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ABSTRACT
In this paper, we investigate the benefits that organisations
can reap by using “Cloud Computing” providers to augment
the computing capacity of their local infrastructure. We
evaluate the cost of six scheduling strategies used by an or-
ganisation that operates a cluster managed by virtual ma-
chine technology and seeks to utilise resources from a re-
mote Infrastructure as a Service (IaaS) provider to reduce
the response time of its user requests. Requests for vir-
tual machines are submitted to the organisation’s cluster,
but additional virtual machines are instantiated in the re-
mote provider and added to the local cluster when there
are insufficient resources to serve the users’ requests. Näıve
scheduling strategies can have a great impact on the amount
paid by the organisation for using the remote resources, po-
tentially increasing the overall cost with the use of IaaS.
Therefore, in this work we investigate six scheduling strate-
gies that consider the use of resources from the “Cloud”, to
understand how these strategies achieve a balance between
performance and usage cost, and how much they improve
the requests’ response times.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—
Distributed systems; C.2.4 [Computer-Communication
Networks]: Distributed systems

General Terms
Design, Management, Performance
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1. INTRODUCTION
Managing and providing computational resources to user

applications is one of the main challenges for the high per-
formance computing community. To manage resources ex-
isting solutions rely on a job abstraction for resource con-
trol, where users submit their applications as batch jobs to
a resource management system responsible for job schedul-
ing and resource allocation. This usage model has served
the requirements of a large number of users and the execu-
tion of numerous scientific applications. However, this usage
model requires the user to know very well the environment
on which the application will execute. In addition, users
can sometimes require administrative privileges over the re-
sources to customise the execution environment by updating
libraries and software required, which is not always possible
using the job model.

The maturity and increasing availability of virtual ma-
chine technologies has enabled another form of resource con-
trol based on the abstraction of containers. A virtual ma-
chine can be leased and used as a container for deploying
applications [27]. Under this scenario, users lease a number
of virtual machines with the operating system of their choice;
these virtual machines are further customised to provide the
software stack required to execute user applications. This
form of resource control has allowed leasing abstractions that
enable a number of usage models, including that of batch job
scheduling [32].

The creation of customised virtual machine environments
atop a physical infrastructure has enabled another model re-
cently known as “Cloud Computing” [2, 37]. Based on the
economies of scale and recent Web and network technologies,
commercial resource providers, such as Amazon Inc., aim to
offer resources to users in a pay-as-you-go manner. These
Cloud providers, also known as Infrastructure as a Service
(IaaS) providers, allow users to set up and customise ex-
ecution environments according to their application needs.
Previous work has demonstrated how Cloud providers can be
used to supply resources to scientific communities. Deelman
et al. [9] demonstrated the cost of using Cloud providers
to supply the needs for resources of data intensive applica-
tions. Palankar et al. [26] have shown that Grid computing
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users can benefit from mixing Cloud and Grid infrastructure
by performing costly data operations on the Grid resources
while utilising the data availability provided by the Clouds.

In this work, we investigate whether an organisation oper-
ating its local cluster can benefit from using Cloud providers
to improve the performance of its users’ requests. We evalu-
ate six scheduling strategies suitable for a local cluster that is
managed by virtual machine based technology to improve its
Service Level Agreements (SLAs) with users. These strate-
gies aim to utilise remote resources from the Cloud to aug-
ment the capacity of the local cluster. However, as the use
of Cloud resources incurs a cost, the problem is to find the
price at which this performance improvement is achieved.
We aim to explore the trade-off between performance im-
provement and cost.

We have implemented a system that relies on virtuali-
sation technology for enabling users to request virtual ma-
chines from both the local cluster and the Cloud to run
applications. In this work, we evaluate via simulation six
strategies for improving scheduling performance through the
use of a Cloud provider. In summary, the contributions of
this work are to:

• Describe a system that enables an organisation to aug-
ment its computing infrastructure by allocating re-
sources from a Cloud provider.

• Provide various scheduling strategies that aim to min-
imise the cost of utilising resources from the Cloud
provider.

• Evaluate the proposed strategies, considering differ-
ent performance metrics; namely average weighted re-
sponse time, job slowdown, number of deadline viola-
tions, number of jobs rejected, and the money spent
for using the Cloud.

