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Abstract—Cloud computing is an utility computing paradigm
that allows users to flexibly acquire virtualized computing re-
sources in a pay-as-you-go model. To realize the benefits of
using cloud, users need to first select the suitable cloud services
that can satisfy their applications’ functional and non-functional
requirements. However, this is a difficult task due to large
number of available services, users’ unclear requirements, and
performance variations in cloud. In this paper, we propose a
system that evaluates trust of clouds according to users’ fuzzy
Quality of Service (QoS) requirements and services’ dynamic
performances to facilitate service selection. We demonstrate the
effectiveness and efficiency of our system through simulations and
case studies.

Keywords—Cloud Computing, Trust, Service Selection, QoS,
IaaS, Hierarchical Fuzzy Inference System

I. INTRODUCTION

Cloud is a highly agile and flexible utility computing
paradigm that allows users to acquire virtualized computing
resources in a pay-as-you go model [1]. Its merits, including
no upfront investment, just-in-time resource provisioning, and
fast deployment, is attracting more and more organizations to
migrate their existing applications and develop new systems
on cloud. Among all cloud service models, Infrastructure-as-
a-service (IaaS) provides the most flexible service for users
trying to deploy their own applications. To realize the benefits
of using IaaS cloud, users need to ensure the trading service
providers can fully satisfy their applications’ functional and
non-functional requirements. However, there exists plenty of
IaaS cloud providers offering similar services with different
pricings and performances, which creates difficulty for users
to find the most suitable service. Therefore, it is essential to
develop automatic systems to dynamically identify satisfactory
IaaS services according to different application requirements.

Observed by experiments [2], VM performances within the
same cloud are not static. Schad et al. [2] pointed out that one
influencing cause is the performance heterogeneity of hard-
ware in the underlying physical infrastructure, e.g., different
types of CPU, memory, and disk used in the physical hosts.
Besides that, the interference from colocated VMs also affect
performance greatly [3]. Thus, the surge of VM requests in
peak hours often causes performance degradations. Some other
providers, e.g., eApps1, dynamically allocate CPU to VMs
on the same host according to their priorities, which makes
VM performances even more unstable. Since the aggregated
potential variability is considerable [2], it is necessary to take

1eApps http://www.eapps.com/

it into account at the selection phase to improve the cost-
efficiency of using cloud.

Trust management systems have been utilized to help
users to select satisfactory and trustworthy services in many
scenarios [4]. Applied in cloud context, they should be able to
capture personalized requirements and preferences to provide
customized services, as cloud users often have diverse expec-
tations for services when deploying different applications.

Many state-of-art cloud service selection systems [5][6][7]
[8][9][10][11] need users to submit static weights to model
preferences for attributes, which requires expert knowledge
and is time-consuming. To let users smoothly adopt cloud, a
more nature way is to let them express their vague preferences
in linguistic phrases. Besides, sometimes it is also difficult
for users to determine QoS requirements in accurate values,
e.g., users need to conduct complex tests to determine the
actual CPU power needed to process 50 transactions in parallel.
Similarly, by using approximate linguistic descriptors, users
can define requirements more easily and quickly.

In this paper, we propose a new personalized trust evalua-
tion system to support cloud service selection. In particular,
we measure trust of clouds as their satisfactory degree to
specific user requirements based on their past performances.
We employ membership functions and fuzzy hedges to capture
users’ subjective requirements and preferences for different
QoS attributes and then use a hierarchical fuzzy inference
system to derive trust levels. By analyzing past benchmark
results, our system can identify services that are likely to
meet all QoS requirements in the whole application life cycle.
Through simulations and case studies, we demonstrate both
the effectiveness and efficiency of our approach.

The remainder of this paper is organized as follows. We
introduce some background about trust management and fuzzy
inference in next section. Then we discuss related works and
their limitations. After that, we present our trust evaluation
system, followed by the performance evaluation. In section VI,
we illustrate the usage of our system with two case studies.
Finally, we conclude the paper and identify future directions.

