
A Debt-Aware Learning Approach for Resource
Adaptations in Cloud Elasticity Management

Carlos Mera-Gómez1,2(B), Francisco Ramı́rez1, Rami Bahsoon1,
and Rajkumar Buyya3

1 School of Computer Science, University of Birmingham, Edgbaston B15 2TT, UK
{cxm523,fmr067,r.bahsoon}@cs.bham.ac.uk

2 Facultad de Ingenieŕıa en Electricidad y Computación,
ESPOL Polythecnic University, Escuela Superior Politécnica del Litoral, ESPOL,

Campus Gustavo Galindo Km 30.5 Vı́a Perimetral, P.O. Box 09-01-5863,
Guayaquil, Ecuador

cjmera@espol.edu.ec
3 Cloud Computing and Distributed Systems (CLOUDS) Lab,

School of Computing and Information Systems, The University of Melbourne,
Melbourne, Australia

rbuyya@unimelb.edu.au

Abstract. Elasticity is a cloud property that enables applications and
their execution systems to dynamically acquire and release shared com-
putational resources on demand. Moreover, it unfolds the advantage of
economies of scale in the cloud through a drop in the average costs of
these shared resources. However, it is still an open challenge to achieve
a perfect match between resource demand and provision in autonomous
elasticity management. Resource adaptation decisions essentially involve
a trade-off between economics and performance, which produces a gap
between the ideal and actual resource provisioning. This gap, if not prop-
erly managed, can negatively impact the aggregate utility of a cloud cus-
tomer in the long run. To address this limitation, we propose a techni-
cal debt-aware learning approach for autonomous elasticity management
based on a reinforcement learning of debts in resource provisioning; the
adaptation pursues strategic decisions that values the potential utility
produced by the gaps between resource supply and demand. We extend
CloudSim and Burlap to evaluate our approach. The evaluation indicates
that a debt-aware elasticity management obtains a higher utility for a
cloud customer, while conforming expected levels of performance.

1 Introduction

Elasticity is the essential characteristic of cloud computing that supports an
on-demand provision and release of shared resources based on environmental
changes to meet an expected quality of service [10]. This characteristic is one
of the enablers for the cloud economies of scale, dropping the average cost of
computing resources [2]. Therefore, elasticity decisions on resource adaptation
should be driven not only by performance considerations but also by an eco-
nomics perspective to pursue a long-term utility under uncertainty.
c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 367–382, 2017.
https://doi.org/10.1007/978-3-319-69035-3_26

368 C. Mera-Gómez et al.

Although elasticity management techniques continuously perform dynamic
resource adaptations; in practical terms, it is impossible to achieve a perfect
match between resource provisioning and demand between consecutive adap-
tations [11,26]. Therefore, this gap between the ideal and actual resource pro-
visioning calls for a dynamic valuation that incorporates a strategic trade-off
between performance and economics. On one hand, this valuation should con-
sider that effects of elasticity adaptations on performance, for example, are not
instantaneous due to the spin-up time [16]. On the other hand, the same valua-
tion should consider that the economics of these adaptations depends on billing
cycles, pricing schemes and resource bundles granularity [28]; as in the case of
a partial usage waste [14], which results from the additional time charged for a
resource between its release and the end of the billing cycle.

In our previous work [23], we proposed an elasticity conceptual model that
identifies technical debts that are linked to cloud elasticity adaptations taken
under uncertainty, and we defined the term elasticity debt as the valuation gap
between the ideal and actual resource provisioning in elasticity adaptations.

The novel contribution of this paper is an elasticity management approach
that autonomously learns the value of elasticity debts and dynamically trades off
performance against economics in adaptation decisions. The adaptation pursues
to take decisions that maximise the long-term utility of the elastic system by
incurring strategic debts. The approach contributes to the fundamentals of tech-
nical debt management, where our work is the first to transit the debt analysis
from a static to a dynamic perspective through a reinforcement learning app-
roach to make strategic adaptation decisions. Technical debt is a metaphor that
supports a trade-off analysis between a quick engineering decision that yields
immediate benefits at the expense of compromising long-run objectives [15].
Elasticity adaptation can incur an elasticity debt that renders short-term ben-
efits but compromises performance, economics or both. The debt can accumu-
late if not properly valued. These debts can be retrospectively analysed in a
threshold-based reactive management for elasticity or dynamically learnt with a
proactive perspective in a reinforcement learning based elasticity management.
Reinforcement learning [29] is an approach that seeks optimality in decision-
making through a continuous learning that forgoes short-term rewards to achieve
higher long-term gains.

