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Abstract—Distributed parallel training of large-scale deep neu-
ral networks (DNN) has attracted the attentions of both artificial
intelligence and high-performance distributed computing. One of
efficient approaches is the micro-batch-based pipeline parallelism
(MBPP), e.g., GPipe and Terapipe. Based on the MBPP, we establish
a time-cost model with the basic time function of layers, which
considers computing time and communication time simultaneously
as well as considers they are nonlinear with the amount of input
data. Focusing on the jointly optimal solutions of network division
and data partition, we propose a Cross-Search algorithm with Im-
proved Multi-dimensional Dichotomy (CSIMD). Through theoret-
ical derivation, we prove improved multi-dimensional dichotomy
(IMD) has appreciable theoretical optimality and linear computa-
tional complexity significantly faster than the state-of-the-art meth-
ods including dynamic programming and recursive algorithm.
Extensive experiments on both CNN-based and transformer-based
neural networks demonstrate our proposed CSIMD can obtain op-
timal network division and data partition schemes under MBPP. On
average, the training speeds of CSIMD in CNN- and transformer-
based DNNs are respectively (2.0, 2.5)× and (2.66, 5.48)× of
(MBPP-R, MBPP-E).

Index Terms—Distributed parallelism, micro-batch pipeline,
cross-search, improved multi-dimensional dichotomy, large DNN,
transformer.

I. INTRODUCTION

D EEP learning (DL) is showing a significant trend that
the scale of model parameters continues to increase [1].
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The recent large deep neural networks (DNN), especially large
language models (LLMs), have hundreds of billions of param-
eters, e.g., FLAN with 137B parameters [2], GPT-3 with 175B
parameters [3], Gopher with 280B parameters [4], and Llama
series with above 70B parameters [5], [6].

In practice, training large DNNs requires cooperative and
parallel work of numerous distributed artificial intelligence
(AI) devices (e.g., GPU cluster), which usually consume much
time [7], [8]. How to improve the efficiency of parallel training
becomes a hotspot in the fields of AI and distributed comput-
ing [7], [9]. The optimization of parallel training is a complex
NP-Hard problem where the solution space (scheme space) is
often an uncountable set [7], [10]. To obtain some approximate
schemes, the community established data parallelism (DP), ten-
sor model parallelism (TMP) and pipeline model parallelism
(PMP) as three foundational policies [11], [12], [13], which
directs current parallel training architectures. Currently, some
well-performed parallel training architectures belong to micro-
batch-based pipeline parallelism (MBPP), such as GPipe [14],
Dapple [15], Hippie [11] and Terapipe [13].

Data partition and network division are two critical factors of
parallel training especially for MBPP [16], [17], which directly
affects the schedulable granularity of computing process and
communication process [13]. Data partition contains two forms:
dividing a mini-batch into multiple micro-batches and dividing
a sequence into multiple micro-sequences (or called micro-
tokens). Network division in pipeline parallelism means dividing
multiple layers of a DNN into several continuous subsegments
and deploying them on multiple devices (i.e., multiple stages).
Improving schedulable granularity allows more overlap between
the time of various processes and can improve feasible solutions
of parallel schemes [15], [18], [19].

However, the finer granularity of data partition or network
division may not lead to better training performance. It is
because of the existence of nonlinear relationship between
time consumption and data volume (or model parameter
volume), which means excessive splitting of network layers
or data may introduce additional time cost instead. Therefore,
solving the optimization problems of data partition and network
division based on a more realistic theoretical cost model
showcases significance. To simplify the modeling and solving
of optimal parallel schemes, the existing studies usually assumed
computing time and communication time proportional to data
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Fig. 1. The computing time of one layer in LLMs with different data sizes.

volume [16], [20], [21], [22]. However, when using practical
GPUs and communication networks to implement parallel
training, the computing time or communication time is probably
not proportional to their data volume [10], [23]. For example,
in Fig. 1: although the computing time shows an approximately
linear trend with the batch size (data volume) in some local
ranges, there are some ranges in which the trend is nonlinear. The
nonlinear relationship mainly stems from two reasons: when the
data volume is reduced to a certain extent, processing small data
also needs to complete some inherent operations; the devices
generally have a certain parallel processing capability, which
means the processing time of the data volume within the parallel
capability has relatively constant trend, while the data beyond
the parallel capability will enter the queue for serial execution.
Therefore, improving parallel training requires finding the op-
timal schemes of network division and data partition according
to the cost model considering the non-linear relationships.