II. BACKGROUND

A. Trust Management System
Trust has different definitions under different contexts. In

system world, trust is usually defined as the subjective belief
that the system or component, the user intending to interact
with, will behave as expected [4]. Such belief should be
derived from strong evidence, such as past performances, peer
recommendations, and certificates. Trust management systems
are designed to aggregate trust from above evidence in real

2014 IEEE 28th International Conference on Advanced Information Networking and Applications

1550-445X/14 $31.00 © 2014 IEEE

DOI 10.1109/AINA.2014.104

850



time and provide trust query services to parties in concern.
They have played important roles in helping users to select
the satisfactory services in many scenarios. However, since
state-of-art trust management systems are usually developed
for systems dedicated to certain missions, they are unsuitable
for cloud where users run diverse applications for different
purposes. Besides, they usually use user ratings as evidence,
which is also invalid for clouds because users’ diverse expec-
tations for services are likely bias their ratings. For existing
trust management systems and trust evaluation techniques,
interested readers can find more details in the survey done
by Jøsang et al. [4]. Different from previous systems, our
trust evaluation system is able to provide customized service
according to users’ individual expectations.

B. Hierarchical Fuzzy Inference System
Fuzzy inference has been widely used to solve control and

reasoning problems in uncertain environments due to its ability
to handle inaccurate inputs. Figure 1 shows a typical fuzzy
inference module. It has three major components:

1) Inference Engine: It defines the fuzzy logic operators and
defuzzifier used in the inference process.

2) Membership Functions: A membership function defines
to what degree the fuzzy element belongs to the correspond-
ing fuzzy set. It maps crisp values to membership degrees
between 0 and 1. In fuzzy inference system, each input and
output variable has its own set of membership functions.

3) Rulebase: It is a set of “If-Then” rules that defines the
inference model. The rule structure is like: “If antecedent
Then consequent”, where antecedent and consequent are
fuzzy propositions connected by “AND” or “OR” operators.

The inference process usually involves five major steps:

1) Fuzzification: input crisp values into the membership func-
tions to obtain corresponding membership degrees of each
input variable regarding specific fuzzy set.

2) Applying Fuzzy Operations: obtain the membership de-
gree of the antecedent using “AND” and “OR” operators.

3) Implication: obtain the fuzzy set of each rule using the
defined implication operator.

4) Aggregation: aggregate output fuzzy sets of all rules using
the defined aggregation operator.

5) Defuzzification: transform the aggregated fuzzy set into a
crisp value using the defined defuzzification algorithm.

A hierarchical fuzzy inference system is connected by
multiple atomic fuzzy inference modules with outputs of the
low level modules serving as inputs to the upper level modules.
It brings two major benefits compared with a non-hierarchical
one. The first is that it can reduce the number of “If-Then”
rules, which greatly simplifies the system design. The second
benefit is that it enables the system to compute partial solutions
when the task can be clearly partitioned or there are functional
dependencies in the system. For further information of these
systems, readers can refer to Torra’s survey [12].

III. RELATED WORK

Generally, state-of-art IaaS cloud selection approaches can
be classified into two categories, namely, service ranking
approaches, which aim to rank clouds according to their
performances; and matchmaking approaches, which compare
user requirements to actual service offerings.

For service ranking approaches, many teams [5][6][7][8]
[9][10][11] have investigated using Multi-criteria Decision

Fig. 1. A Typical Fuzzy Inference Module

Making (MCDM) methodologies to rank clouds. These sys-
tems depend on static weight assessment for preference mod-
eling, which is time-consuming. Furthermore, except the work
by Rehman et al. [10] and Wang et al. [11], none of them con-
sidered performance variations. Hamzeh et al. [13] developed
a fuzzy based MCDM approach that uses linguistic descriptors
to model preferences. Still, they didn’t address the performance
variation problem. Noor et al. [14] and Habib et al. [15]
evaluated trust of clouds according to user feedbacks. But they
ignored users’ diverse requirements. Supriya et al. [16] also
employed hierarchical fuzzy inference system to evaluate trust
of providers. However, they required users to manually tune the
inference system for each query regarding their expectations.

