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a b s t r a c t

Modeling a utility function for cloud business customers is one of the critical challenges facing
many cloud service providers (CSPs) for their pricing strategy. It concerns how to measure various
subjective experiences of the business customers and how to translate their cloud service experiences
into a quantifiable unit, which can be determined by a utility function that reflects cloud resource
consumption. The aim of this modeling process is to set up a pricing foundation so that CSPs can
target a broader range of customers from various market segments and identify the optimal price point
of their various pricing models. Previous studies have either focused on simple theoretical proof or
drifted the meaning of utility between demand and supply or proposed a solution based on a uniform
cloud market assumption. This paper proposes a novel and practical solution to define multiple utility
functions based on a scenario of six cloud market segments, which are analyzed by three analytic
approaches that are known as Markov chains analysis, queueing theory, and risk assessment. The
entire pricing strategy emphasizes value co-creation between CSP and cloud business customers. In
comparison with other methods, such as calibrated, price-quality, resource-based, simple linear, and
capacity-aware, this method provides both internal and external rationalities for CSP to capture the
subjective value of cloud business customers. Consequently, our experiment results show that this
modeling method can increase a profit margin by 51% and decrease a unit cost by 22% for a CSP.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The goal of this study is to define multiple utility functions for
different cloud business customers’ preferences that are grouped
into various cloud market segments so that a Cloud Service
Provider (CSP) can create a price strategy based on a broad
spectrum of cloud market to maximize its profit. Moreover, the
CSP can tailor its limited investment resources and technical
expertise to serve its target customers effectively.

In economics, the concept of utility means measuring a choice
of individual’s preferences. In other words, it is to evaluate the
individual’s subjective satisfaction, happiness and perception of
worthiness that ‘‘the consumer derives from consumption of
goods and services’’. [1] The subjective measurement of the
utility value reflects on an acceptable price that the individual
is willing to pay for [2]. This acceptable price leads to an idea
of the utility function definition, in which a subjective value
is dependent on the number of goods or services (e.g., Virtual
Machine or VM) to be consumed or provisioned. According to
Krugman andWells [1], different individuals would have different
utility functions because different people would have different
needs and preferences towards a certain amount of goods or
services.
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However, this economic term of ‘‘utility’’ is often mixed with
other connotations of ‘‘utility’’ so that it becomes quite ambigu-
ous and confusing [3] when a utility function is defined. It is
necessary to clarify and differentiate meanings of utility at the
outset.

The common sense of utility means ‘‘the usefulness of some-
thing, especially in a practical way’’. For example, the utility of
database means to implement various processes or functions of
the database, such as batch update, rebuild, recovery, backup,
etc. Another sense of utility is quite close to the meaning of the
usability that often refers to the state of being useful, which is to
supply the essential infrastructure services to the general public.
These services are offered by incumbent service providers, which
are known as ‘‘public utilities’’ or simply, ‘‘utilities’’. For example,
Buyya et al. [4] argued ‘‘cloud computing’’ is the 5th utility. Still,
another meaning of utility is the utilization rate, which is to mea-
sure the effective usability of something, such as the network’s
utility. Its value is between 0 and 1. Although both network
and economic utility may adopt a similar function (e.g., isoelastic
and alpha-fair function), the contents of two utilities are totally
different.

Economically, the utility function is to describe how people
consume various amounts of goods and services in terms of
their subjective preferences, needs, and experiences in a less or
more rational way. ‘‘It is simply a convenient device for sum-
marizing the information contained in the consumer’s preference

https://doi.org/10.1016/j.future.2019.12.044
0167-739X/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2019.12.044
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2019.12.044&domain=pdf
mailto:caesar.wu@computer.org
https://doi.org/10.1016/j.future.2019.12.044


738 C. Wu, R. Buyya and K. Ramamohanarao / Future Generation Computer Systems 105 (2020) 737–753

Fig. 1. An overall of cloud pricing strategy.

relation’’ [5]. This preference is measured by either cardinal or
ordinal approaches. ‘‘Cardinal’’ means a marginal value can be
quantified by an additional subjective value for one more unit of
cloud resources that are acquired. The ordinal approach can only
be measured by a ranking method. Our study will adopt a cardinal
approach [3] to quantify the cloud utility values because the
cloud utility satisfies the criteria of cardinal analysis: (1) the cloud
business customers are rational. It means they will systematically
and purposefully do the best they can do to achieve their goals,
given the available choices, (2) Utility value can be measured
numerically in terms of dollar value, and (3) Unit of Infrastructure
as a Service (IaaS) is homogeneous. Subsequently, we can define
various utility functions in the cloud context.

If a CSP focuses on the business customers, we can consider
the customers’ utility Ui is equivalent to a cloud customer’s busi-
ness revenue or business income so that a utility function Ui can
be defined as a function of the independent variable: ‘‘q’’ (cloud
resources or a quantity of VM). Therefore, we can define it as
Ui(q) = fi(q), where i is the number of cloud market segments.
This is determined by a market segment assumption and CSP’s
business and marketing strategy [6].

The focal point of this paper is to create different types of
utility functions Ui (q) for various cloud business applications,
such as web hosting, content delivery, e-commerce (e.g., an
online check out system), database backup, disaster recovery
(DR), virtual desktop infrastructure (VDI), and backend process-
ing (e.g., MapReduce, log file analysis). If we assume that the
measurement of the business customer’s satisfaction (e.g., cloud
service metrics) is directly associated with its business revenues,
then our modeling process is to estimate how much the cus-
tomers are willing to pay for a given quantity of the cloud
resources that can help them to grow their business revenue or
profit. Fig. 1 (π means a profit) provides an overall cloud pricing
strategy. There are four necessary steps in the process. The 2nd
step highlights the focal point of this paper, which is to define
utility functions for CSP to achieve the value co-creation with its
business customers or partners.

Fig. 1 provides details on how we create a cloud pricing strat-
egy. The 1st step can be found in our early work of cloud market

segmentation [6]. The 3rd step is how to establish multiple cloud
pricing models to meet various customers’ requirements [7]. The
4th step is to identify the optimal price point of a pricing model
for a CSP to achieve profit maximization [7].

According to Nagle et al. [8], the 2nd step is a challeng-
ing task because the issue requires multidisciplinary knowledge.
Many previous types of research either ignored some parts of
the problem or failed to articulate the problem clearly. Conse-
quently, the issue of defining a utility function becomes hard to
be implemented in practice. Many previous solutions of utility
modeling [9–16] often assume a uniform market or ‘‘one size fits
all’’. Moreover, the meaning of utility is often mixed with the
demand side of the price and supply side of cost.

To overcome these challenges, this study will clarify the mean-
ing of the cloud customers’ or demand side’s utility for the cloud
services, which is a subjective value measurement for the number
of VMs to be provisioned. Often, this value can be represented by
cloud customer’s experiences (CX) or key performance indicators
(KPI) or cloud service metrics (CSM). Both the National Institute
of Standards and Technology (NIST) [17] and Oracle [18] have
defined CX, KPI, and CSM along with three actual business di-
mensions that consist of acquisition (increase in sales), retention
(monetize relationships), and efficiency (leverage investments).
All of the quantitative measurements of business dimensions can
be translated into the value of business revenue or profit.

Overall, the core problem of this study is ‘‘how to quantify
the cloud customer’s satisfaction (the business revenue or profit)
along with a variation of ‘‘q’’ in each market segment’’ By defining
multiple utility functions related to the segmented cloud market,
we provide a novel solution for cloud price modeling that is much
more realistic and practicable.

1.1. The advantages of our solution

In comparison with previous solutions, such as empirically cal-
ibrated price [19] and capacity [20], resource optimization [12],
response time, capacity-aware [21], utility-based-SLA [22], and
model-based [9], our solution has a number of advantages:

(1) It is practical and quantifiable for real cloud applications in
term of resource needs (internal rationality),

(2) It can be implemented by any CSP for its targeted market,
(3) The utility is derived from the principle of economics
(4) It is agile and flexible to cope with a CSP’s business strategy

changes,
(5) The utility functions are defined to improve the cloud

customer’s revenue (or external rationality).
(6) It is a process of value co-creation for both CSP and cloud

customers.
(7) It provides a solution for CSPs to achieve more profits by

optimizing different cloud price models.

Based on the listed advantages, we have made the following
contributions to cloud economics.

1.2. Our contributions and paper organization

(1) To the best of our knowledge, this is the first such study
to define multiple utility functions based on the segmented cloud
market assumption. It models the utility functions from the value
co-creation perspective.

(2) The utility value directly impacts the business revenue
or profit of cloud business customers because the utility values
are defined by the cloud customers’ KPI or CX or CSM (value
proposition). All the utility values can be translated into a sin-
gle and quantifiable unit rather than some indirect or multiple
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Fig. 2. The approach to modeling cloud customer utility functions.

unquantifiable units. The cloud customer’s utility (or subjective)
values become the function of the cloud resources or VM.

