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This chapter presents the design, implementation and evaluation of a dataflow 

system, including a macro-dataflow programming model, runtime system and an 

online scheduling algorithm, to simplify the development and deployment of 

distributed applications. The model provides users with a simple interface for 

programming applications with complex parallel patterns. The associated 

runtime system dispatches tasks onto distributed resources through a proposal 

online algorithm, called L-HEFT (Localized Heterogeneous Earliest-Finish-

Time), and manages failures and load balancing in a transparent manner. The 

system has been implemented in a .NET-based enterprise Grid software 

platform, called Aneka. Evaluates of the scalability and fault tolerance 

properties of the system has been performed. The results demonstrate that our L-

HEFT scheduling algorithm is efficient compared to existing techniques as it 

introduces low overhead while making mapping decisions. 

1. Introduction 

In recent years, parallel and distributed computing techniques have been applied 

to execute e-Science [31] and e-Business [26] applications over P2P [8] and Grid 

computing [16] platforms. The complex nature of these distributed applications 

has led into research of simplifying development and deployment over large 

scale distributed environments. Large scale distributed systems within an 

organization, also called Enterprise Grids or Desktop Grids, have been pioneered 

by systems, such as Condor [22], XtremWeb [9], SETI@Home [7], etc. However, 

the focus of these systems has been on executing embarrassingly parallel 

applications. With the increasing deployment of such systems, there is a need for 

simplifying and enabling the execution of complex parallel applications on 
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enterprise Grids. In this context, the well-known dataflow programming model 

[34] shows a significant promise. We have proposed a macro-dataflow 

programming model [4] that (a) exploits the coarse-grained dataflow relationship 

in (enterprise Grid) computing processes and converts the dataflow graph into a 

DAG (Directed Acyclic Graph) for execution and (b) supports namespace for 

data generated during the dataflow execution. 

In the rest of this section, we introduce the dataflow computation model, and 

then discuss the advantage to support dataflow computation in enterprise Grid 

environments and related scheduling of DAG tasks in Grid environments. 

1.1 Dataflow Model 

Dataflow computation model [33, 34] is a powerful model of parallel 

computation, whose inherently parallel nature can be used to freely express 

parallelism and avoid the single point execution bottleneck common in traditional 

sequential computation model. In the dataflow model, computation can be 

represented as a directed graph, which consists of actors connected by directed 

arcs. An actor can be a single instruction or a sequence of instructions, while the 

data required by actors flows through arcs. An actor can be fired (executed) 

whenever all the data it requires are ready. In a dataflow execution, many actors 

may be ready to fire at the same time. 

Fig.1 shows a simple example of dataflow graph for computing 

)15/()*( AABC  . In this figure, circles represent actors and arrows 

represent arcs and each actor consists of one instruction. The square represents a 

constant value. Different from the execution in a traditional sequential model, the 

multiplication and division actors can be fired at the same time in a dataflow 

model. 

When the concept of dataflow was first proposed in 1970s, it was mainly used 

in the domain of computer architecture for massive parallelism, as an alternative 
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Fig. 1. A dataflow example. 
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of “von Neumann” architecture. Dennis dataflow graph [18] uses a dataflow 

program graph to represent and exploit the parallelism in programs. In particular, 

operations are specified by actors, which are enabled for execution when all 

required data are produced by dependent actors. The dependency relationships 

between pairs of actors are defined with the arcs of graph, while conditional 

expressions and iterations are represented by decision and control actors 

respectively. Kahn process network [11] replaces actors in Dennis graph with 

sequential processes, which can communicate by sending messages through 

unbounded FIFO channels. 

However, the parallelism used in pure dataflow computation operates at a too 

fine grain level, which leads to “excessive consumption of resources” in the real 

system and introduces unnecessary cost for sequential applications compared 

with von Neumann model. To avoid the overhead from fine grained actors in 

pure dataflow model, in 1990s, the hybrid dataflow/von Neumann model was 

proposed to support more coarse grained actors [5]. 

The hybrid dataflow model is motivated by the recognition that did not take 

dataflow and von Neumann techniques as two concepts which are mutually 

exclusive and irreconcilable. On the contrary, they can be taken as the two 

extremes of a continuum of possible computer architectures. From the 

perspective of parallelism granularity, pure dataflow model works on a fine grain 

level, while thread model over von Neumann architecture works on a 

comparatively coarse grain level. Sterling [32] explored the performance of 

different levels of granularity in dataflow machines. His result indicates that both 

fine-grained (in pure dataflow model) and coarse-grained (in sequential 

execution) dataflow cannot offer better parallel performance than a medium-

grained approach. The hybrid model is flexible in combining the advantages of 

dataflow and control-flow, as well as in exposing parallelism at a desired level. 

Through the hybrid model, a region of actors within a dataflow graph can be 

grouped together as a coarse-grained thread to be executed sequentially, while 

the data-driven method of dataflow can be used to activate and synchronize the 

execution of threads. Example hybrid models include EARTH [12], P-RISC [28], 

and McGill dataflow architecture [10]. 

The recent evolution of dataflow model is large-grained dataflow. Large-

grained dataflow can begin with a fine-grained dataflow graph, which can be 

analyzed and partitioned into sub-graphs. The sub-graphs can be compiled into 

sequential von Neumann processes, which can run in a multithread environment 

according to dataflow scheduling principles. Normally these processes are called 

macroactors. Recently, these macroactors can be easily programmed in an 

imperative language, such as C or Java rather than derived from fine-grained 
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dataflow graph. Component techniques can also be used to implement 

macroactors. A large number of computer architectures and computation models 

are inspired by dataflow models as discussed in [20, 34]. 

