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ABSTRACT
The importance of fault tolerance strategies for distributed streaming computing systems becomes more evident due to the
increased diversity of failures. Checkpointing is considered a general and efficient method for ensuring fault tolerance. However,
determining the checkpoint interval poses a challenge: shorter checkpoint intervals lead to higher overhead, while longer intervals
result in extended fault recovery time. Therefore, optimizing the checkpoint interval becomes crucial for the efficient operation of
streaming applications. There has been relatively limited exploration and analysis of optimal checkpoint interval settings in the
context of stream computing. Many existing works considered adjusting this interval based on a single factor. This article proposes
a checkpoint adaptive strategy with high availability, named Ca-Stream. It considers multiple factors when adjusting checkpoint
intervals. Specifically, it addresses the following aspects: (1) Using linear regression to predict the system’s fault rate and dynam-
ically adjusting the checkpoint interval based on these predictions. (2) Monitoring CPU time and memory consumption per task
to dynamically trigger checkpoints, achieving high reliability, especially in resource-constrained scenarios. (3) Detecting task exe-
cution times on nodes and volume of input data for tasks to identify slow tasks within the cluster. Experiments conducted on a
Flink system demonstrate Ca-Stream’s benefits. It reduces checkpoint consumption time by over 38%, system recovery latency by
33%, CPU occupancy by up to 47%, and memory occupancy by 37% compared to Flink’s approaches.

1 | Introduction

Distributed stream computing systems play an important role in
extracting valuable insights from large volumes of real-time data
streams. These systems find applications in diverse areas such as
Internet of Things data processing, clickstream analysis, network
monitoring, fraud detection, spam filtering, and news process-
ing [1, 2]. In these areas, failures may have serious consequences,
leading to highly unreliable results due to prolonged delays [3].

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

© 2025 John Wiley & Sons Ltd.

Adopting effective fault tolerance strategies is imperative to han-
dle failures in a timely manner. Given the diversity of failure sce-
narios and types, it becomes crucial to embrace fault tolerance
strategies with high availability.

Currently, the majority of stream computing systems pri-
marily rely on replication recovery, checkpoint recovery, and
Data-stream-based linear recovery to improve their fault toler-
ance [4]. Replication recovery enables fast fault recovery through
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active backup task switching, but its resource consumption is
nearly doubled [5]. In contrast, checkpoint recovery significantly
improves system efficiency, offering a common fault-tolerant
model in big data flow computing environments for wide range
of applications. Checkpoint recovery economizes on resource
costs by periodically checking the status of task processing.
Data-stream-based linear recovery is slow and resource-intensive
in geographically distributed network settings, especially in situ-
ations where lengthy linear graph are involved and the system
lacks the capability to simultaneously address multiple faults. In
the stream computing engines using checkpoint recovery, setting
the optimal checkpoint interval is key to ensuring the efficiency
of stream applications. The risk of longer checkpoint intervals
comes at the cost of longer fault recovery time, while too short a
checkpoint interval can significantly increase the additional over-
head during fault-free operation.

While numerous checkpoint-based fault tolerance techniques are
available, there is still a significant challenge in developing opti-
mal checkpoint intervals for stream computing engines for the
following reasons. First, existing fault tolerance mechanisms usu-
ally analogously and periodically trigger checkpoints, but fail-
ures do not occur periodically in real-life scenarios [6]. Therefore,
determining how to set checkpoint intervals to effectively accom-
modate faults is a key question. The second challenge is that the
frequency with which checkpoints are executed affects the sys-
tem performance (e.g., utilization, latency), as the checkpointing
process consumes resources and time that could otherwise be
allocated to actual computation [7]. The third challenge is that
the loss of tasks with longer execution times in a job is more likely
to delay the job’s completion [8].

To address the aforementioned challenges, we propose
Ca-Stream, a strategy capable of adjusting the checkpoint
interval based on multiple factors. We make the following
contributions:

1. Using linear regression to predict the system’s fault rate, and
dynamically adjusting the checkpoint interval based on the
prediction. When the predicted fault rate rises, a dynam-
ically decreased checkpoint interval is triggered. When
the predicted fault rate decreases, a dynamically increased
checkpoint interval is initiated.

2. Monitoring the CPU time and memory consumed by each
task to dynamically trigger checkpoints, achieving high reli-
ability, especially in resource-constrained scenarios. When
the CPU time or memory consumption exceeds a predefined
threshold, the checkpoint interval is iteratively increased.

3. Detecting task execution times on nodes and volume of
input data for tasks to identify slow tasks within the cluster.
When the number of slow tasks exceeds a specified thresh-
old, the checkpoint interval is increased, allowing the sys-
tem to prioritize the execution of these slow tasks.

The subsequent sections are organized as follows: Section 2
presents a review of related work. Section 3 introduces the
model construction of Ca-Stream. Section 4 presents the sys-
tem architecture of Ca-Stream and the implementation details
of the fault-tolerant algorithms. Section 5 reports experiments

conducted to evaluate Ca-Stream’s performance and compares
it with Flink’s existing checkpointing mechanism. Finally,
Section 6 concludes this article.

2 | Related Work

In this section, we will summarize the existing fault-tolerance
mechanisms of stream process frameworks and the existing
high-availability strategies.

2.1 | Fault Tolerance Mechanisms in Stream
Processing Frameworks

Currently, a multitude of stream processing frameworks exist
that individually employ distinct fault-tolerance mechanisms to
ensure the stability and reliability of their systems. These frame-
works adopt varying strategies for error recovery and resilience,
thereby catering to the critical nature of continuous data flow and
real-time computation without compromising on performance or
data integrity.

Spark Streaming is a common stream computing system that
includes Spark SQL, MLlib [9], and Spark Streaming. Spark
Streaming provides an advanced declarative API and supports
languages such as Java, Python, and Scala [10]. It abstracts the
processing logic of input streams into a series of resilient dis-
tributed datasets [11], which can be recomputed.

Storm [12] adopts checkpointing and source buffering for fault
tolerance. Additionally, it utilizes a heartbeat mechanism to mon-
itor the health states of nodes and employs a fault recovery and
migration mechanism to ensure the continuity of data flow and
processing.

Trident [13] serves as a higher-level abstraction for Storm. It sim-
plifies the construction process of topologies and incorporates
advanced operations such as aggregation, windowing, and state
management. Trident employs anchoring techniques and batch
processing to guarantee processing only once.

Samza was initially developed as a stream processing solution
for LinkedIn [14], and contributed to the community alongside
LinkedIn’s Kafka [15, 16]. Samza achieves fault tolerance through
incremental checkpointing and upstream backup. Furthermore,
it utilizes a heartbeat mechanism and state monitoring to detect
node health and adopts a task-switching mechanism to handle
faulty nodes.

Flink et al. [17] rely on source buffering and consistent check-
points to ensure processing only once. Additionally, Flink et al.
employ periodic restarts and end-to-end timeout mechanisms to
ensure system reliability.

MillWheel [18] also utilizes upstream backup. It assigns a
globally unique ID to each input tuple, ensuring their pre-
cise processing and eliminating duplicates. This method incurs
runtime overhead for maintaining upstream backups in a
fault-free state.
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2.2 | High Availability Strategies for Stream
Computing Systems

2.2.1 | Fault Tolerance Methods

The fault tolerance methods for stream computing are usually
divided into three categories: active backup, passive backup, and
linear recovery based on data flow.

Active backup aims to reduce the impact of potential failures
through predefined behaviors. In the process of active backup,
a set of completely independent hot failover nodes [19] processes
the same data stream in parallel with the primary nodes. Input
data is transmitted to both sets. When one or more primary nodes
fail, the system immediately switches to the set of secondary
nodes [20]. Systems such as Flux use active backup for fault tol-
erance [4]. PLBFT, proposed by James, actively handles failures
in cloud computing by balancing load fault tolerance [21].

In the process of passive fault tolerance, each node in the pipeline
maintains a buffer in memory that stores a copy of records for-
warded to downstream nodes since the last checkpoint. All nodes
periodically transmit their state checkpoints to remote storage,
such as Hadoop Distributed File System (HDFS) [22], while
maintaining a set of backup nodes. Various systems have used
passive replication, such as Trident [23] and TimeStream [4].

To achieve lower resource overhead and faster recovery,
researchers have introduced linear recovery based on data
streams, commonly used in Spark-based systems where the
recent state is stored in the memory of each node [24]. Linear
recovery based on data streams usually depends on the persistent
storage of data stream logs, where all transactional operations
that modify the data are recorded in a time-ordered sequence.
By replaying these log entries, the system’s linear recovery is
achieved.

As active backup requires twice the resources of passive backup,
passive backup is considered more resource-efficient. Linear
recovery process based on data streams may be particularly slow.
Therefore, passive backup emerges as a common fault-tolerant
model in big data stream computing environments [25, 26].
Checkpoint-based fault tolerance mechanisms are often used in
passive fault tolerance methods [27, 28].