The technical debt metaphor has been applied in software architecture, soft-
ware maintenance and evolution, cloud service selection among others [17]. Addi-
tionally, elasticity management based on reinforcement learning with perfor-
mance and cost metrics has been already applied [4,19]. However, to our knowl-
edge, our work is the first to value, as a debt, the potential utility produced
by the gap of an imperfect elasticity adaptation. We shared this self-adaptive
perspective for technical debt in the recent Dagstuhl Seminar 16162 [3]; the
suggestion was well received by the technical debt community. Moreover, the
contribution is the first to introduce an online learning approach for technical
debt; the approach identifies, tracks, and monitors the debt and payback strate-
gies of adaptation decisions in the context of cloud elasticity. We evaluate the

A Debt-Aware Learning Approach for Resource Adaptations 369

approach through a simulation tool that extends CloudSim [5] and Burlap [20].
The results indicate that a reinforcement learning of technical debts achieves a
higher aggregate utility for a service provider.

The rest of the paper is organized as follows. Section 2 presents the problem
statement and motivates the need for an online learning of elasticity debts, while
Sect. 3 provides a detailed overview of our debt-aware learning approach and
explains its components. We report the evaluation of our approach in Sect. 4,
followed by a discussion of related works in Sect. 5. Finally, Sect. 6 summarizes
our conclusions and directions for future research.

2 Problem Statement

In practice, it is impossible to achieve a perfect elasticity i.e. exactly match
resource supply with demand [11,26] due to several reasons such as the difficulty
to predict resource demand, coarse computing resource granularities, spin-up
times, restrictions on the number of computing resource that can be acquired
at once, pricing schemes granularity and billing cycles among others [12,28].
Hence, elasticity management decisions should optimize for a dynamic resource
provision not only in terms of performance metrics but also from an economics
perspective that can maximise the utility of the Software as a Service (SaaS)
provider (cloud customer) in the long run.

Currently, elasticity is analysed from a performance [11], cost-aware [9,27] or
economics-driven perspective [7,24]. However, none of these approaches incor-
porate a strategic valuation of imperfect elastic adaptations to make explicit
trade-offs in the decision-making when adjusting a resource provisioning. Con-
sequently, these myopic adaptations lead to a provision of resources that obtains
short-term gains when matching the resource demand but can be suboptimal in
the long-term with hidden consequences that waste resources or degrade quality
of service attributes (e.g. performance, security, reliability), which diminishes
the aggregate utility of the cloud customer over time.

The technical debt metaphor supports a reasoned decision-making about
quick engineering decisions taken to obtain short-term benefits at the cost of
introducing liabilities that compromise long-term system objectives. In dynamic
environments, the utility of these decisions can be systematically learnt through
a reinforcement learning approach. Reinforcement learning is a technique where
a farsighted agent learns from continuous interactions with an environment how
to maximize a long-term reward without any a priori knowledge. We combine
this online learning with the technical debt metaphor in the context of cloud elas-
ticity to evaluate dynamic trade-offs carried out by elastic adaptation decisions.
The consideration of debt motivates a value-oriented perspective to adaptation
that systematically links the consequences of these decisions with environmental
uncertainty, such as unexpected workload variations, dynamic changes in quality
of service or resource failures.

We advocate that elasticity can benefit from a debt-aware learning perspec-
tive by making the elasticity debts visible, revealing the performance and eco-
nomics consequences of adaptation decisions (e.g. over- or under-provisioning

370 C. Mera-Gómez et al.

states) that are prone to uncertainty and therefore improving the utility achieved
by a cloud stakeholder (e.g. SaaS provider) in terms of reducing penalties that
relate to Service Level Agreement (SLA) violations and operating costs mini-
mization.

3 Proposed Approach

3.1 Technical Debt on Elasticity

Technical debt is a metaphor that makes visible the valuation of alternatives in
a trade-off between an ideal and an actual decision making [8]; where the debt is
determined by the valuation of the gap between these two alternatives [18]. The
metaphor has shown to be effective to identify, measure and monitor tradeoffs
over time. In our previous work [23], we developed the foundations for intro-
ducing the built-in decision support of technical debt analysis into the large
scale dynamic and adaptive context of cloud elasticity management. We defined
elasticity technical debt as the valuation of the gap between an optimal and
an actual adaptation decision. This debt trades off the performance to obtain
with the provisioning of an elasticity adaptation against the economics of that
adaptation.

