
537

CHAPTER 18

DATAFLOW COMPUTATIONS ON ENTERPRISE GRIDS

Chao Jin and Rajkumar Buyya

Grid Computing and Distributed System Laboratory

Department of Computer Science and Software Engineering

The University of Melbourne, Australia

E-mail: {chaojin, raj}@csse.unimelb.edu.au

This chapter presents the design, implementation and evaluation of a dataflow

system, including a macro-dataflow programming model, runtime system and an

online scheduling algorithm, to simplify the development and deployment of

distributed applications. The model provides users with a simple interface for

programming applications with complex parallel patterns. The associated

runtime system dispatches tasks onto distributed resources through a proposal

online algorithm, called L-HEFT (Localized Heterogeneous Earliest-Finish-

Time), and manages failures and load balancing in a transparent manner. The

system has been implemented in a .NET-based enterprise Grid software

platform, called Aneka. Evaluates of the scalability and fault tolerance

properties of the system has been performed. The results demonstrate that our L-

HEFT scheduling algorithm is efficient compared to existing techniques as it

introduces low overhead while making mapping decisions.

1. Introduction

In recent years, parallel and distributed computing techniques have been applied

to execute e-Science [31] and e-Business [26] applications over P2P [8] and Grid

computing [16] platforms. The complex nature of these distributed applications

has led into research of simplifying development and deployment over large

scale distributed environments. Large scale distributed systems within an

organization, also called Enterprise Grids or Desktop Grids, have been pioneered

by systems, such as Condor [22], XtremWeb [9], SETI@Home [7], etc. However,

the focus of these systems has been on executing embarrassingly parallel

applications. With the increasing deployment of such systems, there is a need for

simplifying and enabling the execution of complex parallel applications on

C. Jin and R. Buyya

538

enterprise Grids. In this context, the well-known dataflow programming model

[34] shows a significant promise. We have proposed a macro-dataflow

programming model [4] that (a) exploits the coarse-grained dataflow relationship

in (enterprise Grid) computing processes and converts the dataflow graph into a

DAG (Directed Acyclic Graph) for execution and (b) supports namespace for

data generated during the dataflow execution.

In the rest of this section, we introduce the dataflow computation model, and

then discuss the advantage to support dataflow computation in enterprise Grid

environments and related scheduling of DAG tasks in Grid environments.

1.1 Dataflow Model

Dataflow computation model [33, 34] is a powerful model of parallel

computation, whose inherently parallel nature can be used to freely express

parallelism and avoid the single point execution bottleneck common in traditional

sequential computation model. In the dataflow model, computation can be

represented as a directed graph, which consists of actors connected by directed

arcs. An actor can be a single instruction or a sequence of instructions, while the

data required by actors flows through arcs. An actor can be fired (executed)

whenever all the data it requires are ready. In a dataflow execution, many actors

may be ready to fire at the same time.

Fig.1 shows a simple example of dataflow graph for computing

)15/()*(AABC  . In this figure, circles represent actors and arrows

represent arcs and each actor consists of one instruction. The square represents a

constant value. Different from the execution in a traditional sequential model, the

multiplication and division actors can be fired at the same time in a dataflow

model.

When the concept of dataflow was first proposed in 1970s, it was mainly used

in the domain of computer architecture for massive parallelism, as an alternative

+

15

* /

A B

C
Fig. 1. A dataflow example.

Dataflow Computations on Enterprise Grids

539

of “von Neumann” architecture. Dennis dataflow graph [18] uses a dataflow

program graph to represent and exploit the parallelism in programs. In particular,

operations are specified by actors, which are enabled for execution when all

required data are produced by dependent actors. The dependency relationships

between pairs of actors are defined with the arcs of graph, while conditional

expressions and iterations are represented by decision and control actors

respectively. Kahn process network [11] replaces actors in Dennis graph with

sequential processes, which can communicate by sending messages through

unbounded FIFO channels.

However, the parallelism used in pure dataflow computation operates at a too

fine grain level, which leads to “excessive consumption of resources” in the real

system and introduces unnecessary cost for sequential applications compared

with von Neumann model. To avoid the overhead from fine grained actors in

pure dataflow model, in 1990s, the hybrid dataflow/von Neumann model was

proposed to support more coarse grained actors [5].

The hybrid dataflow model is motivated by the recognition that did not take

dataflow and von Neumann techniques as two concepts which are mutually

exclusive and irreconcilable. On the contrary, they can be taken as the two

extremes of a continuum of possible computer architectures. From the

perspective of parallelism granularity, pure dataflow model works on a fine grain

level, while thread model over von Neumann architecture works on a

comparatively coarse grain level. Sterling [32] explored the performance of

different levels of granularity in dataflow machines. His result indicates that both

fine-grained (in pure dataflow model) and coarse-grained (in sequential

execution) dataflow cannot offer better parallel performance than a medium-

grained approach. The hybrid model is flexible in combining the advantages of

dataflow and control-flow, as well as in exposing parallelism at a desired level.

Through the hybrid model, a region of actors within a dataflow graph can be

grouped together as a coarse-grained thread to be executed sequentially, while

the data-driven method of dataflow can be used to activate and synchronize the

execution of threads. Example hybrid models include EARTH [12], P-RISC [28],

and McGill dataflow architecture [10].

The recent evolution of dataflow model is large-grained dataflow. Large-

grained dataflow can begin with a fine-grained dataflow graph, which can be

analyzed and partitioned into sub-graphs. The sub-graphs can be compiled into

sequential von Neumann processes, which can run in a multithread environment

according to dataflow scheduling principles. Normally these processes are called

macroactors. Recently, these macroactors can be easily programmed in an

imperative language, such as C or Java rather than derived from fine-grained

C. Jin and R. Buyya

540

dataflow graph. Component techniques can also be used to implement

macroactors. A large number of computer architectures and computation models

are inspired by dataflow models as discussed in [20, 34].

The dataflow approach has had important influences on many areas of

computer science and engineering research such as programming language,

signal processing, architecture design, parallel compilation and distributed

computing. Currently, dataflow as a programming model still has advantages on

exposing a natural parallel interface and smoothly bridging parallel applications

and underlying execution environments. Especially in an epoch when large scale

parallel and distributed environments and multi-core CPUs are becoming popular,

the natural parallel interface of dataflow model makes an important promise to

meet the challenge of pervasive parallelism [21].

1.2 Enterprise Grids

Enterprise Grid computing systems are oriented towards enabling virtualization

and harnessing of various types of distributed IT resources within an enterprise.

They are specifically focused on provisioning resources dynamically to different

projects depending on their priorities, which are often driven by business goals.

They need to support various types of workloads and applications. That means,

enterprise Grids need to provide a comprehensive environment for developing

various types of applications based on different parallel programming models and

abstractions. They also need to embrace emerging hardware and software

architectural models such as multi-core processors and service-oriented

architecture and build on standards based platforms such as Microsoft’s .NET

and J2EE.