(3) We use Markov chain analysis to quantify the number of
VM needs in terms of the specified SLA for the high availability
(HA) applications, such as database backup, CRM, and terminal
server. It provides the deliverable SLA and uptime for customers
of segments 4 and 5 (Refer to Table 3) to generate their business
revenue or profits. It translates SLA into customers’ business
revenue rather than to use SLA as a direct independent variable
for the utility function definition.

(4) By leveraging the queueing theory, we create customers’
utility functions that can minimize the response time to deliver
the right performance of business applications, such as online
checkout system and web-hosting for Segment 1 and 3. This
response time length is also translated into customers’ revenue
contributions.

(5) In addition, we leverage the concept of risk-aversion and
risk-taking to model the customers’ utility values for content
delivery (Segment 2) and log file analysis or MapReduce appli-
cations (Segment 6) to maximize the end-users’ satisfaction in
terms of maximizing application functionality and minimizing
cloud running costs.

Overall, our solution can be easily comprehended for CSP
decision-makers when they want to make a critical investment
decision for their cloud business. Fig. 2 highlights the details of
the process of building utility functions. This process illustrates
how to define six utility functions by three modeling tools. In
summary, Fig. 1 gives an overall cloud pricing strategy, and Fig. 2
shows a novel approach of defining various customers’ utility
functions in detail.

The rest of the paper is organized as follows: Section 2 gives a
brief literature review regarding previous modeling solutions for
utility functions. Section 3 presents how we define multiple util-
ity functions based on the result of six market segments and how
wemake various assumptions, define the problem, and determine
the scaling coefficient and other parameters. Section 4 provides a
detailed performance evaluation and validation of our modeling

method. Section 5 offers some simple guidelines for CSPs on how
to select these utility functions. Section 6 provides both analysis
and justification for some assumptions. Section 7 outlines our
conclusions and future work. To navigate the discussion easily,
Table 1 lists all acronyms used in this paper.

2. Related work

The modeling customer utility functions for various hosting
services or applications can be traced back to the beginning of
the dotcom-booming era. Doyle et al. [9,23] proposed a model-
based approach to optimize the hosting of hardware resources
for the specified SLA. The goal of their work is to demonstrate
how to provision the server resources for web hosting applica-
tions effectively. Although the paper adopted the term ‘‘utility’’
and made good progress in hosting service modeling, the real
meaning of utility is the usefulness of server functionality rather
than an economic sense of subjective measurement for customer
satisfaction. Similarly, Appleby et al. [10] proposed an SLA-based
management system, which is named ‘‘Oceano’’ for e-business. It
was based on a set of predefined metrics that consists of seven
parameters. Their approaches could be considered as a policy-
based scheme for computer resource allocation. The policy mainly
reflects a supply side’s view of value proposition rather than the
explicit measurement of the demand side’s experiences.

In contrast to Appleby, Walsh et al. [11] gave an explicit mea-
surement for the customer’s utility functions in order to automate
the computer resource distribution. The utility functions are an
autonomic scheme to manage web hosting workloads running on
a Linux cluster. They defined the utility U(S,D) as a function of
two independent variables: service level (S) and current demand
(D), which is measured by an average of forecast demand D′. S
is a function of the other three independent variables that are
control parameters (C), which is responsible for optimizing the
utility U(S,D), current resource level (R), and demand (D). Overall,
the customer utility value can be estimated by variables of C, R,
and D′ and defined as Eq. (1) if the service performance (S) is
specified.

Û (R) = max
c

U[S
(
C, R,D′

)
,D′

] (1)

This service performance is designed to run the application
of IBM WebSphere and DB2. The paper argued that the utility
Û (R) is defined by a sigmoid function in terms of the average
response time. Based on the context of the paper, the definition
of Û (R) the utility may mean an estimated utilization rate rather
than an economic sense of utility. The value is between 0 and
1. Although they did some pioneering works regarding utility
functions. However, the authors left the details on how to model
the sigmoid function in a practical way. In comparison, Bennani
et al. [12] gave some details for their proposed utility as a sigmoid
function (Eq. (2)) regarding online application environments.

Ui,s
(
Ri,s, βi,s

)
=

Ki,se−Ri,s+βi,s

1 + e−Ri,sthe+βi,s
(2)

where, Ki,s is a scaling coefficient. Ui,s is the function of βi,s, Ri,s,
Ri,s is the response time for ‘‘i’’ type of application environment
(equivalent to a type of workload) with ‘‘s’’ type of classes of
transactions (equivalent to a type of virtual machines), βi,s is
desired or targeted SLA (equivalent to the customer performance
metrics). The goal of their paper was to come up with a solution
(or global with controller) that can automatically assign differ-
ent types of workloads to the adequate size of the server for
the data center infrastructure. The value of their utility function
varies between 0 and 1. Its scaling coefficient is corresponding
to the upper bound of the throughput of the job or workload
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Table 1
Acronym used in this work.
Acronym Definition Acronym Definition

B2B Business To Business IaaS Infrastructure as a Service
B2C Business To Consumer IOPS Input/Output Per Second
Capex Capital Expenditure KPI Key Performance Index
CARA Constant Absolute Risk Aversion M/M/1 Markov/Markov/single server
CRRA Constant Relative Risk Aversion M/M/S Markov/Markov/multiple servers
CDN Content Delivery Network NFS Network File Sharing
CPU Central Process Unit NIST National Institute of Standard and Technology
CRM Customer Relationship Management AOS Application Objective Server
CS Customer Surplus OLTP Online Transaction Processing
CSM Customer Service Metrics Opex Operational Expenditure
CSP Cloud Service Provider PAYG Pay as You Go
CX Customer Experience PoC Proof of Concept
DRaaS Disaster Recovery as a Service PoS Point of Sales
DR Disaster Recovery QoS Quality of Service
EDI Electronic Data Interchange SLA Service Level Agreement
FaaS Function as a Service SME Small to Medium Enterprise
GA Genetic Algorithm URL Uniform Resource Locator
GB Gig Byte VDI Virtual Desktop Infrastructure
HA High Availability VM Virtual Machine

completion for the particular application. The authors assume the
higher throughput, the higher utility value is. Consequently, the
meaning of utility has become ‘‘utilization’’ or ‘‘utilization’’ rate
of IT resources.

Following a similar line of reasoning, Kephart et al. [13] pro-
posed a self-management system that is based on the utility
framework in order to achieve resource efficiency in a prototype
of a data center. The value of the utility function is between −1
and 1. The independent variables of the utility function could be
either response time or the number of physical servers. Menache
et al. [13] further developed this idea and proposed a long-term
solution for cloud computing resources in terms of maximizing
the social surplus, which was the aggregated individual user’s
utility of executed jobs minus workload-dependent operation ex-
penses (Opex). This social surplus is equivalent to Bennani’s [12],
the global controller. The individual utility function (or local
controller) of each user is presented in Eq. (3):

Ui (zi) = Vi (zi) − PziTi (zi) (3)

where, Vi (zi) is the value that user (i) assigns to executing job
required zi amount of resource for P unit price for mean service
time, Ti (zi). Although it was just a theoretical discussion, their
work was the first time to define the utility in an economic
sense. However, some assumptions need to be further consoli-
dated. For example, the assumption of M/G/∞ model could mean
no resource restriction. If this is a case, the optimal solution
could become impracticable. Just as the authors highlighted, their
analytic model only provided a convenient starting point for
future research topics of cloud computing, such as revenue, profit,
and pricing. Nevertheless, the paper indicated there is an opti-
mal point by a linear usage based-tariff (or fixed price/per unit
resource/unit time).

Weintraub et al. [24] presented a survey plus ranking (ordinal
utility) model that is a conjoint analysis (ranking multiplied by
the weighted coefficients) that shows how to maximize the user’s
total utility from a set of cloud services offered by CSPs. This
utility model is the cloud feature or characteristics-based services
for selecting a preferred CSP. It is a utility model in terms of
customer preference choice.

Regarding the preference choices, Burda et al. [14] examined
consumer preferences for the cloud archiving services from a
student’s perspective. Burda et al. adopt a conjoint analysis (a
survey-based statistical technique) to quantify customers’ utility
levels based on the customers’ demographic parameters, such as
age and gender. Although the authors’ did not explicitly adopt
the term of market segmentation, the paper was the first one

to introduce a concept of pricing discrimination. However, their
study focused on business to consumer (B2C) market rather than
business to business (B2B) market.