The first important cloud service matchmaking system is
proposed by Dastjerdi et al. [17]. They adopted description
logic to match user’s QoS goal and services’ self-advertised
Service Level Agreement (SLA) contracts. Sundareswaren et
al. [18] proposed a time-efficient selection algorithm for cloud
brokers based on B+ tree indexing. Redl et al. [19] employed
Support Vector Machine algorithms to find the closest cloud
service to user requirements. None of them considered perfor-
mance variations, and only the approach by Sundareswaren et
al. [18] takes user preferences into account.

Our system addresses the limitations in the previous works.
It uses fuzzy linguistic descriptors and hedges to help users to
quickly and easily define their requirements and preferences,
and it considers performance variations in clouds when eval-
uating trust, which improves cost-efficiency for cloud users.

Apart from our work, fuzzy logic has been applied to
address other selection problems. Nepal et al. [20] employed
fuzzy set operations and fuzzy hedges for preference modeling
in their web service selection system. Wang [21] used a fuzzy
based MCDM algorithm to rank web services. Song et al.
[22][23] utilized fuzzy inference system to evaluate trust in
grid and P2P systems for resource selection.

IV. PROPOSED SYSTEM

A. System Architecture
Figure 2 illustrates the general architecture of our proposed

system. There are two major steps involved in the usage
of the system. The first step, which is shown in dashed
lines, captures users’ subjective perceptions of different QoS
attributes through tuning fuzzy membership functions, which
is introduced in detail in Subsection IV-B. The second step,
which is shown in solid lines, involves the whole application
deployment process, including requirement submission, dis-
covery, trust evaluation, selection, and deployment.

The components of the system are explained below:
1) Web Interface: This layer provides users or cloud bro-

kers with the entrance to all the services. Users can submit
their functional and non-functional requirements, and change
their perceptions through graphical interfaces.
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Fig. 2. Architecture of the Proposed Trust Evaluation System

2) Discovery Service: This component retrieves services
that can meet users’ functional requirements (i.e., number
of cores, memory amount, storage volume, budget and ge-
ographical location) and some static QoS requirements (e.g.,
security and privacy) from the IaaS service repository. Another
important function of it is to check the compatibility of
services. It filters services that cannot satisfy users’ business
policies or are incompatible to software platforms required
by their applications. Several tools and techniques have been
developed for these purposes, such as the systems proposed
by Dastjerdi et al [17] and Chunqing el al. [24].

3) Trust Evaluation Service: It is the core part of the
system that evaluates the trust levels of functionally matched
services. It takes user requirements and the services’ past
benchmark results as input and then outputs a list of services
with their trust values regarding each attributes. Users or cloud
brokers can then select the most suitable service based on the
obtained trust values along with other objections (e.g., cost).

4) Cloud Benchmark Service: These services continuously
monitor the performances of clouds by running benchmark
applications on a number of dynamically launched VMs in a
certain time interval and publishing the results to the public.
They provide valid data traces regarding low level metrics
that are required to fairly compare cloud services’ QoS. An
example of such service is CloudHarmony2. It now monitors
63 cloud data centers all over the world. However, as the
number of providers continues to grow, benchmarking cloud
services becomes financially unsustainable. The best solution
is to advocate cloud providers to perform these standard tests
by themselves and publish their results through open API. In
addition, a trusted third party should regularly audit the clouds
to ensure the integrity of the published results.

B. Modeling Requirements and Preferences
1) Requirement Types: To search the satisfactory services,

our system requires users to first submit requirements for
attributes they concern. It supports two types of requirements,
namely, numerical requirement and linguistic requirement.
Blended submission of different types of requirements in the

2CloudHarmony http://cloudharmony.com/

same query is valid in our system. Section VI illustrates how
different types of requirements can help users to define their
expectations in selection process with two case studies.

a) Numerical Requirements: numerical requirements
are numerical values with corresponding units. When sub-
mitting these requirements, users expect the services to have
higher performances than the submitted values. The numerical
requirements for some attributes, e.g., availability, can be eas-
ily extracted from the application’s Service Level Objectives
(SLOs). While for other attributes, e.g., CPU and network
speed, they cannot be effortlessly determined because perfor-
mance SLOs are usually defined in high level metrics, e.g.,
response time and throughput. This requires users to perform
tests to transform high level SLOs to low level requirements.

b) Linguistic Requirements: linguistic requirements
are submitted as fuzzy linguistic descriptors (e.g., High,
Medium, and Low) which are semantic approximations of the
numerical requirements. Since human beings are accustomed
to use these linguistic descriptors to make rough estimations,
they can easily submit meaningful requirements in this form
according to application nature or preliminary results obtained
through simple test or simulation. They are useful when it is
uneconomic to perform complex tests or the task is urgent.