The dataflow approach has had important influences on many areas of 

computer science and engineering research such as programming language, 

signal processing, architecture design, parallel compilation and distributed 

computing. Currently, dataflow as a programming model still has advantages on 

exposing a natural parallel interface and smoothly bridging parallel applications 

and underlying execution environments. Especially in an epoch when large scale 

parallel and distributed environments and multi-core CPUs are becoming popular, 

the natural parallel interface of dataflow model makes an important promise to 

meet the challenge of pervasive parallelism [21]. 

1.2 Enterprise Grids 

Enterprise Grid computing systems are oriented towards enabling virtualization 

and harnessing of various types of distributed IT resources within an enterprise. 

They are specifically focused on provisioning resources dynamically to different 

projects depending on their priorities, which are often driven by business goals. 

They need to support various types of workloads and applications. That means, 

enterprise Grids need to provide a comprehensive environment for developing 

various types of applications based on different parallel programming models and 

abstractions. They also need to embrace emerging hardware and software 

architectural models such as multi-core processors and service-oriented 

architecture and build on standards based platforms such as Microsoft’s .NET 

and J2EE. 

It is important to borrow mature experiences from high-end supercomputing, 

but the current application programming models are difficult to use for 

expressing, debugging and testing parallel programs [13] and especially not 

suitable for novice concurrent programmers. Parallel programs need to manage 

threads, locks, and explicit synchronization mechanisms. This puts limitation on 

exploration of modern software development approaches such as those based on 

components. To enable programmers to build parallel applications easily, we 

need high-level constructs and abstractions, which are easier to understand, 

express, and use than those offered by threads and locks. 

The complex nature of these parallel/distributed applications has led to 

research into simplifying development and deployment over large scale 

distributed environments. Grid computing platforms such as Condor [6, 18], 

Entropia [2], Pegasus [7], and ASKALON [30], provide mechanisms for 
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workflow scheduling. Condor works at the granularity of a single job. Existing 

tools, such as DAGMan, can schedule jobs with data dependencies and address 

the parallelism between tasks. Condor does not focus on the programming 

difficulties associated with data communication between tasks, but emphasizes 

on the high level problem of matching available computing power with the 

requirements of jobs. For example, within each job, users mainly depend on 

message passing interface for programming, such as MPI. Therefore, users must 

take extra care with data sharing conflicts, deadlock avoidance, and fault 

tolerance. Pegasus [7] works on a higher level than DAGMan, and deploys 

heuristic scheduling policy for scheduling the DAG graph of jobs rather than the 

just-in-time scheduling policy in DAGMan. 

Grid Superscalar [27] aims to simplify the development of Grid applications 

with a different method, wherein users can write sequential programs within 

small tasks and parallelism between tasks is discovered through analyzing the 

dependency of input and output files for tasks. However scheduling and fault 

tolerance are not the focus of Superscalar. Kepler [29] is a scientific workflow 

system that allows composition of both data and control flows. It also provides a 

graph interface for programming. 

We developed a Next Generation Desktop Grid software system, called 

Aneka, that serves as a flexible and extensible software farmework for realising 

multiple application models, security solutions, communication protocols and 

persistence without affecting an existing ecosystem. Aneka was conceived with 

the aim of providing a set of services that make grid construction and 

development of applications as easy as possible without sacrificing flexibility, 

scalability, reliability and extensibility.   

This chapter presents realisation of a macro-dataflow model and its 

implementation using Aneka enterprise Grid software services. As a result, our 

macro-dataflow model works in .NET-based distributed network computing 

environment and support interface for composition of coarse-grained dataflow 

graphs, which can be converted into a DAG task graphs and scheduled for 

execution on distributed computing systems. Addition details on macro-dataflow 

programming model can be found in Section 2. 

1.3 Dynamic Scheduling of DAG tasks 

To efficiently execute the macro-dataflow computation in distributed 

environments, we need an efficient mapping algorithm that assigns tasks in the 

DAG graph of the dataflow to distributed resources. Furthermore, it should be 

robust enough to handle heterogeneity and frequent failures common in the target 
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execution environment (shared enterprise Grids) containing autonomous 

resources/contributors. 

Meeting these requirements is a challenge [1] and has been extensively 

studied as DAG-based scheduling models/techniques, which are either static or 

dynamic in nature. Popular static scheduling algorithms, such as heuristic-based 

HEFT (Heterogeneous Earliest-Finish-Time) [14] and genetic search [3], map 

DAG tasks to distributed resources prior to execution. Such static methods do not 

work effectively for dynamic distributed environments where the availability of 

resources and their capability varies dynamically at runtime. 

To effectively schedule tasks of a DAG graph to Grid environments with 

dynamic features, many dynamic scheduling strategies have been proposed to 

map tasks to resources during execution. One simple choice is called just-in-time 

scheduling. For example, Condor-G [19] and Virtual Grid [25] deploy a greedy 

matching algorithm to decide the mapping of each task during execution. It is 

difficult to achieve overall optimized mapping and efficiently utilization of 

global resources for this category of policies. 

Another method is to start with a static scheduling plan, and then perform 

iterative rescheduling for adaptation to resource changes [36]. Although these 

policies can potentially achieve optimized overall efficiency, they need to have 

the detailed knowledge of the whole graph and their scheduling cost could be 

high for large scale graphs with thousands of tasks [25]. The plan switching 

method [15] can construct a family of activity graphs beforehand and investigate 

the means of switching from one member to another when the execution of one 

activity fails. However, all of the plans are limited within the most updated 

information of resources, which does not take the future changes into 

consideration. Furthermore, most heterogeneous scheduling algorithms do not 

pay attention to efficient failure handling. 