When employing checkpoint-based fault tolerance methods,
a key aspect of ensuring the efficiency of submitted stream
applications lies in determining an optimal checkpoint inter-
val. The optimization of checkpoint intervals has been widely
studied in the field of high-performance computing [29, 30].
To address the high overhead caused by checkpoint operations,
Parasyris proposed a differential checkpoint approach, which
writes only the updated data to the checkpoint file [31]. Zhao
implemented a differential incremental checkpoint optimization
that records only state deltas and reduces global checkpoint fre-
quency. However, it has overlooked the overhead of cross-node
log synchronization in distributed environments. Furthermore,
its transaction-consistent global checkpoints have struggled to
balance strong data consistency with high availability [32]. A
new checkpointing system that considers system-level power

consumption, available memory and bandwidth, and checkpoint
frequency, was introduced to make informed resource and data
management decisions [33]. Kermarrec implemented a two-level
checkpointing algorithm [34], where a memory checkpoint is
efficiently established, and a persistent checkpoint is established
at a much lower frequency but capable of tolerating permanent
and power cut failures. Gossman proposed an I/O aggregation
strategy for asynchronous multilevel checkpointing to achieve
efficient fault tolerance, yet it fails to deeply study the resource
competition between applications and background I/O threads
[35]. Frank introduced a newly designed cost function to deter-
mine the optimal checkpoint interval. This algorithm takes into
account several input parameters, including the number of nodes
utilized by the application and the runtime of the application.
Furthermore, this algorithm is capable of converging optimal
results even for jobs with a high probability of failure [36]. Mush-
taq presented a PBTS-FT model, which combines replication and
checkpointing techniques, flexibly choosing to apply either tech-
nique separately or in tandem. This adaptability allows the sys-
tem to enhance its fault tolerance based on the nature and cir-
cumstances of the failures. However, with the expansion of the
system scale, the computational costs associated with maintain-
ing and updating task priorities, as well as managing replica-
tion and checkpointing, are likely to increase substantially. This
increase may exert a negative influence on the overall perfor-
mance of the system [37].

Despite the advancements in checkpointing methods mentioned
above, there has been relatively limited exploration and analysis
of optimal checkpoint interval settings in the context of stream
computing.

2.2.2 | Optimization of Checkpoint Intervals

Geldenhuys proposed an automatic analysis and runtime pre-
diction method to model the performance and availability of
distributed stream computing jobs. This approach is intended
for scenarios where jobs handle static workloads, meaning the
throughput remains constant over time [38]. The need to improve
checkpoint intervals to enhance the system computing efficiency
was emphasized by Zhuang [39]. Since different checkpointing
policies should be applied in different scenarios, Marzouk pro-
posed a set of preliminary rules that determine how and when to
execute which checkpointing policy [40].

A checkpoint model called PANDA [8] was proposed to address
the failure of memory data analysis frameworks. The proposed
checkpoint model uses three checkpoint methods to initiate
checkpoints, but it does not consider the size of the input data vol-
ume or enforce a checkpoint budget. Phoebe, an active method
for automatically tuning distributed stream computing jobs on
dynamic workloads, was proposed in [41]. This method can auto-
matically adjust configuration parameters to ensure stable ser-
vices and maintain consistency with the Quality of Service (QoS)
goal of recovery time.

Gupta proposed a fault-tolerant approach of just-in-time check-
pointing [42]. Only saves checkpoints for critical states and data,
enabling error recovery by redoing at most one mini-batch of
work. However, in the event of multi-node failures, relying solely
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TABLE 1 | Comparison between Ca-Stream and related work.

Fault tolerance FATM [6] Khaos [45] Panda [8] Jayasekara [46] Ca-Stream

Predictiton ✓ ✓ × × ✓
Dynamic ✓ ✓ ✓ × ✓
QoS aware × ✓ × × ✓
Vertex feature
aware

× × ✓ × ✓

Objective Failure aware QoS aware Resource aware Improving
performance

Multiple factor aware

Limitation Focus solely on
failure rate

Fixed threshold Focus solely on
failure rate

Ignore dynamic
workflows

Rely on historical
data

Simulator Unspecified Flink Custom environment Theoretical model Flink

on just-in-time checkpointing cannot fully address the issue.
Although the paper mentions that low-frequency periodic check-
pointing can be combined to handle such situations, it does not
elaborate on how to efficiently coordinate these two checkpoint-
ing mechanisms in practical applications.

A dynamic checkpoint interval adjustment algorithm rooted
in reinforcement learning was introduced by Zhang [43]. This
algorithm dynamically fine-tunes checkpoint intervals by con-
sistently gathering data on environmental state indicators and
evaluating feedback from the environment. Jayasekara et al. [7]
developed an expression to determine the checkpoint interval,
aiming to minimize overhead during checkpoint establishment
and optimize the interval.

The En-CHORE method, introduced by Sigdel et al., aims to
decrease checkpointing overheads by selectively omitting specific
checkpoints within each active sequence. This is conducted prior
to identifying the optimal intercheckpoint interval for efficient
checkpoint control, making it particularly well-suited for systems
that accommodate prolonged task duration [44]. Akber intro-
duced a failure-aware adaptive fault tolerance model (FATM),
which improves the system utility factor by reducing the fre-
quency of checkpoints and the additional workload associated
with checkpoints [6].

MK Geldenhuys [45] introduced a new approach, Khaos, which
focuses on automatic runtime optimization for fault-tolerant con-
figurations in distributed stream processing jobs. Jayasekara [46]
proposed an expression for system resource utilization and found
the optimal checkpoint interval based on this expression. The
method is especially applicable when system’s size increases.
Benoit utilizes a dynamic heuristic method of setting thresholds
and a dynamic programming algorithm integrated with time dis-
cretization to ascertain the number and intervals of checkpoints.
Nevertheless, due to the high complexity of the dynamic pro-
gramming algorithm, it is challenging to acquire the optimal
solution [47].

Based on the above discussion, it can be seen that existing opti-
mization methods for checkpoint intervals do not simultaneously
consider the distribution of failures and the impact of checkpoint
intervals on system performance. They often overlook factors
such as node computing capabilities and data transfer volume. In

practice, it is beneficial to predict fault rates and set correspond-
ing checkpoint intervals accordingly. Furthermore, monitoring
various resource utilization metrics and dynamically adjusting
checkpoint intervals based on resource utilization is necessary.
Lastly, fine-tuning checkpoint intervals based on nodes’ comput-
ing capabilities and tasks’ data transfer volume is crucial. For
example, tasks with lower computing capabilities better have
longer checkpoint intervals to allow them to complete their com-
putation as quickly as possible.

Considering all these factors, we propose a checkpoint adaption
strategy with high availability, called Ca-Stream, for stream com-
puting environments. Ca-Stream considers factors such as fail-
ure distribution, relevant failures, impact of checkpoints on per-
formance, and number of slow tasks in the cluster. It suggests
setting different checkpoint intervals and triggering checkpoints
immediately in the event of failures based on varying fault rates,
resource utilization, and number of slow tasks. This approach
aims to minimize checkpointing overheads and system recovery
latency as much as possible. The comparison between Ca-Stream
and related work is presented in Table 1.

3 | Problem Statement

Current adjustment of checkpoint intervals lacks consideration
for QoS. Using Flink as an example, its existing checkpoint-based
fault tolerance mechanism fails to consider factors such as fault
rates and the impact on system performance after setting check-
points, as well as the number of slow tasks. Checkpoint interval
settings should take these factors into account for the following
reasons:

1. Actual system faults do not occur periodically, while check-
points in the system are triggered periodically. This sharp
contrast makes periodic checkpoints inefficient [6].

2. The frequency of triggering checkpoints can affect system
performance, such as utilization and throughput, as this
process consumes computing time and resources [18].

3. A significant number of slow tasks can impact program run-
time, and setting frequent checkpoints for slow tasks will
further affect their computing speed [8]. Longer checkpoint
intervals for slow tasks can reduce the impact of checkpoint
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TABLE 2 | Symbols and descriptions.

Symbols Descriptions

𝐺(𝑉 ,𝐸) Directed acyclic graph of streaming job topology
where 𝑉 represents the set of vertices and

𝐸 represents the set of edges
𝑇chpt Total delay introduced by checkpoint operations

on streaming computing systems
𝑡chpt Average delay introduced by each checkpoint on

streaming computing systems
𝑡rs Tuple reprocessing time to restore operator state

from the previous checkpoint to the state prior to
the failure

𝑡r Restart time from the operator state of the
previous checkpoint

𝑇norm Normal job processing time without
checkpointing operations or failures

𝑇rev Total time required for the system to recover
from failure

𝑐𝑖𝑘 𝑘th checkpoint interval corresponding to each task
𝐶𝐼𝑘 𝑘th checkpoint cycle corresponding to each task
𝑢𝑘 Real-time efficiency of the operator within the

𝑘𝑡ℎ time window

operations on resources and time, thereby accelerating pro-
gram runtime.

Table 2 lists primary symbols and their descriptions used in this
article.