Minarolli et al. [15] adopted a similar approach as Bennani
et al. [12], which was to set up both local (like a transponder) and
global controllers (or a central management system) to allocated
cloud resources pool. They defined the utility function was a
simple linear Eq. (23), which was also the extension work of
Walsh [11] and [16]:

Ui = αi · Si (4)

where the amount of dollar αi is paid per unit of CPU resource,
and Si is the located CPU resource to VMi or shared physical CPU
utilization. However, this resource consumption model is just one
of the utility functions if the cloud customers take a risk natural
attitude. One of the controversial issues was that the meaning of
utility was not the economic sense of utility. The unit of the utility
measurement was moving between the quantity of VMs and the
length of response time.

Similarly, Garg et al. [25,26] provided an admission control
solution for a similar problem, but they described the term of
utility as a resource scheduling rather than a subjective mea-
surement. The assumption of their application was the non-
interactive or static workload. Their solution was to achieve the
optimizing scheduling between the specified quality of service
(QoS) requirements and resource provisioning.

In comparison with others, Chen et al. [22] made some con-
tributions to the utility definition in terms of subjective mea-
surement. They presented scheduling solutions from a cloud cus-
tomer’s utility perspective. They showed that cloud customers
could effectively bid for different types of VM spot instances
under the conditional metrics of profits, customer satisfaction,
and cloud resource utilization. The detail of the cloud customer
utility function is shown as follows:

U (p, t) = U0 − αp − βt (5)

where, U0 is the maximum utility that the service delivery to the
customers. It is proportional to the size of the service request.
Both α and β is the coefficient of price ‘‘p’’ and response time
‘‘t’’. Again, the cloud customer utility value is a linear function of
price and response time. The application of their utility function
is to run the tasks of x264 video scripts’ encoding and decoding.
Overall, we can highlight the main contributions and gaps of each
utility modeling solution of previous works in Table 2.

From Table 2, we can see that the majority of previous works
are more like a resource management scheme with the aim
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Table 2
Summary of all methods of modeling utility function.
Modeling methods Modeling idea Main contributions Gaps Application

Model-based [9,23] Slices of computer
resources, & time for
resources

Enable a provision of
multiple resources in an
interactive way

The concept of utility is not
the economic one

Web-based service or CDN

SLA metrics [10,22] Leveraging SLA to allocate
resources

Dynamic, flexible, scalable
resource allocation

The resources assumption
has no limitations.

e-business hosting

Resource-based
[11,12,15,22,25,26]

Utility function to allocate
resource

Self-optimization of
computing capability

A data center management
system for resource
utilization

Data center, CDN, Video
streams

Social surplus-based [13] Adopting social welfare idea
& queueing theory

The social effects of using
cloud resources

A theoretical model. Similar
to global and local controls

Academic discussion

Empirically calibrated [19] Empirically calibrated model Provider an alternative way
of utility modeling

Limited applications remain
empirical

To explain major cloud
leaders’ market behaviors

Price-quality [20] Single and multi-tiered
solution

Define the price-quality
from nash equilibrium
perspective

Only apply it for a
particular case

Theoretical interpretation

Capacity-aware [21] Non-additive utility function Dynamic Mixed with users and CSP
utilities. Pre-negotiation of
deliverable SLA

Negotiable cloud resources
or Grid computing

Conjoint analysis [14,24] Three layers of customer
utility

Survey plus ranking Arbitrary to build the utility
function

Cloud customers survey
data

Framework-based [27] Utility function policies Two types of integrated
utility values

Prototype Data center environment

Simple linear [11,15,16] The two-tier resource
management

The balance between QoS
and operation cost

Mixing with CSP and
customers utility

VM resource allocation

of managing cloud resources. Strictly speaking, many models
did not define cloud customers’ utility functions based on the
cloud market segmentation. The term ‘‘utility’’ was not defined
as a subjective value that can be measured from a cloud cus-
tomer perspective. The meaning of utility was often swinging
between supply and demand. To bridge this gap, our utility mod-
eling process begins with a real-world scenario of cloud business
development.

3. Modeling utility functions for cloud applications

3.1. Prior studies and background

To illustrate our modeling process clearly (Shown in Fig. 2),
we can consider a case of how a hosting firm to develop its cloud
pricing strategy for its new cloud business. Suppose decision-
makers of the firm (supply side) decides to expand its traditional
hosting business to a cloud market for its business customers
(demand side). The goal of the firm is to grow both revenue
(market) and profit with a fixed amount of investment budget.

We also assume that the firm understood its own technical
capability or expertise and specified its targeted cloud customers.
The subsequent issue is how to segment the B2B market, which
is to identify potential demand (or the addressable market) for
new cloud services. The purpose of segmenting the market is to
find an effective solution to serve its targeted customers well and
achieve a maximum profit for a given limited resource. Ideally,
the CSP should make every customer pays a different price so that
it can extract the maximum utility value from each customer [28].
This pricing strategy is known as the perfect or the first order
of price discrimination. But it would be too costly to implement
because of the higher cost of sales. The alternative way is to group
targeted customers who have the same characteristics or similar
demands together. This idea leads to the process of ‘‘market
segmentation’’.

3.2. Assumptions

3.2.1. Market segment assumptions
From our previous work [6], we can find that there are six

possible cloud market segments based on the various parameters

or characteristics of cloud customers’ usage patterns. Fig. 3 shows
the result of the cloud market segmentation (a clustering dendro-
gram). The decision to adopt the scenario of six market segments
can be justified by the following criteria:

(1) The optimal number of market segments is between 4 and
8, which is identified by a hierarchical clustering method
[6].

(2) McDonald [29] suggested that the optimal number of the
market segment should be between 5 and 10.

(3) We assume the firm is a traditional hosting company that
wants to explore a limited number of market segments
with limited investment capital.

(4) The cloud business strategy intends to avoid some high
risks in some new or niche market segments.

If the firm’s cloud business strategy wants to meet all the
above criteria, the number of market segments should be around
six (Shown in Fig. 3) because criterion 1 suggests the number
of market segments between 4 and 8 and criterion 2 suggests
between 5 and 10, while the criteria 3 and 4 indicate the seg-
ments at the lower end. The details of how to use a hierarchical
clustering method to segment the cloud market and how to
define each cloud market segment can be found in our previous
work [6]. Table 3 shows the result of each market segment based
on various cloud usage parameters.

The six market segments are just one of the business scenarios.
If a firm is one of the existing CSPs that has more investment
budget and attempts to take the risk of a niche market (See
Fig. 14), it can decide to have more than six market segments.
The bottom line is that the CSP should clarify its cloud business
strategy and targeted customers or market, competitive service,
projected business revenue, and anticipated profit margin.

3.2.2. Mapping cloud application to a segment
From the result of the cloud market segment, we can also map

onto cloud customers’ resource usage patterns with a particular
business application (e.g., web hosting, e-commerce, database
backup, log file processing, content delivery, etc.). Consequently,
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Table 3
Cloud utility functions and market segments.
Utility functions U1(q) U2(q) U3(q) U4(q) U5(q) U6(q) Totala

Market segments S1 S2 S3 S4 S5 S6

Example of market
segments or
applications

Virtualized
desktop
infrastructure,
email server

MapReduce, log
analysis file &
print

Web hosting
server & Online
checkout

Disaster recovery Database backup &
Terminal server,
SLA

Dynamic content
delivery, terminal
workload

Ave. Job priority 1 0 2 0 3 3

Ave number of
cores

2 23 1 1 3 13

Ave size of memory
(GB)

7 6 6 3 86 102

Percentage 30.1% 23.0% 10.0% 26.3% 9.1% 1.4% 100%

Demand 269 205 90 235 81 13 893

a ‘‘Total’’ is the sum of all addressable sales volume for a particular type of virtual machine. It also represents the total percentage of all market segments. The
percentage of each market segment is extracted from Google’s dataset. If a local CSP has its own forecast sales volume, the CSP can work out addressable sales
volume for each market segment.

Fig. 3. Proposed six cloud market segments.

we approximately have a linkage between each cloud market seg-
ment and a particular cloud application [6]. The mapping process
is mainly dependent on the parameters of market segments such
as job priority, an average number of cores, and memory size, as
shown in Table 3.

The ‘‘q’’ of Table 3 is an independent variable to represent
the number of VMs. We also assume the maximum number of
VMs that the cloud customers will purchase for a particular type
of VM is less than ‘‘qm’’. According to [30], the definition of a
job priority means the critical level for workload scheduling. The
larger number is, the high priority should be. For example, if a
higher priority job requests for a computational resource, a lower
priority job will be killed or stopped. The lower priority VM is
equivalent to Google Cloud Platform (GCP) preemptible virtual
machine (VM) or Amazon Web Services or AWS’ spot instance,
in which a cloud customer is willing to take the risk for the job
to be interrupted rather than to pay a higher price VM.