The rest of this paper is organised as follows. In Section 2
we provide the background on virtual machines, Cloud com-
puting, and scheduling. Then, we present the six scheduling
strategies for redirecting requests from the cluster to the
Cloud in Section 3. Section 4 describes the system design.
Next, Section 5 shows the considered experimental scenario
and reports the performance evaluation of the investigated
strategies. Related work is discussed in Section 6 whereas
conclusions are presented in Section 7.

2. BACKGROUND AND CONTEXT
This work considers the case where an organisation man-

ages a local cluster of computers through virtual machine
technology to supply its users with resources required by
their applications. The scenario, depicted in Figure 1, can
also represent a centre that provides computing resources
to scientific applications or a commercial organisation that
provisions resources to its business applications. The organ-
isation wants to provision resources for its user applications
in a way that guarantees acceptable response time.

The resources of the local cluster are managed by a Vir-
tual Infrastructure Engine (VIE) such as Open Nebula [13]
and Eucalyptus [25]. The VIE can start, pause, resume, and
stop Virtual Machines (VMs) on the physical resources of-
fered by the cluster. The scheduling decisions at the cluster
are performed by the Scheduler, which leases the site’s vir-
tual machines to the users. The scheduler also manages the
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Figure 1: The resource provisioning scenario.

deployment of VMs on a Cloud Provider according to pro-
visioning strategies, which are detailed in the next section.

2.1 Virtualisation Technologies
The increasing availability of VM technologies has enabled

the creation of customised environments atop physical in-
frastructures. The use of VMs in distributed systems brings
several benefits such as: (i) server consolidation, allowing
workloads of several under-utilised servers to be placed in
fewer machines; (ii) the ability to create VMs to run legacy
code without interfering in other applications’ APIs; (iii) im-
proved security through the creation of sandboxes for run-
ning applications with questionable reliability; (iv) dynamic
provision of VMs to services, allowing resources to be allo-
cated to applications on the fly; and (v) performance isola-
tion, thus allowing a provider to offer some levels of guaran-
tees and better quality of service to customers’ applications.

Existing systems based on virtual machines can manage
a cluster of computers by enabling users to create virtual
workspaces [20] or virtual clusters [13, 6, 14] atop the ac-
tual physical infrastructure. These systems can bind re-
sources to virtual clusters or workspaces according to the
demands of user applications. They also provide an inter-
face through which the user can allocate virtual machines
and configure them with the operating system and software
of choice. These resource managers allow the user to cre-
ate customised virtual clusters using shares of the physical
machines available at the site.

Virtualisation technology minimises some security con-
cerns inherent to the sharing of resources among multiple
computing sites. Therefore, we utilise virtualisation soft-
ware in our system design, described in Section 4, because
existing cluster resource managers relying on virtual ma-
chines can provide the building blocks, such as availability
information, required for the creation of virtual execution
environments. The creation of execution environments com-
prising multiple computing sites is our long-term goal. In
addition, relying on virtual machines eases deploying execu-
tion environments on multiple computing sites as the user
application can have better control over software installed on
the resources allocated from the sites without compromising
the operation of the hosts’ operating systems.



2.2 Infrastructure as a Service
Virtualisation technologies have also facilitated the reali-

sation of a new models such as as Cloud Computing or IaaS.
The main idea is to supply users with on-demand access to
computing or storage resources and charge fees for their us-
age. In these models, users pay only for the resources they
utilise. A key provider of this type of on-demand infrastruc-
ture is Amazon Inc. with its Elastic Compute Cloud (EC2)
[1]. EC2 allows users to deploy VMs on Amazon’s infras-
tructure, which is composed of several data centres located
around the world. To use Amazon’s infrastructure, users de-
ploy instances of pre-submitted VM images or upload their
own VM images to EC2. The EC2 service utilises the Ama-
zon Simple Storage Service (S3), which aims at providing
users with a globally accessible storage system. S3 stores
the users’ VM images and, as EC2, applies fees based on
the size of the data and the storage time.

2.3 Scheduling and Redirection Strategies
The strategies investigated in this work define how the

scheduler performs the scheduling of leases and when it bor-
rows resources from the Cloud. The scheduler is divided
into two sub-scheduler modules, one managing the schedul-
ing of requests at the local cluster, hereafter also termed
the Site Scheduler, and another managing the scheduling on
the Cloud resources, termed as the Cloud scheduler. We
term a strategy or algorithm used to schedule the leases as
a scheduling strategy, and the algorithm that defines when
the scheduler borrows resources from the Cloud and which
requests are redirected to the Cloud resources as a redirec-
tion strategy. A combination of scheduling and redirection
strategies is a strategy set. As discussed later in Section 3,
a redirection strategy can be invoked at different times (e.g.
a job arrival or completion) in different strategy sets.