2) QoS Attributes: Table I shows an example of the hi-
erarchy of the cloud QoS attributes, which we use in the
prototype. We choose the attributes and their metrics according
to SMI framework3 and the work done by Garg et al. [6][7].
One can easily add extra attributes to the example model or
use different metrics to measure existing attributes, e.g., IOPS
(Input/Output Operations Per Second) for memory and disk
performances. Furthermore, the system allows users to only
submit requirements for the attributes they concern. In such
cases, the system considers the performances of the overlooked
attributes as fully satisfactory for all services in evaluation.

In general, we classify all leaf attributes in the hierarchy
into two categories, namely, dynamic attributes and static
attributes. Dynamic attributes are susceptible to performance
variations. Therefore, their performances need to be quantified
by benchmark traces. Compared with these attributes, the
performances of other attributes can be considered static, i.e.,
security attributes, as their variations are negligible and unmea-
surable. Our system quantifies the performances of security
attributes in the form of single values instead of series of
traces. They can be evaluated by cloud security benchmarks,
e.g., the framework proposed by Garcia et al. [25], or expert
ratings. We only allow users to submit linguistic requirements
for static attributes, as for them, services can be binarily filtered
at service discovery phase with given numerical thresholds.

Besides QoS, cost is also important to utility. Our system
provides three different ways to balance users’ QoS and cost
objections. The first way is to specify a budget at service
discovery phase. In this way, users can identify the most sat-
isfactory service within an acceptable budget. For the second
method, users can select the most economical cloud service
among those have acceptable trust levels. The third way is
to submit linguistic requirements for cost during the trust
evaluation phase if users only have vague objections for cost.

3) QoS Inputs and Membership Functions: As the first step
of trust evaluation, our system retrieves corresponding bench-
mark results from cloud benchmark services and then analyzes

3C.S.M.I.C http://csmic.org/understanding-smi/
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TABLE I. AN EXAMPLE OF HIERARCHY OF CLOUD ATTRIBUTES AND METRICS FOR TRUST EVALUATION

Attributes Metrics Types Requirements

Performance

CPU CPU Speed Maximum number of instructions executed by a single core in unit time (MIPS)

Dynamic

Numerical
Memory

Memory Read Maximum amount of data transferred from memory in unit time (Mb/s)
Memory Write Maximum amount of data written to memory in unit time (Mb/s)

Storage
Disk Read Maximum amount of data transferred from secondary storage in unit time (Mb/s)
Disk Write Maximum amount of data written to secondary storage in unit time (Mb/s)

Linguistic
Network

Inbound Maximum amount of data transferred into VM in unit time (Gbit/s)
Outbound Maximum amount of data transferred out of VM in unit time (Gbit/s)

Assurance
Availability The proportion of time that the VM is accessible (%)
Failure Rate Average number of failures for one VM in one hour

Elasticity
VM Startup Time Time consumed to allocate, boot up, and configure VM (s)

VM Shutdown Time Time consumed to shut down and deallocate VM (s)

Security

Platform Security Score of security mechanisms that protect virtualized platform

Static Linguistic

Data Security Score of security mechanisms that protect users’ data
Network Security Score of security mechanisms that protect VMs from network attacks

Site Security Score of security mechanisms that protect the data center
Security Policy Score of policies that users can employ to implement their own security strategies

Cost
VM Cost The cost to deploy a VM ($/hr or $/month)

Data Transfer Cost The cost to transfer data in or out of data center ($/Gb)
Storage Cost The cost of secondary storage ($/Gb/Month)

the traces to derive the QoS inputs of the hierarchical fuzzy
inference system according to user requirements. Following,
regarding the two types of requirements, we respectively in-
troduce how the system calculates QoS inputs from benchmark
traces and their associated input membership functions.

a) Retrieving Benchmark Traces: The benchmark
traces used are key to the quality of trust evaluation. To retrieve
representative traces, the system should consider multiple fac-
tors. In our system, we select traces according to the variability
of attributes and expected running time of VMs.