AMD [31], Young [32], Michalski [33] Feitelson [34] and
Calzarossa [35] provided some guidelines to identify some com-
mon cloud application workload patterns. Notice that Google’s
public cloud trace or dataset [36] only released the limited num-
ber of parameters due to some commercial reasons. Therefore, the
mapping process can only depend on some available parameters.
If a CSP has its own operational dataset, which may include
more parameters (e.g., network bandwidth, storage size, and
cache memory), the mapping process will become much accurate.
Practically, the more parameters of a market segment have, the
accurate mapping process becomes. The basic idea of this process

is to estimate a possible type of workload based on a profile of
the cloud market segment.

3.3. Problem definitions

From Fig. 1, we can have an overall picture of how to establish
a cloud pricing strategy for cloud business. The 1st step is how to
segment a cloud market based on an available dataset. Its inputs
are the parameters of each segment. Its output is the number of
segments and a linkage between market segments and possible
cloud applications. The 2nd step is to leverage the information
from the 1st step to create utility functions for various market
segments. This is the research problem for this paper.

With some prior knowledge of some cloud applications [6], we
can simplify the modeling process into three categories based on
the specified cloud customer’s metrics (CSM), parameters of cloud
market segments, and cloud workload patterns [32,37]. The detail
of the modeling process is shown as follows:

(1) Modeling the utility functions of backup or terminal server
for segment 4 and Disaster Recovery (DR) for segment 5.
This category focuses on the specified service level agree-
ment (SLA) and business continuity metrics.

(2) Creating the utility functions for the data processing of
Online Checkout or web hosting application for segment
3, Virtual Desktop Infrastructure (VDI) for segment 1. This
category is dependent on response time.

(3) Constructing the utility functions of backup — dynamic
content delivery for segment 6 and MapReduce workloads
for segment 2. This category is to concern the customer’s
attitude towards risk.

The reason to group some segments together for the modeling
process is that each pair has some common characteristics of
workload patterns so that we can simplify the modeling process.
For example, database backup and disaster recovery (DR) can be
considered as the same category because both backup and DR
may need high availability (HA) cloud infrastructure. We can use
the detail modeling process to clarify our argument.

3.4. Utility functions for HA workloads

HA workloads may also be considered as a mission-critical
business application. These workloads often require redundant
cloud infrastructure, e.g., backup servers (or VMs). If we as-
sume the downtime should be less than 5 min/per annum, then
SLA must be higher than five-9s (or 99.999%). It means any
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Fig. 4. A typical architecture of CRM.

failure of cloud infrastructure would lead to a catastrophic conse-
quence [38] for a running business. One of the examples (Fig. 4) is
a Customer Relationship Management (CRM) system (e.g., Seibel,
SAP, Microsoft Dynamic CRM), financial portal (e.g., e-Trade),
online banking platform, fast delivery ordering application, and
etc.

Suppose a cloud business customer hosts a CRM application on
a cloud platform that is offered by a CSP. It means the cloud sup-
ports this mission-critical application shown in the Fig. 4 [39,40]
(Here, nodes are equivalent to a server or a VM. We use these
terms interchangeably). The CRM system consists of the front
interface (or shop floor) and backend cloud infrastructure (or an
HA server farm). The server farm or a VM cluster is the critical
cloud infrastructure to support CRM application.

If one of the VMs (or nodes) fails, its workload will auto-
matically failover to another node. If one VM cluster fails, its
workloads can be automatically failover to another VM cluster
shown as in Fig. 5. Here, we assume the faulty VM is equivalent
to a hosting server or infrastructure failure so that each fault is
an independent event. In other words, a cluster of VMs will be
deployed on various servers. On the other hand, if a cluster of VMs
is built up one large server hardware, one hardware failure will
propagate into the entire cluster. We exclude this scenario from
our model assumptions. Furthermore, to simplify our modeling
process, we also exclude the failure of cloud software such as
hypervisor and application software. We will discuss these cases
separately.

There are two types of high availability (HA) applications.
One is Disaster Recovery (DR) that two possible VM (or node)
clusters are physically located in different data centers. The other
application is that a cluster of VMs is built in one data center, but
allocated in multiple nodes. If one node is down, its workload can
be automatically failover to other node shown in Fig. 4 within
one data center. We can consider this case as an SLA-driven
application. Looking from a quantitative perspective, the differ-
ence between these two HA applications is that DR needs more
nodes because it mirrors the entire operational environment, and
SLA-driven HA only needs a specified number of nodes.

If we assume a VM failure rate is µ (assume each VM is
allocated in the different physical machines), its restoration rate
is λ; the question is how many VMs are needed to support the
customers’ mission-critical application.

We can use the Markov chain analysis tool for this problem.
Assume we need k VMs to support the requirement of five 9s SLA.

Fig. 5. Disaster recovery for VM cluster failover.

Fig. 6. SLA driven high availability system for ‘‘k’’ number of VMs.

Fig. 7. Markov chain probability matrix with ‘‘k’’ of nodes or VMs.

We can have a probability matrix, as shown in Fig. 7 based on
the above assumptions. The k number of VMs can form a Markov
chain system. This system is ergodic because we can verify the
number of steps of the system would be exact ‘‘k + 1’’ transitional
states from any state to any other state. It means that the process
can be characterized as a steady-state vector for a long run [41].

According to the Markov chain matrix (shown in Fig. 7), we
should have a (k+1)×(k+1) Markov chain probability transitional
matrix. From this matrix, we can derive a steady-state vector
illustrated in Eq. (6):

V = [V0, V2, V3, . . . , Vk−1, Vk] (6)

If we assume a failure probability µ of a VM or physical
server [41] is 0.004, and a faulty restoration rate λ is 0.2, we can
calculate the result of the steady-state vector from a transition
probability matrix (number of VM failed) (shown in Eq. (7))

V = [0.98, 0.0196, 0.000392, 7.84E−06 ] (7)

The calculation result illustrates the number of hot-standby
VMs is at least three nodes if we want the specified SLA is higher
than five 9s and the failure rate µ is 0.04, the number of VMs
should be six.

To generalize this transitional matrix, we can define a function
Vk as a probability of k VMs is down. We want to find the
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minimum number of k such that the probability of this downtime
is less than a specified time ϵ (e.g., five minutes/per annum)
shown in Eq. (8).

V(k−1) ∗ µ ≤ ϵ (8)

Based on Figs. 6 and 7, we can step-by-step derive Eq. (13)
from Eqs. (8), (9) (10), (11), and (12). We can use Eq. (13) to
calculate the k value, which is to decide the minimum number
of VMs.

Vi = V0

(µ

λ

)i
, α =

µ

λ
< 1 (9)

Vk = V0α
k−1µ ≤ ϵ (10)

V0 =
1 − α

1 − αk+1 ,
1 − α

1 − αk+1 αk−1µ ≤ ϵ, (11)

αk−1
≤

ϵ

(1 − α) µ + ϵα2 (12)

k ≥

⌈
1 +

lnϵ − ln
[
(1 − α) µ + ϵα2

]
lnα

⌉
(13)

where any Vi is a probability distribution vector in the ergodic
system, V0 is the initial state of the probability distribution vector.
Vi also indicates the probability that the system had i failures and
now using the resource (i + 1). ϵ = 1 − 0.99999 (Five-9s: a
specified SLA).

Note that Eq. (6) defines the probability transition from the
k − 1 state (the last VM) to the k state (or all VMs failure). The
k value of Eq. (13) should be round up to the up ceiling that is
not less than k. Once we have the result of k, we can define two
customers’ utility functions for market segment 4 or DR-driven
HA and segment 5 or SLA-driven HA shown in Fig. 4.

For the SLA-driven HA system, we can consider all VMs have
an equal utility value to contribute to cloud customer’s business
revenue or profit equally. For example, if six nodes can guarantee
five 9s SLA delivery for a CRM application that generates a profit
of $9/per hour, then each node should contribute $1.5/per hour.
As a result, we can use a discrete function to represent the
customer’s utility for segment 5 shown as follows (Eq. (14)):

U5 (q) =

{
K5, 1 ≤ q ≤ k
0, k < q ≤ qm

(14)

where ‘‘K5’’ is a revenue coefficient value, ‘‘q’’ is the variable
of number of VMs, qm is the maximum number of VMs (Refer
to Section 3.2). The interpretation of Eq. (15) is that the cloud
customers will only purchase the k number of VMs to meet their
SLA requirements. If the number of VM is higher than k, the value
of a VM for its revenue contribution will be diminished to zero.
If a CSP’s market strategy is to target Small Medium Enterprise
(SME), then we can define the scaling coefficient Ki values by
Eq. (15).

Ki = Bi/

⎛⎝ qm∑
q=1

ui [q]

⎞⎠ , i = 1 · · · S (15)

where Bi is the annual revenue in each market segment of dif-
ferent categories of Small Medium Enterprise (SME) [42]. ‘‘S’’ the
maximum number of market segments, and ‘‘i’’ is a variable of
the market segment.