2.4 Types of User Requests
The users of the infrastructure run different applications

with different computing requirements. Some applications
need resources at particular times to meet application dead-
lines, whereas other applications are not strict about the
time when they are given resources to execute as long as
they are granted the resources required. The first category
of applications is termed as deadline-constrained whereas
the second category is termed as best-effort.

For the purposes of this work, users are to be serviced
by virtual machines hosted by an individual computing site;
thus the same user request cannot receive resources from
both the Cloud provider and the organisation’s cluster. Ap-
plications that rely heavily on message passing interfaces are
generally sensitive to network delays and, despite advances
in virtualisation technology [35], may not benefit heavily
from using resources from multiple computing sites. In prac-
tice, the execution of these applications is generally confined
to an individual computer cluster.

We will relax this assumption in future work as applica-
tions may present different communication demands. Some
applications are composed of tasks that consist of multiple
executions of the same program with different input param-
eters. These applications are termed as bag-of-tasks and
the tasks generally do not require communication between
them; which makes these applications good candidates for
utilising resources from multiple sites.

3. EVALUATED STRATEGY SETS
As described in Section 2, a strategy set consists of strate-

gies for scheduling requests at the site and the Cloud, and
a redirection strategy that specifies which requests are redi-
rected to the Cloud.

As scheduling strategies we use conservative [24], aggres-
sive [21], and selective backfilling [33]. With conservative
backfilling, each request is scheduled (i.e. it is granted a
reservation) when it arrives in the system, and requests are
allowed to jump ahead in the queue if they do not delay the
execution of other requests. In aggressive backfilling, only
the request at the head of the waiting queue – called the
pivot – is granted a reservation. Other requests are allowed
to move ahead in the queue if they do not delay the pivot.
Selective backfilling grants reservations to requests that have
waited long enough in the queue. Under selective backfilling
a request is granted a reservation if its expected slowdown
exceeds a threshold. The expected slowdown of a request r
is also called eXpansion Factor (XFactor) and is given by
Equation 1.

XFactor = (wait time+ run time)/run time (1)

In fact, we use the Selective-Differential-Adaptive scheme
proposed by Srinivasan et al. [33], which lets the XFactor
threshold be the average slowdown of previously completed
requests.

The following strategy sets are considered for scheduling
requests that arrive at the organisation’s cluster:

Näıve: both Site and Cloud schedulers use conservative
backfilling to schedule the requests. The redirection algo-
rithm is executed at the arrival of each job at the site. If the
site scheduler cannot start a request immediately, the redi-
rection algorithm checks whether the request can be started
immediately using Cloud resources. If the request can start
on the Cloud resources, then it is redirected to the Cloud,
otherwise it is placed in the site’s waiting queue.

Shortest Queue: jobs at the site’s cluster are scheduled
in a First-Come-First-Served (FCFS) manner with aggres-
sive backfilling [21]. The redirection algorithm executes as
each job arrives or completes, and computes the ratio of vir-
tual machines required by requests currently waiting in the
queue to the number of processors available, similar to the
work of England and Weissman [11]. If the Cloud’s ratio is
smaller than the cluster’s, the redirection algorithm iterates
the list of waiting requests and redirects requests until both
ratios are similar.

Weighted Queue: this strategy is an extension of the
Shortest Queue strategy. As each job arrives or completes,
the scheduler computes the number of virtual machines re-
quired by waiting requests on the cluster and how many
virtual machines are in execution on the Cloud. The site
scheduler then computes the number of VMs that can be
started on the Cloud, num vms, as the minimum between
the number of VMs demanded by the site’s requests and the
Cloud’s VM limit, and redirects requests to the Cloud until
num vms is reached.

Selective: the local site uses the selective backfilling
scheme described earlier. As each job arrives or completes,
the scheduler checks which requests can be started, then
starts them. Using the same approach based on queue ra-
tios used in the Shortest Queue strategy, the scheduler then
computes the ratios for the cluster and the Cloud. If the



ratios are different, the algorithm iterates the list of wait-
ing requests and checks their XFactors. For each waiting
request, if the expansion factor exceeds the threshold, the
algorithm checks the potential start time for the request at
both the Cloud and the site. The algorithm finally makes a
reservation at the place that provides the earliest start time.