Different attributes have different levels of variability.
According to Schad et al. [2], VM startup time has very high
variability in short time. For such attributes, the system should
retrieve traces within a short time window, e.g., 10 minutes,
to facilitate a valid trust evaluation.

The expected running time is also important when re-
trieving traces. Suppose a user wants to deploy a VM on
Wednesday from 7:00 am to 2:00 pm, we should refer to traces
that were benchmarked on nearest Wednesday or weekday
within the same range of time. This is because clouds are
likely to suffer more variations at busy hours on weekdays in
their local time. Furthermore, if the user plans to deploy VMs
for a long term, it is also better to consider the traces within
a large time window to ensure the selected service is likely to
be satisfactory in the whole life cycle of the application.

b) Numerical Requirements: For numerical require-
ments, the system calculates the QoS inputs of the ith service
regarding the jth attribute as follow:

pi,j =
nsatisfy

i,j

ntotal
i,j

(1)

where for the performance of ith service regarding the jth
attribute, the numerator and denominator of the equation
respectively stands for the number of benchmark traces that
can satisfy the numerical requirement and the total number of
traces retrieved. In fuzzy inference process, the membership
functions associated with QoS inputs of numerical require-
ments are shown in Figure 3(a).

c) Linguistic Requirements: For linguistic require-
ments, the system calculates statistical indicators of the bench-
mark traces as the QoS inputs. In Section V, we test our system
with different indicators, i.e., median, mean, first quartile, and

five percentile.
We use triangular membership functions to model linguistic

requirements in fuzzy inference. Figure 3(b) shows an example
of the membership functions. They represent users’ personal
perceptions that how quantitative performance data are mapped
to qualitative linguistic descriptors for each attribute. Since the
perceptions are purely subjective, we allow users to individ-
ually adjust the functions. They can either submit functions
for each size of VMs or normalize their perceptions in a per-
CPU-core-base. This is a one-time job and brings no extra
burden to users when submitting requests. To further ease the
task, especially for inexperienced users, the system provides a
default setting of functions for each attribute.

4) Modeling Preferences: In our system, user preferences
are modeled in both attribute and requirement level. Firstly, at
attribute level, users express their preferences by submitting
higher requirements for more important attributes, e.g, High
for CPU and Low for memory. Secondly, at requirement level,
users can express their preferences by selecting one of the
importance levels in Table II for each requirement. This allows
users to make tradeoffs among their requirements in selection.
For example, suppose a user wants to deploy a security
sensitive application on cloud, he might prefer to select the
services that can definitely satisfy his security requirements
even at the cost of enduring more performance degradations
for other attributes within an acceptable level. In this case,
he can submit V ery Important for security requirement.
To increase the room for tradeoff, he can submit negative
importance levels, e.g., Unimportant, for requirements that
he is willing to sacrifice more performances. We implement
this mechanism using linguistic hedges, which are adapter
functions that change the shapes of original membership
functions. Following equations shows the formal definitions
of importance levels for the two types of requirements:

Numerical : d =

{
satisfactory(x)

ai

unsatisfactory(x)
1
ai

(2)

Linguistic : d =

{
f(x)

ai if x ≤ peak

f(x)
1
ai if x > peak

(3)

where satisfactory(x) and unsatisfactory(x) respectively
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(a) Numerical Requirements (b) Linguistic Requirements

Fig. 3. Membership Functions for Hierarchical Fuzzy Inference System

represent satisfactory and unsatisfactory membership
functions shown in Figure 3(a). f(x) is a triangular mem-
bership function shown in Figure 3(b), and peak is the x
value of its maximum membership point. ai is the importance
coefficient of the ith importance level. By applying positive
importance hedges, e.g, Important, the system further penal-
izes the services that cannot fully satisfy the requirements in
trust evaluation according to the amounts of performance defi-
ciency. Oppositely, for negative hedges, e.g, Unimportant, it
decreases the penalties. Table II shows the default importance
levels and coefficients used in our prototype.