Like a debt in finance, an elasticity debt can be either strategic or unin-
tentional. The former refers to adaptations that intend to anticipate changing
conditions (e.g. workload variations) or mitigate undesired effects (e.g. spin-up
time, partial usage waste); whereas the latter refers to delayed or wrong choice
of adaptations (e.g. resource thrashing) as a consequence of poor considerations
for uncertainty or elasticity determinants. The value of elasticity debts can be
observed retrospectively in threshold-based elasticity management approaches,
or proactively in debt-aware approaches that utilise this valuation to analyse
and decide elasticity adaptations.

Different from traditional approaches, that mostly consider avoiding over-
and under-provisioning states, we argue that an elasticity debt-aware approach
recognizes the fact that it is practically impossible to achieve a perfect elasticity;
and makes use of this fact to explicitly reveal the potential of using this imperfec-
tion in the trade-off between economics and performance to adjust strategically
the resource provisioning and preserve the utility of the stakeholder. For exam-
ple, we may intentionally delay an over-provisioning state if the next billing cycle
of the resources to be released is not immediate; or if we consider that the spin-
up time of launching new resources may affect the SLA performance compliance
during a imminent growth in the load.

Figure 1(a) illustrates three cases of debts using a graph that represents a
resource demand and supply over time. The first gap is caused by the spin-up
time when new virtual machines are launched; the second gap is a consequence
of the available resource granularity that makes impossible to launch one and a
half machines; and the third less evident gap is the result of a partial usage waste
after one machine is released but still charged until the end of the billing cycle.
In any case, the debt is not the gap itself. We highlight that a debt corresponds

A Debt-Aware Learning Approach for Resource Adaptations 371

(a) Examples of elasticity debts (b) Arrival rates from French Wikipedia trace

Fig. 1. Elasticity debts and French Wikipedia trace

to the valuation in terms of the potential utility produced by the gap, where the
debt originates.

3.2 Reinforcement Learning

Reinforcement learning [29] is a framework that pursues an optimal decision-
making based on the maximization of a cumulative reward in the long-term.
The decision-maker or agent learns through consecutive interactions with an
environment, where each action modifies the environmental state and produces
a reward, which is the utility that the agent receives from the action. Both, the
set of variables that characterizes the new state and the reward are perceived by
the agent. This learning technique has already been applied to cloud elasticity
management [4,19], where an agent takes resource adaptation decisions based
on the current state, which is usually identified by performance thresholds, and
achieves a reward, which is given by the new performance monitored after the
adaptation takes place.

We follow a model-free reinforcement learning strategy rather a model-based
because our learning environment lacks of a predefined transition model that
describes the effect of each action a in a given state s by determining the prob-
ability of reaching a specific subsequent state st+1. A model-free strategy uses
an action-utility function, known as Q(s, a), to estimate the value of performing
an action a over a state s. From the available algorithms in this kind of learning
strategy, we have adopted Q-learning [29] because it is more flexible to explore
changes in the environment, making it more convenient for highly dynamic con-
texts. Furthermore, it is the most common extended algorithm with respect to
elasticity management [19].

The Q-learning algorithm learns an optimal decision-making by repeatedly
updating the utility of an action a given a state s according to the following
update rule:

Q(s, a) ← (1 − α) ∗ Q(s, a) + α ∗ [r + γ ∗ maxat+1Q(st+1, at+1)], (1)

372 C. Mera-Gómez et al.

where α is the learning rate (a value that usually starts at 1 and decreases
over time), r is the reward of the action, γ is the discount factor (a value between
0 and 1 that adjusts a learner from myopic to far-sighted respectively), and st+1

is the resulting state, and at+1 is the best possible action to take thereafter.
Interactions with the environment are classified as exploration or exploitation.

The former aims to perform random actions to experience environmental changes
to preclude from focus on immediate gains; whereas the latter aims to only
make use of what the agent already knows. This trade-off between exploration
and exploitation depends on an ε-greedy policy, which means that a learner
exploits the best action with probability (1−ε) and explores a random action
with probability ε.

3.3 Learning Elasticity Debts

We propose an elasticity management based on a reinforcement learning of tech-
nical debts incurred by elasticity adaptations. Our debt-aware learning approach
explores and learns elasticity debts over time and then uses this knowledge from
previous experiences to incur in strategic adaptations intended to achieve a
higher aggregate utility. Making use of the function defined in [24], the util-
ity achieved by a SaaS provider when processes a workload w, composed of jobs
or incoming requests denoted by x, is calculated in terms of revenue, penalty and
operating costs incurred during the monitored period (i.e. between consecutive
elasticity adaptations) by means of Eq. 2:

U(w) = R(x) ∗ xs − P (x) ∗ xf −
N∑

i=1

C(vmi)
∫ L

0

mi(t)dt, (2)

where R(x) and P(x) functions return the revenues and penalties per request,
respectively; xs and xf represent the number of successful and failed requests,
respectively, from workload w with respect to defined in the SLA; and C(vmi)
function returns the cost of each of the N virtual machine (VM) types corre-
sponding to their mi launched instances over the execution time L.