We also investigate strategies to schedule deadline con-
strained requests using resources from the site and the Cloud
provider. The additional deadline-aware strategies are:

Conservative: both local site and Cloud schedule re-
quests using conservative backfilling. As each request ar-
rives, the scheduler checks if the site can meet the request’s
deadline. If the deadline cannot be met, the scheduler checks
the availability on the Cloud. If the Cloud can meet the re-
quest’s deadline, then the request is scheduled on the Cloud
resources. If the request deadline cannot be met, the sched-
uler schedules the request on the local site if it provides a
better start time than the Cloud. Otherwise, the request is
redirected to the Cloud.

Aggressive: both local site and Cloud use aggressive
backfilling to schedule requests. Similarly to the work of
Singh et al. [31], as each request arrives the scheduler builds
a tentative schedule for currently waiting requests. Using ag-
gressive backfilling for building the tentative schedule, the
scheduler sorts the requests using an Earliest Deadline First
scheme and checks whether the acceptance of the arriving
request would break any request deadline. If there are no po-
tential deadline violations, the request is scheduled locally;
otherwise, a tentative schedule is built for Cloud resources.
If the request does not break deadlines of requests scheduled
to use the Cloud, the request is served with resources from
the Cloud provider. If the request deadline cannot be met,
the scheduler schedules the request using the local site’s re-
sources if they provide a better start time than the Cloud.
Otherwise the request is served by resources from the Cloud.

4. SYSTEM DESIGN
In this section, we describe briefly the design of the Inter-

Grid Gateway (IGG), which is analogous to the scheduler
and uses a VIE to enforce virtual machine leases granted to
users. The names of the components derive from our previ-
ous work on the interconnection of computational Grids [8].

IGGs can have peering relationships that define under
which circumstances they borrow resources from one an-
other. These peering relationships specify when an IGG
seeks to use resources from another IGG and how the IGG
evaluates a request for resources from another IGG. The
IGG has been implemented in Java, and a layered view of
its components is presented in Figure 2.

The central component of the IGG is the Scheduler ; in
charge of serving users’ requests, handling reservations, and
managing start and stop of virtual machines when jobs are
scheduled. The scheduler maintains the resource availability
information and interacts with the Virtual Machine Manager
(VM Manager) for creating, starting or stopping virtual ma-
chines to fulfil the requirements of the scheduled requests.

The IGG does not share physical resources directly, but
relies on virtualisation technology to abstract them. The
VM Manager controls the deployment of virtual machines
for the IGG. The types of virtual machines available for the
IGG are described as Virtual Machine Templates, which are
analogous to computers’ configurations. A VM template
describes a type of VM and contains information such as
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Figure 2: Main components of the IGG.

the number of processors or cores assigned to the VM, the
amount of memory, the kernel used to boot the operating
system, the disk image, and the price of using a VM of this
type over one hour. All available templates are stored in
the IGG’s repository. At present, users willing to request
VMs, need to specify the templates they want to use from
the repository. In addition, IGGs need to agree on the tem-
plates in order to allow one IGG to borrow VMs from an-
other. In this work, we consider that the Cloud provider
has a matching template for each template available at the
organisation’s cluster.

The VM Manager deploys VMs on physical resources when
requested by the IGG. The scheduling strategies that define
when and which VMs are started or shut down are imple-
mented as part of the IGG’s scheduler. The VM Manager
relies on a VIE for deploying and managing VMs; the current
implementation uses Open Nebula as a VIE for virtualising
a physical cluster infrastructure. In addition, the VM Man-
ager is able to control VMs hosted by a Cloud provider such
as Amazon EC2 [1].

The Communication Module is responsible for message
passing. This module receives messages from other entities
and delivers them to the components registered as listeners.
Message-passing makes gateways loosely coupled and allows
for more failure-tolerant communication protocols.

5. PERFORMANCE EVALUATION
This section describes the scenario considered for perfor-

mance evaluation, the performance metrics, and experimen-
tal results.