To find the optimal schemes of data parallelism or model
parallelism, some recent research mainly leveraged dynamic
programming, linear programming, etc [15], [24]. However,
in the optimization problems of MBPP with multiple parallel
dimensions, the data partition and network division belong to
heterogeneous decision variables, which indicates that a single
algorithm is unable to simultaneously solve their optimal solu-
tions. As the solution space generally increases exponentially
with large numbers of model parameters and devices, the ex-
isting methods have massive computational complexity [20],
[22], [25]. Additionally, the lack of accurate analysis models
and formulas (especially lack of models considering nonlinear
relationship) makes it difficult to evaluate the performance of
parallel schemes during optimization. The above characteristics
are challenging the optimization of MBPP.

Aiming at addressing the above challenges of MBPP, we
derive and construct a theoretical time-cost model, which takes
the schemes of network divisions and data partitions as vari-
ables, as well as considers the nonlinear relationship between
time consumption and data volume. For the sake of solving
the optimal schemes of MBPP, we formulate the optimization
problem as a joint optimization problem with two subproblems
including: solving the optimal network division schemes under
the fixed data partitioning number, which can be formulated as a
multi-dimensional array segmentation; solving the optimal data
partitioning number under the fixed network division. Based on
formulations of joint problem with multiple subproblems, the

key to improving MBPP is to solve two subproblems and the
joint problem respectively. To solve the subproblem of network
division, we propose an improved multi-dimensional dichotomy
(IMD) to obtain the optimal schemes in linear time complexity,
by converting the subproblem into the ordered bin-packing
problem of multi-dimensional arrays. For the subproblem of data
partitions, we propose a fast optimal data partition algorithm
(ODPA) based on matrix operations. Then, in order to solve
the joint problem with heterogeneous decision variables, we
propose CSIMD (a cross-search algorithm based on IMD and
ODPA).

The main contributions are summarized as follows.
1) Theoretical models: to support the optimization of MBPP,

we derive a theoretical cost model regarding heteroge-
neous decision variables of DP and PMP. Our cost model
not only considers computing time and communication
time simultaneously, but also considers the nonlinear
relationship between time consumption and data size,
which conforms to reality. With cost model, we convert
the optimization problem of MBPP to a joint problem
with multiple subproblems: solving the optimal network
division under the fixed data partition, and solving the
optimal data partition under the fixed network division.

2) IMD and ODPA for subproblems: to solve optimal
network division (an ordered multi-dimensional ar-
ray segmentation problem), we propose an improved
multi-dimensional dichotomy (IMD). Through theoretical
derivation, we prove that IMD has a theoretical approxi-
mation ratio close to 1 under linear time complexity. To
solve optimal data partition, we propose a fast optimal data
partition algorithm (ODPA) based on matrix operations.

3) CSIMD for the joint problem: we propose a cross-search
framework (CS) to solve joint optimization problems
containing heterogeneous decision variables by alter-
nately solving subproblems. Combining joint optimiza-
tion framework (cross-search) and sub optimization algo-
rithms (IMD and ODPA), we construct an overall opti-
mization algorithm (CSIMD) for simultaneously solving
the multi-dimensional parallel schemes in MBPP.

4) Extensive experiments in real GPU cluster not only
demonstrate the optimality and fastness of our IMD, but
also demonstrate the optimality of CSIMD for both CNN-
and transformer-based DNNs under MBPP.

The rest of this paper is organized as follows. We review
the related work in Section II. The formulation and analysis of
the time cost model are derived in Section III. We propose the
methodology and present its theoretical analysis in Section IV.
The evaluation results are presented in Section V. Finally, we
conclude this paper in Section VI.

II. RELATED WORK

In this section, we mainly review three aspects that are related
to our research in this paper: parallelism, mathematical cost
model, and optimization algorithms.