3.1 | Qos-Aware Checkpoint Optimization
Model

Our Ca-Stream integrates a QoS-aware checkpoint optimization
model to ensure high system availability. This model consists of
a database and a QoS-aware agent. Its structural detail is shown
in Figure 1. The database stores historical fault events that are
used as inputs to the QoS-aware agent. The agent consists of
three modules: a fault-aware module, a resource-aware mod-
ule, and a vertex feature-aware module. The fault-aware mod-
ule within the agent utilizes historical fault events to predict
future fault rates. This prediction is performed once at regular
intervals for the entire cluster and is subsequently used to adjust
checkpoint intervals during program operation. The information,
including the fault rate predicted by the fault-aware module, the
resource utilization perceived by the resource-aware module, and
the task execution time and upstream data transfer volume per-
ceived by the vertex feature-aware module, is transmitted to the
QoS-aware checkpoint coordinator, which schedules the initia-
tion of checkpoints.

This fault-aware module employs linear regression to predict
the likelihood of potential failures and adjusts the prediction
algorithm based on the evaluation of its predictive results.
Figure 2 illustrates this prediction process. Fault rates are
predicted in three stages: Data Preprocessing, Model Training,
and Fault Prediction.

At the Data Preprocessing stage, the input dataset is first stan-
dardized and ordered sequentially. After that, appropriate fea-
tures (e.g., resource utilization and task failure frequency) are
extracted from the input dataset for prediction purposes.

At the Model Training stage, the corresponding prediction func-
tion is trained using the standardized training dataset. Assume
the input dataset contains 𝑥 records: {𝑦𝑝, 𝑍𝑝 ∶ 1 ≤ 𝑝 ≤ 𝑥}, where
𝑦𝑝 represents a feature vector, 𝑍𝑝 is the corresponding fault rate,
and 𝑍𝑝 ∈ {0, 1} [6]. The prediction function maps each feature
vector to the corresponding failure event and predicts the fault
probability.

At the Fault Prediction stage, the prediction function uses the
trained linear regression model to forecast the future fault rates
in upcoming time windows.

3.2 | Checkpoint Recovery Cost Model

The runtime of a stream processing job is considered to be infi-
nite. As shown in Figure 3, the normal processing time 𝑇norm of
a job (without checkpointing operations or failures) can be seen
as a series of discrete time intervals divided by periodic check-
points. For simplicity, let the checkpoint interval within a given
execution time 𝑇 be a constant value, denoted 𝑐𝑖. Checkpointing
introduces an additional delay in normal logic processing, known
as checkpoint execution time overhead. The total time spent set-
ting up checkpoints 𝑇chpt in normal processing time 𝑇norm can be
determined by multiplying the time spent setting up an individ-
ual checkpoint 𝑡chpt by the number of checkpoints, represented
by Equation (1),

𝑇chpt = 𝑡chpt ∗
𝑇norm

𝑇 ∗ 𝑐𝑖
(1)

The recovery time for each failure consists of two parts: the time
to reprocess the tuples to restore the state of the operator from the
saved state at the previous checkpoint to its state before failure,
denoted as 𝑡𝑟, and the restart time from the state of the operator
saved at the previous checkpoint, denoted as 𝑡rs [48]. 𝑡rs includes
the time to detect the fault and the time to restore the operator
state to the previous checkpoint. For the checkpoint cycle 𝐶𝐼𝑘 =
𝑐𝑖𝑘 + 𝑡chpt, let the number of failures be 𝑛(𝐶𝐼𝑘), then the time 𝑇rev
required to recover a failure within the time period 𝑇norm can be
calculated as Equation (2),

𝑇rev = 𝑛(𝐶𝐼𝑘) ∗ (𝑡r + 𝑡rs) ∗
𝑇norm

𝑐𝑖𝑘
(2)

For each checkpoint cycle 𝐶𝐼𝑘 within the given computation seg-
ment 𝑇𝑘, we can now estimate the expected number of interrup-
tions caused by failures.

Based on Daly’s first-order model and assuming the exponen-
tial term is small, 𝑐𝑖𝑘 + 𝑡chpt ≪ the mean time between failures
(MTBF), we can use Equation (3) to estimate the expected num-
ber of failures 𝑛(𝐶𝐼𝑘).

𝑛(𝐶𝐼𝑘) ≈
𝑐𝑖𝑘 + 𝑡chpt

𝑀𝑇𝐵𝐹
(3)
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FIGURE 1 | Structure of the QoS-aware checkpoint optimization model.

FIGURE 2 | Fault prediction pipeline of the fault-aware module.

FIGURE 3 | Operator runtime model.

Substituting Equation (3) into Equation (2), we have
Equation (4):

𝑇rev =
𝑐𝑖 + 𝑡chpt

𝑀𝑇𝐵𝐹
∗ (𝑡r + 𝑡rs) ∗

𝑇norm

𝑐𝑖
(4)

3.3 | Adaptive Checkpoint Interval Model

The checkpoint interval is a key point in achieving a balance
between cost and recovery time during fault-tolerant execution.
In scenarios with a given stable input data rate, a statically
optimal checkpoint interval can significantly enhance the effi-
ciency of operators throughout the entire runtime. However, in
real-world scenarios, the arrival rate of streams is variable [49],
and workload peaks can occur at any time. Due to the fluctuation
of workload, the fault recovery overhead in terms of recovery time

also varies. It is evident that periodic checkpoints may not always
achieve the optimal balance. To achieve maximum processing
efficiency, an adaptive optimal checkpoint interval is required to
address this issue, namely the online optimal checkpoint interval
problem in stream computing systems.

To address the challenge of handling continuous workload fluc-
tuations, we propose a refined metric 𝑢 for operator efficiency,
known as the real-time efficiency of operators. As shown in
Figure 4, the total execution time of a task is divided into a set
of offline time segments denoted as 𝑇1, 𝑇2, . . . , 𝑇𝑘. Time interval
[𝑡𝑘, 𝑡𝑘+1] denotes the 𝑘th computation segment, during which the
task maintain a stable checkpoint interval 𝑐𝑖𝑘. Let 𝐶𝐼𝑘 denote the
checkpoint cycle within the specified computation segment 𝑇𝑘.
The real-time efficiency of operators whthin the time segment
𝑇𝑘 can be measured by the ratio of the checkpoint interval as
a percentage of the sum of the checkpoint cycle and the delay
in recovering from a failure during that cycle, represented by
Equation (5),

𝑢𝑘 =
𝑐𝑖𝑘

𝑐𝑖𝑘 + 𝑡chpt + 𝑛(𝐶𝐼𝑘) ∗ (𝑡r + 𝑡rs)
(5)

Based on this, the problem of determining the optimal check-
point interval in the context of big data stream computing can
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FIGURE 4 | Adaptive checkpoint interval model.

be further described as follows: Given a flow topology graph
𝐺(𝑉 ,𝐸), where each operator 𝑣 (𝑣 ∈ 𝑉 ) has a state, the goal is
to find a checkpoint interval 𝐶𝐼 that maximizes the real-time
efficiency of operators. As reprocessing tuple time 𝑡𝑟 varies with
the input rate, 𝑐𝑖 should be dynamically adjusted during task
execution.

In this adaptive checkpoint interval model, the optimal check-
point interval is considered as a real-time refinement of check-
point intervals within each time segment 𝑇𝑘. The objective is to
achieve a global optimum using a greedy algorithm for heuristic
solutions, making a locally optimal choice for each time segment.

In general, a data stream application is modeled as a data flow
graph, where vertices represent computational nodes (i.e., opera-
tors) and edges represent the data flow between these operators.
Upon receiving data streams from upstream operators, each oper-
ator runs its specified processing logic and forward the data to
downstream operators. As a result, every data tuple 𝑑 (𝑑 ∈ 𝐷)
traverses the data flow graph, forming a processing pipeline.

Checkpoint-based runtime fault-tolerance overhead encom-
passes the cost of setting checkpoints and the recovery cost dur-
ing fault restoration. Increasing the checkpoint interval increases
the recovery overhead while reducing checkpoint setting costs,
and vice versa. Therefore, selecting an optimal checkpoint inter-
val is crucial. Using 𝐶𝐼1 . . . 𝐶𝐼𝑛 to represent the 1st through 𝑛th
checkpoint intervals, we try to find the best checkpoint inter-
val 𝐶𝐼𝑘 for each discrete time segment. This can be achieved
by first optimizing the checkpoint interval model based on the
time-varying reprocessing time under changing workloads. We
propose a method to rapidly find this optimal interval.

For a given task 𝑖 within a computational segment 𝑇𝑘, the average
time to failures within this checkpoint interval 𝑐𝑖𝑘 can be consid-
ered at half a checkpoint cycle. 𝑡𝑏𝑒𝑔𝑘 is the opening time of the
current checkpoint interval 𝑐𝑖𝑘. Then, the expected failure occur-
rence time of the 𝑐𝑖𝑘 is the start time of the checkpoint cycle 𝐶𝐼𝑘
plus the failure occurrence time within 𝑐𝑖𝑘, given as Equation (6),

𝑡𝑓𝑘 = 𝑡𝑏𝑒𝑔𝑘 +
𝑐𝑖𝑘 + 𝑡chpt

2
(6)

The data reprocessing volume after a failure can be modeled by
Equation (7),

𝑊 𝑜𝑘 = ∫
𝑡𝑓𝑘

𝑡𝑏𝑒𝑔𝑘

𝑣(𝑡)𝑑𝑡 (7)

where, 𝑣(𝑡) is the fluctuating input rate, and 𝑡𝑏𝑒𝑔𝑘 represent the
start time of current checkpoint interval 𝑐𝑖𝑘, 𝑡𝑓𝑘 represent the
expected failure occurrence time.