5.1 Experimental Scenario
The evaluation of the strategies is performed by using a

discrete-event simulator [5]. We use simulation because it
enables us to perform repeatable experiments, and the cost
incurred by performing experiments on real infrastructure
would be prohibitively expensive. To store the information
about resources available for running virtual machines, the
scheduler uses a data structure based on a red-black tree [7]
whose nodes contain the list of resources available at the
start or completion of leases. The tree is augmented by
a double-linked list connecting the sibling nodes; this list
eases the interaction for finding alternative time slots when



handling advance reservations or looking for potential start
times for requests. This data structure is based on the idea
of availability profile used in some implementations of con-
servative backfilling [24].

We model the San Diego Super Computer (SDSC) Blue
Horizon machine because job traces collected from this su-
percomputer are publicly available1 and have been studied
previously [22]. The Blue Horizon machine comprises 144
nodes. The limit of virtual machines that the site can host
is the same as the number of nodes. In addition, in this
work the maximum number of virtual machines that can be
in execution by the Cloud provider at a particular time is
the same as the maximum in the local cluster. We plan to
relax this assumption in future work.

To compute the cost of using resources from the Cloud
provider, we use the amounts charged by Amazon to run
basic virtual machines at EC2 (i.e. as of writing of this pa-
per the rate was US$0.10 per virtual machine/hour). The
experiments consider only the amount charged to run VMs,
but in practice Amazon charges for the usage of other re-
sources such as network and storage. Other usage fees are
not considered in this work because they depend on the ap-
plications’ communication and data requirements.

The operating system running on a virtual machine takes
from a few seconds to some minutes to boot, but Amazon
commences charging users when the VM process starts. The
experiments therefore consider that the booting time is al-
ready included into the request’s duration. In addition, the
experiments consider full-hours of utilisation; if a request
uses a VM for 30 minutes for example, the cost of one hour
is considered.

5.2 Performance Metrics
Some metrics related to requests’ response times include

the bounded job slowdown (bound=10 seconds), hereafter
referred only as job slowdown [12] and the Average Weighted
Response Time (AWRT) [15]. The AWRT measures how
long on average users wait to have their requests completed.
A short AWRT indicates that on average users do not wait
long for their requests to complete.

AWRT =

X
j∈τk

pj ·mj · (ctj − stj)X
j∈τk

pj ·mj

(2)

The AWRT is given by Equation 2, where mj is the num-
ber of virtual machines required by request j, pj is the ex-
ecution time of the request, ctj is the time of completion
of the request and stj is its submission time. The resource
consumption (pj ·mj) of each request j is used as the weight.

In order to compute the benefits of using one strategy over
another, we also compute the cost ratio between AWRT
and the amount spent in running virtual machines on the
Cloud. In addition, we measure the number of deadline vi-
olations and request rejections when we evaluate scenarios
where some requests are deadline constrained. More infor-
mation about the ratios is provided along with respective
experiments.

1http://www.cs.huji.ac.il/labs/parallel/workload/

5.3 Experimental Results
The first experiment evaluates the performance improve-

ment of different strategy sets by running virtual machines
on the Cloud provider and the cost of such improvement in
each case. This experiment uses a metric termed as perfor-
mance cost. The performance cost of a strategy st is given
by Equation 3.

perf. costst =
Amount spent

AWRTbase −AWRTst
∗AWRTst (3)

where Amount spent is the amount spent running virtual
machines on the Cloud provider, AWRTbase is the AWRT
achieved by a base strategy that schedules requests using
only the site’s resources and AWRTst is the AWRT reached
by the strategy st when Cloud resources are also utilised.
This metric aims to quantify the improvement achieved in
AWRT and its cost; the smaller the performance improve-
ment cost, the better the strategy performs. In the exper-
iments described in this section, the base strategy is FCFS
with aggressive backfilling.

