 60 million of users; Asia: 27
million of users; Africa: 5 million of users; and Oceania: 8
million of users.

In this case study, we model the behavior of social
network applications such as Facebook and use
CloudAnalyst to evaluate costs and performance related to
use of Clouds to host such an application.

A. Simulation Configuration

We define six user bases representing the six main
regions of the world with parameters described in Table 1.
For our simulation we used a similar hypothetical
application at 1/10

th
 of the scale of Facebook.

For the sake of simplicity each user base is contained
within a single time zone and it is assumed that most users
use the application in the evenings after work for about 2
hours. It is also assumed that 5% of the registered users are
online during the peak time simultaneously and only one
tenth of that number of users is on line during the off-peak
hours. Furthermore, each user makes a new request every
5 minutes when he or she is online.

In terms of the cost of hosting applications in a Cloud,
we assume a pricing plan which closely follows the actual
pricing plan of Amazon EC2 [9]. The assumed plan is:
Cost per VM per hour (1024Mb, 100MIPS): $ 0.10; Cost
per 1Gb of data transfer (from/to Internet): $0.10.

Size of virtual machines used to host applications in
the experiment is 100MB. Virtual machines have 1GB of
RAM memory and have 10MB of available bandwidth.
Simulated hosts have x86 architecture, virtual machine
monitor Xen and Linux operating system. Each simulated
data center hosts 20 virtual machines dedicated to
Facebook. Machines have 2 GB of RAM and 100GB of
storage. Each machine has 4 CPUs, and each CPU has a
capacity power of 10000 MIPS. A time-shared policy is
used to schedule resources to VMs. Users are grouped by a
factor of 1000, and requests are grouped by a factor of
100. Each user request requires 250 instructions to be
executed. User bases used in the experiments are described
in Table 1.

B. Simulated Scenarios

Several scenarios are considered in our case study. The
simplest one consists of modeling the case where a single,
centralized Cloud data center is used to host the social
network application. In this model, all requests from all
users around the world are processed by this single data
center. Data center has 50 virtual machines allocated to the
application.

User
base

Region Time Zone Peak Hours
(Local time)

Peak Hours
(GMT)

Simultaneous
Online Users
During Peak Hrs

Simultaneous
Online Users
During Off-peak
Hrs

UB1 0 – N. America GMT – 6.00 7.00–9.00 pm 13:00-15:00 400,000 40,000

UB2 1 – S. America GMT – 4.00 7.00–9.00 pm 15:00-17:00 100,000 10,000

UB3 2 - Europe GMT + 1.00 7.00–9.00 pm 20:00-22:00 300,000 30,000

UB4 3 - Asia GMT + 6.00 7.00–9.00 pm 01:00-03:00 150,000 15,000

UB5 4 - Africa GMT + 2.00 7.00–9.00 pm 21:00-23:00 50,000 5,000

UB6 5 - Ocenia GMT + 10.00 7.00–9.00 pm 09:00-11:00 80,000 8,000

Table 1. User bases used in the experiment.

The second scenario consists of the use of two data

centers, each one with 25 virtual machines dedicated to the
application.

The third scenario consists of two data centers, each
one with 50 virtual machines without load sharing between
them. It means that requests received by a data center are
always handled locally. In the next scenario, the two data
centers share the load during peak time, whereas in the
fifth there are peak load sharing and queuing of requests
that exceed defined throttling threshold.

In the sixth scenario three data centers with 50 virtual
machines is used. In this case, there are also peak load
sharing and queuing of requests that exceed defined
throttling threshold.

Finally, in the last scenario, data centers have different
amount of virtual machines (25, 50, and 75). In this case,
there are also peak load sharing and queuing of requests
that exceed defined throttling threshold.

Each of these scenarios was evaluated with execution
of the workload previously described. Results are
discussed next.

C. Results

Table 2 summarizes the results, while Figure 4 depicts
variation of average response time. Results show that
bringing the service closer to users improves the quality of
service (response time in this case). It is an expected
effect, because users experiment less effects from Internet
issues (high latency, low bandwidth) when they are
geographically close to the application server.

Results also show that service quality can be further
improved with the application of load balancing in the
application across data centers, which are supposed to be
managed by different service brokerage policies, and also
at virtual machine level within data centers. Levels of

improvement achieved depend largely on the load
balancing algorithms employed. So, application of good
load balancing strategies is paramount for large-scale
distributed applications such as social networks.

For such improvements to be effective, sufficient
capacity is required in the data centers to meet the peak
demand. It is not a matter of great concern in Cloud data
centers, which apply economy of scale to make their
business profitable and so they can offer more resources
during peak traffic.

On the other hand, if provisioning for the peak capacity
is allocated throughout the data centers, there is a
significant proportion of the time in which capacity
allocated for applications is not fully utilized, what
decreases profits of application developers because they
pay for unused resources. Once again, elastic cloud
providers solve this problem by charging consumers
proportionally to the amount of resources used. At the
same time, providers offer tools to automatically increase
and decrease resources available to applications in order to
meet established service level agreements.

Based on the above observations, a reasonable solution
to an economic and efficient provisioning of resources to
large scale distributed applications such as social
networking is a setup where the resources are dynamically
allocated by geographic location depending on the
workload. E.g. the highest load from region 0 (North
America) occurs from 13:00-15:00 GMT and during this
time the data center servicing these requests (usually the
data center located in region 0 itself) should have a higher
number of virtual machines allocated to the application.
But once the peak has passed in this region, the number of
virtual machines is dynamically reduced in region 0 and
the number of virtual machines in a data center in a region
where the peak time is arriving is dynamically increased.