Data parallelism and model parallelism are two basic modes
of parallel training, which derive various new parallelism [11],
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[24]. Data parallelism partitions training data into multiple
pieces [26], [27] and model parallelism divides the DNN model
into multiple parts [11], [20], [28]. Combining data parallelism
and model parallelism, one important series is micro-batch-
based pipeline parallelism (MBPP). GPipe [14] divided mini-
batch data into multiple micro-batches, which allowed the com-
putation and communication of different stages corresponding
to different model nodes (on different devices) can overlap.
The more temporal overlapping parts of various processes on
different devices correspond to the less idle time (bubbles) of
devices [24]. On the premise that the pipeline does not introduce
redundant computing and communication costs, the total train-
ing time of GPipe is smaller than the original pipeline. Based
on GPipe, PipeDream [29] added a strategy, i.e., shifting the
gradient backward-propagation (BP) earlier to the moment im-
mediately after its last part of forward-propagation (FP). Other
well-performed methods or parallelism, including Dapple [15],
Hippie [11], TeraPipe [13], NasPipe [30], et al. are all the
variants of GPipe or PipeDream based on MBPP. Terapipe [13]
with micro-tokens-based data parallelism followed GPipe and
improved the granularity to reduce the pipeline bubbles of the
transformer-based NLP model by proposing a new dimension,
i.e., token dimension.

The mathematical cost model is also an important factor
of parallel training, which is the basis for optimizing parallel
training schemes. Next, we mainly review the time-cost model of
MBPP in existing research. The complexity of parallel training,
makes it difficult to obtain an accurate expression of the cost
model. GPipe did not consider the corresponding time-cost
model in [14]. In the subsequent studies [13], [16], [20], the
cost model was considered as:

TPP = (m− 1) · (max (Fi) + max (Bi)) +
∑

(Fi +Bi)

(1)

where TPP means the total training time for one mini-batch in
one iteration when using MBPP, Fi and Bi are the time respec-
tively for FP and BP of the i-th stage, and m is the number of
micro-batches in one mini-batch. The cost model of PipeDream
was considered as a recursive formula [29]. Narayanan et al. [31]
proposed PipeDream-2BW and considered a time-cost model for
pipelining as

TPP = max
i

⎛
⎝max

⎛
⎝T cp

i +
∑
j

T cm
j→i,

1

m
· T cm

i

⎞
⎠
⎞
⎠ ,

where T cp
i means the computing time of the i-th stage, T cm

j→i

means the communication time between stages i and j, and
T cm
i means the communication time of exchanging gradients.

PipePar [32] considered a cost model as

TPP = Tcm + Tcp,

which directly adds communication and computing time.
Narayanan et al. [33] proposed Megatron-LM and considered
a cost model as

TPP = C · (F +B)) ,

where C is a coefficient related to micro-batch size and data
parallel size. Elango [22] proposed PaSE and considered the
FLOP-to-bytes ratio in the cost model.

Because the cost model was generally non-analytical or re-
cursive, dynamic programming is widely used to obtain the
optimal partition of data parallelism or model parallelism [24].
Some examples include PipeDream [15], Dapple [15], Ter-
apipe [13], EffTra [16], Alpa [20], PaSE [22], PipePar [32].
Linear programming is also a frequent method in parallel train-
ing [9], [27], [34]. Some examples include NetPlacer [34],
HGP4CNN [9], DPDA [27]. Other partition methods include
off-the-shelf graph partitioning algorithms [35], recurrence [22],
multi-chromosome genetic algorithm [36], grouping genetic
algorithm [37], minimum vertex-cut graph partitioning algo-
rithm [38], near-optimal layer partition of local search [25].
As the state-of-the-art methods to obtain optimal network divi-
sion schemes, dynamic programming and recursive algorithms
suffered from their large computational complexity, which is a
quadratic polynomial about the number of layers (denoted asK)
and a linear polynomial about the number of stages (denoted as
N ), i.e., O(2NK2).