After that, we calculate the reprocessing tuple time 𝑡𝑟 of check-
point interval 𝑐𝑖𝑘 by dividing the data volume 𝑊 𝑜𝑘 by the maxi-
mum processing rate 𝑣𝑚 of the operator.

𝑡𝑟(𝐶𝐼𝑘) =
𝑊 𝑜𝑘

𝑣𝑚
(8)

For simplicity, we use 𝑣𝑘 to represent the average input rate over
the time segment from 𝑡𝑘 to 𝑡𝑘+1, then the volume of faulty data
to be reprocessed can be determined by the average input time
and average failure occurrence time(i.e., half of the checkpoint
interval), expressed as 𝑣𝑘 ∗ (𝑐𝑖𝑘 + 𝑡chpt)∕2. Substituting this value
for 𝑊 𝑜𝑘, the equation for checkpoint interval 𝑐𝑖𝑘’s recovery time
𝑡𝑟 in Equation (8) can be replaced by Equation (9),

𝑡𝑟(𝑐𝑖𝑘) = 𝑣𝑘 ∗
𝑐𝑖𝑘 + 𝑡ℎ𝑐𝑝𝑡

2𝑣𝑚
(9)

Replacing 𝑛(𝐶𝐼𝑘) and 𝑇𝑘 with the recovery cost Equation (2), we
have Equation (10),

𝑇rev = 𝑇𝑘 ∗ (𝑐𝑖𝑘 + 𝑐ℎ𝑝𝑡) ∗
𝑡r(𝑐𝑖𝑘) + 𝑡rs

𝑐𝑖𝑘 +𝑀𝑇𝐵𝐹
(10)

By substituting Equations (9) and (3) for 𝑛(𝐶𝐼𝑘) and 𝑡𝑟(𝑐𝑖𝑘) in
Equation (5), and taking the derivative of 𝑢𝑘, the optimal check-
point interval can be obtained. For task 𝑖, the optimal checkpoint
interval for the next duration [𝑡𝑘, 𝑡𝑘+1] with average input rate 𝑣𝑘
is given by Equation (11),

(𝑐𝑖𝑘)𝑜𝑝𝑡 =

√
2𝑣𝑚 ∗ 𝑡chpt ∗

𝑀𝑇𝐵𝐹 + 𝑡rs

𝑣𝑘
+ 𝑡2chpt (11)

4 | Ca-Stream: Architecture and Checkpoint
Mechanisms

4.1 | System Architecture

As shown in Figure 5, the proposed Ca-Stream includes a
QoS-aware checkpoint optimization model to support the check-
point adaptive strategy for high availability of distributed stream
computing systems. Using Flink as our test bed, Ca-Stream
integrates this optimization model into the architecture of

7 of 18

 15320634, 2025, 15-17, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.70171 by R

ajkum
ar B

uyya - T
he U

niversity O
f M

elbourne , W
iley O

nline L
ibrary on [21/06/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



FIGURE 5 | System architecture of Ca-Stream.

Flink. The model consists of a database and a QoS-aware
agent. The QoS-aware agent includes three modules: fault-aware,
resource-aware, and vertex feature-aware.

The fault-aware module is used to predict the fault rate and send
it to the QoS-aware agent. The QoS-aware agent dynamically
adjusts the checkpoint interval based on the predicted fault rate
it receives.

The resource-aware module is used to sense the real-time run-
ning status of stream processing nodes, specifically referring to
real-time CPU and memory usage of tasks. This module typically
employs a heartbeat mechanism to detect node’s status.

The Vertex feature-aware module contains a slow task detector,
which perceives the execution time and input data volume of
tasks on nodes, thereby determining whether a task is considered
slow. Only tasks with longer execution times and smaller input
data volumes are classified as slow tasks.

The Database is used to temporarily store predicted fault rates,
perceived CPU and memory usage, task execution duration, and
input data volumes. Once these data have been processed, they
are deleted.

Additionally, the traditional checkpoint coordinator in Flink is
replaced with our coordinator possessing multi-feature aware-
ness. This new checkpoint coordinator dynamically adjusts
checkpoint intervals by receiving predictions of fault rates from
the fault-aware module, various resource utilization information
monitored by the monitoring module, and the number of slow
tasks determined by the slow task detector. This improves the
system reliability, availability, and efficiency, enabling automatic
fault tolerance in the event of node failures or anomalies, and sup-

porting continuous execution and high-quality output of stream-
ing processing tasks.

The Actor communication system is a lightweight message-
passing framework integrated within Ca-Stream. Each job man-
ager and task manager includes an actor module that enables
asynchronous, nonblocking communication through message
exchanges. This architecture facilitates parallel decision-making
and efficient coordination among components, such as trigger-
ing backups, initiating recovery, and updating runtime poli-
cies. Crucially, it avoids tight coupling and synchronization
overhead, allowing Ca-Stream to scale efficiently and remain
responsive to dynamic workload variations and fault-handling
demands. The system architecture of Ca-Stream is depicted in
Figure 5.

We also dynamically adjust the priorities of these three types of
checkpoint mechanisms based on the real-time system status and
predicted fault rates. When the resource utilization is excessively
high, we elevate the priority of the resource-aware checkpoint
mechanism to ensure system processing speed and task comple-
tion progress. In the event of an increased fault rate, we raise
the priority of the fault-aware checkpoint mechanism to ensure
system fault tolerance. If the number of slow tasks is excessively
high, we increase the priority of the vertex feature-aware check-
point mechanism to expedite slow task processing.

Additionally, we employ a joint decision-making method
that comprehensively considers the outputs of fault-aware,
resource-aware, and vertex feature-aware modules. For example,
when the resource-aware module detects high resource utiliza-
tion, the system triggers corresponding fault-tolerance strategies
while balancing whether to increase the density of fault-aware
checkpoints to address potential failures.

8 of 18 Concurrency and Computation: Practice and Experience, 2025
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In the following sections, we elaborate on the details and
algorithm implementations of these three mechanisms.

4.2 | Fault-Aware Checkpoint Mechanism

In a big data streaming computation cluster with fault-aware
checkpoints, a QoS-aware checkpoint coordinator is used to
initiate checkpoints based on the predicted fault rates. In typ-
ical big data streaming environments, the checkpoint coordi-
nator periodically triggers checkpoints without considering the
potential distribution of faults. However, the QoS-aware check-
point coordinator initiates checkpoints based on fault awareness.
If the fault rate is low, it dynamically increases the checkpoint
interval, while it decreases the interval if the fault rate is high.
This QoS-aware checkpoint coordinator receives input about the
predicted fault rate from the QoS-aware agent and sends a cus-
tomized schedule of checkpoint initiation times to the scheduler.

Considering that most faults occur before the average time
between faults, the QoS-aware checkpoint coordinator dynam-
ically adjusts the checkpoint intervals in regions with differ-
ent fault densities of the application. The QoS-aware check-
point coordinator initiates the application’s execution with a fixed
checkpoint interval. Subsequently, it optimistically assumes that
no faults will occur in the near future. Therefore, it continu-
ously increases the checkpoint interval based on the predicted
fault rate (𝑓𝑟). This leads to monotonically increasing checkpoint
intervals, such as 𝑐𝑖1 < 𝑐𝑖2 . . . < 𝑐𝑖𝑛. The QoS-aware checkpoint
coordinator gradually increases checkpoint intervals until a fail-
ure occurs. If a failure occurs, it decreases the checkpoint interval
to reduce the fault recovery time. Research on actual fault data
and fault predictions indicates that shortly after a previous fail-
ure, the probability of subsequent failures is very high. Therefore,
to mitigate potential faults, the QoS-aware checkpoint coordina-
tor does not increase the checkpoint interval after a failure but
decreases it.

The value of predicted fault rate 𝑓𝑟 plays a crucial role in
determining changes in checkpoint intervals and, ultimately, the
checkpoint frequency. The 𝑓𝑟 value ranges from 0 to 1, where
0 represents no fault, and 1 represents fault. When 𝑓𝑟 = 1, the
behavior of fault-aware checkpoints is similar to the fixed check-
point interval model because of the high fault rate, and any
increase in checkpoint intervals may potentially increase fault
recovery time. In this case, it is advisable to gradually decrease
the checkpoint interval. On the other hand, when 𝑓𝑟 = 0, it rep-
resents the lowest fault rate and demonstrates the potential to
increase checkpoint intervals to improve the efficiency of the
application.