For segment 4, it can also be considered as another type
of mission-critical workload for business continuity because we
have concluded this segment is to run DR or DR as a Service
(DRaaS) applications. According to Luetkehoelter [43], the defi-
nition of DR is ‘‘the process of mitigating the likelihood of a disaster
and the process of returning the system to a normal state in the event
of a disaster ’’. It can be considered as one type of the HA workload,

Fig. 8. Typical architecture of online checkout or payment processing.

which is similar to a database backup (See Fig. 4). In comparison
with SLA-driven, DR-driven often requires more VMs than normal
SLA-driven, but this requirement is dependent on a ‘‘likelihood’’
of the disaster event.

We can use a likelihood coefficient θ to describe this riski-
ness [44] in term of business impacts for the maximum quantity
qm of VMs. This risk assessment should be determined by a
business continuity plan. We can formulate Eq. (16) for the cloud
customer’s utility value.

U4 (q) = θK4, θ ∈ (0, 1) , 1 ≤ q ≤ qm (16)

where θ is a potential risk rate (a percentage) to impact the
cloud customers’ revenue when a disaster occurs. The value is
between 0 and 1. Practically, this equation means that the cloud
customers will only purchase the qm number of VMs when the
price of VM (p) is below the specific threshold level of their utility
value (e.g., θK4 > p). If the VM price is higher than their utility
value for a likelihood disaster, they will stop to purchase cloud
resources from CSPs and build the on-premises infrastructure. In
addition to the mission critical applications, the utility function of
e-commerce application can also be modeled by a Markov chain
process.

3.5. Utility functions for online checkout and web hosting workload

E-commerce applications, such as shopping cart, electronic
data interchange (EDI), online catalogs, consist of a business
processing module [45], which can be characterized as queueing
workload patterns [46]. One of the typical examples is the online
checkout (payment) processing system shown in Fig. 8 for a web
hosting service. It merely means that the end-users are lining up
a queue for checking out due to online purchasing or ordering.
The cloud platform that supports the online checkout application
consists of the back-end of a VM cluster (or a server farm) and
some auto-horizontal scaling VMs and the workflow service.

Assume there is only one virtual machine (VM) that has been
allocated to handle the end-users’ checkout requests (λ1) with a
specified process capacity (µ1), we would like to know how long
(w1) the end-users have to wait to complete the checkout process.
Here, the checkout request or arrived rate λ1 is determined by a
Poisson distribution, and the expected service time T is assumed
to follow an exponential distribution. We can use the simple
M/M/1 [41] to model [47] this process, which we can calculate
the expected waiting time for the end-users (online purchasers)
from Eq. (17):

w1 = E [T ] =
λ1

µ1(µ1 − λ1)
+

1
µ1

=
1

µ1 − λ1
(17)
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Fig. 9. M/M/S queueing model.

where E[T ] is the total expected time for an end-user within the
checkout system, which includes the waiting time to be processed
for checkout, this expected waiting time is critical for the cloud
business customer who runs an e-commerce business (e.g., an
online shop). If the time is too long, the end-user will start to
lose patience and switch to another portal (online) shop at the
click of a finger. In other words, the expected waiting time will
impact the cloud customer’s e-commerce business revenue. On
the other hand, if the business allocates too many VMs resources
to the checkout system, many VMs will stay idle. It will increase
cloud business’ operation expenditure (Opex). The issue is how
to model an adequate utility function to describe the hosting
business value.

If we assume the average arrived rate of the end-user as
λ1 = 8/per hour, and servicing rate µ1 = 10/per hour [48], the
expected average waiting time will be 24 min in the queue. If we
include the average 6 min of the processing time for checkout
(payment), a random end user will spend the total of average
30 min in the system shown in Eq. (18):

w1 =
1

µ1 − λ1
=

1
10 − 8

× 60 = 30 min (18)

Based on our online shopping experiences, 24 min of queueing
time would be unacceptable. To reduce this expected waiting
time, we have two possible solutions: one is the vertical scaling,
which is to increase the VM’s capacity µ1 by selecting large
capacity VM so that the time of the checkout process can be
reduced. For example, if we double the VM capacity µ1 = 20/per
hour, the waiting time w1 can be reduced to about 5 min. The
other solution is the horizontal scaling that is to add more VMs
with the same capacity of VM into the checkout system, which
can also decrease the queueing time wq. If this is a case, the
problem of M/M/1 becomes an M/M/S [47] model, which can be
described in Fig. 9.

If the workload of e-commerce applications is highly fluctuant,
then horizontal scaling is a preferred solution. It also adds a
bonus of the high availability (HA) into the system, which we
have illustrated this point in the previous Section 3.4. Moreover,
the different end-user might have different lengths of responding
time to the checkout system. For example, a new end-user may
take more time to respond to the checkout system than a frequent
user.

If we select a horizontal scaling solution, then Erlang’s delay
formula [47] (Eqs. (19) to (21)) can calculate both queueing and
the total processing time (wq andws) for the number of VMs
required.

wq =
αsp0

s! sµs (1 − ρ)2
(19)

Table 4
Calculation results for M/M/S model.
‘‘s’’ No of VMs ρ p0 wq (min) 1/µs (s) ws (s)

1 0.800 1 1440 360 1800
2 0.400 0.4285714 68.57143 360 428.6
3 0.267 0.4471545 8.514412 360 368.5
4 0.200 0.5020080 1.204819 360 361.2
5 0.160 0.5392432 0.150254 360 360.2

Fig. 10. Modeling utility function for market segment 3.

p0 =

[
s−1∑
k=0

αk

k!
+

(α)s

s!

(
1 −

α

s

)−1
]−1

(20)

α =
λs

µs
< 1, ρ =

α

s
=

λs

sµs
, ws = wq +

1
µs

(21)

where wq is the queuing time for the end-users in the queue to
be served. ws is the processing time in the checkout system. ‘‘s’’ is
the number of VMs required to reduce the queuing time for the
end-users. ‘‘k’’ is a variable of VMs.

Using the same assumption of µ1 and λ1 in the M/M/1 model,
we should have the following calculation results for M/M/S model
in Table 4.

Note that we adopt an analytic approach for M/M/S queueing
network based on some simple assumptions, such as the Poisson
distribution of arrived rate and the exponential of distribution
service time. If some of our assumptions are not held, and the
queueing network system becomes complex, we should adopt a
simulation method to analyze the queueing network behavior.
Bose [49] highlighted some advantages and disadvantages of a
simulation method for queueing network.

Now, if we plot out the result of queueing time against the
incremental number of VMs shown in Fig. 10, we can have an
approximate trend line in a power function. According to both
Table 4 and Fig. 10, we see that queueing time decreases sharply
after the 2nd VM or 3rd VM. Therefore, we can use Eq. (22) to
approximate a utility function for market segment 3.

U3 (q) = K3q−c, 1 < q < qm (22)

where K3 is a scaling coefficient. ‘‘c ’’ is a constant that is to de-
termine the gradient of the power equation. qm is the maximum
quantity of VM that the customers of segment 3 may purchase.

On the other hand, if the CSM wants to reduce the overall
processing time (both queueing and processing time), the cloud
business customer can have a solution of combining both vertical
and horizontal scaling.

If the λs value is relatively small in comparison with µs, the
power function is sufficient to model the customer utility value. If
the λs the value becomes larger, then adopting a discrete function
(e.g., Eq. (14)) is a good idea to describe the cloud customer’s util-
ity value because a guaranty to deliver SLA becomes a significant
issue when the average number of end-users increases.
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Alternatively, we can also use a linear function [33] to provide
a solution when there is a constant rate of changing in terms of
VM demand and utility value. This idea leads to the next issue
of how to model customer utility for segment 1. The workload
characteristics of this segment have been classified as ‘‘Virtual
Desktop Infrastructure (VDI)’’. There are many VDI performance
metrics of a hosting environment regarding users’ experiences,
such as the peak of Input/Output Per Second (IOPS), storage
capacity, response time, Read/Write ratio, future growth, etc. If
we assume these metrics have been prefixed during the Proof of
Concept (PoC) stage before VDI rollout, the additional VM may
add Opex to the cloud business, although it delivers a certain
amount of utility value. In other words, the marginal utility has
a negative value. So, we can use a linear function (Eq. (23)) to
represent the cloud customer’s utility value because an end user’s
response time is calculated as a linear model based on the cloud
resource request [50,51].

U1 (q) = K1 (rq + qm) , r < 0 (23)

where r is a constant, but the value is negative to reflect the
economic principle of the diminishing return. It means that every
additional VM has less utility value than the existing VM. The
utility function is linear because the VDI hosting environment is
mainly driven by storage resources that have an additive impact
on customers’ utility values.