We propose a Localized Heterogeneous Earliest-Finish-Time (L-HEFT) 

scheduling algorithm for our macro-dataflow system within a dynamic 

heterogeneous environment in which failures are common. In contrast with 

previous methods, our adaptive scheduling algorithm focuses on optimizing the 

scheduling efficiency based on the available partial part of the graph which is 

gradually generated during execution and works in an online manner. Compared 

with iterative static mapping-based rescheduling methods, our algorithm 

introduces low overhead in managing schedules and execution in a distributed 

environment with dynamic resources. Furthermore, it delivers nearly the same 

performance result as the static mapping-based rescheduling methods and even 

outperforms rescheduling methods for dataflow applications of a large size of 

symmetric graph with balanced tasks distribution. In addition, our macro-
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dataflow system naturally supports replication-based fault tolerance mechanism 

for intermediate data generated during dataflow execution, which simplifies the 

failure handling of our adaptive scheduling algorithm. 

The rest of the chapter is organized as follows. First, it presents a simple and 

powerful macro-dataflow programming model, which supports the composition 

of parallel applications for transparent deployment in a heterogeneous distributed 

environment, and an architecture and runtime machinery of a dataflow system. 

Then, it discusses an L-HEFT heuristic online scheduling algorithm and 

evaluates the scalability of our system and the performance of the scheduling 

policy with real applications in an enterprise Grid environment. Performance 

results demonstrate that our system is effective supporting data parallelism for 

real applications and our scheduling policy achieves the same performance target 

as existing dynamic policy with scheduling cost 30% to 50% less than the 

existing static mapping-based rescheduling policies. 

2. Macro-Dataflow Programming Model 

This section describes the macro-dataflow programming model which is used to 

compose the coarse-grained dataflow graph for the whole execution. With this 

model, users can implicitly specify the dependent relationship between the data 

generated during execution of the application and easily edit the execution logic 

for each actor in the coarse-grained dataflow. 

The macro-dataflow graph is represented as a directed acyclic graph (DAG). 

Given a DAG, G=(V, E), the set of vertices V = {v1, v2, .., vn} represents the set 

of tasks to be executed, and the set of directed edges E represents communication 

between tasks, where eij = (vi, vj) E indicates communication from task vi to vj. 

We call each communication data as a stream and users can specify a unique 

name for each stream. Initial streams, which are not generated by any tasks, are 

actually mapped to external files, e.g. the input for dataflow execution. Result 

streams, which have no receiver tasks, are the results of dataflow execution. With 

the name of each stream, users can edit execution tasks and configure its input 

and output streams. We call each execution task as an actor. 

2.1 APIs 

The main APIs for composing dataflow graph are as follows: 

 Execute.Compute(InStream[] inputs, OutStream[] outputs), which is 

inherited by users to add instructions to execute the actor. 
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 Actor.SetExecute(Execute) is used to specify the set of instructions of actor. 

 Actor.AddInput(Stream) is used to specify input streams for each actor. 

 Actor.AddOutput(Stream) is used to specify output streams for each actor. 

 SetInitialStream(Stream, file) is used to set the input files for the whole 

dataflow graph. 

 SetResultStream(Stream, file) is used to set the output files to contain the 

result of dataflow execution. 

Through the above APIs, it is clear that the user does not need to specify the 

complex dependent relationship between data generated during execution. 

However, our system internally composes the dataflow graph through the 

implicit data relationship, and also provides other APIs to make the user check 

correctness of the graph. 

2.2 Namespace for Streams 

We expose a namespace to specify streams within macro-dataflow graph. Each 

stream has a unique name in the dataflow graph. The name consists of 3 parts: 

Category, Version and Space. Thus, the name is denoted as <C, T, S>. Category 

denotes category of streams; Version denotes the index for the stream along the 

time axis during the computing process; Space denotes the index along the space 

axis during execution. In the following text, we call the name of stream as name. 

In particular, Category is a string; the type of Version is integer and the type of 

Space is integer array. 

We use an example to illustrate how to use the namespace to specify streams. 

It is an iterative matrix and vector multiplication, V
t
=M*V

t-1
. To parallelize the 

execution, we partition the matrix and vector into rows of m pieces with each 

piece being denoted as a stream. To name them, Category = M denotes the matrix 
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Fig. 2. Dataflow graph for the i-th vector piece. 
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vertices and Category = V denotes the vector vertices. For i-th vector vertex, the 

dependency relationship between streams should be specified as: 

<V, t, i>←{<M, 0, i>, <V, t-1, j>} (j=1…m). 

2.3 Example 

Given the matrix vector iterative multiplication example, V
t
=M*V

t-1
, we partition 

the matrix and vector by rows into m pieces respectively, as:  







m

j

t

ji

t

i miVMV
1

1
)...1(*

 
The corresponding sub- macro-dataflow graph is illustrated in Fig. 2. 

For this example, users may use two basic execution modules: multiplication 

of matrix and vector pieces and sum of m multiplication results. 

Given m partitions and T iterations, Fig.3 illustrates how to compose the data 

flow graph for this example. 

produce ComposeGraph(T, m, mulExec, sumExec) 
/* T ←  iteration times 
  m ←  partition number 
  mulExec ←  instructions for multiplication actor 
  mulExec ←  instructions for sum actor   
*/ 

for (t = 0; t < T; t++) { 
   for (i = 0; i < m; i++) { 
      matriStream = Name (“M”, 0, i); 

 vecStream = Name (“V”, 0, i); 
      for (j = 0; j < m; j++) { 
        /*multiplication  result*/ 

        interStream = Name (“I”, t, i, j);  
        mul = CreateActor(“Multiplication”);   

        mul.SetExecute(multiExec); 
        mul.AddInput(matriStream); 
        mul.AddInput(vecStream); 
        mul.AddOutput(interStream); 
      } 

      sumStream= Name(“V”, t, i); //sum result 
      sum = CreateActor(“Sum”); 

sum.SetExecute(sumExec); 
      for (j = 0; j < m; j++) { 
        interV = Name(“I”, t-1, i, j);  
        mul.AddInput ( interStream); 
      } 

mul.AddOutput(sumStream) 
   }  
endfor 

return 

 
Fig. 3. Composition of the dataflow graph. 
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Finally users set the input files for the matrix and vector pieces through 

SetInitialStream(). Also users need to specify to collect the result streams through 

SetResultStream(). 