Equation 3 calculates the debt of each adaptation as the utility difference
between the actual and the ideal resource provisioning:

ElasticityDebt ← Uactual − Uideal, (3)

where U represents the utility obtained by a SaaS provider as cloud customer
during a monitoring period. In the best scenario, the elasticity debt would be
zero when the actual resource provisioning matched the ideal one required in the
period. Otherwise, it will be a negative number.

The approach calculates the debt of an adaptation action (i.e. launch, release
or maintain) taken at time ti when the next one is adopted at tj , where tj > ti.
For each action, we recreate the circumstances under which this adopted action
was serving (from ti to tj) and simulate the other two discarded elasticity actions
at time ti to retrospectively determine the ideal action that would have produced

A Debt-Aware Learning Approach for Resource Adaptations 373

VM3VM1 VMk+2Vmk+1 VMmVMm-1VMk-1

launch/release/monitor

receive <s, a, r, s’> receive <s, a, r, s’>

Tenant 1

Public
Network

Tenant i Tenant n

submit requests, SLA 1 submit requests, SLA n

submit requests, SLA i

Incoming service requests

send <s, a, r, s’> send <s, a, r, s’>

Debt-aware
Coordinatorforward requests/messages forward requests/messages

forward requests/messages

VM2 VMk

VM
VMVM managed by one agent

VM managed by several agents

Key:

<state, ac on, reward, next state> <s, a, r, s’>

launch/release/monitor

Debt-aware
Learning
Agent i

Debt-aware
Learning
Agent n

Debt-aware
Learning
Agent 1

launch/release/monitor

Fig. 2. Reference system model of our debt-aware approach

the highest utility among the three. Then, once we have this ideal utility, we
proceed to calculate the incurred debt of the actual adaptation action taken at
time ti by means of Eq. 3.

A reference system model of our approach is shown in Fig. 2, where sev-
eral tenants subscribe to a multi-tenant SaaS service with a SLA tailored to
each individual need. We envision an agent-oriented architecture with hierarchy
where agents tend to realise the requirements of multi-tenant users in a decen-
tralised fashion, which promotes a scalable solution and facilitates the collabora-
tion between different agents promising optimization for inter-agents knowledge
exchange.

In the model, we grouped running virtual resources in clusters and each of
them is managed by a debt-aware learning agent, which corresponds to a single
tenant. Each debt-aware learning agent is responsible for launching, releasing,
and monitoring VMs; it also performs a load balancing and dispatches the incom-
ing requests to be executed in one of the VM in the cluster. Some VMs can be
managed simultaneously by more than one learning agent to optimise resource
utilization during under-provisioned states.

The incoming requests are received by the debt-aware coordinator, which
is responsible for creating and destroying learning agents, forwarding incoming
service requests from a tenant to the corresponding learning agent, and sending
coordination messages such as changes in expected SLAs or refinements in the
reinforcement learning process.

The approach can be instantiated with either a single debt-aware learning
agent or a multi-agent version. For the latter, we advocate the use of a parallel
reinforcement learning mechanism [21]; where multiple agents can learn simulta-
neously elasticity debts and share their learning to speed-up the convergence time.

374 C. Mera-Gómez et al.

Table 1. Reinforcement learning elements

Element Definition

Environment Cloud elasticity

Agent Debt-aware learning agent, debt-aware coordinator

Actions Launch, release or maintain VMs

State variables 1. Proportion of VMs with queued requests (i.e. High,
Medium and Low)
2. Proportion of VMs close to a next billing cycle and
without queued requests (i.e. High, Medium and Low)
3. The last action taken by the agent (i.e. Launch,
Release or Maintain)

Reward Elasticity Debt

Table 1 defines the elements of our reinforcement learning approach. A debt-
aware learning agent takes one of the possible elasticity management actions (i.e.
launch, release or maintain), and receives a reward, determined by the elasticity
debt that corresponds to the adopted action. Additionally, the learning agent
considers the following variables to define a state: (i) a proportion of running
VMs with queued request; where the proportion is equally categorized into high,
medium or low; (ii) a proportion of running VMs close to a next billing cycle and
without queued request; where the proportion is equally categorized into high,
medium or low; and (iii) the last action taken by the agent. We avoid unnecessary
exploration by including preconditions for two actions: launch and release. For
instance, only launch action is available if there is a high number of VMs with
queued jobs; or only release action is permitted when a high proportion of VMs
are close to a next billing cycle and without queued request.