 Scenario Overall average
response time
(milliseconds)

Overall average time
spent for processing a

request by a data
center (milliseconds)

Virtual
Machine

Cost

Data
Transfer

Cost

1 1 data center with 50 VMs 284.98 46.79 $120.05 $512.74

2 2 data centers with 25 VMs
each

249.20 119.97 $120.05 $512.74

3 2 data centers with 50 VMs
each

183.85 54.65 $ 240.10 $512.74

4 2 data centers with 50 VMs
each with peak load sharing

184.92 54.60 $ 240.10 $512.74

5 2 data centers with 50 VMs
each with peak load sharing

and queuing

157.56 28.45 $ 240.10 $512.74

6 3 data centers with 50 VMs
each with peak load sharing

and queuing

124.12 29.12 $ 360.15 $512.74

7 3 data centers with 75,50,25
VMs, with peak load
sharing and queuing

121.07 23.96 $ 360.15 $512.74

Table 2. Simulation settings and experiment results.

V. CONCLUSIONS AND FUTURE DIRECTIONS

With the rapid advances of Cloud technologies, there is
a new demand for tools to study and analyze the benefits
of the technology and the best practices to apply the
technology to large-scaled applications. CloudAnalyst is a
new tool developed to address this demand. It is based on
top of mature simulation frameworks such as SimJava and
CloudSim.

We demonstrated how CloudAnalyst can be used to
model and evaluate a real world problem through a case
study of a social networking application deployed on the
cloud. We have illustrated how the simulator can be used
to effectively identify overall usage patterns and how such
usage patterns affect data centers hosting the application.
Furthermore, we showed how those observations provide
insights in how to optimize the deployment architecture of
the application. A possibility in this direction is
introduction of dynamic configurability through a global
Cloud Service Broker, which increases or decreases the
amount of resources available to the application in
different geographic locations depending on the load at a
given time.

Our work is the first attempt towards developing a tool
and an approach for studying large scale distributed
applications behavior by simulation in Cloud computing
environments. Therefore, the tool will evolve over the
time, and the result of this process will improve quality of
the model and of the analysis it supports. In the long term
this type of simulation experiment has a big potential to
aid testers to identify new features and issues, model them,
and develop and evaluate new mechanisms and algorithms
for resource management, this way improving
performance of emerging Cloud applications.

REFERENCES

[1] R. Buyya, C. S. Yeo, and S. Venugopal, “Market-Oriented Cloud
Computing: Vision, Hype, and Reality for Delivering IT Services
as Computing Utilities”, Proceedings of the 10th IEEE
International Conference on High Performance Computing and
Communications (HPCC 2008, IEEE CS Press, Los Alamitos, CA,
USA), Sept. 25-27, 2008, Dalian, China.

[2] R. Buyya, and M. Murshed, “GridSim: a toolkit for the modeling
and simulation of distributed resource management and scheduling
for Grid computing,” Concurrency and Computation: Practice and
Experience, 14(13): 1175-1220, Nov. 2002.

[3] L. X. Song H, Jakobsen D, Bhagwan R, Zhang X, Taura K, A.
Chien, "The MicroGrid: A scientific tool for modeling
computational Grids," Proc. of the ACM/IEEE Supercomputing
Conference, IEEE Computer Society, Nov. 2001.

[4] A. Legrand, L. Marchal, and H. Casanova, "Scheduling distributed
applications: the SimGrid simulation framework," Proc. of the 3rd
IEEE/ACM International Symposium on Cluster Computing and
the Grid (CCGrid 07), May 2001, pp. 138-145.

[5] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and
Simulation of Scalable Cloud Computing Environments and the
CloudSim Toolkit: Challenges and Opportunities,” Proc. of the 7th
High Performance Computing and Simulation Conference (HPCS
09), IEEE Computer Society, June 2009.

[6] F. Howell and R. Macnab, “SimJava: a discrete event simulation
library for Java,” Proc. of the 1st International Conference on Web-
based Modeling and Simulation, SCS, Jan. 2008.

[7] J. Gustedt, E. Jeannot, and Martin Quinson, “Experimental
methodologies for large-scale systems: a survey,” Parallel
Processing Letters, vol. 19, Sep. 2009, pp. 399-418.

[8] "Facebook," http://www.facebook.com.

[9] "Amazon Elastic Compute Cloud (Amazon EC2),"
http://aws.amazon.com/ec2/

[10] “Google App Engine,” http://code.google.com/appengine/

[11] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, “The
cost of doing science on the Cloud: the Montage example,” Proc.
of the 2008 ACM/IEEE Conference on Supercomputing, IEEE,
Nov. 2008.

[12] M. Assunção, A. di Costanzo, and R. Buyya, “Evaluating the Cost-
Benefit of Using Cloud Computing to Extend the Capacity of
Clusters”, Proc. of the 18th International Symposium on High
Performance Distributed Computing, ACM Press, June 2009.

[13] C. Vecchiola, S. Pandey, and R. Buyya, “High-Performance
Cloud Computing: A View of Scientific Applications”, Proc. of
the 10th International Symposium on Pervasive Systems,
Algorithms and Networks (I-SPAN 2009), Kaohsiung, Taiwan,
Dec. 2009.

[14] C. Dumitrescu, and I. Foster. “GangSim: a simulator for grid
scheduling studies,” Proc. of the 5th International Symposium on
Cluster Computing and the Grid (CCGrid 05), IEEE Computer
Society, May 2005.

[15] A. Weiss, “Computing in the Clouds,” netWorker, vol. 11, Dec.
2007, pp. 16-25.

Figure 4. Summary of experimental results.

http://www.facebook.com/
http://aws.amazon.com/ec2/
http://code.google.com/appengine/