3. Architecture and Design 

This section describes the dataflow system which supports the execution of our 

macro-dataflow graph. The target environment of our dataflow system is a shared 

enterprise Grid consisting of commodity PCs, where PCs can drop out of the 

system as soon as being dominated, turned off or restarted by interactive users. 

Such nodes can rejoin the system when they are idle again. The design goal aims 

to make our system adapt to the resource heterogeneity including transient or 

static, easily incorporate new resources and handle failures. For adaptation to 

heterogeneity, we deploy online heuristic scheduling algorithm with assistance of 

a performance prediction algorithm [Section 4.2] based on historical data. To 

handle failures, we organize the large scale of free disks over PCs as a virtual 

storage pool and hold intermediate data generated during dataflow execution as 

the resuming point in handling failures.   

3.1 System Overview 

The key components of dataflow computing system are: coordinator and 

contributors, as illustrated in Fig. 4. The coordinator is responsible for accepting 

jobs from users, organizing contributors to work cooperatively. For example, it 

monitors the availability of resources, sends execution requests to contributors, 

and handles failures of contributors, etc. Each contributor joins the dataflow 

system through contributing CPU, memory and disk resources, and then 
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Fig. 4. Architecture of Dataflow System. 
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passively waits for requests from coordinator. Both coordinator and contributor 

are implemented as a pluggable service component in Aneka [35], which is 

a .NET-based enterprise Grid software platform and can support the creation of 

enterprise Grid environment. We utilize the existing Grid services such as 

Resource Monitor Service supported in Aneka to simplify our implementation. 

3.2 Structure of Coordinator 

Coordinator consists of a set of key subcomponents, including job monitor, and 

scheduler, database of performance history, performance predicator, and index 

of intermediate data. A scheduler is instantiated for each job and adopts an online 

scheduling policy to map ready tasks to suitable contributors for execution. The 

historical information of execution is recorded in the database of performance 

history component, which can be used by a predicator component to predict the 

performance of tasks. The job monitor maintains the dataflow graph for each job, 

keeps track of the intermediate data generated during execution, and explores 

ready tasks for scheduling. The index component maintains the location for 

available intermediate data. Normally each intermediate data stays in memory on 

the contributor where it is generated. In order to improve the reliability of 

execution, however, the index can choose when and where to make the 

intermediate data persistent on disk or replicated to other contributors. 

3.3 Structure of Contributor 

Each contributor contributes local resources for dataflow computing and 

maintains a task queue to buffer the commands from the coordinator. Due to the 

large disk drive in current popular desktops, contributors in a dataflow system 

actually have a significant amount of free disk space. The free disk space 

available at the contributors is organized by the coordinator as a virtual storage 

pool, which can hold the intermediate data generated during dataflow execution 

to improve the availability of computation and handle transient or permanent 

departure of contributors as well. Furthermore, there are the following important 

sub-components on each contributor: executor, data pool and storage. 

 Executor: fetches executing commands from the task queue, execute the 

tasks and put the output data into local data pool. Executor requests input 

data for tasks from data pool. 

 Data pool: maintains the intermediate data generated by dataflow in memory, 

and meet the request of input data from the executor. If the request is missed 

locally, the data pool will notify the storage component to fetch the requested 
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data from other contributors according to the location in command. When the 

data pool finds that allocated memory is nearly full, it can swap data in 

memory to disks through the storage component. Another matter is, in order 

to efficiently handle failures, the data pool may also swap those data not 

needed by the remainder dataflow execution to the storage component for 

persistent maintenance until the whole job is finished, rather than simply 

removing them. 

 Storage component: works as a backup cache for data pool, and at the same 

time is responsible for managing persistent intermediate data, which may be 

generated for reliability purposes. The local storage component can 

communicate with the storage component on remote contributors to transfer 

data, which is transparent from the point view of the executor. Actually 

storage components across contributors constitute a virtual storage that is 

especially designed for holding persistent intermediate data for dataflow with 

a flat name space. To handle failures, upon request from coordinator, the 

storage component can replicate requested intermediate data on the remote 

side to improve reliability and availability. 

3.4 Replication Support 

With the cooperation between the index component on coordinator and the 

storage component on contributors, our dataflow system can replicate 

intermediate data generated during the dataflow execution to multiple 

contributors. The replication works in a lazy manner, which just replicates the 

copy of intermediate data if there are contributors found not to be busy. In order 

to reduce the cost of replicating intermediate data for tasks in every level (see 

section 0), we replicate data associated with tasks in every n levels. The 

replication step size, n, can be specified by users during job submission. In order 

to achieve execution in the face of failures, some of the intermediate data may 

have to be re-generated. This requires identifying the finished tasks to be re-

executed to regain the lost data. Therefore, we need to explore tasks which 

should be re-executed to generate the intermediate data necessary to resume the 

execution. This exploration stops when we find replicated copies of lost 

intermediate data or we reach the initial tasks. 

4. Scheduling Policy 

This section describes in detail our dynamic scheduling algorithms on mapping 

ready tasks of the dataflow graph to heterogeneous resources in a shared 

enterprise Grid environment. 
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Our macro-dataflow programming model aims at scientific applications, 

which consist of many repetitive tasks. To support adaptation, repetitive tasks are 

partitioned into fine granularity, and as a result, the number of tasks is much 

larger than the number of resources. Taking the large number of tasks into 

consideration, our dynamic policy aims to efficiently map dataflow tasks onto 

heterogeneous resources with frequent changes. Our policy optimizes the 

scheduling efficiency based on the available part of the graph which contains 

ready tasks gradually generated during the execution. Our policy works in two 

phases. In the first phase, it partitions the tasks in the graph into clusters and 

makes tasks within the same cluster as independent. This partition phase can be 

deployed prior to the execution time or during execution. In the second phase, 

our policy achieves a local optimization on scheduling of ready tasks with 

priority on reducing data migration using our L-HEFT heuristic algorithm.  