4 Evaluation

Our experiment intends to compare the aggregate utility that a SaaS provider
achieves when adopts a debt-aware reinforcement learning elasticity management
against a common threshold-based rule elasticity mechanism and investigate the
implication of debt-awareness over time. We are also interested in analysing the
results in terms of both performance, through request failure rates, and eco-
nomics, through deployed VMs and total costs. We instantiated two scenarios
from the reference system model in Fig. 2: (i) one with a single debt-aware learn-
ing agent; and (ii) another with two agents to illustrate the parallel learning with
a minimum inter-agent coordination overhead.

The common threshold-based elasticity management implements the voting
process offered by Right Scale [25]. In this voting mechanism, resource adapta-
tions are taken based on the outcome of a voting process, where each virtual
machine votes according to a performance metric (e.g. CPU utilization) decision
threshold.

A Debt-Aware Learning Approach for Resource Adaptations 375

4.1 Experiment Setup

We extended CloudSim [5], a framework for modelling and simulation of cloud
infrastructures and services, to support experiments with both the debt-aware
learning and the threshold-based approach. For the debt-aware learning, we
extended Burlap [20], a framework for implementing reinforcement learning solu-
tions, and integrated this extension with CloudSim. We have made available
our implementation for validation and replication in a Git repository1. Besides
the core functionality, we implemented load balancing and horizontal scaling
using a single type of virtual machines, where we considered processing capacity
expressed in terms of millions of instructions per second (MIPS). As spin-up
times in real infrastructures are variable [22], we make the simulation more
realistic with spin-up times that conform to a Gaussian distribution. For the
experiments, we extracted 15 days (from day 24 to 38 inclusive) of the French
Wikipedia trace available in the Wikipedia page view statistics [30] but scaled to
last 27 h to demand a controllable amount of resources, as seen in Fig. 1(b). We
parsed the original workload file into the Standard Workload Format to ensure
compatibility with CloudSim.

We assume that the multi-tenant SaaS service is hosted by an Infrastruc-
ture as a Service (IaaS) provider such as CloudSigma [6] with its pay-as-you-
go pricing scheme and five minute-based billing cycle, a resource granularity in
terms of VMs, and a horizontal elasticity method. General simulation parameters
are specified in Table 2. Additional specific parameters for the threshold-based
and the debt-aware approach, required by Eq. 1, are shown in Tables 3 and 4,
respectively.

We performed the experiments on a laptop that runs Windows 10 x64 oper-
ating system with 16 GB RAM and Intel Core i7-4500U CPU at 1.8 GHz. We
ran the simulation tool 100 times per approach, where average execution times

Table 2. Simulation parameters

Parameter Value

Spin-up time a mean of 59.8 s with a standard deviation of 0.03 s

Cool down period 60 s

Billing cycle Every 5 min

SLA constraint 90% of jobs handled up to 2 s

Price per request $ 0.0012344

Request’s size 4 millions of instructions

Penalty per failed request $ 0.002

VM processing capacity 14 MIPS

VM cost $ 0.07 per cycle

1 Link to the repository: https://bitbucket.org/cxm523/kdebtrepo.

https://bitbucket.org/cxm523/kdebtrepo

376 C. Mera-Gómez et al.

Table 3. Threshold-based approach simulation parameters

Parameter Value

Lower CPU threshold 30%

Upper CPU threshold 95%

Voting agreement threshold Relative majority among actions

Table 4. Debt-aware approach simulation parameters

Parameter Value

Learning rate α per state-action pair Starts at 1, then decays at 0.05 per
adaptation up to a minimum of 0.1

Discount factor γ 0.99

ε probability 0.05

Proportion of VMs with queued requests Low (<33%), Medium, High (>66%)

Proportion of VMs close to a next billing
cycle and without queued requests

Low (<33%), Medium, High (>66%)

Number of agents for parallel
reinforcement learning

2

for the threshold-based approach, the single debt-aware learning and the parallel
one are 278, 267 and 222 s, respectively.

4.2 Results

We integrated JFreeChart [13], a chart library, with CloudSim to draw box-
and-whisker plots that show the mean, median and quartiles related to failure
rates, deployed VMs, total costs and aggregate utilities for the experiments with
each approach. Additionally, we draw line charts to depict average failure rates
over time and average aggregate utility over time. We start analysing the per-
formance, followed by the economics to end with the overall utility achieved by
each mechanism.