It is important to borrow mature experiences from high-end supercomputing,

but the current application programming models are difficult to use for

expressing, debugging and testing parallel programs [13] and especially not

suitable for novice concurrent programmers. Parallel programs need to manage

threads, locks, and explicit synchronization mechanisms. This puts limitation on

exploration of modern software development approaches such as those based on

components. To enable programmers to build parallel applications easily, we

need high-level constructs and abstractions, which are easier to understand,

express, and use than those offered by threads and locks.

The complex nature of these parallel/distributed applications has led to

research into simplifying development and deployment over large scale

distributed environments. Grid computing platforms such as Condor [6, 18],

Entropia [2], Pegasus [7], and ASKALON [30], provide mechanisms for

Dataflow Computations on Enterprise Grids

541

workflow scheduling. Condor works at the granularity of a single job. Existing

tools, such as DAGMan, can schedule jobs with data dependencies and address

the parallelism between tasks. Condor does not focus on the programming

difficulties associated with data communication between tasks, but emphasizes

on the high level problem of matching available computing power with the

requirements of jobs. For example, within each job, users mainly depend on

message passing interface for programming, such as MPI. Therefore, users must

take extra care with data sharing conflicts, deadlock avoidance, and fault

tolerance. Pegasus [7] works on a higher level than DAGMan, and deploys

heuristic scheduling policy for scheduling the DAG graph of jobs rather than the

just-in-time scheduling policy in DAGMan.

Grid Superscalar [27] aims to simplify the development of Grid applications

with a different method, wherein users can write sequential programs within

small tasks and parallelism between tasks is discovered through analyzing the

dependency of input and output files for tasks. However scheduling and fault

tolerance are not the focus of Superscalar. Kepler [29] is a scientific workflow

system that allows composition of both data and control flows. It also provides a

graph interface for programming.

We developed a Next Generation Desktop Grid software system, called

Aneka, that serves as a flexible and extensible software farmework for realising

multiple application models, security solutions, communication protocols and

persistence without affecting an existing ecosystem. Aneka was conceived with

the aim of providing a set of services that make grid construction and

development of applications as easy as possible without sacrificing flexibility,

scalability, reliability and extensibility.

This chapter presents realisation of a macro-dataflow model and its

implementation using Aneka enterprise Grid software services. As a result, our

macro-dataflow model works in .NET-based distributed network computing

environment and support interface for composition of coarse-grained dataflow

graphs, which can be converted into a DAG task graphs and scheduled for

execution on distributed computing systems. Addition details on macro-dataflow

programming model can be found in Section 2.

1.3 Dynamic Scheduling of DAG tasks

To efficiently execute the macro-dataflow computation in distributed

environments, we need an efficient mapping algorithm that assigns tasks in the

DAG graph of the dataflow to distributed resources. Furthermore, it should be

robust enough to handle heterogeneity and frequent failures common in the target

C. Jin and R. Buyya

542

execution environment (shared enterprise Grids) containing autonomous

resources/contributors.

Meeting these requirements is a challenge [1] and has been extensively

studied as DAG-based scheduling models/techniques, which are either static or

dynamic in nature. Popular static scheduling algorithms, such as heuristic-based

HEFT (Heterogeneous Earliest-Finish-Time) [14] and genetic search [3], map

DAG tasks to distributed resources prior to execution. Such static methods do not

work effectively for dynamic distributed environments where the availability of

resources and their capability varies dynamically at runtime.

To effectively schedule tasks of a DAG graph to Grid environments with

dynamic features, many dynamic scheduling strategies have been proposed to

map tasks to resources during execution. One simple choice is called just-in-time

scheduling. For example, Condor-G [19] and Virtual Grid [25] deploy a greedy

matching algorithm to decide the mapping of each task during execution. It is

difficult to achieve overall optimized mapping and efficiently utilization of

global resources for this category of policies.

Another method is to start with a static scheduling plan, and then perform

iterative rescheduling for adaptation to resource changes [36]. Although these

policies can potentially achieve optimized overall efficiency, they need to have

the detailed knowledge of the whole graph and their scheduling cost could be

high for large scale graphs with thousands of tasks [25]. The plan switching

method [15] can construct a family of activity graphs beforehand and investigate

the means of switching from one member to another when the execution of one

activity fails. However, all of the plans are limited within the most updated

information of resources, which does not take the future changes into

consideration. Furthermore, most heterogeneous scheduling algorithms do not

pay attention to efficient failure handling.

We propose a Localized Heterogeneous Earliest-Finish-Time (L-HEFT)

scheduling algorithm for our macro-dataflow system within a dynamic

heterogeneous environment in which failures are common. In contrast with

previous methods, our adaptive scheduling algorithm focuses on optimizing the

scheduling efficiency based on the available partial part of the graph which is

gradually generated during execution and works in an online manner. Compared

with iterative static mapping-based rescheduling methods, our algorithm

introduces low overhead in managing schedules and execution in a distributed

environment with dynamic resources. Furthermore, it delivers nearly the same

performance result as the static mapping-based rescheduling methods and even

outperforms rescheduling methods for dataflow applications of a large size of

symmetric graph with balanced tasks distribution. In addition, our macro-

Dataflow Computations on Enterprise Grids

543

dataflow system naturally supports replication-based fault tolerance mechanism

for intermediate data generated during dataflow execution, which simplifies the

failure handling of our adaptive scheduling algorithm.

The rest of the chapter is organized as follows. First, it presents a simple and

powerful macro-dataflow programming model, which supports the composition

of parallel applications for transparent deployment in a heterogeneous distributed

environment, and an architecture and runtime machinery of a dataflow system.

Then, it discusses an L-HEFT heuristic online scheduling algorithm and

evaluates the scalability of our system and the performance of the scheduling

policy with real applications in an enterprise Grid environment. Performance

results demonstrate that our system is effective supporting data parallelism for

real applications and our scheduling policy achieves the same performance target

as existing dynamic policy with scheduling cost 30% to 50% less than the

existing static mapping-based rescheduling policies.

2. Macro-Dataflow Programming Model

This section describes the macro-dataflow programming model which is used to

compose the coarse-grained dataflow graph for the whole execution. With this

model, users can implicitly specify the dependent relationship between the data

generated during execution of the application and easily edit the execution logic

for each actor in the coarse-grained dataflow.

The macro-dataflow graph is represented as a directed acyclic graph (DAG).

Given a DAG, G=(V, E), the set of vertices V = {v1, v2, .., vn} represents the set

of tasks to be executed, and the set of directed edges E represents communication

between tasks, where eij = (vi, vj) E indicates communication from task vi to vj.

We call each communication data as a stream and users can specify a unique

name for each stream. Initial streams, which are not generated by any tasks, are

actually mapped to external files, e.g. the input for dataflow execution. Result

streams, which have no receiver tasks, are the results of dataflow execution. With

the name of each stream, users can edit execution tasks and configure its input

and output streams. We call each execution task as an actor.

2.1 APIs

The main APIs for composing dataflow graph are as follows:

 Execute.Compute(InStream[] inputs, OutStream[] outputs), which is

inherited by users to add instructions to execute the actor.