Compared with just-in-time dynamic policies, our method aims to decrease 

the unnecessary data movement between resources through online analysis, 

which is especially important for data-intensive application [17]; and at the same 

time, it does not require the phase of complex rank assignment, which is the 

prerequisite for global optimization policies, and is always based on inaccurate 

estimation of data transfer and computing cost. To cope with the repetition 

property of tasks in application, we adopt a performance prediction algorithm to 

improve the efficiency of L-HEFT scheduling, which is based on historical 

performance information. 

4.1 DAG Execution Model 

We take the macro-dataflow graph as our execution model. With our macro-

dataflow programming model, the dataflow graph is converted into a directed 

acyclic graph (DAG). Please refer to section 0 for the details on dataflow graph. 

For each actor in the graph, if all of its input streams are available, it is ready to 

execute. 

4.2 Performance prediction 

In dataflow execution, different tasks may share the same execution instructions. 

To predict execution time of actor.Execute on contributor r, we use Equation 1. 

Ei(r) is the time of i-th execution of vi.Exec on contributor r and In is the size of 

the corresponding input stream.   is a value selected between 0 and 1. A larger 

value of   gives higher weights to recent executions and Equation 1 also takes 

the weight of input size into consideration as illustrated. 
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If vi.Exec has not executed on contributor r, to predict the execution time of 

task vi on contributor r, we use the average of prediction on all other contributors 

which have executed vi.Exec, as Equation 2 where S(vi.Exec) is the set of 

contributors who have executed vi.Exec and E(ri) is the execution time of vi.Exec 

per byte. 
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If it is the first time to execute vi.Exec in all of the available contributors, we 

use the prediction value provided by the user. 

4.3 Level-based Clustering 

The algorithm used in the first phase is a technique for ordering the nodes based 

upon their precedence constraints, called level sorting, which have been adopted 

by many prior works [24, 30]. We can define the level sorting in a recursive way. 

Given a directed acyclic graph G=(V, E), level 0 contains all vertices vj such that 

there is no vertex vi with eij∈E (i.e. vj does not has any incident edges). Level k 

consists of all vertices vj such that, for all eij∈E, every vertex vi has a level 

number less than k and at least one vertex is in level k-1. 

The result of clustering is to partition G into L blocks numbered consecutively 

from 0 to L-1, and execution actors within each block are independent, i.e. there 

is no data precedence constraint between them. All tasks that send data to a task 

in block k must be in any blocks 0 to k-1; for each task vj in block k, there exists 

at least one stream from task vi in block k-1. Block 0 contains all initial tasks 

whose input streams are initial streams. Fig. 5 shows the result of clustering for a 

FFT dataflow graph. This partition phase can be done during the execution of the 

dataflow graph. 

 Level 2 

Stream 

Level 0 

Level 1 
Actor 

 
Fig. 5. The dataflow graph of FFT with 4 points. 
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4.4 A Localized HEFT Algorithm 

Our aim is to minimize the execution time of tasks within each block, and as a 

consequence, the overall execution of the whole dataflow graph could be 

potentially optimized. We propose a scheduling algorithm which is called as L-

HEFT (Localized Heterogeneous Earliest Finished Time) algorithm. The HEFT 

(Heterogeneous Earliest Finished Time) algorithm [14] is a static scheduling 

algorithm which can potentially achieve an overall optimized mapping with a 

relatively low cost. HEFT first assign a rank to each task through recursively 

traversing its successor tasks and computing the weight based on predicted 

performance and network traffic until result task is reached. After that, HEFT 

dispatches each task to resources which can finish it fastest according to the rank 

order. Therefore it needs global knowledge of the whole graph and the execution 

environment. On the contrary, L-HEFT algorithm does not require the global 

knowledge of whole graph for the complex ranking phase as HEFT and aims to 

optimize the mapping of local ready tasks in currently available partial graph. 

Since we cannot optimize the scheduling in the manner of global mapping, 

this may lead to some unnecessary data traffic and may not give more weights to 

tasks on the critical path. So our policy puts more priority on data location as 

compensation and use the increasing order of level number to ensure the priority 

from dependency constraints. Our algorithm is focusing to decrease the data 

migration between resource nodes as much as possible while distributing work 

load across resources according to their ability. Given task t, we do not schedule 

it immediately when it is just ready. On the contrary, we put it in a schedule 

queue. When the queue buffers enough tasks or there are contributors found soon 

to be idle, the L-HEFT will be invoked. 

We first assign the priority of each ready task according to its level number. A 

task in a lower level has higher priority than a task in a higher level. Within the 

same level, however, we give high priority to the task which can be mapped to a 

contributor where its execution does not need data traffic over the network. For 

those tasks whose execution definitely needs data communication whatever node 

it will be assigned to, we deploy an EFT (Earliest Finished Time) heuristic 

algorithm to map them to suitable contributors. As a result, each contributor in 

the resource pool has a schedule queue, which holds the assigned tasks waiting 

for execution. 

Each task is assigned with a rank ID, which consists of prefix and postfix 

parts as illustrated in Fig. 6. The prefix part is the level number. The postfix part 

actually means the possible minimal traffic size if the corresponding task is 

executed. Equation 3 illustrates the ranking function used by L-HEFT. Given a 
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task vj and its predecessor task vi, its input stream is denoted as eij. OS(vj) is the 

set of contributors which holds eij. 

Fig. 7 shows the algorithm of L-HEFT heuristic. We assign a rank for each 

ready task using equation (3), and then we sort the ready tasks by increasing 

order. For tasks which have same rank priority, we sort them according to non-

increasing predicted execution time. This phase of assigning rank and sorting 

tasks is totally different from HEFT algorithm, and we do not require the phase 

of recursive traversing to calculate successor’s network traffic and their estimated 

average computation costs. In the mapping phase, we first assign tasks which 

may not need network traffic for execution to the contributor which holds all 

requested input streams, and then assign other tasks to the contributor which can 

finish them earliest, based on calculate EFT(Earliest Finish Time). 