For this experiment, the site’s workloads have been gen-
erated using Lublin and Feitelson’s model [22], here referred
to as Lublin99. Lublin99 has been configured to generate
two-month-long workloads of type-less requests (i.e. no dis-
tinction is made between batch and interactive requests); the
maximum number of CPUs used by the generated requests
is set to the number of nodes in the cluster. This experi-
ment evaluates the performance cost under different types
of workloads. In order to generate different workloads, we
modify three parameters of Lublin99’s model, one at a time.
First, we change the mean number of virtual machines re-
quired by a request (specified in log2) to log2m−umed where
m is the maximum number of virtual machines allowed in
system. We vary umed from 1.5 to 3.5. The larger the
value of umed, the smaller the requests become in terms of
numbers of VMs required and consequently result in lighter
loads. The second parameter changed in the experiments
affects the inter-arrival time of requests at rush hours. The
inter-arrival rate of jobs is modified by setting the β of the
gamma distribution (hereafter termed barr), which we vary
from 0.45 to 0.55. As the values for barr increase, the inter-
arrival time of requests also increases. The last parameter
impacts on the request duration by changing the proportion
of the first gamma in the hyper-gamma distribution used to
compute the requests runtimes. The proportion p of the first
gamma in Lublin99’s model is given by p = pa ∗ nodes+ pb.
We vary the paremeter pb from 0.5 to 1.0. The larger the
value of pb, the smaller the duration of the requests.

The results of this experiment are shown in Figure 3. Each
data point is the average of 5 simulation rounds. Graphs (a),
(b) and (c) show the site’s utilisation under aggressive back-
filling scheduling when the Cloud resources are not used.
These graphs illustrate the effect of the parameter changes
on the load. Graphs (d), (e) and (f) show the performance
cost when we vary: the number of VMs required by a re-
quest, the inter-arrival interval and the request’s duration,
respectively. The higher values obtained by the näıve strat-
egy show that more money is spent to achieve an improve-
ment in AWRT, especially under heavy loads, as shown in
graph (d). From graphs (a) and (d), we also observe that
the performance cost of using the Cloud is linear with the
decrease in number of VMs of requests except for the näıve
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Figure 3: The top three graphs show the site’s utilisation using the base aggressive backfilling strategy
without Cloud resources; the bottom three graphs show the performance cost under different workloads.
Higher values of umed result in requests requiring a larger number of VMs. The larger the value of barr, the
greater the inter-arrival time of requests at rush hours. The time duration of the requests decrease as the
value of pb increases. Each data point is the average of 5 simulation rounds.

strategy, which is very expensive for small requests. Under
lighter loads, all strategies tend to yield the same ratio of
cost and performance. With small inter-arrival periods, all
strategies have similar performance, except the näıve strat-
egy. The näıve strategy again provides a high performance
cost, as shown in graph (e). With the variation of request
arrival time, the experiments show a limit of the perfor-
mance cost close to US$5,500. The cost increases until this
limit and then decreases, due to the increase of the request
inter-arrival time. More time between requests allows using
less resources, which makes it more costly to rely on the
Cloud to improve the request response time. For smaller
inter-arrival time values, there is an important difference in
cost of performance for the näıve strategy in comparison to
other strategies. In the last part of the experiment, graphs
(c) and (f), all strategies return similar performance cost for
the same request duration variation. The performance cost
is inversely proportional to the cluster usage.

The second experiment evaluates the site using resources
from the Cloud to meet service level agreements with con-
sumers. In this experiment the requests have deadlines and
we measure the cost of reducing deadline violations, or re-
quests completing after their deadlines. The cost of reducing
deadlines using a strategy st is given by Equation 4.

non− violation costst =
Amount spentst
violbase − violst

(4)

where Amount spentst is the amount spent with Cloud re-
sources, violbase is the number of violations using a base
strategy and violst is the number of violations under the
evaluated strategy. The base policy is aggressive backfilling
sorting the jobs for scheduling and backfilling in an Earliest
Deadline First manner.

This experiment uses real job traces collected from the
SDSC Blue Horizon machine to model the workload of the
site’s cluster. As the job trace spans a period of two years,
we divide it into intervals of two months each. For each
experiment, we perform 5 simulation rounds using a different
workload for each round. As the deadline information is
not available in the trace, we use a Bernoulli distribution to
select from the trace the requests that should have deadlines.
In this way, a request read from the job trace file has a
probability of being deadline constrained. The experiments
consider different numbers of deadline constrained requests.

To generate the request deadlines we use a technique de-
scribed by Islam et al. [19], which provides a feasible sched-
ule for the jobs. To obtain the deadlines, we perform the
experiments by scheduling requests on the site’s cluster with-
out the Cloud using aggressive backfilling. After that, the
deadline dj of a job j is calculated using Equation 5:

dj =

(
stj + (taj ∗ sf), if [stj + (taj ∗ sf)] < ctj

ctj , otherwise
(5)

where stj is the request j’s submission time, ctj is its com-
pletion time, taj if the request’s turn around time (i.e. the
difference between the request’s completion and submission
times) and sf is a stringency factor that indicates how ur-
gent the deadlines are. If sf = 1, then the request’s deadline
is the completion under the aggressive backfilling scenario.
We evaluate the strategies with different stringency factors
(i.e. 0.9, 1.3 and 1.7 termed tight, normal and relaxed dead-
line scenarios respectively).