In situations where the fault probability is relatively low, increas-
ing the checkpoint interval can increase utilization and reduce
checkpoint costs. However, the scenario where 𝑓𝑟 = 0 is likely
to double the increase in checkpoint intervals, which can eas-
ily lead to higher fault recovery overhead. Therefore, we impose
a limit on the value of 𝑓𝑟, with a minimum fault rate (𝑓𝑟min)
of 0.25, to limit the exponential increase in the checkpoint
interval. The failure-aware checkpoint agent allows a minimum
value of 𝑓𝑟 of 0.25, and all values below this threshold are set
to 0.25.

ALGORITHM 1 | Fault-aware Checkpoint Algorithm.

Input: Predicted Fault Rate (𝑓𝑟), Initialized checkpoint Interval
(𝑐𝑖0), Minimum fault rate (𝑓𝑟min);

Output: Failure aware checkpoints;
1: if fr < 𝑓𝑟min then
2: Set 𝑓𝑟 = 𝑓𝑟min
3: end if
4: while Application not finished do
5: Use periodic checkpoint interval 𝑐𝑖0;
6: if Not fail then
7: Non-uniform-Interval(){ // increase checkpoint

interval until fault occurs
8: Calculate Δ𝑖𝑛 = 𝑐𝑖𝑛−1 ∗ (1 − 𝑓𝑟);
9: Next checkpoint interval 𝑐𝑖𝑛 = 𝑐𝑖𝑛−1 + Δ𝑖𝑛;

10: Triggering checkpoint time 𝑡𝑛 = 𝑐𝑖𝑛 + 𝑐𝑖𝑛−1;}
11: end if
12: if failure occur then
13: Restart execution from last checkpoint;
14: Non-uniform-Interval(){ // decrease checkpoint

interval until minimum
15: Calculate Δ𝑖𝑛 = 𝑐𝑖𝑛−1 ∗ fr;
16: Next checkpoint interval 𝑐𝑖𝑛 = 𝑐𝑖𝑛−1 − Δ𝑖𝑛;
17: Triggering checkpoint time 𝑡𝑛 = 𝑐𝑖𝑛 + 𝑐𝑖𝑛−1;}
18: until 𝑐𝑖𝑛 = 𝑐𝑖𝑚𝑖𝑛;
19: end if
20: end while

Algorithm 1 describes the detailed procedure for the QoS-aware
checkpoint coordinator to adjust the checkpoint interval based
on predicted fault rates. Let 𝑡0 represent the periodic check-
point time. This algorithm initially runs the application with
a fixed checkpoint interval (𝑐𝑖0) and initiates regular check-
points at time 𝑡0 (Line 5). It then optimistically assumes that
no faults will occur in the near future. Therefore, it begins to
increase the checkpoint interval to trigger checkpoints (Line 7).
It increases (𝑐𝑖0) using Δ𝑖1, where Δ𝑖1 = (𝑐𝑖0) * (1-fr) (Line 8),
and continues to increase each subsequent checkpoint interval
(𝑐𝑖𝑛) at this rate. In this iterative process, the checkpoint inter-
vals gradually increase, and checkpoints are initiated accord-
ingly. Once the algorithm calculates the size of the checkpoint
interval, it gradually increases the checkpoint initiation times
as the intervals grow. The initiation time for the 𝑛th check-
point is given as 𝑡𝑛 = 𝑐𝑖𝑛 + 𝑐𝑖𝑛−1 (Line 10). The algorithm dynam-
ically increases the checkpoint intervals using this approach
and eventually decreases the frequency of checkpoint initiation.
The checkpoint intervals continue to increase until a failure
occurs.

In the event of a failure, the application resumes from the
last persisted checkpoint (Line 13) and decreases (𝑐𝑖𝑚) using
Δ𝑖𝑚, where Δ𝑖𝑚 = 𝑐𝑖𝑚 ∗ 𝑓𝑟 (Line 15). To tolerate potential faults,
it maintains this rate to further reduce the checkpoint inter-
val. Similarly, it iteratively decreases the checkpoint inter-
vals and initiates checkpoints as the intervals decrease. Using
this method, it dynamically decreases the checkpoint intervals
and reduces the fault recovery time. The checkpoint intervals
gradually decrease until they reach the minimum checkpoint
interval.

9 of 18
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4.3 | Resource-Aware Checkpoint Mechanism

The resource-aware checkpoint primarily focuses on sensing
resource utilization for fault tolerance, including CPU usage and
memory usage. Let’s first consider the impact of CPU resources
on checkpoint intervals. The resource-aware module is used to
continuously improve the distributed streaming processing job
based on user-defined QoS constraints. A threshold 𝐶𝑐𝑜𝑛𝑠𝑡 (0 <

𝐶𝑐𝑜𝑛𝑠𝑡 ≤ 1) is set for the maximum proportion of CPU time used,
which defines an upper limit on the CPU time proportion used by
each machine. Violating this agreement triggers a system recon-
figuration for new checkpoint intervals [45]. Care must be taken
when selecting new checkpoint interval values because reduc-
ing the checkpoint interval will decrease fault recovery time but
increase checkpoint overhead and vice versa. If the CPU usage
time proportion on a node exceeds the 𝐶𝑐𝑜𝑛𝑠𝑡 threshold, the
checkpoint interval is increased to reduce the checkpoint opera-
tion’s impact on the CPU, allowing all CPU usage for task execu-
tion to make tasks execute more quickly. Given a CPU utilization
rate 𝑈cpu, if the CPU usage rate exceeds the 𝐶𝑐𝑜𝑛𝑠𝑡 threshold, the
next checkpoint interval can be calculated by Equation (12),

𝑐𝑖𝑛 = 𝑐𝑖𝑛−1 ∗
𝑈cpu

𝐶𝑐𝑜𝑛𝑠𝑡
(12)

𝑈cpu is equal to the ratio of CPU time used for normal logical pro-
cessing in a task to the total CPU time during its execution.

𝑈cpu =
𝑁cpu

𝑇cpu
(13)

The maximum threshold for memory usage, 𝑀𝑐𝑜𝑛𝑠𝑡 (0 <

𝑀𝑐𝑜𝑛𝑠𝑡 ≤ 1), is set to determine the impact of memory on check-
point intervals. If the memory usage exceeds the defined thresh-
old 𝑀𝑐𝑜𝑛𝑠𝑡, the checkpoint interval will be increased to reduce
the memory usage during checkpoint operations. This ensures
that all available memory is used for executing tasks, allowing the
tasks to run more efficiently and complete faster. Memory utiliza-
tion rate, 𝑈mem, can be defined as the ratio of the memory usage
for normal logical processing within a task to the total available
memory during the execution process.

𝑈mem =
𝑁mem

𝑇mem
(14)

If the memory utilization rate exceeds the threshold 𝑀𝑐𝑜𝑛𝑠𝑡, the
next checkpoint interval can be calculated by Equation (15),

𝑐𝑖𝑛 = 𝑐𝑖𝑛−1 ∗
𝑈mem

𝑀𝑐𝑜𝑛𝑠𝑡
(15)

Algorithm 2 provides a detailed description of resource-aware
checkpoint mechanism.

This Algorithm 2 starts by running the application with a fixed
checkpoint interval (𝑐𝑖0) and initiates regular checkpoints at time
𝑡0 (line 4). When the monitoring module detects that the CPU
utilization exceeds the threshold 𝐶𝑐𝑜𝑛𝑠𝑡 or the memory utiliza-
tion exceeds 𝑀𝑐𝑜𝑛𝑠𝑡, it begins to initiate checkpoints at irregular
intervals (line 6). It calculates the new checkpoint interval using

ALGORITHM 2 | Resource-aware Checkpoint Algorithm.

Input: Periodic checkpoint interval 𝑐𝑖0, CPU occupancy rate
𝑈cpu, Memory occupancy rate 𝑈mem, CPU occupancy thresh-
old 𝐶𝑐𝑜𝑛𝑠𝑡, Memory occupancy threshold 𝑀𝑐𝑜𝑛𝑠𝑡;

Output: QoS-aware checkpoints;
1: Calculate the CPU occupancy rate 𝑈cpu by Equation (13);
2: Calculate the Memory occupancy rate 𝑈mem by Equation

(14);
3: while Application not finished do
4: Use Periodic checkpoint interval 𝑐𝑖0;
5: if 𝑈cpu > 𝐶𝑐𝑜𝑛𝑠𝑡 or 𝑈mem > 𝑀𝑐𝑜𝑛𝑠𝑡 then
6: Non-uniform-Interval(){ // If 𝑈cpu or 𝑈mem exceeds

threshold, increase checkpoint interval by corresponding
equation

7: Calculating next checkpoint interval by
Equation (12) or Equation (15);

8: Triggering checkpoint time 𝑡𝑛 = 𝑐𝑖𝑛 + 𝑐𝑖𝑛−1;
9: end if

10: if 𝑈cpu ≤ 𝐶𝑐𝑜𝑛𝑠𝑡 and 𝑈mem ≤ 𝑀𝑐𝑜𝑛𝑠𝑡 then // Once both
resource utilization rates fall below their thresholds, the 𝑐𝑖𝑛 is
reset to the fixed 𝑐𝑖0

11: Recover checkpoint interval to 𝑐𝑖0;
12: end if
13: end while

either Equation (12) or Equation (15) (line 7). In this way, it iter-
atively increases the checkpoint interval and starts checkpoints
as the interval increases. Once the size of the checkpoint inter-
val is determined, the algorithm continues to increase the check-
point start times with the increased interval. The time to start the
𝑛𝑡ℎ checkpoint is given by 𝑡𝑛 = 𝑐𝑖𝑛 + 𝑐𝑖𝑛−1 (line 8). Through this
method, it dynamically increases the checkpoint interval while
also reducing the checkpoint initiation frequency. The check-
point interval gradually increases until both resource utilization
rates fall below their respective thresholds.