During the execution, to compute EFT for task t on contributor r, we need to 

know the execution time of waiting tasks on r, which are waiting for execution. 

As indicated in Section 0, each contributor has a priority tasks queue which 

contains all assigned tasks. On the side of the coordinator, there is also a queue, fr, 

for each contributor recording sent tasks and their estimated execution time. 

When a task is finished on contributor r, fr will be updated correspondingly to 

correct the estimated execution time of tasks on r. The time point of correction is 

recorded as p(fr). We use fr to compute the EST (Earliest Start Time) for t on 

contributor r, so that EST(t, r) =left_time(fr)-(C- p(fr)), where C is the current 

time and left_time(fr) is the sum of execution time for tasks in fr. Therefore, 

EFT(t, r) = EST(t, r) + Predict(t, r), where Predict(t, r) is our algorithm to predict 

the execution time of task t on contributor r, which is based on the history 

execution information as indicated in Section 0.  
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During the initial phase of our scheduling model, we deploy a greedy policy 

on initial tasks in block 0. During the scheduling, to prevent the worst case where 

some nodes hold a schedule queue with an estimated time much longer than 

others’ queue, there is a thread running  in the background which frequently 

checks the length of scheduling queue of each contributor. It will re-assign some 

tasks from the tail of the longest scheduling queue to other contributors having 

light load. 

4.5 Handling New Resources and Failed Resources 

When new resources are found in the system, the list of available resources will 

be updated to include them after they are ready to join the dataflow execution. 

produce Level-HEFT-Schedule(T, R, F, C) 

/* T   The list of ready tasks to schedule 

R   The list of currently available contributors 

F   The set of priority task appending Queue of 
currently available contributors 

C   Current time point 

*/ 

foreach ti in T 

Compute ti.rank with the algorithm of Equation (3) 

  endfor 

  Sort each ready task, ti, in T by increasing order of ti.rank  

  while there are unscheduled tasks in T do 

    Choose the first task t0 in T 

    if(t0.rank.postfix is zero) 

      foreach rj in R  

        Compute its traffic size sj, if t0 is assigned to rj 

      Endfor 

    Append t0 to fm , where sm=max{sj} (fmF) 

else 

      foreach rj in R 

        eft[rj] =EFT (t0, rj, C, fj, R) 

      endfor 

      Append t0 to fm , where eft[rm]= min{eft[rj]} 

    endif 

  endwhile 

return F 

 

Fig. 7. Level-based HEFT algorithm. 
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Then L-HEFT scheduling algorithm will be invoked to map ready tasks in the 

queue to resources, including the new resources. 

When some contributors leave the system due to failures or being dominated 

by interactive users, it is possible that a number of intermediate data is lost due to 

the departed contributors. If these lost intermediate streams are necessary for 

continuing the execution, Job monitor component on the coordinator will explore 

to re-execute corresponding actors in order to regenerate the lost intermediate 

streams. The tasks to be re-executed will be put into the task buffer and wait for 

scheduling of L-HEFT algorithm. 

5. Performance Evaluation 

We have implemented our dataflow programming model, system and scheduling 

algorithm over the Aneka platform and deployed it in an environment consisting 

of desktop machines from different laboratories in Melbourne University, and 

shared with students and researchers. In this section, we evaluate the 

performance of our dataflow system and L-HEFT online scheduling algorithm 

through three applications. The first simple one is matrix multiplication; the other 

two complex ones are FFT (Fast Fourier Translation) computation and Jacobi 

iteration [23]. 

5.1 Environment Configuration 

The experiments are executed in an enterprise Grid consisting of 33 nodes drawn 

from 3 student laboratories. During testing, one machine works as coordinator 

and the others work as contributors. Each machine has a single Pentium 4 

processor, 500MB of memory, 160GB IDE disk (10GB is contributed for 

dataflow storage), 1 Gbps Ethernet network and runs Windows XP. 

5.2 Sample Applications 

We implemented three sample applications using our macro-dataflow APIs 

indicated in the Appendix. 

 Matrix Multiplication: Each matrix consists of 4000 by 4000 randomly 

generated integers. Each matrix needs about 64M bytes. Each matrix is 

partitioned into 250 by 250 square blocks, and therefore there is a total of 

16*16 blocks with 128KB per block. There are 1,024 initial streams in 

dataflow graph for the two matrix and 512 result streams as the result matrix. 
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 FFT (Fast Fourier Transform): This algorithm is widely used in digital 

signal processing and can also be used to solve Discrete Poisson Equation for 

physical simulation. Fig. 5 is a typical dataflow graph of FFT computing in a 

small scale. The input of FFT example used in the experiment is 16M 

complex number, and is uniformly divided into 64 pieces. Therefore, there is 

a total of 1,664 actors to execute. 

 Jacobi Iteration: Jacobi method is a simple way to solve PDE (Partial 

Differential Equations). Its iteration pattern of parallelization is shared by a 

large number of numerical programs and more complicated PDEs. The 

working space of Jacobi iteration in our experiment is a 16,384 by 16,384 

matrix. The matrix is partitioned by rows into 64 pieces. During the 

experiment, we varied the ratio of computation vs. communication and 

iteration times. 

5.3 Scalability of System 

The performance scalability evaluation does not include the time consumed for 

sending initial data and collecting result data as these two actions need to transfer 

data across the single coordinator, which is a sequential behavior. 