C. Jin and R. Buyya

544

 Actor.SetExecute(Execute) is used to specify the set of instructions of actor.

 Actor.AddInput(Stream) is used to specify input streams for each actor.

 Actor.AddOutput(Stream) is used to specify output streams for each actor.

 SetInitialStream(Stream, file) is used to set the input files for the whole

dataflow graph.

 SetResultStream(Stream, file) is used to set the output files to contain the

result of dataflow execution.

Through the above APIs, it is clear that the user does not need to specify the

complex dependent relationship between data generated during execution.

However, our system internally composes the dataflow graph through the

implicit data relationship, and also provides other APIs to make the user check

correctness of the graph.

2.2 Namespace for Streams

We expose a namespace to specify streams within macro-dataflow graph. Each

stream has a unique name in the dataflow graph. The name consists of 3 parts:

Category, Version and Space. Thus, the name is denoted as <C, T, S>. Category

denotes category of streams; Version denotes the index for the stream along the

time axis during the computing process; Space denotes the index along the space

axis during execution. In the following text, we call the name of stream as name.

In particular, Category is a string; the type of Version is integer and the type of

Space is integer array.

We use an example to illustrate how to use the namespace to specify streams.

It is an iterative matrix and vector multiplication, V
t
=M*V

t-1
. To parallelize the

execution, we partition the matrix and vector into rows of m pieces with each

piece being denoted as a stream. To name them, Category = M denotes the matrix

M0 V
t
0 M1 V

t
1 Mm-1 V

t
m-1

V
t+1

i

Multiplication

Sum

Matrix Stream

Vector Stream

Multiplication Actor

I
t
i,0 I

t
i,1 I

t
i,m-1

Sum Actor
Fig. 2. Dataflow graph for the i-th vector piece.

Dataflow Computations on Enterprise Grids

545

vertices and Category = V denotes the vector vertices. For i-th vector vertex, the

dependency relationship between streams should be specified as:

<V, t, i>←{<M, 0, i>, <V, t-1, j>} (j=1…m).

2.3 Example

Given the matrix vector iterative multiplication example, V
t
=M*V

t-1
, we partition

the matrix and vector by rows into m pieces respectively, as:







m

j

t

ji

t

i miVMV
1

1
)...1(*

The corresponding sub- macro-dataflow graph is illustrated in Fig. 2.

For this example, users may use two basic execution modules: multiplication

of matrix and vector pieces and sum of m multiplication results.

Given m partitions and T iterations, Fig.3 illustrates how to compose the data

flow graph for this example.

produce ComposeGraph(T, m, mulExec, sumExec)
/* T ← iteration times
 m ← partition number
 mulExec ← instructions for multiplication actor
 mulExec ← instructions for sum actor
*/

for (t = 0; t < T; t++) {
 for (i = 0; i < m; i++) {
 matriStream = Name (“M”, 0, i);

 vecStream = Name (“V”, 0, i);
 for (j = 0; j < m; j++) {
 /*multiplication result*/

 interStream = Name (“I”, t, i, j);
 mul = CreateActor(“Multiplication”);

 mul.SetExecute(multiExec);
 mul.AddInput(matriStream);
 mul.AddInput(vecStream);
 mul.AddOutput(interStream);
 }

 sumStream= Name(“V”, t, i); //sum result
 sum = CreateActor(“Sum”);

sum.SetExecute(sumExec);
 for (j = 0; j < m; j++) {
 interV = Name(“I”, t-1, i, j);
 mul.AddInput (interStream);
 }

mul.AddOutput(sumStream)
 }
endfor

return

Fig. 3. Composition of the dataflow graph.

C. Jin and R. Buyya

546

Finally users set the input files for the matrix and vector pieces through

SetInitialStream(). Also users need to specify to collect the result streams through

SetResultStream().

3. Architecture and Design

This section describes the dataflow system which supports the execution of our

macro-dataflow graph. The target environment of our dataflow system is a shared

enterprise Grid consisting of commodity PCs, where PCs can drop out of the

system as soon as being dominated, turned off or restarted by interactive users.

Such nodes can rejoin the system when they are idle again. The design goal aims

to make our system adapt to the resource heterogeneity including transient or

static, easily incorporate new resources and handle failures. For adaptation to

heterogeneity, we deploy online heuristic scheduling algorithm with assistance of

a performance prediction algorithm [Section 4.2] based on historical data. To

handle failures, we organize the large scale of free disks over PCs as a virtual

storage pool and hold intermediate data generated during dataflow execution as

the resuming point in handling failures.

3.1 System Overview

The key components of dataflow computing system are: coordinator and

contributors, as illustrated in Fig. 4. The coordinator is responsible for accepting

jobs from users, organizing contributors to work cooperatively. For example, it

monitors the availability of resources, sends execution requests to contributors,

and handles failures of contributors, etc. Each contributor joins the dataflow

system through contributing CPU, memory and disk resources, and then

Task Queue

Data Traffic

Coordinator

Control Flow

Network

Job Job Job

Predicator

History

Index

Job Monitor

Scheduler Scheduler

Contributor 1 Contributor n

Data pool

Storage

Executor

Data pool

Storage

Executor

Fig. 4. Architecture of Dataflow System.

Dataflow Computations on Enterprise Grids

547

passively waits for requests from coordinator. Both coordinator and contributor

are implemented as a pluggable service component in Aneka [35], which is

a .NET-based enterprise Grid software platform and can support the creation of

enterprise Grid environment. We utilize the existing Grid services such as

Resource Monitor Service supported in Aneka to simplify our implementation.

3.2 Structure of Coordinator

Coordinator consists of a set of key subcomponents, including job monitor, and

scheduler, database of performance history, performance predicator, and index

of intermediate data. A scheduler is instantiated for each job and adopts an online

scheduling policy to map ready tasks to suitable contributors for execution. The

historical information of execution is recorded in the database of performance

history component, which can be used by a predicator component to predict the

performance of tasks. The job monitor maintains the dataflow graph for each job,

keeps track of the intermediate data generated during execution, and explores

ready tasks for scheduling. The index component maintains the location for

available intermediate data. Normally each intermediate data stays in memory on

the contributor where it is generated. In order to improve the reliability of

execution, however, the index can choose when and where to make the

intermediate data persistent on disk or replicated to other contributors.

3.3 Structure of Contributor

Each contributor contributes local resources for dataflow computing and

maintains a task queue to buffer the commands from the coordinator. Due to the

large disk drive in current popular desktops, contributors in a dataflow system

actually have a significant amount of free disk space. The free disk space

available at the contributors is organized by the coordinator as a virtual storage

pool, which can hold the intermediate data generated during dataflow execution

to improve the availability of computation and handle transient or permanent

departure of contributors as well. Furthermore, there are the following important

sub-components on each contributor: executor, data pool and storage.

 Executor: fetches executing commands from the task queue, execute the

tasks and put the output data into local data pool. Executor requests input

data for tasks from data pool.