Once both resource utilization rates fall below their thresholds,
the current value of the checkpoint interval (𝑐𝑖𝑛) is reset to the
fixed checkpoint interval (𝑐𝑖0) (line 11).

4.4 | Vertex Feature-Aware Checkpoint
Mechanism

In production environments, it is often challenging to avoid hav-
ing hot machines where workloads are concentrated, leading to
issues like intense flushing and mixed deployment clusters. Such
machines may experience high workloads and busy input/output
operations, which can result in significantly slower data process-
ing tasks, ultimately jeopardizing job completion times.

The vertex feature awareness mechanism introduced in this
section aims to identify abnormal machine nodes that contribute
to slow job execution due to various issues such as hardware prob-
lems, occasional IO congestion, high CPU loads, etc. These issues
can cause tasks running on these nodes to perform much slower
than tasks on other nodes, consequently increasing the overall
job execution time.

10 of 18 Concurrency and Computation: Practice and Experience, 2025
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To implement this mechanism, Flink uses a slow task detec-
tor to identify slow tasks. The machine nodes where slow tasks
are detected are considered abnormal machine nodes and are
added to the machine node blacklist. The scheduler then cre-
ates new task instances for these slow nodes and deploys them
on non-blacklisted machine nodes. However, these operations
are typically designed for batch processing jobs and need to be
extended to accommodate stream processing jobs.

We extend the interface of the slow task detector to detect the
execution time and data transfer volume of stream process-
ing tasks. Tasks with longer execution times and lower data
consumption are identified as slow tasks. The objective is to
reduce the time spent on checkpointing for slow tasks, thereby
reducing checkpoint overhead and, more importantly, lower-
ing resource consumption and task execution times. Through-
out the execution process, the resource-aware module con-
tinuously observes the CPU and memory utilization in the
environment.

Currently, slow tasks are detected using a runtime-based slow
task detector, which periodically collects statistics on all com-
pleted tasks. It’s important to note that this approach com-
bines runtime with the actual input data volume. If there’s
data skew, tasks with significantly different data volumes but
similar computing capabilities won’t be detected as slow tasks,
thus avoiding unnecessary resource wastage caused by false
detection.

Algorithm 3 determines slow tasks based on task execution time
and the amount of data transmitted by upstream tasks, counting
the number of slow tasks. Only nodes where tasks have both a
long execution time and a small data transfer volume are consid-
ered slow tasks.

ALGORITHM 3 | Slow task Election Algorithm.

Input: Total number of tasks 𝑚, Task List 𝑡𝑎𝑠𝑘𝐿𝑖𝑠𝑡,
Historical task execution time for previous batches
𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛[𝑡𝑎𝑠𝑘_𝑖][𝑏𝑎𝑡𝑐ℎ_𝑝𝑟𝑒], duration of task execution
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛[𝑡𝑎𝑠𝑘_𝑖], task transmission of node [𝑡𝑎𝑠𝑘_𝑖], Total
number of slow tasks 𝑁slow

Output: number of slow tasks
1: for 𝑡𝑎𝑠𝑘_𝑖 = 1 → 𝑚 do
2: 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛[𝑡𝑎𝑠𝑘_𝑖] = computeTaskExecutionDuration→

(𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛[𝑡𝑎𝑠𝑘_𝑖][]); // identification of tasks with long
execution time

3: end for
4: 𝑡𝑎𝑠𝑘𝑠𝐿𝑖𝑠𝑡1 = sortTasks(𝑚, 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛[]);
5: for 𝑡𝑎𝑠𝑘_𝑖 = 1 → 𝑚 do
6: 𝑡𝑎𝑠𝑘𝑇 𝑟𝑎𝑛𝑠[𝑡𝑎𝑠𝑘_𝑖] = computeTaskTransmission

(𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛[𝑡𝑎𝑠𝑘_𝑖][]); // identification of tasks with small data
transfer volumes

7: end for
8: 𝑡𝑎𝑠𝑘𝑠𝐿𝑖𝑠𝑡2 = sortTasks(𝑚, 𝑡𝑎𝑠𝑘𝑇 𝑟𝑎𝑛𝑠[]);
9: slowTasksList = selectSlowTasks(𝑠, 𝑡𝑎𝑠𝑘𝐿𝑖𝑠𝑡1, 𝑡𝑎𝑠𝑘𝑠𝐿𝑖𝑠𝑡2);

// tasks are listed in tasksList1 and taskList2 are considered to
be slow tasks

10: 𝑁slow = Count(𝑠𝑙𝑜𝑤𝑇𝑎𝑠𝑘𝑠𝐿𝑖𝑠𝑡);
11: return 𝑁slow

Flink version 1.16 introduced a Predictive Execution mecha-
nism consisting of three key components. The first one is the
Slow Task Detector. It periodically performs checks, taking into
account the data processed by tasks and their runtime, to assess
whether a task qualifies as a slow one. When it identifies a
task as slow, it notifies the scheduler. The second component
is the scheduler. Upon receiving a notification of a slow task,
it informs the Blacklist Handler to mark the machine run-
ning the slow task. Additionally, as long as the number of
instances running slow tasks doesn’t exceed the user-configured
limit, the scheduler creates and deploys new instances for them.
When one instance completes its task, the scheduler termi-
nates other instances running the same task. The third com-
ponent is the Blacklist Handler, which Flink uses to blacklist
machines. After a machine is blacklisted, no further tasks will
be deployed on that machine. To support Predictive Execution,
Flink version 1.16 introduced a soft-blacklist approach where
tasks already running on a blacklisted machine can continue run-
ning without being canceled. It’s important to note that these
mechanisms are designed primarily for batch processing, not
for stream processing. We focus on stream processing jobs in
this study.

We build upon the Predictive Execution mechanism and intro-
duce a Vertex Feature-Aware Checkpointing Strategy. It specifi-
cally detects tasks that are significantly slower than the rest of the
job, as indicated by the Slow Task Detector. The strategy monitors
the number of slow tasks in the environment, denoted as 𝑁slow. If
𝑁slow exceeds a predefined threshold, 𝑀 , it increases the check-
pointing interval, reducing the time spent by slow machines on
checkpointing and allowing them to concentrate more on task
execution. When the Slow Task Detector observes that 𝑁slow has
returned to normal levels, the checkpoint interval is reverted to
its default value. Algorithm 4 provides a detailed description of
the Vertex Feature-Aware Checkpoint algorithm.

This Algorithm 4 begins by running the application with a fixed
checkpoint interval (𝑐𝑖0) and initiates periodic checkpoints at
time 𝑡0 (line 2). When the Slow Task Coordinator detects that the
number of slow tasks exceeds the threshold 𝑀 , it starts initiating
checkpoints at irregular intervals (line 4). It uses Δ𝑖1 to increase

ALGORITHM 4 | Vertex Feature-aware Checkpoint Algorithm.

Input: Slowtask number 𝑁slow, Initialized checkpoint interval
𝑐𝑖0

Output: Vertex feature-aware checkpoints
1: while Application not finished do
2: Use Initialized checkpoint interval 𝑐𝑖0
3: if 𝑁𝑠𝑙𝑜𝑤 > 𝑀 then
4: Non-uniform-Interval(){ // increase the checkpoint

interval until the Nslow ≤ M
5: Calculate Δ𝑖𝑛 = 𝑐𝑖𝑛−1*[(𝑁𝑠𝑙𝑜𝑤 −𝑀)∕𝑀];
6: Next checkpoint interval 𝑐𝑖𝑛 = 𝑐𝑖𝑛−1+Δ𝑖𝑛;
7: Triggering checkpoint time 𝑡𝑛 = 𝑐𝑖𝑛+𝑐𝑖𝑛−1;}
8: end if
9: if 𝑁𝑠𝑙𝑜𝑤 ≤ 𝑀 then

10: Recover checkpoint interval to 𝑐𝑖0;
11: end if
12: end while
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𝑐𝑖0, where Δ𝑖1 = 𝑐𝑖𝑛−1 ∗ [(𝑁𝑠𝑙𝑜𝑤 −𝑀)∕𝑀] (line 5), and contin-
ues to increase each checkpoint interval (𝑐𝑖𝑛) based on Δ𝑖𝑛. In
this way, it iteratively increases the checkpoint interval while also
reducing the frequency of checkpoint initiation. Once the size of
the checkpoint interval is calculated, the algorithm continuously
increases the checkpoint start time with the increasing check-
point interval. The time to start the 𝑛𝑡ℎ checkpoint is 𝑡𝑛 = 𝑐𝑖𝑛 +
𝑐𝑖𝑛−1 (line 7). Through this method, it dynamically increases the
checkpoint interval while reducing the frequency of checkpoint
initiation. The checkpoint interval gradually increases until the
number of slow tasks falls below the threshold. After the number
of slow tasks drops below the threshold, the current value of the
checkpoint interval (𝑐𝑖𝑛) is reset to the fixed checkpoint interval
(𝑐𝑖0) (line 10).