3.6. Utility functions for backend and content delivery workloads

When we encounter backend and dynamic data processing
types of workload, such as dynamic content (optimized dynamic
content) delivery, clone server, and Network File Sharing (NFS),
we can use different mathematical models to measure the cloud
customer’s utility values in term of the end-users’ experiences.
According to [52,53], we can use isoelastic utility function
(Eq. (24)) to model the customers’ utility value for the dynamic
content workload for market segment 6 because it is network-
oriented service delivery. If α is greater than zero, it means the
constant relative risk aversion (CRRA) when the cloud customer
is facing some uncertainties of cloud resources q.

U2 (q) = K2

⎧⎨⎩
q1−α

1 − α
, α ̸= 1

ln (q) , α = 1
(24)

where ‘‘α’’ is to measure the degree of relative risk aversion.
Based on the Pratt–Arrow absolute risk aversion function (Eq. (25)
Rr ), we can measure the absolute value of risk aversion, which is
to define the coefficient value at ‘‘q’’. Rr is a negative exponential
(or inverse) function at ‘‘q’’ when α is greater than zero.

Rr = −
U ′′

2 (q)
U ′

2 (q)
=

dU ′

2 (q)
dq

q
U ′

2 (q)
=

αq−α−1

q−α
=

α

q
(25)

Practically, it means that if Rr is decreasing with respect to VM
quantity ‘‘q’’, the cloud customer will be less sensitive towards
risk aversion when the number of VMs is increasing.

We can also use the exponential utility function to model the
backend type of workload for market segment 2. The exponential
function gives us the value of constant absolute risk aversion
(CARA) (Refer to Eq. (26)):

U6 (q) = K6

⎧⎨⎩
(
1 − e−αq

)
α

, α ̸= 0

q, α = 0

Ra = −
U ′′

6 (q)
U ′

6 (q)
= α

(26)

where α represents the constant absolute risk aversion [54].
When α = 0, it means risk neutral, and when α < 0, it is

risk-seeking. In this paper, we set the value of α < 0 because
MapReduce or log file analysis type of workload is interruptible
in terms of operational cost saving.

The MapReduce workload may require a large amount of VM
resources and the processing environment is complicated because
it involves different issues of cloud architecture, planning, and re-
sources scaling, e.g., database replication (1:1 replication of both
master and slave for zero-downtime), read replica, in-memory
caches (Key-Value Store for the session and state data, across
cloned instances), etc. As a result, we can set the α value, either
less than zero, to estimate the customers’ utility values. In other
words, we use the exponential function with α < 0 to describe a
customer’s utility values in terms of acquiring VM resources.

3.7. Defining coefficient values

The final issue is how to determine the value of Ki and α. The
scaling coefficient of Ki is dependent on the business revenue
or profit that a particular type of VM instance (such as AWS’s
extra-large instance) can help cloud customers to generate their
business revenue or profit. For example, if we target the aver-
age profit of SME is around $41K-$90K/per annum [55], we can
approximately estimate the profit for each VM to generate is be-
tween $0.95 and $1.9/per hour [56] for various cloud applications
across six market segments.

It is challenging to determine the value of risk aversion α

because it measures cloud customers’ subjective feelings when
they are facing uncertain outcomes [57]. Based on [57] and [58]
recommendations, we set the value of risk aversion is equal to
0.3 in this paper.

Once the targeted SME customers are specified, we can nor-
malize the average utility value up to $1.50 (per/hour), and set
the minimum utility value is equal to $0.00 across all six market
segments. The maximum number of VM is an arbitrary number.
Here, we set to qm = 12. It is reasonable to assume a typical CRM
architecture needs about 11 VMs (Refer to Fig. 11). It is just a
matter of scale. Fig. 11 shows the approximate quantity of VMs
may require run on a single cloud platform. This quantity of qm
could be various from one case to another. In other words, if
the solution architecture is changed, the value of qm will also be
changed. For example, if the business requires running different
types of database, the solution architecture should be altered.
However, the standard architecture of web hosting should work
for the majority of SME customers.

Fig. 11 also shows an example of an architecture solution for
cloud resource scaling, which can be either horizontal or vertical.
The decision of cloud resources, whether it should be vertical
or horizontal scaling, depends on the definition of customers’
business requirements, such as CSM or KPI.

Once all the above assumptions are put in place, the numerical
values of six utility functions can be created in Table 5. It provides
a solution to the problem that has been raised in Section 3.3.
Table 5 is a part of a comprehensive framework of cloud price
strategy for a CSP to achieve the maximized profits by capturing
the full spectrum market share.

3.8. Summary of modeling multiple utility method

Overall, we have defined all six utility functions based on
the market segmentation assumptions. Table 6 covers multiple
utility functions with different cloud customers’ preferences for
various business applications. The pre-condition of the utility
function definition is dependent on the result of cloud market
segments. The number of market segments is derived from a CSP’s
cloud business strategy and targeted customers. We classify these
market segments into three categories.
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Table 5
Cloud customers’ utility functions values.
VM No. q Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 Segment 6

1 $1.50 $0.01 $1.50 $0.75 $1.50 $0.29
2 $1.36 $0.02 $0.75 $0.75 $1.50 $0.45
3 $1.23 $0.03 $0.50 $0.75 $1.50 $0.60
4 $1.09 $0.05 $0.38 $0.75 $1.50 $0.72
5 $0.95 $0.08 $0.30 $0.75 $1.50 $0.84
6 $0.82 $0.13 $0.25 $0.75 $1.50 $0.95
7 $0.68 $0.19 $0.21 $0.75 $0.00 $1.05
8 $0.55 $0.29 $0.19 $0.75 $0.00 $1.14
9 $0.41 $0.44 $0.17 $0.75 $0.00 $1.24
10 $0.27 $0.67 $0.15 $0.75 $0.00 $1.33
11 $0.14 $1.00 $0.14 $0.75 $0.00 $1.42
12 $0.00 $1.50 $0.13 $0.75 $0.00 $1.50

Table 6
Cloud customers’ six utility functions.
Business application workload Market segment Analytic approach Addressable market demand Cloud customers utility function

High Availability (HA) 5 Markov Chain analysis 81 U5 (q) =

{
K5, 1 ≤ q ≤ k
0, k < q ≤ qm

Disaster Recovery (DR) 4 235 U4 (q) =

{
θK5 1 ≤ q ≤ k
0 k ≤ q ≤ qm

Hosting 3 Queueing theory 90 U3 (q) = K3q−c

VDI 1 269 U1 (q) = K1 (qm + rq) , r < 0

Content delivery, terminal servers 6 Risk assessment 13 U2 (q) = K6

⎧⎨⎩
q1−α

1 − α
, α ̸= 1

ln (q) , α = 1

Big data 2 205 U2 (q) = K2

⎧⎨⎩
(
1 − e−αq

)
α

, α ̸= 0, α < 0
q, α = 0

Fig. 11. Typical architecture of web application hosting.

In the first category, we model the HA types of cloud workload
for market segments 5 and 4, respectively. We show how to
use Markov chain analysis to decide the minimum number of
VMs in order to meet the specified SLA. There are few critical
assumptions of modeling for this category of utility functions.
First, if the specified SLA is changed, the number of VMs will be
altered. Intuitively, the number of provisioned VMs will be either
increased or reduced. Second, the difference between segments 5
and 4 is how to estimate a customer surplus (profit contribution)
in comparison to the offering price with the decision criteria. If
the quantity of VMs is more than a threshold level of customers’

business requirements, the utility value of segment 5 will be
diminished to zero. For segment 4 (DR-driven HA workloads),
the customers’ utility function also shows as a constant value for
each VM, but the utility value is justified by CSP’s offering price
in comparison with its on-premises infrastructure costs if CSP’s
offering price is higher than on-premises cost, the cloud customer
will switch to an option of building its own cloud infrastructure.

The second category of utility functions focuses on response
time. Segment 3 is based on the queueing theory, which can also
be derived from the Markov chain analysis for an e-Commerce
business, such as an online checkout system. Segment 1 is to
model virtual desktop infrastructure (VDI) mainly. The linear util-
ity model can represent the customer utility value, which shows
an additive relationship for each incremental VM. In other words,
if the business application has a workload pattern that is similar
to Online Transaction Processing (OLTP), we can approximately
use the power function to model the utility value because the
value of additional VM is declining sharply for an additional
cloud resource. If the workload is storage-related applications,
we can use a linear function for each additional VM because the
additional utility will decrease linearly. These two functions are
closely related.

The third category of functions is dependent on the economic
idea of risk assessment towards computational resources. If the
cloud workload of the segment 6 is a type of dynamic data
processing, such as clone server, Network File Sharing (NFS), State
sharing, URL rewriting, and dynamic content delivery (such as
online booking), the customer’s utility can be described as an
isoelastic or power function. Furthermore, if the workload would
allow a relative risk aversion when the number of VM is increas-
ing, CRRA is the adequate model for the utility value. In contrast, if
the application workload is a backend type of data processing that
allows a certain degree of risk for the computational interruption,
the risk-seeking utility function can be applied. In other words, a
customer may be willing to take the risk of workload interruption
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Fig. 12. Six cloud utility functions for six cloud market segments.

rather than pay a high cost for more VM resources. Big Data
Analytics is one of the applications because many MapReduce
workloads can be interrupted.