TABLE II. IMPORTANCE LEVELS AND IMPORTANCE COEFFICIENTS

Importance Level Importance Coefficient
Very Important 1/2

Important 2/3
Neutral 1

Unimportant 3/2
Very Unimportant 2

C. Proposed Hierarchical Fuzzy Inference System
1) Overview: Our system dynamically constructs the hier-

archical fuzzy inference system for each query in accordance
to the generated hierarchy of attributes. Figure 4 shows an
example of it. There are three types of inference modules in the
system. For non-leaf attributes, their trust values are evaluated
by higher level inference modules, which take outputs of
corresponding sub-inference modules as inputs. At leaf level,
the system generates inference modules according to the types
of requirements, namely, numerical inference modules and
linguistic inference modules.

Higher level inference modules use membership functions
shown in Figure 3(a) as input membership functions. The
input membership functions for leaf level modules have been
introduced in Subsection IV-B. All modules use the func-
tions defined in Figure 3(a) as output membership functions.
Rulebases for each module are generated according to user
requirements, the details of which is introduced in next part.

All inference modules share the same inference engine.
Our prototype employs Product for “AND” operator, MAX
for “OR” and Aggregation operator, and Center of Maximum
(COM) defuzzifier. For each output variable with n member-
ship functions, COM calculates the crisp trust value t as follow:

t =

n∑
i=1

xiμi

n∑
i=1

μi

(4)

where xi is the x value of ith membership function’s maximum
membership point and μi is the membership degree aggregated
for the ith membership function. The reason we choose COM
is that it is both intrinsically plausible and timely efficient.

Fig. 4. Example of Hierarchical Fuzzy Inference System for Trust Evaluation

2) Generating “If-Then” Rules: The system dynamically
generates the fuzzy rules for each module according to user
requirements and employed rule generation strategy. In our
prototype, we adopt a pessimistic strategy where output trust
level is satisfactory only if all input variables are satisfactory,
as we suppose users expect all submitted requirements should
be individually satisfied. Following, we describe it in detail as
an example of valid rule generation strategies.

a) Higher Level Inference Modules: The inputs of these
modules are trust levels of their corresponding sub-attributes.
Suppose attribute A have sub-attributes B and C, the generated
rule set is like this:

Rule 1 If B trust is satisfactory AND C trust is
satisfactory then A trust is satisfactory

Rule 2 If B trust is not satisfactory OR C trust
is not satisfactory then A trust is
not satisfactory

b) Leaf Level Inference Modules: For each leaf level
inference module, the input is a single value obtained through
analyzing benchmark traces. If user submits numerical require-
ment for attribute A, the generated rules are as follow:

Rule 1 If A is (importance level) satisfactory then
A trust is statisfactory

Rule 2 If A is (importance level) not satisfactory
then A trust is not satisfactory

Otherwise, suppose user submits linguistic requirement
Medium for attribute A, the result is as follow:

Rule 1 If A is at least (importance level) Medium
then A trust is satisfactory

Rule 2 If A is at most (importance level) Low then
A trust is not satisfactory

Low is the closest inferior linguistic descriptor to Medium.
at least is the linguistic hedge that transforms the mem-
bership function of Medium into function “≥ Medium”.
Similarly, at most transforms function of Low into “≤ Low”.
Following equations show their formal definitions regarding
triangular membership function f(x):

dat least =

{
f(x) if x ≤ peak

1 if x > peak
(5)

dat most =

{
1 if x ≤ peak

f(x) if x > peak
(6)

where peak is the x value of the maximum membership point
of the triangular membership function.
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Fig. 5. (a) NDCG mean and (b) absolute difference mean using different numbers of linguistic requirements and different statistical indicators. (c) NDCG
mean and (d) absolute difference mean using different numbers of linguistic requirements and different numbers of linguistic descriptors.
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Fig. 6. Effect of different importance levels on the ranking of services.