 Data pool: maintains the intermediate data generated by dataflow in memory,

and meet the request of input data from the executor. If the request is missed

locally, the data pool will notify the storage component to fetch the requested

C. Jin and R. Buyya

548

data from other contributors according to the location in command. When the

data pool finds that allocated memory is nearly full, it can swap data in

memory to disks through the storage component. Another matter is, in order

to efficiently handle failures, the data pool may also swap those data not

needed by the remainder dataflow execution to the storage component for

persistent maintenance until the whole job is finished, rather than simply

removing them.

 Storage component: works as a backup cache for data pool, and at the same

time is responsible for managing persistent intermediate data, which may be

generated for reliability purposes. The local storage component can

communicate with the storage component on remote contributors to transfer

data, which is transparent from the point view of the executor. Actually

storage components across contributors constitute a virtual storage that is

especially designed for holding persistent intermediate data for dataflow with

a flat name space. To handle failures, upon request from coordinator, the

storage component can replicate requested intermediate data on the remote

side to improve reliability and availability.

3.4 Replication Support

With the cooperation between the index component on coordinator and the

storage component on contributors, our dataflow system can replicate

intermediate data generated during the dataflow execution to multiple

contributors. The replication works in a lazy manner, which just replicates the

copy of intermediate data if there are contributors found not to be busy. In order

to reduce the cost of replicating intermediate data for tasks in every level (see

section 0), we replicate data associated with tasks in every n levels. The

replication step size, n, can be specified by users during job submission. In order

to achieve execution in the face of failures, some of the intermediate data may

have to be re-generated. This requires identifying the finished tasks to be re-

executed to regain the lost data. Therefore, we need to explore tasks which

should be re-executed to generate the intermediate data necessary to resume the

execution. This exploration stops when we find replicated copies of lost

intermediate data or we reach the initial tasks.

4. Scheduling Policy

This section describes in detail our dynamic scheduling algorithms on mapping

ready tasks of the dataflow graph to heterogeneous resources in a shared

enterprise Grid environment.

Dataflow Computations on Enterprise Grids

549

Our macro-dataflow programming model aims at scientific applications,

which consist of many repetitive tasks. To support adaptation, repetitive tasks are

partitioned into fine granularity, and as a result, the number of tasks is much

larger than the number of resources. Taking the large number of tasks into

consideration, our dynamic policy aims to efficiently map dataflow tasks onto

heterogeneous resources with frequent changes. Our policy optimizes the

scheduling efficiency based on the available part of the graph which contains

ready tasks gradually generated during the execution. Our policy works in two

phases. In the first phase, it partitions the tasks in the graph into clusters and

makes tasks within the same cluster as independent. This partition phase can be

deployed prior to the execution time or during execution. In the second phase,

our policy achieves a local optimization on scheduling of ready tasks with

priority on reducing data migration using our L-HEFT heuristic algorithm.

Compared with just-in-time dynamic policies, our method aims to decrease

the unnecessary data movement between resources through online analysis,

which is especially important for data-intensive application [17]; and at the same

time, it does not require the phase of complex rank assignment, which is the

prerequisite for global optimization policies, and is always based on inaccurate

estimation of data transfer and computing cost. To cope with the repetition

property of tasks in application, we adopt a performance prediction algorithm to

improve the efficiency of L-HEFT scheduling, which is based on historical

performance information.

4.1 DAG Execution Model

We take the macro-dataflow graph as our execution model. With our macro-

dataflow programming model, the dataflow graph is converted into a directed

acyclic graph (DAG). Please refer to section 0 for the details on dataflow graph.

For each actor in the graph, if all of its input streams are available, it is ready to

execute.

4.2 Performance prediction

In dataflow execution, different tasks may share the same execution instructions.

To predict execution time of actor.Execute on contributor r, we use Equation 1.

Ei(r) is the time of i-th execution of vi.Exec on contributor r and In is the size of

the corresponding input stream.  is a value selected between 0 and 1. A larger

value of  gives higher weights to recent executions and Equation 1 also takes

the weight of input size into consideration as illustrated.

C. Jin and R. Buyya

550

sizeinputv
I

rE

I

rE

I

rE
rExecvP i

in

ini

n

n

n

n
i _.*

)(
)1(

)(
*)1(

)(
*),.(

1

1

















   (1)

If vi.Exec has not executed on contributor r, to predict the execution time of

task vi on contributor r, we use the average of prediction on all other contributors

which have executed vi.Exec, as Equation 2 where S(vi.Exec) is the set of

contributors who have executed vi.Exec and E(ri) is the execution time of vi.Exec

per byte.

sizeinputvrErExecvP i

ExecvSr

ii

ii

_.*)(),.(
).(









 



 (2)

If it is the first time to execute vi.Exec in all of the available contributors, we

use the prediction value provided by the user.

4.3 Level-based Clustering

The algorithm used in the first phase is a technique for ordering the nodes based

upon their precedence constraints, called level sorting, which have been adopted

by many prior works [24, 30]. We can define the level sorting in a recursive way.

Given a directed acyclic graph G=(V, E), level 0 contains all vertices vj such that

there is no vertex vi with eij∈E (i.e. vj does not has any incident edges). Level k

consists of all vertices vj such that, for all eij∈E, every vertex vi has a level

number less than k and at least one vertex is in level k-1.

The result of clustering is to partition G into L blocks numbered consecutively

from 0 to L-1, and execution actors within each block are independent, i.e. there

is no data precedence constraint between them. All tasks that send data to a task

in block k must be in any blocks 0 to k-1; for each task vj in block k, there exists

at least one stream from task vi in block k-1. Block 0 contains all initial tasks

whose input streams are initial streams. Fig. 5 shows the result of clustering for a

FFT dataflow graph. This partition phase can be done during the execution of the

dataflow graph.

 Level 2

Stream

Level 0

Level 1
Actor

Fig. 5. The dataflow graph of FFT with 4 points.

Dataflow Computations on Enterprise Grids

551

4.4 A Localized HEFT Algorithm

Our aim is to minimize the execution time of tasks within each block, and as a

consequence, the overall execution of the whole dataflow graph could be

potentially optimized. We propose a scheduling algorithm which is called as L-

HEFT (Localized Heterogeneous Earliest Finished Time) algorithm. The HEFT

(Heterogeneous Earliest Finished Time) algorithm [14] is a static scheduling

algorithm which can potentially achieve an overall optimized mapping with a

relatively low cost. HEFT first assign a rank to each task through recursively

traversing its successor tasks and computing the weight based on predicted

performance and network traffic until result task is reached. After that, HEFT

dispatches each task to resources which can finish it fastest according to the rank

order. Therefore it needs global knowledge of the whole graph and the execution

environment. On the contrary, L-HEFT algorithm does not require the global

knowledge of whole graph for the complex ranking phase as HEFT and aims to

optimize the mapping of local ready tasks in currently available partial graph.