A CSP can have more or less than 6 market segments. Ac-
cording to [29], the suggested number of the market segments
is between 5 and 10. Overall, the number is dependent on a
market portfolio analysis to meet the CSP’s business objectives
by balancing sales growth, capital investment budget, cash flow,
cloud technology expertise and business strategy. For example, if
the CSP would like to explore other niche market (e.g., cage-level
physical security), a customer’s utility function will be defined
differently. Ultimately, a CSP should focus on utility functions
that are capable of generating value co-creation with its business
customers. It means how to estimate the value of Ki coefficients
and how to balance the coefficients across all market segments.

When we estimate Ki coefficients, we balance the values of all
the scaling coefficients to be equivalent by grouping SMEs that
have similar revenue amounts together. If a gap of the coefficient
value is too large, then the higher value of the coefficients would
have more influence on the optimal price of a VM. To visualize
all utility functions of Table 5, we plot out all six cloud customer
utility functions along with the number of VM variation in Fig. 12.

We have now demonstrated that our method of defining cloud
customer utility functions that depend on multiple criteria de-
cision making. These decision criteria consist of both internal
rationality (strategic objectives, cost, expertise, cash flow, tar-
geted customers, etc.) and external rationality (CSM, KPI, cloud
customers’ revenue or profits, and market segments) for a CSP to
achieve the maximum profit by identifying the optimal price. Our

key idea of modeling the cloud customers’ utility functions is to
assign SME customer’s revenue to each VM that can help cloud
customers to generate business revenue, which is the concept
of value co-creation [59,60] across segmented cloud market. To
compare with other solutions of modeling, we can evaluate the
performance of different models in terms of market share and
possible profit margin.

4. Performance evaluation

The performance evaluation is divided into two parts. The first
part is to compare the market share between our solution of
six market segments and other solutions with the single market
assumption. The second part is to compare all economic values,
which include business revenue, profit, the optimal price, and a
unit cost based on the popular price model, namely ‘‘on-demand’’.

4.1. Comparison of cloud market share

In comparison with some previous modeling methods of the
utility functions (Refer to Table 7 for details comparison), our
modeling method has the following advantages: First, the unit of
all six utility functions is measured by the customer’s revenue
or profit contribution in terms of the dollar. Second, this unit is
tangible and can be compared across all market segments. Third,
each utility function is associated with one type of cloud business
application or market segment. Fourth, we have identified a total
of six market segments. It avoids ‘‘one size fits all’’. Fifth, we focus
on the cloud customers or demand side’s utility functions. Sixth,
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Table 7
Characteristics of different methods of utility modeling and addressable market share.
Methods of utility
modeling

Utility functions Potential cloud
market share

Measurement of the utility unit Ind. variables of the utility
function

Multi-utilities method
Ui (q) , i = 1 · · · S ,

q = 1 · · · qm
100% Customer’s revenue & profit VMs

Model-based U(H) =
1−Mα

1−Tα Less 16%∼17% Hit rate Memory ‘‘M’’ & workload
(object ‘‘T’’)

SLA metrics Û (R) =

maxc U[S
(
C, R, D

′
)

, D
′

]

Less 16%∼17% Service level control ‘‘C’’ Resource ‘‘R’’,
Demand ‘‘D’’

Resource-based Ui = αiSi Less 16%∼17% Performance metrics (e.g.,
response time)

A throughput of response time
Ri,s , specified time βi,s

Social surplus-based Ui (zi) = Vi (zi) − PziTi (zi) Less 16%∼17% Expected resource within time
and price limit

Price P , resource zi Execution
time Ti Expected value Vi

Empirically calibrate Uijk = w

(
vi −

ci+2k−1pj1
2k−1αk−1

j qj1

)
Less 16%∼17% Expected value vi minus

combination of three variables
Price pj1 , delay time sensitivity
ci , quality level qj1 , workload w

Price-quality U (pr, s) = Pi (pr, s) =

λi (pr1 − ci − ρi) −
ρi

rt−si

Less 16%∼17% Payoff (resource request
capacity) vs. Price

CSP price pr , response time s,
unit Opex ci and unit Capex ρi

Capacity aware U (PN+1, TN+1) =

N+1∑
i=1

UQ
i −

N∑
i=1

UR={SLA}

i

Less 16%∼17% CSP’s profit U (PN+1, TN+1) Service price PN+1 and
response time TN+1

Conjoint analysis U (Ri, pi ) =

n∑
i=1

Ripi Less 16%∼17% Preference ranking Attribute ranking Ri & weight
pi

Framework based U (f ) = −e−5e−0.5∗f (A,E,R)
+ 1 Less 16%∼17% Sigmoid function value Specified scenario parameters

A, E, R
Simple linear U (p, t) = U0 − αp − βt Less 16%∼17% Service request satisfaction

level
VM price ‘‘p’’ & response time
‘‘t ’’

In contrast to previous SLA research works for cloud contents, we
explicitly specified the number of VMs to be provisioned for a
guaranty of cloud customer’s revenue delivery. Seventh, we lay
out a clear definition of utility in upfront to avoid any possible
misinterpretation of utility.

Table 7 of the market share calculation is dependent on the
assumptions of the number of market segments. If the model as-
sumes the market is a unified or single market, the pricing model
can only address small proportional customers. For example, if a
CSP only offers only one price for all its cloud customers, such
as an auction-based spot instance price, the majority of business
customers will be left out because spot instance cannot guarantee
to deliver some mission-critical business applications. Therefore,
the single price model can only target 16% ∼17% (1/6) market
shares if the cloud market has actually six market segments. This
is self-explanatory.

The ultimate goal of market segmentation is to set up a pricing
foundation for CSP to achieve its maximum profit. Therefore, it is
vital to validate our solution through the experiment based on a
particular price model, which can be demonstrated in the second
part of the performance evaluation.

4.2. Economic values comparison

The details of pricing comparison can be found in our other
work [61], which has been highlighted in Fig. 1 for steps 3 and
4. In this work, we only give brief information on how we im-
plemented our experiment through a particular price model, and
then we show the experimental results with different solutions.
Table 8 provides the justification for our solution.

4.2.1. Process of evaluation
To implement the 2nd part of the evaluation, we adopt the

‘‘on-demand’’ price model for cloud pricing, in which every lead-
ing CSP offers this price model to its cloud customers to reflect

one of the cloud characteristics: pay as you go (PAYG). This
‘‘on-demand’’ price model can be defined as Eq. (27)

CSi [p] =

⎛⎝⎛⎝ qm∑
j=1

Ui [j]

⎞⎠ − pq

⎞⎠ ≥ 0

qi [p] = arg max
q

CSi [p] i = 1, . . . , S

(27)

where S is the number of market segments. The qi is a number of
VMs to be provisioned by the cloud customers in the market seg-
ment ‘‘i’’. The VM quantity is decided by a maximum customer’s
surplus-value CSi [p] that is greater than zero for the given price
p which is offered by a CSP. It also depends on the defined utility
function Ui [j] which represents the external rationality (Refer to
both Table 6.) for the ‘‘i’’ market segment while j is a variable of
VM between i and q. qi is a dependent variable of a price p. It
means if the cloud price is changed, the sales quantity of each
market segment will also be changed.

If the cloud customer’s surplus CSi [p] has been quantified,
the maximum profit π [p] of a CSP can also be achieved by
identifying the optimal price p∗. Based on microeconomics, the
profit equation can be easily defined as Eq. (28). Further details
can be found in [61]

p∗
= arg max

p
π [p] (28)

4.2.2. Dataset
To optimize Eq. (28), we adopt the genetic algorithm to run

our experiment. There are a number of software applications
that can be applied to implement the genetic algorithm, such as
Matlab, R and even Microsoft Excel Solver. The R package has
two convenient packages: GA and Genalg that can deliver quick
results.