Fig. 8 illustrates the speedup of performance with an increasing number of 

coordinators. There are 2 main factors that determine the execution time of the 

matrix multiplication: the distribution of blocks between the contributors and the 

overhead introduced by the transmission of blocks between the contributors. The 

network overhead is measured here as the ratio of the time taken for 

communication to the time taken for computation. As can be seen from Fig. 8, 

for larger number of contributors, while the speedup improves, the network 

 
Fig. 8. Scalability of Performance. 
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overhead is also substantially increased. The speedup line starts diverging from 

the ideal when the network overhead increases to more than 10 % of the 

execution time. 

5.4 Scheduling Policy 

This section evaluates our L-HEFT scheduling policy. We compare it with a 

dynamic scheduling model [36] through rescheduling on static HEFT mapping, 

which we term here as D-HEFT. We have implemented D-HEFT as mentioned in 

prior work 35, and rescheduling is triggered when the performance of resource is 

changing. In our implementation, the rescheduling is overlapped with the 

execution of tasks. This means that until the remapping of tasks is completely 

finished, they are still submitted to contributors to which they were mapped in 

the prior iteration of rescheduling. In this section, we compare these two 

scheduling models while varying the ratio of computation vs. communication and 

the size of dataflow graph through Jacobi iteration and FFT benchmarks. For 

 
Fig. 9. Scheduling on Jacobi DAG with 640 tasks. 

 
Fig. 10. Scheduling on Jacobi DAG with 6400 tasks. 
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Jacobi iteration, every actor executes same set of instructions. We choose in 

equation 1 to be equal to 0.9. If the real execution time is different from the 

predicted value by a factor of 2, we take it as a performance variation and 

correspondingly trigger rescheduling in D-HEFT. 

First, we look at the result of these two polices on dataflow graph with 

different sizes. We use a Jacobi iteration benchmark with 10 iterations and 100 

iterations. Therefore the corresponding dataflow graph respectively holds 640 

and 6400 tasks. As illustrated in Fig .9, L-HEFT scheduling policy provides 

worse results than D-HEFT policy, while in Fig. 10, L-HEFT marginally 

outperforms D-HEFT. The reason is the scheduling cost of D-HEFT is larger 

than that of L-HEFT, due to frequent variations in the performance availability of 

resources across contributors. For a large dataflow graph, rescheduling cost of D-

HEFT is even higher. 

Finally we run the FFT benchmark, whose communication pattern is more 

complex than that of Jacobi. The result is shown in Fig. 11. For this FFT 

benchmark, the ratio of Computation to Communication is about 3. The result 

shows L-HEFT can compete with D-HEFT. This result is consistent with the 

scheduling result of Jacobi dataflow, because the task number in FFT dataflow is 

not large enough, which is only 1664. 

6. Thoughts for Practitioners 

In this section, we mainly discuss the reason why L-HEFT performs better 

than D-HEFT and then present the effect of L-HEFT on handling the dynamics 

of resources in the enterprise Grid environment. 

 
Fig. 11. Scheduling of FFT dataflow. 
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6.1 Scheduling Cost 

Fig. 12 and Fig. 13 illustrate the total execution time of L-HEFT and D-HEFT 

during the scheduling for Jacobi examples with small and large number of tasks 

respectively. We can see the scheduling cost of D-HEFT is much better than L-

HEFT. 

We use a simple model to explain why the rescheduling cost of L-HEFT is 

better. According to [14], the scheduling cost of HEFT algorithm 

is )( qeOCH  , where e is the average number of edges and q is the number of 

contributors. For rescheduling, the cost depends on the size of partial graph. We 

assume the size of partial graph is half the whole graph on average for each time 

of rescheduling. Therefore, each time of rescheduling cost is 2/Hr CC  . Given 

nr as the number of rescheduling, total cost of rescheduling is )( rr Cn  . However, 

for L-HEFT algorithm, we can know its cost HL CC  . From Table 1, we can see 

that the number of rescheduling is comparatively high and in each time of 

rescheduling, the D-HEFT algorithm needs to assign ranks for left over tasks and 

 
Fig. 12. Scheduling cost of Jacobi DAG with 640 tasks. 

 
Fig. 13. Scheduling cost of Jacobi DAG with 6400 tasks. 
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then sort the tasks for re-mapping. A large number of repeated rescheduling 

introduces high scheduling cost. As a result, L-HEFT can outperform D-HEFT 

for large scale dataflow graph. 

Next, we compare two scheduling polices with varied computation-to-

communication ratio for a Jacobi dataflow of 10 iterations. During the 

experiment, we adjust the ratio of computation to communication from 2 to 12 as 

illustrated in Fig. 14. We can see that for application with a larger ratio of 

computation to communication, D-HEFT performs better than L-HEFT. The 

reason is the rescheduling cost is gradually compensated by the large execution 

time of tasks. 

Table 1 The number of rescheduling operations in D-HEFT 

Contributors# 16  20  24  28 32 

640 tasks 82 102 62 58 63 

6400 tasks 913 987 659 752 732 

 

 
Fig. 14. Scheduling with varied ratio of Computation-to-Communication. 

 

 
Fig. 15. Average amount of data migration between contributors. 
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Furthermore, we compared the amount of stream data migration between 

contributors under the scheduling of L-HEFT and D-HEFT, as in Fig. 15. The 

result shows that for the Jacobi iteration application, both L-HEFT and D-HEFT 

generate nearly the same amount of data migration. 

6.2 Handling Joining Contributors 

This section compares the two dynamic models for handling new resources. We 

use a Jacobi dataflow with 10 iterations and FFT dataflow. In the experiments, 

we first start with 16 contributors and after 3 minutes, we gradually add 2 new 

contributors every minute. We measured the number of finished tasks on the side 

of coordinator. The slope of measure curves will increase during continuous 

joining of new resources, because more contributors can accelerate to execute 

ready actors, as illustrated in Fig. 16 and Fig. 17. These two figures show that the 

response time of L-HEFT algorithm to handle new joining resources is a bit 

faster than D-HEFT. The reason is the low cost of L-HEFT algorithm. 

 
Fig. 17. Handling new resources for Jacobi dataflow. 