Regarding the performance, we compare box-and-whisker plots of failure
rates obtained from the management approaches. Figure 3(a) depicts that debt-
aware learning experiments achieved a lower number of SLA violations. The
average of failures for the threshold-based approach is 7.2%, whereas the sin-
gle debt-aware approach has a mean of 2.8%. Moreover, the parallel debt-aware
approach yields a similar performance with a 2.9% of failed requests. Figure 3(b)
illustrates the average failure rates over time for each approach. We observed
that both debt-aware learning experiments had a higher failure rate than the
threshold-based approach at the beginning of the workload execution. However,
after this initial learning period, debt-aware learning experiments drastically
improved their performance and the single surpassed the threshold-based man-
agement after 22,000 s, whereas the parallel after 35,000 s, approximately.

A Debt-Aware Learning Approach for Resource Adaptations 377

(a) Failure rates per approach (b) Average failure rates over time per approach

Fig. 3. Performance of the experiments

Considering the economics, Fig. 4(a) presents a box-and-whisker plot with
the number of VMs provisioned per approach. The experiment results indicate
that debt-aware approaches make a more efficient use of resources. The single
and the parallel debt-ware approaches reached an average of 26 and 58 vir-
tual machines, respectively. On the other hand, the threshold-based approach
launched more VMs with an average of 133 virtual machines. Consequently,
there is a reduction of the total costs incurred by debt-aware elasticity man-
agement mechanisms. Figure 4(b) shows a box-and-whisker plot with total costs
per approach. Average overall costs for the threshold-based approach are $9.40,

(a) Deployed VMs per approach (b) Total costs per approach

Fig. 4. Economics of the experiments

378 C. Mera-Gómez et al.

whereas for the single and parallel debt-aware approaches are $1.80 and $4.08,
respectively.

Concerning the utility, Fig. 5(a) depicts a box-and-whisker plot with the util-
ity achieved by each mechanism. Both debt-aware mechanisms yielded a higher
utility than the threshold-based approach. The single and the parallel debt-aware
mechanisms achieved an average aggregate utility of $3,265 and $3,248. On the
other side, the threshold-based approach yielded an average aggregate utility
of $2,851, as a consequence that this mechanism is more negatively affected
by incurred penalties and the deployment of VMs. Figure 5(b) shows the aver-
age aggregate utility over time per approach. Debt-aware learning experiments
started achieving a higher aggregate utility when approximately a third of the
total workload length has been executed.

(a) Aggregate utilities per approach (b) Average utility over time per approach

Fig. 5. Utility of the experiments

4.3 Threats to Validity

We carried out the evaluation of our approach through a simulation that resem-
bles a cloud environment. We built our simulation tool on CloudSim and Burlap,
which are the most widely extended frameworks for simulating cloud environ-
ments and implementing reinforcement learning experiments, respectively. Our
controlled environment facilitates a faster experimentation with diverse scenarios
and different IaaS providers. Additionally, we performed the experiments using
a real workload trace.

For the sake of simplicity, we considered a SLA with only one quality of ser-
vice attribute: response time. But, the model is extensible to multiple attributes
(e.g. availability, reliability) and multiple SLAs.

A Debt-Aware Learning Approach for Resource Adaptations 379

5 Related Work

Technical debt community has applied the metaphor in a wide range of decision-
making process under uncertainty such as software maintenance and evolution
[15], architectural design [18], cloud service selection [1], software testing, sus-
tainability design among others [17]. It has been used as a way to identify, mea-
sure and monitor a decision that trades off a quality compliance concern against
an economics concern. Furthermore, the metaphor has shown to be effective to
raise the visibility of the impact on utility of a suboptimal decision if a change
materialises. For example, Li et al. [18] evaluated architectural decisions from
a value-oriented perspective and used the debt to monetise the gap between
an optimal and suboptimal architecture when a change scenario occurs. Also,
Alzaghoul et al. [1] extended the metaphor into cloud service selection to adopt
a service substitution that is aware of the potential debt introduced in the com-
position by each candidate service and makes a decision based on the potential
of the selected service to clear the debt when the change scenario materialise.
However, none of these works addresses the problem of automating the learning
of technical debts. To the best of our knowledge, we are the first to propose
an autonomous management of technical debts based on learning and, differ-
ent from previous works, we are revisiting the metaphor to support run-time
management of debts and value creation in self-adaptive and self-management
contexts such as cloud elasticity.