Algorithms 3 and 4 are sequential, with the former detecting slow
tasks and counting their numbers, and the latter dynamically
adjusting the checkpoint interval based on the number of slow
tasks.

After introducing the QoS-aware checkpoint optimization strat-
egy, the specific checkpoint cost is analyzed. The QoS-aware
checkpoint coordinator significantly changes the checkpoint cost
by continuously changing the checkpoint interval. This fluctuat-
ing checkpoint interval is vulnerable to high recovery overhead
or high checkpoint costs because, compared to a fixed checkpoint
interval during the rollback period, it either requires more rework
or triggers more checkpoints. While the QoS-aware checkpoint
coordinator considers fault rates, resource utilization, and num-
ber of slow tasks to change the checkpoint intervals, failures or
resource shortages may occur during program execution, poten-
tially affecting system performance. Anticipating failures or sens-
ing resource scarcity incurs a cost for fault recovery.

To measure checkpoint overhead, two aspects are considered: the
space used to store checkpoint data (𝑆𝑐𝑘) and the time taken
to perform checkpoint operations (𝑇𝑐𝑘). These two parts are
weighted differently to evaluate the metric 𝐹 .

𝐹 = 𝛼 ∗ 𝑆𝑐𝑘 + (1 − 𝛼) ∗ 𝑇𝑐𝑘 (16)

In Equation (16), weight 𝛼 can take values within the range (0, 1).
When the value of the weight 𝛼 is very close to 1, it indicates
that the user places greater importance on space cost. Conversely,
when 𝛼 approaches 0, it implies that the user places greater
importance on program runtime.

4.5 | System Implementation

In the process of implementing the checkpoint adaptive strat-
egy for high availability in the Flink stream computing system,
modifications are made to the ‘startTriggeringCheck-
point’ method in the ‘CheckpointCoordinator’ class
of the ‘flink-runtime’ project by extending the method to
incorporate custom triggering logic. This method serves as the
entry point for responding to checkpoint operations.

Before implementing the checkpoint adaptive strategy for high
availability, it’s essential to determine the characteristics of
the stream compute nodes, such as task transfer data volume,

task execution time, and resource utilization on nodes. In the
extended ‘startTriggeringCheckpoint’ method, a new
‘calCheckpointScheduleTrigger’ method is added to
calculate the execution parameters for checkpoint operations.
This includes the following steps:

1. Using linear regression algorithms to predict fault rates,
and designing dynamically adjustable checkpoint intervals
based on the prediction results.

2. Calculating CPU utilization, memory utilization, task exe-
cution time, and task data transfer volume, and designing
dynamically adjustable checkpoint intervals based on the
calculated results.

3. Invoking the ‘rescheduleTrigger’ method in the
‘CheckpointCoordinator’ class to adjust the timing
for the next checkpoint trigger based on the calculated
checkpoint interval.

These optimization operations ensure the stability and reliability
of the system, especially in the face of failure scenarios, where
they can better handle and ensure data consistency and integrity.
This will improve system performance and stability, providing
better guarantees for the normal operation of applications.

5 | Performance Evaluation

This section begins by providing details about the hardware
and software configurations of the experimental environment.
Then, it describes the experimental setup. Finally, a compara-
tive analysis is conducted between the proposed strategy and
existing checkpoint mechanisms, focusing on checkpoint inter-
val changes, checkpoint overhead, system recovery latency, task
execution time, and resource utilization. This comparison aims to
demonstrate the achievements of the proposed strategy in terms
of resource efficiency and performance improvement in stream-
ing computing systems.

5.1 | Experimental Environment
and Parameter Setup

To validate the effectiveness of the checkpoint adaptive strat-
egy with high availability, experiments are conducted using the
Flink big data streaming computing system. HDFS is used as the
external storage system for checkpoints, and a Zookeeper cluster
provides coordination services. The cluster comprises 10 virtual
machine nodes in a school data center, with 2 nodes dedicated to
HDFS and Zookeeper, 1 node serving as the job manager, and the
remaining 7 nodes as task manager nodes. Each task manager
process has as many task slots as the number of CPU cores on
the physical node. In the experiments, the monitoring environ-
ment is established using Prometheus, Pushgateway, and Node
Exporter, where Prometheus is an open-source monitoring solu-
tion. Flink version 1.16, released on July 30, 2021, is used for the
experiments. For detailed information about the hardware and
software configurations, please refer to Tables 3 and 4.

To validate the effectiveness of the proposed strategy, experiments
are conducted to compare the proposed checkpoint adaptive
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TABLE 3 | Software configurations.

Software Versions

OS Ubuntu 20.04.1 64bit
Flink Apache-Flink-1.16
JDK Jdk1.8 64bit
Zookeeper Zookeeper-3.4.14
Redis Redis-7.0.9

TABLE 4 | Hardware configurations.

Hardware Configuration

CPU Intel core i7
Memory 32GB
Disks 40GB HDD
Network card 100Mbps

FIGURE 6 | WordCount topology.

strategy with high availability (Ca-Stream) against the current
Flink periodic checkpointing mechanism (considered the most
advanced ***periodic checkpoint mechanism (PCI) for article
writing). The comparison covers five aspects: checkpoint inter-
val changes, checkpoint overhead, system recovery latency, task
execution time, and resource utilization.

Two test topologies, WordCount and SocketWindowWordCount
in Figures 6 and 7, are used in the experiments. The Word-
Count topology represents a simple word counting application,
and the SocketWindowWordCount topology is more complex
application, designed for streaming window word counting from
a web socket source.

To predict the fault rate in the system, failure data are obtained
from the publicly available Failure Trace Archive database. The
CPU usage threshold is set at 10% based on the runtime character-
istics of tasks, and the memory usage threshold is set at 50%, also
based on task runtime characteristics. This experimental setup
allows for a comprehensive analysis and evaluation of the pro-
posed Ca-Stream in comparison to the existing periodic check-
pointing mechanism in Flink.

In the experiment, after initiating predictive execution and
detecting slow tasks that trigger the predictive execution, Flink’s
user interface (UI) presents predictive execution instances on the
job page under the subtask section of the node information. The
Flink UI also displays the currently blacklisted task managers on
the Task Managers & Overview page. The number of slow tasks
can be determined by calculating the number of blacklisted task
managers on the Flink page. In the experiment, the threshold
for the number of slow tasks is set to 5, based on the runtime

FIGURE 7 | SocketWindowWordCount topology.

characteristics of tasks. When the number of slow tasks exceeds
this threshold, the checkpoint interval is increased; otherwise, it
is reverted to the checkpoint interval corresponding to PCI.

When the number of slow tasks remains constant, the check-
point interval is dynamically adjusted based on the fault rate and
resource usage. Generally, if measures are not taken to reduce
the number of slow tasks, such as migrating slow tasks to faster
machines, the number of slow tasks remains constant. It has
been verified through experimentation that as the complexity of
the topology and the degree of operator parallelism increase, the
number of slow tasks also increases. For instance, when using
the WordCount topology with a parallelism of 1, the number of
slow tasks is 1. When using the SocketWindowWordCount topol-
ogy with a parallelism of 1, the number of slow tasks increases
to 3. When using the SocketWindowWordCount topology with a
parallelism of 2, the number of slow tasks increases to 10.

The proposed strategy can adaptively change the checkpoint
intervals in the task execution process, possessing real-time
improvement capabilities. However, the periodic checkpoint
method can only support fixed interval checkpoints. This section
compares the checkpoint interval changes between these two
methods. It is worth noting that Flink does not start checkpoints
by default, which is an important configuration aspect. The com-
parison of checkpoint interval changes aims to assess the adap-
tive capabilities of the proposed strategy compared to the periodic
checkpoint method in terms of fault tolerance, resource utiliza-
tion, and the number of slow tasks. It is important to note that the
periodic checkpoint method in the experiment has a fixed check-
point interval of 5 s, as introduced in the previous section.

Regarding the adaptive change in checkpoint intervals, each time
a checkpoint is triggered, the current time is recorded, and then
the time of the last checkpoint trigger is manually subtracted to
obtain the current checkpoint interval. Figure 8 displays the vari-
ation in checkpoint intervals under both approaches. The pro-
posed strategy can adaptively change checkpoint intervals based
on the linear regression algorithm’s predictions of fault rates,
monitored resource utilization, and detected slow task count
changes.