The results of this experiment are depicted in Figure 4.
The top graphs show the amount spent using resources from
the Cloud provider to reduce the number of deadline viola-
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Figure 4: The top graphs show the amount spent using resources from the Cloud provider; the bottom graphs
show the cost of decreasing deadline violations under different numbers of deadline constrained requests and
different types of deadlines. Each data point is the average of 5 simulation rounds.

tions. The Conservative and the Aggressive deadline strate-
gies spend smaller amounts than the remaining strategies
because they are designed to consider deadlines. Other
strategies, except the näıve, sort the requests according to
deadlines; however, take into account other performance as-
pects such as minimising response time when redirecting re-
quests to be scheduled on the Cloud. With a small propor-
tion of deadline constrained requests with tight deadlines,
the aggressive strategy had a smaller cost that the conser-
vative strategy. With normal deadlines and a large num-
ber of deadline constrained requests, the aggressive strategy
spends more than the conservative strategy.

We decided to evaluate the aggressive deadline strategy
further in a scenario considering only the site’s resources and
a case considering the site and the Cloud. If the deadline
of a request cannot be met, the request is rejected. This
experiment evaluates how much the organisation would need
to spend to decrease the number of jobs rejected. The results
are summarised in Figure 5.

Figure 5 (a) shows the amount spent on the Cloud and
(b) depicts the percentage of jobs rejected when the Cloud is
used and not used. An amount of US$3,000 is spent on the
Cloud to keep the number of jobs rejected close to zero un-
der a case where 70% of the requests have deadlines. With
normal deadlines, the strategy did not spend more than
US$1,500 in any quantity of deadline constrained requests.

Again using traces from the SDSC Blue Horizon, the last
experiment evaluates the amount of money spent using the
Cloud infrastructure under different scheduling strategies,
and compares the improvement of the strategies to a sce-
nario where requests were scheduled using only the site’s
resources with aggressive backfilling. Table 1 summarises
the results. All the strategies perform similarly in terms
of AWRT improvement. However, the proposed strategy
set based on selective backfilling yields a better ratio of
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Figure 5: (a) amount spent using resources from
the Cloud provider; (b) the decrease of requests re-
jected. Each data point is the average of 5 simula-
tion rounds.



Table 1: Performance of the strategies using workload traces (averages of 5 simulation rounds).

Metric description Näıve Shortest Queue Weighted Queue Selective

Amount spent with VM instances ($) 5478.54 5927.08 5855.04 4880.16
Number of VM instances/Hours 54785.40 59270.80 58550.40 48801.60
Average weighted response time (improvement) 15036.77 15065.47 15435.11 14632.34
Overall Job slowdown (improvement) 38.29 37.65 38.42 39.70

slowdown improvement to amount of money spent for us-
ing Cloud resources.

The experimental results described in this section show
that the cost of increasing the performance of application
scheduling is higher under a scenario where the site’s clus-
ter is underutilised. However, the cost-benefit of using a
näıve scheduling strategy can be smaller than using other
approaches as a large cost is incurred under scenarios of
high system utilisation. In addition, request backfilling and
redirection based on the expansion factors (i.e. selective
backfilling) have shown a good ratio of slowdown improve-
ment to amount of money spent for using Cloud resources.

6. RELATED WORK
Lease abstractions relying on virtual machine technology

have been proposed [32, 20, 18]. Sotomayor et al. [32] ex-
plored a lease abstraction to handle the scheduling of a com-
bination of best-effort jobs and advance reservations. Kea-
hey et al. [20] demonstrated how to create customised exe-
cution environments for a Grid community via Globus Vir-
tual Workspaces. Shirako provides a system of brokers that
enable the leasing of various types of resources including vir-
tual machines [18]. In addition, the number of migrations
required when the broker and a site scheduler use conflicting
policies has been investigated [16]. We evaluate the cost of
extending the capacity of an organisation’s cluster for im-
proving the response time of user requests.