Reinforcement learning has already been used as an underlying technique for
elasticity management [19]. For instance, Barret et al. [4] designed a parallel Q-
learning approach to build an elasticity manager based on a multi-agent system,
where each virtual resource is an agent that makes its decisions depending on the
load of incoming requests, experienced penalties and deploying costs. However,
state variables are purely performance metrics and the reward is based on a min-
imization of costs and penalties; consequently, the learning ignores the strategic
valuation and potential utility of continuous gaps between resource supply and
demand as a result of imperfect elasticity adaptations. Jamshidi et al. [12] built
a fuzzy control based reinforcement learning approach for autonomous elastic-
ity management that modifies fuzzy elasticity rules for resource provisioning at
run-time. However, this work is focused on tuning and improving fuzzy rules to
reduce user-dependency in elasticity management. In contrast to prior works,
we designed a reinforcement learning approach that considers state variables
related to both economics and performance aspects of cloud elasticity and a
reward linked to elasticity debts, in order to achieve a management that proac-
tively uses this autonomous learning of technical debts in resource adaptations
to estimate the conditions where these debts will potentially pay off.

6 Conclusions and Future Work

We proposed an autonomous elasticity management approach intended to make
adaptations that are aware of the unavoidable imperfections of elasticity adap-
tations in the cloud. Our approach implements a reinforcement learning solution

380 C. Mera-Gómez et al.

that values the potential utility produced by the dynamic gaps between the
ideal and actual resource provisioning over time. We are the first to propose an
elasticity decision-making analysis that integrates the strategic decision-making
achieved through reinforcement learning techniques, and the value oriented per-
spective promoted by the technical debt metaphor in changing environments.
Simulation results indicate that a reinforcement learning of dynamic techni-
cal debts in resource provisioning achieves a higher aggregate utility for the
SaaS provider. Moreover, the underlying foundations of our dynamic technical
debt approach are generic enough to be applied in other self-adaptive and self-
management contexts, where decisions with a trade-off analysis can be strategi-
cally taken and aimed at long-term rewards.

In our ongoing research, we are looking at the sensitivity of our approach to
attributes of technical debt, including interest, principal, amnesty and leverage.
Additionally, we are introducing a technical debt-oriented perspective for multi-
tenant applications hosted in inter-clouds architectures.

Acknowledgments. We thank Rommy Márquez and Tao Chen for their helpful com-
ments on the paper.

References

1. Alzaghoul, E., Bahsoon, R.: Economics-driven approach for managing technical
debt in cloud-based architectures. In: Proceedings of the 6th IEEE/ACM Inter-
national Conference on Utility and Cloud Computing (UCC 2013), pp. 239–242.
IEEE (2013)

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., et al.: A view of cloud computing. Commun.
ACM 53(4), 50–58 (2010)

3. Bahsoon, R.: Dynamic and adaptive management of technical debt: managing tech-
nical debt @runtime. In: Avgeriou, P., Kruchten, P., Ozkaya, I., Seaman, C. (eds.)
Managing Technical Debt in Software Engineering (Dagstuhl Seminar 16162), vol.
6, p. 118. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

4. Barrett, E., Howley, E., Duggan, J.: Applying reinforcement learning towards
automating resource allocation and application scalability in the cloud. Concur-
rency Comput. Pract. Exp. 25(12), 1656–1674 (2013)

5. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: Cloudsim:
a toolkit for modeling and simulation of cloud computing environments and evalu-
ation of resource provisioning algorithms. Softw. Pract. Exp. 41(1), 23–50 (2011)

6. CloudSigma. https://www.cloudsigma.com/ Accessed 1 Oct 2016
7. Fokaefs, M., Barna, C., Litoiu, M.: Economics-driven resource scalability on the

cloud. In: Proceedings of the 11th International Workshop on Software Engineering
for Adaptive and Self-Managing Systems, pp. 129–139. ACM (2016)

8. Guo, Y., Seaman, C.: A portfolio approach to technical debt management. In:
Proceedings of the 2nd Workshop on Managing Technical Debt, pp. 31–34. ACM
(2011)

https://www.cloudsigma.com/

A Debt-Aware Learning Approach for Resource Adaptations 381

9. Han, R., Ghanem, M.M., Guo, L., Guo, Y., Osmond, M.: Enabling cost-aware and
adaptive elasticity of multi-tier cloud applications. Future Gener. Comput. Syst.
32, 82–98 (2014)

10. Herbst, N.R., Kounev, S., Reussner, R.H.: Elasticity in cloud computing: what it
is, and what it is not. In: ICAC, pp. 23–27 (2013)