V. PERFORMANCE EVALUATION

A. Generating Benchmark Traces for Simulations
Schad et al. [2] ran performance benchmark applications

(e.g., Ubench and Bonnie++) on newly launched VMs every
hour in a month on Amazon EC2. They did not only quantify
the performance variations regarding multiple attributes in
a cloud, but also successfully identified their performance
distributions. From the data analysis, they found that the per-
formance instability in Amazon is mainly caused by hardware
heterogeneity and workload increase in peak time. Since these
are common problems faced by all cloud providers, we assume
the performance distributions of other services also generally

follow the same patterns as the ones observed in Amazon but
with different levels of variability and means.

We test our system through simulations using synthetic
benchmark traces. Each service trace consists of 50 to 200
benchmark results for each of the 11 dynamic attributes defined
in Table I. Some benchmark results are generated according
to the known distribution patterns mentioned by Schad et al.
[2]; others are normally generated. In total, we created 3000
services with similar comprehensive performances but diverse
performances regarding each attribute. This avoids the system
always returning the same omnipotent services and enables us
to study how our system makes tradeoffs among attributes.

B. Linguistic Requirements vs Numerical Requirements
In the first experiment, we test the validity and accuracy

of using linguistic descriptors to approximate numerical re-
quirements. To compare the results obtained by the two, we
dynamically convert some of the numerical requirements in
25 numerical queries into linguistic requirements. This is done
by selecting the linguistic descriptor that produces the highest
membership degree with given numerical values and prede-
fined membership functions. By doing so, we assume users
are able to intuitively submit the closest linguistic descriptors
to numerical requirements, which is the ideal situation. We
use average Normalized Discount Accumulative Gain (NDCG)
at position 10 to measure whether our system still can rank
most satisfactory services at the top when some of the require-
ments are submitted in linguistic descriptors. The relevance
scores used to calculate NDCG are trust levels derived from
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(b) Mean Execution Time vs Number of Attributes

Fig. 7. Mean execution time with different numbers of services and attributes

original numerical queries. In addition, we measure absolute
differences of trust levels obtained by the paired queries to
gauge evaluation accuracy. Apart from number of linguistic
requirements, we also consider other factors that may influence
accuracy, i.e., statistical indicators used to calculate the QoS
inputs and number of linguistic descriptors (Low, High or
Low, Media, High). For each number of linguistic require-
ments, we run 55 tests with different combinations of attributes
submitted in linguistic requirements. We use 5 linguistic
descriptors for tests using different statistical indicators, and
five percentile for tests using different numbers of linguistic
descriptors. Figure 5 reports the average results of the tests.

According to the results, both the quality of ranking and
evaluation accuracy decrease when the number of linguistic
requirements grows, since they bring extra uncertainties into
the system. In addition, the decreases are generally linear. This
indicates limiting the number of linguistic requirements can
largely improve the chance of finding the most satisfactory
service. Comparing different statistical indicators, it shows that
conservative indicators, i.e., five percentile and first quartile,
produce better results. This is because they are more sensitive
to variability and hence increase the system’s differentiability.
The data also reveal that increasing number of linguistic
descriptors can improve both quality of ranking and evaluation
accuracy. However, on the other hand, it makes more difficult
for users to come out with sensitive judgements if the number
of descriptors is large. Further studies are required to find the
number of descriptors that can best balance the two factors.

C. Effectiveness of Preference Modeling
In the second experiment, we demonstrate the effectiveness

of our preference modeling approach. For a query where all

its requirements are submitted with Neutral importance level,
we select one requirement a time and change its importance
level to construct new queries. We also use NDCG at position
10 as metric, but the relevance scores used in this experiment
are the trust values of the selected requirement with Neutral
importance level. In this way, we show whether our system
ranks services that have lower performance deficiencies to the
selected requirement higher when the importance level of the
requirement increases.

According to the results shown in Figure 6, average NDCG
remains unchanged for some requirements when their impor-
tance level goes up, and the scale of NDCG increase for other
requirements also varies. This is because the space for tradeoff
is limited. For example, though one cloud can fully satisfy
requirement A, as long as its performance deficiencies to other
requirements are unacceptable, the system considers it unsatis-
factory no matter how the user increases A’s importance level.
This ensures tradeoffs are only made within acceptable level
and returned services can reasonably satisfy all requirements.