Since we cannot optimize the scheduling in the manner of global mapping,

this may lead to some unnecessary data traffic and may not give more weights to

tasks on the critical path. So our policy puts more priority on data location as

compensation and use the increasing order of level number to ensure the priority

from dependency constraints. Our algorithm is focusing to decrease the data

migration between resource nodes as much as possible while distributing work

load across resources according to their ability. Given task t, we do not schedule

it immediately when it is just ready. On the contrary, we put it in a schedule

queue. When the queue buffers enough tasks or there are contributors found soon

to be idle, the L-HEFT will be invoked.

We first assign the priority of each ready task according to its level number. A

task in a lower level has higher priority than a task in a higher level. Within the

same level, however, we give high priority to the task which can be mapped to a

contributor where its execution does not need data traffic over the network. For

those tasks whose execution definitely needs data communication whatever node

it will be assigned to, we deploy an EFT (Earliest Finished Time) heuristic

algorithm to map them to suitable contributors. As a result, each contributor in

the resource pool has a schedule queue, which holds the assigned tasks waiting

for execution.

Each task is assigned with a rank ID, which consists of prefix and postfix

parts as illustrated in Fig. 6. The prefix part is the level number. The postfix part

actually means the possible minimal traffic size if the corresponding task is

executed. Equation 3 illustrates the ranking function used by L-HEFT. Given a

C. Jin and R. Buyya

552

task vj and its predecessor task vi, its input stream is denoted as eij. OS(vj) is the

set of contributors which holds eij.

Fig. 7 shows the algorithm of L-HEFT heuristic. We assign a rank for each

ready task using equation (3), and then we sort the ready tasks by increasing

order. For tasks which have same rank priority, we sort them according to non-

increasing predicted execution time. This phase of assigning rank and sorting

tasks is totally different from HEFT algorithm, and we do not require the phase

of recursive traversing to calculate successor’s network traffic and their estimated

average computation costs. In the mapping phase, we first assign tasks which

may not need network traffic for execution to the contributor which holds all

requested input streams, and then assign other tasks to the contributor which can

finish them earliest, based on calculate EFT(Earliest Finish Time).

During the execution, to compute EFT for task t on contributor r, we need to

know the execution time of waiting tasks on r, which are waiting for execution.

As indicated in Section 0, each contributor has a priority tasks queue which

contains all assigned tasks. On the side of the coordinator, there is also a queue, fr,

for each contributor recording sent tasks and their estimated execution time.

When a task is finished on contributor r, fr will be updated correspondingly to

correct the estimated execution time of tasks on r. The time point of correction is

recorded as p(fr). We use fr to compute the EST (Earliest Start Time) for t on

contributor r, so that EST(t, r) =left_time(fr)-(C- p(fr)), where C is the current

time and left_time(fr) is the sum of execution time for tasks in fr. Therefore,

EFT(t, r) = EST(t, r) + Predict(t, r), where Predict(t, r) is our algorithm to predict

the execution time of task t on contributor r, which is based on the history

execution information as indicated in Section 0.

numberlevelvprefixvrank jj _.).(




























 







)(max)().(
.

)(

)(kij

jk

j nownerC

ijvOSn

vpredi

ijj esizeofesizeofpostfixvrank (3)


)(

).()(
jvpredi

ijj ownerevOS




Rank ID

Prefix Postfix

Fig. 6. Rank ID

Dataflow Computations on Enterprise Grids

553

During the initial phase of our scheduling model, we deploy a greedy policy

on initial tasks in block 0. During the scheduling, to prevent the worst case where

some nodes hold a schedule queue with an estimated time much longer than

others’ queue, there is a thread running in the background which frequently

checks the length of scheduling queue of each contributor. It will re-assign some

tasks from the tail of the longest scheduling queue to other contributors having

light load.

4.5 Handling New Resources and Failed Resources

When new resources are found in the system, the list of available resources will

be updated to include them after they are ready to join the dataflow execution.

produce Level-HEFT-Schedule(T, R, F, C)

/* T  The list of ready tasks to schedule

R  The list of currently available contributors

F  The set of priority task appending Queue of
currently available contributors

C  Current time point

*/

foreach ti in T

Compute ti.rank with the algorithm of Equation (3)

 endfor

 Sort each ready task, ti, in T by increasing order of ti.rank

 while there are unscheduled tasks in T do

 Choose the first task t0 in T

 if(t0.rank.postfix is zero)

 foreach rj in R

 Compute its traffic size sj, if t0 is assigned to rj

 Endfor

 Append t0 to fm , where sm=max{sj} (fmF)

else

 foreach rj in R

 eft[rj] =EFT (t0, rj, C, fj, R)

 endfor

 Append t0 to fm , where eft[rm]= min{eft[rj]}

 endif

 endwhile

return F

Fig. 7. Level-based HEFT algorithm.

C. Jin and R. Buyya

554

Then L-HEFT scheduling algorithm will be invoked to map ready tasks in the

queue to resources, including the new resources.

When some contributors leave the system due to failures or being dominated

by interactive users, it is possible that a number of intermediate data is lost due to

the departed contributors. If these lost intermediate streams are necessary for

continuing the execution, Job monitor component on the coordinator will explore

to re-execute corresponding actors in order to regenerate the lost intermediate

streams. The tasks to be re-executed will be put into the task buffer and wait for

scheduling of L-HEFT algorithm.

5. Performance Evaluation

We have implemented our dataflow programming model, system and scheduling

algorithm over the Aneka platform and deployed it in an environment consisting

of desktop machines from different laboratories in Melbourne University, and

shared with students and researchers. In this section, we evaluate the

performance of our dataflow system and L-HEFT online scheduling algorithm

through three applications. The first simple one is matrix multiplication; the other

two complex ones are FFT (Fast Fourier Translation) computation and Jacobi

iteration [23].

5.1 Environment Configuration

The experiments are executed in an enterprise Grid consisting of 33 nodes drawn

from 3 student laboratories. During testing, one machine works as coordinator

and the others work as contributors. Each machine has a single Pentium 4

processor, 500MB of memory, 160GB IDE disk (10GB is contributed for

dataflow storage), 1 Gbps Ethernet network and runs Windows XP.

5.2 Sample Applications

We implemented three sample applications using our macro-dataflow APIs

indicated in the Appendix.

 Matrix Multiplication: Each matrix consists of 4000 by 4000 randomly

generated integers. Each matrix needs about 64M bytes. Each matrix is

partitioned into 250 by 250 square blocks, and therefore there is a total of

16*16 blocks with 128KB per block. There are 1,024 initial streams in

dataflow graph for the two matrix and 512 result streams as the result matrix.

Dataflow Computations on Enterprise Grids

555

 FFT (Fast Fourier Transform): This algorithm is widely used in digital

signal processing and can also be used to solve Discrete Poisson Equation for

physical simulation. Fig. 5 is a typical dataflow graph of FFT computing in a

small scale. The input of FFT example used in the experiment is 16M

complex number, and is uniformly divided into 64 pieces. Therefore, there is

a total of 1,664 actors to execute.