The applicability of Amazon services for Grid computing
has been demonstrated in existing work. Palankar et al. [26]
evaluated the use of Amazon S3 for Science Grids with data-
intensive applications and concluded that Amazon S3 can be
used for some of the operations required by data-intensive
Grid applications. Although Grid applications can benefit
from using Amazon services, such as improving data avail-
ability, Palankar et al. highlighted that a balance between
the benefits of Amazon services and the cost of using Ama-
zon’s infrastructure should be taken into account. This bal-
ance involves performing expensive operations that generate
large amounts of temporary data at the Grid infrastructure.
Deelman et al. [9] evaluated the cost of using Amazon EC2
and S3 services to serve the resource requirements of a sci-
entific application.

Existing work has shown how to enable virtual clusters
that span multiple physical computer clusters [10, 29, 30].
Emeneker et al. [10] evaluated the overhead of creating vir-
tual clusters using Xen [4] and the Moab scheduler. Vio-
Cluster [29] is a system in which a broker responsible for
managing a virtual domain (i.e. a virtual cluster) can bor-
row resources from another broker. Brokers have borrowing
and lending policies that define when machines are requested
from other brokers and when they are returned, respectively.
The resources borrowed by one broker from another are used
to run User Mode Linux virtual machines.

Systems for virtualising a physical infrastructure are also
available. Montero et al. [23] investigated the deployment of
custom execution environments using Open Nebula. They
investigated the overhead of two distinct models for start-
ing virtual machines and adding them to an execution envi-
ronment. Montero et al. [28] also used GridWay to deploy
virtual machines on a Globus Grid; jobs are encapsulated as
virtual machines. They evaluated several strategies such as
using one virtual machine execution per job, pausing the vir-
tual machine between job executions, and reusing the virtual
machine for multiple job executions. Montero et al. showed
that the overhead of starting a virtual machine is small for
the application evaluated. We use Open Nebula in the real
system implementation of our architecture.

Singh et al. [31] proposed an adaptive pricing for advance
reservations where the price of a reservation depends on how
many jobs it delays. Aggressive backfilling is used to build
a tentative schedule and test how many jobs are delayed.
We use a similar approach for request admission control in
one of our deadline-aware strategies and for deciding on the
redirection of requests to the Cloud provider.

Market-based resource allocation mechanisms for large-
scale distributed systems have been investigated [38]. In
this work, we do not explore a market-based mechanism as
we rely on utilising resources from a Cloud provider that
has cost structures in place. We focus on evaluating the
trade-offs between improvement of scheduling user applica-
tions and cost of resource utilisation. Specifically, we aim to
evaluate the cost of performance improvements.

Several load sharing mechanisms have been investigated
in the distributed systems realm. Iosup et al. [17] proposed
a matchmaking mechanism for enabling resource sharing
across computational Grids. Wang and Morris [36] investi-
gated different strategies for load sharing across computers
in a local area network. Surana et al. [34] addressed the load
balancing in DHT-based P2P networks. Balazinska et al. [3]
proposed a mechanism for migrating stream processing op-
erators in a federated system. We evaluate the benefits and
the cost of adding resources from a Cloud provider to an
organisation’s infrastructure.

7. CONCLUSIONS
This paper evaluated the cost of improving the scheduling

performance of virtual machine requests by allocating addi-
tional resources from a Cloud computing infrastructure. We
considered the case of an organisation that operates its com-
puting infrastructure, but wants to allocate additional re-
sources from a Cloud infrastructure. The experiments eval-
uated the cost of improving the performance under different
strategies for scheduling requests on the organisation’s clus-
ter and the Cloud provider. Näıve scheduling strategies can
result in a higher cost under heavy load conditions. Ex-
perimental results showed that the cost of increasing the



performance of application scheduling is higher under a sce-
nario where the site’s cluster is under-utilised. In addition,
request backfilling and redirection based on the expansion
factors (i.e. selective backfilling) showed a good ratio of
slowdown improvement to the money spent for using Cloud
resources.

In future work, we would like to study the performance of
different types of applications, such as bag-of-tasks or SPMD
running on the local cluster, on the Cloud provider, and both
at the same time. In addition, we are currently working on
an adaptive strategy that aims to optimise scheduling per-
formance considering the user’s budget. For a given budget
amount, the scheduler would find the best strategy to fulfil
the user’s request.
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