11. Herbst, N.R., Kounev, S., Weber, A., Groenda, H.: Bungee: an elasticity benchmark
for self-adaptive IAAS cloud environments. In: Proceedings of the 10th Interna-
tional Symposium on Software Engineering for Adaptive and Self-Managing Sys-
tems, pp. 46–56. IEEE Press (2015)

12. Jamshidi, P., Pahl, C., Mendonça, N.C.: Managing uncertainty in autonomic cloud
elasticity controllers. IEEE Cloud Comput. 3(3), 50–60 (2016)

13. JFree. Jfreechart (2016). https://goo.gl/oi39. Accessed 1 Dec 2016
14. Jin, H., Wang, X., Wu, S., Di, S., Shi, X.: Towards optimized fine-grained pricing

of iaas cloud platform. IEEE Trans. Cloud Comput. 3(4), 436–448 (2015)
15. Kruchten, P., Nord, R.L., Ozkaya, I.: Technical debt: from metaphor to theory and

practice. IEEE Softw. 29(6), 18–21 (2012)
16. Li, A., Yang, X., Kandula, S., Zhang, M.: Cloudcmp: comparing public cloud

providers. In: Proceedings of the 10th ACM SIGCOMM Conference on Internet
Measurement, pp. 1–14. ACM (2010)

17. Li, Z., Avgeriou, P., Liang, P.: A systematic mapping study on technical debt and
its management. J. Syst. Softw. 101, 193–220 (2015)

18. Li, Z., Liang, P., Avgeriou, P.: Architectural debt management in value-oriented
architecting. In: Economics-Driven Software Architecture, pp. 183–204. Elsevier
(2014)

19. Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A review of auto-scaling tech-
niques for elastic applications in cloud environments. J. Grid Comput. 12(4), 559–
592 (2014)

20. MacGlashan, J.: Burlap: The brown-umbc reinforcement learning and planning,
June 2016. https://goo.gl/ePrWFA. Accessed 1 Nov 2016

21. Mannion, P., Duggan, J., Howley, E.: Parallel learning using heterogeneous agents.
In: Proceedings of the Adaptive and Learning Agents workshop (at AAMAS 2015)
(2015)

22. Mao, M., Humphrey, M.: A performance study on the VM startup time in the cloud.
In: Proceedings of the 5th IEEE International Conference on Cloud Computing
(CLOUD 2012), pp. 423–430. IEEE (2012)

23. Mera-Gómez, C., Bahsoon, R., Buyya, R.: Elasticity debt: a debt-aware approach
to reason about elasticity decisions in the cloud. In: Proceedings of the 9th IEEE
International Conference on Utility and Cloud Computing (UCC 2016). IEEE
(2016)

24. Pandey, A., Moreno, G.A., Cámara, J., Garlan, D.: Hybrid planning for decision
making in self-adaptive systems. In: Proceedings of the 10th IEEE International
Conference on Self-Adaptive and Self-Organizing Systems (SASO 2016). IEEE
(2016)

25. RightScale. Understanding the voting process (2016). goo.gl/HahnWB. Accessed
20 July 2016

26. Schulz, F.: Elasticity in service level agreements. In: Proceedings of the 2013 IEEE
International Conference on Systems, Man, and Cybernetics, pp. 4092–4097. IEEE
(2013)

27. Sharma, U., Shenoy, P., Sahu, S., Shaikh, A.: A cost-aware elasticity provision-
ing system for the cloud. In: Proceedings of the 31st International Conference on
Distributed Computing Systems (ICDCS 2011), pp. 559–570. IEEE (2011)

https://goo.gl/oi39
https://goo.gl/ePrWFA
http://docs.rightscale.com/cm/rs101/understanding_the_voting_process.html

382 C. Mera-Gómez et al.

28. Suleiman, B., Sakr, S., Jeffery, R., Liu, A.: On understanding the economics and
elasticity challenges of deploying business applications on public cloud infrastruc-
ture. J. Internet Serv. Appl. 3(2), 173–193 (2012)

29. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, vol. 1. MIT
Press, Cambridge (1998)

30. Wikimedia (2016). https://goo.gl/yDhTRN. Accessed 1 Feb 2017

https://goo.gl/yDhTRN

	A Debt-Aware Learning Approach for Resource Adaptations in Cloud Elasticity Management
	1 Introduction
	2 Problem Statement
	3 Proposed Approach
	3.1 Technical Debt on Elasticity
	3.2 Reinforcement Learning
	3.3 Learning Elasticity Debts

	4 Evaluation
	4.1 Experiment Setup
	4.2 Results
	4.3 Threats to Validity

	5 Related Work
	6 Conclusions and Future Work
	References