 Jacobi Iteration: Jacobi method is a simple way to solve PDE (Partial

Differential Equations). Its iteration pattern of parallelization is shared by a

large number of numerical programs and more complicated PDEs. The

working space of Jacobi iteration in our experiment is a 16,384 by 16,384

matrix. The matrix is partitioned by rows into 64 pieces. During the

experiment, we varied the ratio of computation vs. communication and

iteration times.

5.3 Scalability of System

The performance scalability evaluation does not include the time consumed for

sending initial data and collecting result data as these two actions need to transfer

data across the single coordinator, which is a sequential behavior.

Fig. 8 illustrates the speedup of performance with an increasing number of

coordinators. There are 2 main factors that determine the execution time of the

matrix multiplication: the distribution of blocks between the contributors and the

overhead introduced by the transmission of blocks between the contributors. The

network overhead is measured here as the ratio of the time taken for

communication to the time taken for computation. As can be seen from Fig. 8,

for larger number of contributors, while the speedup improves, the network

Fig. 8. Scalability of Performance.

C. Jin and R. Buyya

556

overhead is also substantially increased. The speedup line starts diverging from

the ideal when the network overhead increases to more than 10 % of the

execution time.

5.4 Scheduling Policy

This section evaluates our L-HEFT scheduling policy. We compare it with a

dynamic scheduling model [36] through rescheduling on static HEFT mapping,

which we term here as D-HEFT. We have implemented D-HEFT as mentioned in

prior work 35, and rescheduling is triggered when the performance of resource is

changing. In our implementation, the rescheduling is overlapped with the

execution of tasks. This means that until the remapping of tasks is completely

finished, they are still submitted to contributors to which they were mapped in

the prior iteration of rescheduling. In this section, we compare these two

scheduling models while varying the ratio of computation vs. communication and

the size of dataflow graph through Jacobi iteration and FFT benchmarks. For

Fig. 9. Scheduling on Jacobi DAG with 640 tasks.

Fig. 10. Scheduling on Jacobi DAG with 6400 tasks.

Dataflow Computations on Enterprise Grids

557

Jacobi iteration, every actor executes same set of instructions. We choose in

equation 1 to be equal to 0.9. If the real execution time is different from the

predicted value by a factor of 2, we take it as a performance variation and

correspondingly trigger rescheduling in D-HEFT.

First, we look at the result of these two polices on dataflow graph with

different sizes. We use a Jacobi iteration benchmark with 10 iterations and 100

iterations. Therefore the corresponding dataflow graph respectively holds 640

and 6400 tasks. As illustrated in Fig .9, L-HEFT scheduling policy provides

worse results than D-HEFT policy, while in Fig. 10, L-HEFT marginally

outperforms D-HEFT. The reason is the scheduling cost of D-HEFT is larger

than that of L-HEFT, due to frequent variations in the performance availability of

resources across contributors. For a large dataflow graph, rescheduling cost of D-

HEFT is even higher.

Finally we run the FFT benchmark, whose communication pattern is more

complex than that of Jacobi. The result is shown in Fig. 11. For this FFT

benchmark, the ratio of Computation to Communication is about 3. The result

shows L-HEFT can compete with D-HEFT. This result is consistent with the

scheduling result of Jacobi dataflow, because the task number in FFT dataflow is

not large enough, which is only 1664.

6. Thoughts for Practitioners

In this section, we mainly discuss the reason why L-HEFT performs better

than D-HEFT and then present the effect of L-HEFT on handling the dynamics

of resources in the enterprise Grid environment.

Fig. 11. Scheduling of FFT dataflow.

C. Jin and R. Buyya

558

6.1 Scheduling Cost

Fig. 12 and Fig. 13 illustrate the total execution time of L-HEFT and D-HEFT

during the scheduling for Jacobi examples with small and large number of tasks

respectively. We can see the scheduling cost of D-HEFT is much better than L-

HEFT.

We use a simple model to explain why the rescheduling cost of L-HEFT is

better. According to [14], the scheduling cost of HEFT algorithm

is)(qeOCH  , where e is the average number of edges and q is the number of

contributors. For rescheduling, the cost depends on the size of partial graph. We

assume the size of partial graph is half the whole graph on average for each time

of rescheduling. Therefore, each time of rescheduling cost is 2/Hr CC  . Given

nr as the number of rescheduling, total cost of rescheduling is)(rr Cn  . However,

for L-HEFT algorithm, we can know its cost HL CC  . From Table 1, we can see

that the number of rescheduling is comparatively high and in each time of

rescheduling, the D-HEFT algorithm needs to assign ranks for left over tasks and

Fig. 12. Scheduling cost of Jacobi DAG with 640 tasks.

Fig. 13. Scheduling cost of Jacobi DAG with 6400 tasks.

Dataflow Computations on Enterprise Grids

559

then sort the tasks for re-mapping. A large number of repeated rescheduling

introduces high scheduling cost. As a result, L-HEFT can outperform D-HEFT

for large scale dataflow graph.

Next, we compare two scheduling polices with varied computation-to-

communication ratio for a Jacobi dataflow of 10 iterations. During the

experiment, we adjust the ratio of computation to communication from 2 to 12 as

illustrated in Fig. 14. We can see that for application with a larger ratio of

computation to communication, D-HEFT performs better than L-HEFT. The

reason is the rescheduling cost is gradually compensated by the large execution

time of tasks.

Table 1 The number of rescheduling operations in D-HEFT

Contributors# 16 20 24 28 32

640 tasks 82 102 62 58 63

6400 tasks 913 987 659 752 732

Fig. 14. Scheduling with varied ratio of Computation-to-Communication.

Fig. 15. Average amount of data migration between contributors.

C. Jin and R. Buyya

560

Furthermore, we compared the amount of stream data migration between

contributors under the scheduling of L-HEFT and D-HEFT, as in Fig. 15. The

result shows that for the Jacobi iteration application, both L-HEFT and D-HEFT

generate nearly the same amount of data migration.

6.2 Handling Joining Contributors

This section compares the two dynamic models for handling new resources. We

use a Jacobi dataflow with 10 iterations and FFT dataflow. In the experiments,

we first start with 16 contributors and after 3 minutes, we gradually add 2 new

contributors every minute. We measured the number of finished tasks on the side

of coordinator. The slope of measure curves will increase during continuous

joining of new resources, because more contributors can accelerate to execute

ready actors, as illustrated in Fig. 16 and Fig. 17. These two figures show that the

response time of L-HEFT algorithm to handle new joining resources is a bit

faster than D-HEFT. The reason is the low cost of L-HEFT algorithm.

Fig. 17. Handling new resources for Jacobi dataflow.

Fig. 16. Handling new resources for FFT dataflow.