4.2.3. Experiment results
If a CSP assumes the cloud market is a single market with

only one defined utility function (e.g., either resource-based or
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Table 8
Experiment results of comparison between resource-based single market and multi-utilities based six market segment.
Comparison for
‘‘on-demand’’ price
model

Resource-based With
single market
Ui = αiSi, i = time

Simple linear with single
market
U (p, t) = U0 − αp − βt

Multi-utilities with 6
market segments
Ui (q) , i = 1 · · · 6

Multiple utilities
compare with
resource-based

Multiple utilities
compare with simple
linear

Optimal price $0.750 0.955 $0.7499 −0.013% −27.35%
Unit cost $0.3455 0.3761 $0.2814 −22.78% −33.65%
Total sales Vol. 2581 2077 5256 50.89% 60.48%
Total revenue $1936 $1983 $3942 50.89% 49.70%
Total cost $892 $781 $1479 39.69% 47.19%
Total profit $1044 $1202 $2463 57.61% 51.20%

simple linear utility function), they can only achieve either $1044
or $1202 profit respectively (Refer to Table 8). In comparison
with six market segments with multiple utility functions, the
profit margin can reach $2463. In other words, our method of
defining utility function can achieve more than 57.6% profit than
the resource-based method and 51.2% more profit than a simple
linear while the unit cost drops over 22% (resource-based) and
33% (simple linear) respectively.

This is because not all customers’ utility functions are con-
tinuous. Some utility functions are discrete. If the evolution of
different charging prices is plotted out (as shown in Fig. 13) for
the on-demand price model, we can see there is a sharp drop
in revenue and profit while the unit cost increases dramatically
beyond the optimal price for the multiple-utility functions. The
principle is similar to many retailers that adopt a psychological
price, such as $0.99 instead of $1 to boost sales volume or to
increase their revenue.

4.2.4. Evaluation of the experiment results
Notice that the above experiment result is dependent on some

key assumptions (See Section 3.2). If these critical assumptions
are changed, the experiment results could be different. As the
paper [6] indicated, a CSP’s pricing strategy is driven by the
overall CSP’s business strategy, long and short term goals of a
firm (e.g., growing market size or growing profit margin), an in-
vestment budget, technology expertise, return on investment, and
etc. This leads to a decision of the number of market segments
and the targeted market or cloud customers.

The above experiment results primarily demonstrate that in
comparison with a single market segment assumption, a CSP can
achieve a higher profit margin if it can divide the cloud market
with multiple segments and target different cloud business ap-
plications. If a CSP assumes there are only a few cloud market
segments, the profit margin could be lower.

Once we understand the principle of identifying multiple util-
ity functions, we can put this principle into a cloud business
practice. Here are some simple guidelines to apply to this state
of the art.

5. Discussion of model selection (simple guidelines)

Based on various parameters of six cloud market segments,
as shown in Table 3, the type of business application can be
estimated, which is mapping to each corresponding cloud market
segment (See Fig. 3). If an analyst has the real cloud opera-
tional dataset, this step will become much more manageable. The
crucial issue is how to define the utility function for different
customers’ business applications. The basic guidelines can be
summarized as follows:

1. If the business customers host a web site or run
e-commerce applications, such as online checkout, one
of the significant value propositions for a customer to
purchase more VMs is to reduce the queuing time and
create the good customers’ experience of online shopping.

The process of reducing queueing time has been demon-
strated. The useful model to describe the cloud customers’
utility value is the power function for SME. However, the
parameter of the exponent has to be negative to reflect
the diminishing of return for the marginal utility. Fig. 10
illustrated the value proposition for an e-commerce type
of business application

2. When the exponent component of a power function is
equal to one, the power function becomes linear. To reflect
the diminishing of return for the marginal utility, the coef-
ficient value of the linear variable is negative. The primary
driver behind adopting a linear function for the VDI ap-
plication is to increase the storage performance while the
customers can reduce operational costs. According to [62,
63], there are 19 performance metrics, such as ‘‘Copy Read
Hits’’, ‘‘Disk Time’’, ‘‘Pool Paged Bytes’’, ‘‘Network Inter-
face Bandwidth’’, etc. Different performance metrics might
change the utility function parameters. It is dependent on
CSP’s targeted customers. The best practice is to set up an
initial model and then have a fine-tuning with a simulation
model based on the real operation dataset.

3. If the exponent of the power function is set to zero, the
function becomes a constant within a certain quantity of
VM. This function can present a cluster of VMs to support
the specified SLA (e.g., 5 nines) for mission-critical business
applications, such as CRM database backup. The utility
function becomes a discrete function because the utility
will diminish to zero after a threshold level of VM quantity.

4. In comparison with the database backup, the DR applica-
tion requires more VMs to mirror the entire operational
environment. From a utility function perspective, it means
the number of VMs is more than the backup application.
However, the coefficient ‘‘θ ’’ of the function is less than one
to reflect the possibility of a disaster event that may occur.

5. Regarding a risk assessment of a customer’s operational
cost (e.g., CSP’s offering price for cloud resources) and a
possibility of workload interruption (e.g., performance), we
can use the isoelastic (power) utility function to model
the business customers’ decision in term of acquiring the
number of VMs [64].

6. In contrast, if the customers prefer to take more risks
for multiple interruptions of their computational process
(such as MapReduce application) rather than pay a high
price of cloud resources, the exponential utility function
can be applied and the value of α is less zero. Usually, the
type of cloud application often requires massive computing
power, and job priority is quite lower and workload can be
interrupted.

6. Assumptions analysis for defining utility functions

6.1. Assumptions analysis

Throughout this paper, we adopt an analytic approach to
define multiple utility functions based on various assumptions of
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Fig. 13. Price evolution of ‘‘On-Demand’’ price model for six market segments.

business strategy, technology expertise, investment capital, and
segmented cloud market so that CSP can explore a broader ad-
dressable cloud market to define business customers’ utility func-
tions. If some assumptions are not held or become uncertainty,
we can combine analytic, simulation, and statistical approaches.
The pre-condition of simulation and statistical method is that an
operational dataset should become accessible.

In comparison with the analytic approach, statistic or simu-
lation modeling methods can further consolidate many assump-
tions. The advantages of combining various methods would pro-
vide a much balance view of cloud customers’ preference in terms
of marginal VM demand. Therefore, a combination of approach
enables a CSP to know more about how much the customers are
willing to pay for what type of cloud resource (e.g., VM instance).

The idea of the defining cloud utility function based on the
segmented market is to measure cloud business customers’ pref-
erences and tastes in terms of less or more VM resources to be
purchased. In this study, the unit of subjective metrics can be in-
terpreted as the cloud customer’s revenue or profit contribution.
Practically, many factors may impact the business customers’
revenue and profits, such as end-user’ experiences, response time,
latency, throughput, availability, market environment, etc. Vari-
ous CSM measurements may result in different shapes of utility
functions. However, the above six utility functions cover some
basic cloud business applications.

6.2. Current practice of cloud pricing

Based on the current cloud business practice, we can see that
some leading global CSPs, such as AWS, MS Azure, Google Cloud
Platform (GCP), IBM Cloud, Right Scale, Oracle cloud, DELL/EMC/
VMware, Salesforce.com, and Dropbox, divide cloud market into
five to seven market segments and offer different cloud services
with different pricing models [61]. Fig. 14 illustrates the over-
all cloud market spectrum. Most CSPs provide essential cloud
services (e.g., on-demand and reserved instances) to cover the
mainstream cloud market segments. Only a few leading CSPs
attack niche market segments. For example, only AWS provides
an auction-based spot instance in the cloud market.

Fig. 14 demonstrates that different CSPs have different pricing
strategies based on their company goal, targeted market seg-
ments, and technology expertise, investment budget and etc. If
a CSP’s pricing strategy and the number of market segments is
determined, the utility function can be defined. The main aim of
this paper is to demystify the process of how to define utility

Fig. 14. Summary of cloud pricing spectrum in the current cloud industry.

functions for cloud business customers so that any CSP can adopt
this modeling process to develop its own cloud pricing strategy
in detail.

7. Conclusions and future work

The issue of how to define the cloud customers’ utility func-
tions from the cloud customer’s perspective is vital to any CSP
because it would help the CSP to generate the optimal cloud
price to maximize the profits for its cloud business. Based on
our intensive literature review on this topic, we show that one
way to improve CSP’s profit is to determine the cloud market
segments and then define multiple utility functions from a value
co-creation perspective.

Our solution provides external rationality, which is closely
tied to the business applications that can help cloud business
customers to generate revenue or profit. In comparison with
previous modeling methods, our solution is based on both market
segments and value co-creation. It is tangible and direct for many
cloud practitioners because all utility values are measured by
the cloud business customer’s profit for its provisioned cloud
resources.

Overall, the modeling process is just one of four processing
steps for CSPs to create a value-based pricing strategy. There
are two more steps, which they are to build various value-based
pricing models (step 3) and identify the optimal price point for
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each price model so that both CSPs and cloud business customers
can achieve the goal of value co-creation (step 4) in [7]. In future
work, we will consolidate the step 1 (cloud market segmentation)
and 2 (defining multiple utility functions) when we can access
some live datasets from CSPs so that we can improve this state
of the art for many cloud practitioners to generate some practical
value-based pricing models. Moreover, we will develop other
types of utility functions to cover more niche market segments,
such as Function as a Service (FaaS) market.
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