 
Fig. 16. Handling new resources for FFT dataflow. 
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6.3 Handling Failures of Contributors 

This section evaluates the mechanisms dealing with failures of contributors in the 

dataflow system. We use the Jacobi iteration example with 40 iterations across 

20 contributors. On the coordinators side, we measure the number of finished 

actors. If lost intermediate data need be re-generated by re-executing those actors 

due to the failure of contributors, we just reset those actors as unfinished. L-

HEFT algorithm evaluated in this section is assisted by the replication support 

with the size of replication step equal to 5, while D-HEFT does not support 

failures through replication methods. After the system runs for 12 minutes, we 

manually turn off one contributor to simulate one node failure. Without 

replication support, D-HEFT has to re-execute all tasks to regenerate lost 

intermediate data to continue the execution. However, the number of tasks which 

have to be regenerated by L-HEFT is pretty smaller. As Fig. 18 shows, with 

failure support from the replication mechanism of macro-dataflow system, L-

HEFT outperforms D-HEFT. Therefore, the final performance of L-HEFT is 

better. 

7. Directions for Future Research 

Our macro-dataflow programming model exposes a DAG interface for users to 

compose a dataflow graph and the runtime system can schedule the execution of 

the graph in an enterprise Grid environment and handle load balancing and fault 

tolerance with a transparent manner. However, it is still a challenge to meet the 

quality of service (QoS) requirements. Our future work focuses on extending 

dynamic scheduling policy to support advanced user QoS requirements by 

building on Aneka’s advanced resource reservation and service level agreement 

(SLA) capabilities. 

 
Fig. 18. Fault tolerant scheduling. 
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8. Conclusion 

This chapter presents a dataflow computing platform within a shared enterprise 

Grid environment. Through a macro-dataflow interface, users can freely express 

their parallel applications through specifying the dataflow relationship and easily 

deploy applications in a heterogeneous distributed environment with failures. The 

L-HEFT scheduling algorithm proposed for our dataflow system achieves 

effective mapping with fairly low cost due to heavily decreased rescheduling cost, 

compared with static mapping-based rescheduling techniques. At the same time, 

it supports scalable performance and transparent fault tolerance based on the 

evaluation of example applications. 
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Extra Material 

 

 

11. Terminologies 

[1] Dataflow model: Dataflow execution model is an inherently parallel model 

and the execution of instruction/operation is triggered as soon as the required 

input data is (made) available. 

[2] Control flow model: traditional execution model of “von Neumann” 

architecture. 

[3] Hybrid dataflow model: The hybrid model combines the advantages of 

dataflow and control-flow and expose parallelism at a desired level. 

[4] Grid: Grid computing is one of the recent paradigms for parallel and 

distributed computing. It provides online access to computation or storage as 

a service supported by a pool of distributed computing resources. 

[5] Enterprise Grid: Enterprise Grid aims to enable the virtualization and 

harnessing of (idle) IT resources within an enterprise 

[6] DAG: Directed Acyclic Graph (DAG) is used to express the dependency 

relationships between tasks within an application. 

[7] DAG scheduling: DAG scheduling can map the tasks of DAG onto 

distributed resources. 

[8] Off-line DAG scheduling: Off-line DAG scheduling maps the tasks in a 

DAG onto distributed resource prior to the execution. 

[9] On-line DAG scheduling: On-line DAG scheduling maps the tasks in a 

DAG onto distributed resource during the execution. 
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[10] Heterogeneous system: A system consists of resources with heterogeneity 

in terms of architecture, capability, policies, and access interfaces, etc. 

12 Questions 

1. What is a dataflow execution model? 

Answer: Dataflow execution model is an inherently parallel model, which can be 

used to freely express parallelism with a dataflow graph. 

 

2. What is the difference between the dataflow and control flow execution 

models? 

Answer: Normally in control flow model, programs are executed sequentially, 

while with the dataflow model, programs can be expressed as a dataflow graph in 

a natural parallel manner, which can be used to avoid the bottleneck in the 

control flow model. 

 

3. What is a hybrid data model? 

Answer: The hybrid model is flexible in combining the advantages of dataflow 

and control-flow, as well as in exposing parallelism at a desired level. Through 

the hybrid model, a region of actors within a dataflow graph can be grouped 

together as a coarse-grained thread to be executed sequentially, while the data-

driven method of dataflow can be used to activate and synchronize the execution 

of threads. 

 

4. What is Grid computing? 

Answer: Grid computing is one of the recent paradigms for parallel and 

distributed computing. It provides online access to computation or storage as a 

service supported by a pool of distributed computing resources.  

 

5. What is enterprise Grid? 

Answer: Enterprise Grid computing systems aim to enable virtualization and 

harnessing of various types of distributed IT resources within an enterprise. 

 

6. What is the advantage of enterprise Grid? 

Answer: Enterprise Grids are specifically focused on provisioning resources 

dynamically to different projects depending on their priorities with idle resources 

in an enterprise. 
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7. What is the general challenge of DAG scheduling algorithm? 

Answer: A scheduling is a process that maps and manages the execution of inter-

dependent tasks in a DAG onto distributed resources, which is known as a NP-

complete problem.  

 

8. What is the advantage of HEFT scheduling algorithm? 

Answer: The HEFT (Heterogeneous Earliest-First-Time) algorithm is effective 

on scheduling tasks in a DAG onto heterogeneous distributed resources. 

 

9. What is the advantage of L-HEFT algorithm? 

Answer: The L-HEFT algorithm is effective on rescheduling of DAG tasks in 

case of failures or new resources. 

 

10. Why the scheduling cost of L-HEFT algorithm is better than D-HEFT 

algorithm? 

Answer: L-HEFT reschedules the DAG tasks just for partial graph, while D-

HEFT algorithm reschedules the whole graph. This makes rescheduling cost of 

D-HEFT is higher than L-HEFT. 