When the fault rate is relatively low, the proposed strategy
increases the checkpoint interval; conversely, it decreases the
interval. When resource utilization exceeds the threshold defined
in the strategy, it increases the checkpoint interval. when resource
utilization falls below the threshold, it reverts to the fixed
5-second checkpoint interval used in periodic checkpoints. When
the number of slow tasks exceeds a certain threshold, it increases
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FIGURE 8 | Checkpoint interval comparison.

the checkpoint interval; however, when the number of slow tasks
falls below the threshold, it reverts to the fixed 5-second check-
point interval used in periodic checkpoints.

From Figure 8, it is evident that the checkpoint intervals set by
Ca-Stream are mostly greater than those of Flink, which signifi-
cantly reduces checkpoint overhead. During the 10𝑡ℎ checkpoint
operation, the checkpoint interval of Ca-Stream becomes smaller
than that of Flink. This is because the predicted fault rate for the
10𝑡ℎ checkpoint operation is relatively high, resulting in a drastic
reduction in Ca-Stream’s checkpoint interval.

In the experiment, the actual failure data obtained from the Fail-
ure Trace Archive database is used as a training dataset to predict
the fault rate. The results of predicting the fault rate are illustrated
in Figure 9. The x-axis represents the number of checkpoint oper-
ations, while the y-axis represents the predicted fault probability
values. This figure depicts the predicted fault rates for the initial
36 checkpoint operations. From the graph, it can be observed that
the fault rate is highly unstable and fluctuating continuously.

Figure 10 presents a comparison of the experimental results
between Ca-Stream and Flink as the number of checkpoint
operations changes. In alignment with the predicted fault rates
during the program execution, the variation in fault rates has
a noticeable impact on checkpoint intervals. The proposed
Ca-Stream adjusts checkpoint intervals based on the predicted
fault rate—increasing the interval when the fault rate is low, and
decreasing it when the fault rate is high. This graph also shows
that checkpoint intervals increase as the fault rate decreases, and
decrease as the fault rate increases. However, periodic check-
points of Flink cannot adjust checkpoint intervals based on fault
rates and maintain a fixed value. Therefore, the proposed strategy
is more flexible.

We compare checkpoint overhead from two aspects: the space
used to store checkpoint data and the time spent on checkpoint
execution. Figure 11 illustrates the time required to save check-
point data for both strategies over 24 checkpoint operations. As
shown in Figure 11, the time to save checkpoint data for both

FIGURE 9 | Variations in fault rates.

FIGURE 10 | Checkpoint intervals vary with fault rates.

strategies is dynamically changing. In the majority of cases, the
time to save checkpoint data for the proposed checkpoint adap-
tive strategy is less than that for the PCM. After calculations,
it is determined that the proposed checkpoint adaptive strategy
reduces the time to save checkpoint data by an average of approx-
imately 13.32%, with the best performance achieving a reduction
of over 38%.

Checkpoint data size is a parameter that can be used to demon-
strate the effectiveness of fault tolerance strategies. During check-
point initiation, checkpoint data is saved multiple times in a
reliable storage area. Storing checkpoint data in reliable storage
requires space, and it should be retrievable from the storage in
case of failures for recovery. If a significant amount of checkpoint
data needs to be stored, the storage capacity should be sufficiently
large. Therefore, comparing checkpoint data size is crucial for
evaluating fault tolerance strategies. The comparison graph of
checkpoint data size is shown in Figure 12. From Figure 12, it is
evident that the checkpoint data size for both strategies is dynam-
ically changing. In each instance, the checkpoint data size for the

14 of 18 Concurrency and Computation: Practice and Experience, 2025

 15320634, 2025, 15-17, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.70171 by R

ajkum
ar B

uyya - T
he U

niversity O
f M

elbourne , W
iley O

nline L
ibrary on [21/06/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



FIGURE 11 | Checkpoint consumption time.

FIGURE 12 | Checkpoint data size.

proposed Ca-Stream is smaller than that for Flink’s correspond-
ing checkpoint data size.

5.2 | System Recovery Latency

Figure 13 provides a statistical summary of system recovery
latency corresponding to the two strategies during 13 checkpoint
operations. From the graph, it is evident that the system under-
goes 3 instances of failure recovery. Figure 13 illustrates that,
with an increasing number of checkpoint operations, the system’s
recovery latency gradually increases for the proposed Ca-Stream.
In contrast, the recovery latency for the PCM in Flink remains
constant, as the checkpoint interval is fixed. Furthermore, the
system’s recovery latency corresponding to the Ca-Stream is con-
sistently lower than that of the PCM in Flink. On average, the
proposed Ca-Stream reduces system recovery latency by approxi-
mately 20.13%, with a maximum reduction of about 33% observed
under optimal conditions.

FIGURE 13 | System recovery delay.

FIGURE 14 | CPU occupancy rate.

5.3 | Resource Occupancy Rate

As we all know, CPU and running memory are essential resources
for computation. The proposed strategy, after optimization,
demonstrates the ability to utilize fewer resources. Let’s compare
Ca-Stream with the current PCM in terms of CPU utilization
and memory consumption during normal task execution logic
processing.

Figure 14 displays the CPU utilization for both strategies dur-
ing 16 checkpoint operations. From Figure 14, it’s evident
that CPU utilization for both strategies is dynamically chang-
ing. Moreover, in the majority of checkpoint operations, CPU
utilization corresponding to Ca-Stream is lower than that of
the PCM.

Through calculations, it can be determined that the proposed
Ca-Stream reduces CPU utilization by approximately 25.75%,
compared to the CPU utilization in Flink’s periodic checkpoint
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FIGURE 15 | Memory occupancy rate.

mechanism, with a reduction of over 47% observed under optimal
conditions.

Figure 15 illustrates that memory utilization for both strate-
gies is dynamically changing. The figure shows the monitored
memory utilization during 16 checkpoint operations. It’s evi-
dent from Figure 15 that, in the majority of checkpoint oper-
ations, the memory utilization corresponding to the proposed
Ca-Stream is lower than that of the periodic checkpoint mech-
anism. Both strategies exhibit dynamic changes in memory
utilization.

Through calculations, it can be determined that the proposed
Ca-Stream reduces memory utilization by approximately 16.83%
compared to the memory utilization in Flink’s periodic check-
point mechanism, with a reduction of approximately 37%
observed under optimal conditions.

5.4 | Task Execution Time

Due to the increase in checkpoint intervals when there are more
slow tasks, as described in this article, less time and resources
are spent on checkpoint operations. This allows more time and
resources to be dedicated to data computing, consequently reduc-
ing task execution time. Figure 16 depicts the dynamic changes
in task execution time for both strategies as the number of check-
points increases. This figure presents the task execution time for
15 checkpoint operations.

From Figure 16, it’s evident that the task execution time cor-
responding to the proposed Ca-Stream is generally lower than
that of Flink’s periodic checkpoint mechanism. Through calcula-
tions, it can be determined that the proposed multifeature-aware
fault-tolerant strategy, Ca-Stream, reduces the average task
execution time by approximately 11.66% compared to the
average task execution time in Flink’s periodic checkpoint
mechanism, with a reduction of over 39% observed under optimal
conditions.

FIGURE 16 | Task execution time.

6 | Conclusion and Future Work

This article initially employs a linear regression algorithm to
predict the fault rate in a stream computing system based on
data from publicly accessible databases. Subsequently, dynamic
adjustments are made to the initial checkpoint intervals. Then,
by considering the characteristics of perception nodes, specifi-
cally referring to the execution duration of tasks on nodes, task
data transmission volume, and resource utilization, the initial
checkpoint intervals are adaptively adjusted. Through experi-
ments involving factors such as fault rates, task CPU utilization,
memory utilization, and the number of slow tasks in a distributed
cluster, comparisons are made between the targeted checkpoint
mechanism and the proposed fault-aware checkpoint strategy on
the Flink system.

Ca-Stream exhibits a notable reduction in checkpoint data stor-
ing time by approximately 17.8% compared to the traditional
synchronous checkpointing approach. The average task execu-
tion time is reduced by 11.66%, indicating less interference from
fault-tolerance operations during standard processing. Further-
more, Ca-Stream reduces CPU utilization by 47% and memory
usage by 37% during fault recovery scenarios under optimal con-
ditions. The system recovery delay is also shortened by 33%,
attributed to Ca-Stream’s lightweight checkpointing and rapid
restoration mechanism. These improvements collectively con-
firm the effectiveness of our strategy in enhancing both run-
time performance and resource utilization. The experimental
results indicate that the proposed strategy outperforms the cur-
rent checkpoint mechanism, improving the checkpoint data stor-
ing time and task execution time. Additionally, it demonstrates
marked decreases in CPU utilization, memory utilization, and
system recovery delay.

The future improvement on this study will be carried out
mainly from three aspects. First, perceive more factors and com-
prehensively evaluate the importance of nodes. Second, focus
on integrating slow tasks and scheduling strategies. Finally,
use reinforcement learning methods to further optimize the
system.
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