Dataflow Computations on Enterprise Grids

561

6.3 Handling Failures of Contributors

This section evaluates the mechanisms dealing with failures of contributors in the

dataflow system. We use the Jacobi iteration example with 40 iterations across

20 contributors. On the coordinators side, we measure the number of finished

actors. If lost intermediate data need be re-generated by re-executing those actors

due to the failure of contributors, we just reset those actors as unfinished. L-

HEFT algorithm evaluated in this section is assisted by the replication support

with the size of replication step equal to 5, while D-HEFT does not support

failures through replication methods. After the system runs for 12 minutes, we

manually turn off one contributor to simulate one node failure. Without

replication support, D-HEFT has to re-execute all tasks to regenerate lost

intermediate data to continue the execution. However, the number of tasks which

have to be regenerated by L-HEFT is pretty smaller. As Fig. 18 shows, with

failure support from the replication mechanism of macro-dataflow system, L-

HEFT outperforms D-HEFT. Therefore, the final performance of L-HEFT is

better.

7. Directions for Future Research

Our macro-dataflow programming model exposes a DAG interface for users to

compose a dataflow graph and the runtime system can schedule the execution of

the graph in an enterprise Grid environment and handle load balancing and fault

tolerance with a transparent manner. However, it is still a challenge to meet the

quality of service (QoS) requirements. Our future work focuses on extending

dynamic scheduling policy to support advanced user QoS requirements by

building on Aneka’s advanced resource reservation and service level agreement

(SLA) capabilities.

Fig. 18. Fault tolerant scheduling.

C. Jin and R. Buyya

562

8. Conclusion

This chapter presents a dataflow computing platform within a shared enterprise

Grid environment. Through a macro-dataflow interface, users can freely express

their parallel applications through specifying the dataflow relationship and easily

deploy applications in a heterogeneous distributed environment with failures. The

L-HEFT scheduling algorithm proposed for our dataflow system achieves

effective mapping with fairly low cost due to heavily decreased rescheduling cost,

compared with static mapping-based rescheduling techniques. At the same time,

it supports scalable performance and transparent fault tolerance based on the

evaluation of example applications.

9. Acknowledgement

This work is partially supported by research grants from the Australian Research

Council (ARC) and the Australian Department of Innovation, Industry, Science

and Research (DIISR). We thank Srikumar Venugopal, Suraj Pandey, Charity

Laplap and James Broberg for their comments on this chapter.

10. References

1. A. Benoit, V. Rehn, and Y. Robert, Complexity results for throughput and latency

optimization of replicated and data-parallel workflows, Proceedings of the HeteroPar’2007:

International Workshop on Heterogeneous Computing, in conjunction with Cluster 2007

Conference, Austin, TX, USA, 2007.

2. A. Chien, B. Calder, S. Elbert, K. Bhatia, Entropia: Architecture and Performance of an

Enterprise Desktop Grid System. Journal of Parallel and Distributed Computing, 63(5),

pp.597-610, Academic Press, USA, 2003.

3. A. Y. Zomaya, C. Ward, and B. Macey, Genetic Scheduling for Parallel Processor Systems:

Comparative Studies and Performance Issues. IEEE Transactions on Parallel and Distributed

Systems, 10(8), pp.795-812, IEEE Computer Society Press, USA, 1999.

4. C. Jin, R. Buyya, L. Stein, and Z. Zhang, A Dataflow Model for .NET-based Grid Computing

Systems, Proceedings of the 3rd International Workshop on Grid Computing and Applications,

Singapore , 2007.

5. C. Kim, J.L. Gaudiot, Data-flow and Multithreaded Architectures, Encyclopedia of Electrical

and Electronics Engineering, Wiley Press, USA, 1997.

6. D. Thain, T.Tannenbaum, and M. Livny. Distributed computing in practice: The Condor

experience. Concurrency and Computation: Practice and Experience, 17(2-4), Wiley Press,

USA, 2005.

7. E. Deelmana,G. Singha, and M.Sua etal, Pegasus: A framework for mapping complex

scientific workflows onto distributed systems, Scientific Programming Journal, 13(3), pp.

219–237, IOS Press, The Netherlands, 2005.

Dataflow Computations on Enterprise Grids

563

8. E. Korpela, et al, SETI@home-massively distributed computing for SETI. Computing in

Science & Engineering, 3(1), pp.78-83, Joint Press of IEEE Computer Society and the

American Institute of Physics, USA, 2001.

9. G. Fedak, C. Germain, et al. Xtremweb: A generic global computing system. Proceedings of

the 1st International Symposium on Cluster Computing and the Grid, Brisbane, Australia,

2001.

10. G.R. Gao, An efficient hybrid dataflow architecture model, Journal Parallel and Distributed

Computing, 19(4), pp.293-307, Elsevier Press, The Netherlands, 1993.

11. G. Kahn, The semantics of a simple language for parallel programming, Proceedings of the

International Federation for Information Processing (IFIP) Congress 74, Stockholm, Sweden,

1974.

12. H.H.J. Hum, O. Maquelin, K.B. Theobald, X. Tian, G.R. Gao, and L.J. Hendren, A study of

the earth-manna multithreaded system, Journal of Parallel Programming, 24 (4), pp.319-347,

Plenum Press, USA, 1996.

13. H. Sutter, J. Larus, Software and the Concurrency Revolution, ACM Queue, 3(7), pp. 54–62,

ACM, USA, 2005.

14. H. Topcuouglu, S. Hariri, and M.-Y. Wu, Performance-Effective and Low-Complexity Task

Scheduling for Heterogeneous Computing, IEEE Transactions on Parallel and Distribution

Systems, 13(3), pp.260-274, IEEE Computer Society Press, USA, 2002.

15. H. Yu, D. Marinescu, and A. Wu, et al, Plan switching: An Approach to Pan Execution in

Changing Environments, Proceedings of the 20th International Parallel and Distributed

Processing Symposium, Rhodes Island, Greece, 2006.

16. I. Foster and C. Kesselman, The Grid Blueprint for a Future Computing Infrastructure,

Morgan Kaumann Publishers, USA, 1999.

17. J. Blythe, S. Jain, and E. Deelman, et al, Task Scheduling Strategies for Workflow-based

Applications in Grids, Proceeding of 4th IEEE International Symposium on Cluster

Computing and Grid, Singapore, 2005.

18. J. Dennis and D. Misunas, A Preliminary Architecture for a Basic Data-Flow Processor, The

Second IEEE Symposium on Computer Architecture, 1974.

19. J. Frey, T. Tannenbaum, Ian Foster, et al. Condor-G: A Computation Management Agent for

Multi-Institutional Grids, Proceedings of 10th IEEE Symposium on High Performance

Distributed Computing, Redondo Beach, California, USA, 2001.

20. J.L. Gaudiot, L. Bic, Advanced Topics in Data-Flow Computing, Prentice-Hall, USA, 1991.

21. K. Asanovic, R. Bodik and B. C. Catanzaro, The Landscape of Parallel Computing Research:

A View from Berkeley, Technical Report, No. UCB/EECS-2006-183, University of Berkeley,

USA, 2006.

22. M. Litzkow, M. Livny, M. Mutka, Condor - A Hunter of Idle Workstations, Proceedings of

the 8th International Conference of Distributed Computing Systems (ICDCS 88), IEEE

Computer Society Press, USA, 1988.

23. M. T. Heath, Scientific Computing: An Introductory Survey, McGraw-Hill Science

Engineering, USA, 2001.