D. System Scalability
The third experiment tests the scalability of our approach.

We first measure mean execution time of 25 queries each with
requirements for 11 attributes when the number of services is
increased from 500 to 3000. Next we test the mean time spent
to evaluate 25 queries for 3000 services when the number of
leaf attributes considered is increased from 2 to 9. We run 55
tests for each number of services and attributes on a PC with
Intel i7-2600 CPU and 4 Gb RAM using single thread.

As observed in Figure 7, our approach is timely efficient
and linearly scalable. The execution time can be further
reduced if we parallelize the evaluation process.

VI. CASE STUDIES

In this section, we demonstrate how inexperienced users
and expert users can make use of our system to select the
satisfactory service and improve their cost-efficiency. Table III
shows the basic information of the three IaaS cloud services
involved in the following illustrations.

TABLE III. IAAS CLOUD SERVICES

Service CPU Core Memory(Gb) Disk(Gb) Price($/hr)
A 1 1.7 20 0.07
B 1 2.0 25 0.10
C 1 1.8 18 0.09

A. Case 1
A user who worked for a pharmaceutical company wanted

to run a simulation in cloud. For functional requirements, he
required the service to have 1 core, more than 1.5 Gb RAM and
18 Gb secondary storage. Though he had limited knowledge
of computer science, he knew the program is CPU and data
intensive but requires little network communications when the
simulation starts. Hence he submitted High requirements for
attributes related to CPU, memory and disk performances and
Low requirements for network attributes.

Our system filtered service C at discovery phase as it could
not provide enough storage. Then it retrieved benchmark traces
of A and B for the past few hours to evaluate trust of their
current performances. The trust values obtained were 0.85 for
A and 0.91 for B, which were all acceptable to the user. Since
service A offered a cheaper price, user decided to select A.
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B. Case 2
A game company developed an online game and planed to

deploy it on cloud with a budget of $0.09/hr for each single
core instance. They agreed with their end users that the service
should be available 99.999% every year. Through preliminary
experiments, they estimated the application requires 7 MIPs
CPU and 0.8Mb/s inbound and outbound network speed for
a single instance to support 50 requests in parallel. They also
identified network as the bottleneck to their application perfor-
mance, so they promoted the importance level of network to
V ery Important. Their application is undemanding for disk
as it depends on the database deployed on local servers, so they
ignored disk I/O attributes. However, they lack enough time to
conduct further tests to determine the thresholds of memory
I/O due to development delays and incoming online date.
Therefore, they decided to utilize linguistic requirements to
first find a reasonably satisfactory service for their application
and then redeploy it to the most satisfactory one later. They
were aware that there are many sequential memory read and
write operations in their program. Thus they submitted High
requirements for both memory read and write speed attributes.

Since B was over-budget, our system only retrieved traces
regarding A and C. The traces, in this case, contained bench-
mark results conducted on A and C in the previous month
as the application was supposed to run for a long time. The
returned trust levels were 0.41 for A and 0.92 for C. Though
C was more expensive, they still decided to deploy their
application on C because A suffered more variations and likely
would require them to deploy more VMs in peak hours.

After further development and tests, they identified the
numerical requirements for memory I/O. Apart from that, they
are now able to migrate the instances among different clouds
without down time. To increase cost-efficiency, the company
check the trust levels of all the cloud services every two hours
and dynamically migrate their application to service that offers
the best utility at the moment.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we proposed an effective trust evaluation
system using hierarchical fuzzy inference system for IaaS
service selection. The contributions of our system can be
concluded as follows: 1) it enables trust evaluation of IaaS
clouds according to user requirements, 2) it eases the IaaS
selection process for both inexperienced and expert users by
modeling their vague requirements and uncertain preferences
with linguistic descriptors and hedges, and 3) it improves
cost-efficiency and service stability when using clouds by
considering performance variations in the selection phase.

In future, we are going to develop selection polices for
cloud users and brokers based on our trust evaluation system
to further automate cloud deployment.
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