24. M. Maheswaran, H. Siegel, A Dynamic Matching and Scheduling Algorithm for

Heterogeneous Computing Systems, Proceedings of the 7th Heterogeneous Computing

Workshop, Florida, USA, 1998.

http://www.aip.org/

C. Jin and R. Buyya

564

25. R. Huang, H. Casanova, A. Chien, Using Virtual Grids to Simplify Application Scheduling, in

Proceedings of the 20th International Parallel and Distributed Processing Symposium

(IPDPS'06) , Rhodes, Greece, 2006.

26. R. Kalakota and M. Robison, E-business: roadmap for success, Addison-Wesley Longman

Publishing Co., Inc. USA, 1999.

27. R. M. Badia, Jesús Labarta, and Raúl Sirvent, et al, Programming Grid Applications with

GRID superscalar, Journal of Grid Computing, Springer Verlag, Germany, 2004.

28. R.S. Nikhil, Arvind, Can dataflow subsume von Neumann computing? Proceedings of the

International Symposium on Computer Architecture (ISCA-16), Jerusalem, Israel, 1989.

29. S. Bowers, B. Ludaescher, A. H.H. Ngu, T. Critchlow, Enabling Scientific Workflow Reuse

through Structured Composition of Dataflow and Control-Flow, Proceedings of the IEEE

Workshop on Workflow and Data Flow for Scientific Applications, Georgia, USA, 2006.

30. T. Fahringer, R. Prodan, R. Duan, F. Nerieri, S. Podlipnig, J. Qin, M. Siddiqui, H.-L. Truong,

A. Villazon, M. Wieczorek, ASKALON: A Grid Application Development and Computing

Environment, Proceedings of the 6th International Workshop on Grid Computing, Seattle,

USA, 2005.

31. T. Hey, and A. E. Trefethen, The UK e-Science Core Programme and the Grid, Journal of

Future Generation Computer Systems, 18(8): 1017-1031, Elsevier Press, The Netherlands,

2002.

32. T.Sterling, J.Kuehn, M. Thistle, and T. Anastasis, Studies on Optimal Task Granularity and

Random Mapping, Advanced Topics in Dataflow Computing and Multithreading. pp.349–365,

IEEE Computer Society Press, USA, 1995.

33. W.A. Najjar, E.A. Lee, and G.R. Gao, Advances In The Dataflow Computational Model,

Parallel Computing, 25, pp. 1907-1929, Elsevier Press, The Netherlands, 1999.

34. W. M. Johnston, J. R. P. Hanna, and R. J. Millar. Advances in Dataflow Programming

Languages. ACM Computing Surveys, 36(1), pp.1–34, ACM Press, USA, 2004

35. X. Chu, K. Nadiminti, C. Jin, S. Venugopal, and R. Buyya, Aneka: Next-Generation

Enterprise Grid Platform for e-Science and e-Business Applications, Proceedings of the 3rd

IEEE International Conference and Grid Computing, Bangalore, India, 2007.

36. Z. Yu and W. Shi, An Adaptive Rescheduling Strategy for Grid Workflow Applications, in

Proceedings of the 21st International Parallel and Distributed Processing Symposium, Long

Beach, CA, USA, 2007.

http://daks.ucdavis.edu/~sbowers/Bowers_et_al_SCIFLOW06.pdf
http://daks.ucdavis.edu/~sbowers/Bowers_et_al_SCIFLOW06.pdf

Dataflow Computations on Enterprise Grids

565

Extra Material

11. Terminologies

[1] Dataflow model: Dataflow execution model is an inherently parallel model

and the execution of instruction/operation is triggered as soon as the required

input data is (made) available.

[2] Control flow model: traditional execution model of “von Neumann”

architecture.

[3] Hybrid dataflow model: The hybrid model combines the advantages of

dataflow and control-flow and expose parallelism at a desired level.

[4] Grid: Grid computing is one of the recent paradigms for parallel and

distributed computing. It provides online access to computation or storage as

a service supported by a pool of distributed computing resources.

[5] Enterprise Grid: Enterprise Grid aims to enable the virtualization and

harnessing of (idle) IT resources within an enterprise

[6] DAG: Directed Acyclic Graph (DAG) is used to express the dependency

relationships between tasks within an application.

[7] DAG scheduling: DAG scheduling can map the tasks of DAG onto

distributed resources.

[8] Off-line DAG scheduling: Off-line DAG scheduling maps the tasks in a

DAG onto distributed resource prior to the execution.

[9] On-line DAG scheduling: On-line DAG scheduling maps the tasks in a

DAG onto distributed resource during the execution.

C. Jin and R. Buyya

566

[10] Heterogeneous system: A system consists of resources with heterogeneity

in terms of architecture, capability, policies, and access interfaces, etc.

12 Questions

1. What is a dataflow execution model?

Answer: Dataflow execution model is an inherently parallel model, which can be

used to freely express parallelism with a dataflow graph.

2. What is the difference between the dataflow and control flow execution

models?

Answer: Normally in control flow model, programs are executed sequentially,

while with the dataflow model, programs can be expressed as a dataflow graph in

a natural parallel manner, which can be used to avoid the bottleneck in the

control flow model.

3. What is a hybrid data model?

Answer: The hybrid model is flexible in combining the advantages of dataflow

and control-flow, as well as in exposing parallelism at a desired level. Through

the hybrid model, a region of actors within a dataflow graph can be grouped

together as a coarse-grained thread to be executed sequentially, while the data-

driven method of dataflow can be used to activate and synchronize the execution

of threads.

4. What is Grid computing?

Answer: Grid computing is one of the recent paradigms for parallel and

distributed computing. It provides online access to computation or storage as a

service supported by a pool of distributed computing resources.

5. What is enterprise Grid?

Answer: Enterprise Grid computing systems aim to enable virtualization and

harnessing of various types of distributed IT resources within an enterprise.

6. What is the advantage of enterprise Grid?

Answer: Enterprise Grids are specifically focused on provisioning resources

dynamically to different projects depending on their priorities with idle resources

in an enterprise.

Dataflow Computations on Enterprise Grids

567

7. What is the general challenge of DAG scheduling algorithm?

Answer: A scheduling is a process that maps and manages the execution of inter-

dependent tasks in a DAG onto distributed resources, which is known as a NP-

complete problem.

8. What is the advantage of HEFT scheduling algorithm?

Answer: The HEFT (Heterogeneous Earliest-First-Time) algorithm is effective

on scheduling tasks in a DAG onto heterogeneous distributed resources.

9. What is the advantage of L-HEFT algorithm?

Answer: The L-HEFT algorithm is effective on rescheduling of DAG tasks in

case of failures or new resources.

10. Why the scheduling cost of L-HEFT algorithm is better than D-HEFT

algorithm?

Answer: L-HEFT reschedules the DAG tasks just for partial graph, while D-

HEFT algorithm reschedules the whole graph. This makes rescheduling cost of

D-HEFT is higher than L-HEFT.