From the literature review, the formulation of the cost model
affected the choice of optimal algorithms. Some of the cost
models only considered one of computation and communication
processes; some only provided recursive formulas; and some
with direct expressions relied on a lot of ideal assumptions
which was far away from the real scenario. Referring to but
distinguished from the existing research, this paper derives a
time-cost model of MBPP considering computation and com-
munication simultaneously. The model doesn’t limit the features
of devices, so it adapts to both homogenous and heterogeneous
systems. The cost model also considers the nonlinear relation-
ship between cost and data size, which is closer to reality. To
solve the parallel training schemes, we proposed a novel method
that is cross-search with improved multi-dimensional dichotomy
(CSIMD). Compared with the state-of-the-art methods including
dynamic programming and recursive algorithm, our proposed
IMD is far faster in solving the network division. IMD’s time
complexity is linear with K and decreases as N increases.

III. THEORETICAL FORMULATIONS OF MBPP

For the sake of derivation and analysis for the cost model of
MBPP, we list some notations in Table I.

In this paper, we mainly focus on the structures of MBPP (e.g.,
GPipe with micro-batch data and Terapipe with micro-tokens
data) shown in Fig. 2. The characteristic of MBPP is that the
BPs of micro-batches in each mini-batch need to start after the
FP of the last micro-batch in the last layer ends. To simplify the
structure of MBPP so that the analytical formulas of time-cost
are obtainable, we consider that the receiving data and sending
data of the same device do not affect each other, otherwise,
the recursive formula will be more complex. This consideration
is consistent with the full-duplex communication mode which
is widely used in distributed systems [18]. Thus, Fig. 2 only
needs to present the process of devices in sending data, without
drawing the process of receiving data.
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TABLE I
NOTATIONS AND DESCRIPTIONS

Fig. 2. The parallel structures of the MBPP: CMP. means computing process,
and CMM. means communication process.

A. Cost Model Considering Computation and Communication

For MBPP, the expression of time is as (1) without consid-
eration of communication. While, it is not enough to support
the cost model considering computation and communication
simultaneously. In order to support subsequent research on
data partitioning and network division, we need to formulate
a more comprehensive cost model considering computation and
communication simultaneously.

The computing time and communication time of one micro-
batch (or micro-tokens) can be set as functions in terms of data
partitions: FP

i (p) and FM
i (p) are respectively the computing

time and communication for FP of one micro-batch (or one
micro-token) in the i-th stage, where p is the number of data
partitions; BP

i (p) and BM
i (p) are that for BP. The processing

time of different data partitions in the same stage is relatively
stable. It can be set that the SP

ij(p) is the start computing time of
the j-th partition in the i-th stage of FP and SM

ij (p) is the start
communication time; RP

ij(p) and RM
ij (p) are for BP.

When the functions FP
i (p), FM

i (p), BP
i (p) and BM

i (p) are
given, SP

ij(p), S
M
ij (p), R

P
ij(p) and RM

ij (p) can completely rep-
resent the whole process of parallel training in MBPP. Since

these variables are functions of partition number p, we omit the
(p) in the subsequent expression. In MBPP, the BP in the same
mini-batch needs to wait for all FPs to complete before starting.
Then, the recursive formula can be written as (2) according to
its characteristics.⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

SP
ij = max

(
SM
(i−1)j + FM

i−1, S
P
i(j−1) + FP

i

)
SM
ij = max

(
SP
ij + FP

i , SM
i(j−1) + FM

i

)
RP

ij = max
(
RM

ij +BM
i , RP

i(j−1) +BP
i

)
RM

ij = max
(
RP

(i+1)j +BP
i+1, R

M
i(j−1) +BM

i

)
(2)

where1 ≤ i ≤ N is the index of stage,N is the number of stages,
1 ≤ j ≤ p is the index of micro-batch (or micro-token) in one
mini-batch. The recursive formulas of (2) illustrate that the start
time of each micro-batch data process (including micro-batch
token process) depends on the end time of the two preamble
processes: micro-batch process with the same index in the
previous stage, and the previous micro-batch process in this
stage. Taking computation process of FP as an example, the
computation process of the j-th data partitions in the i-th stage
(corresponding to the start time SP

ij ) needs to be simultaneously
after the communication process of the j-th data partition in the
(i− 1)-th stage (corresponding to the end time SM

(i−1)j + FM
i−1)

and the computation process of (j − 1)-th data partitions in the
i-th stage (corresponding to the end time SP

i(j−1) + FP
i ). The

recurrence relationship of other processes is similar to the above
example. If i /∈ [1, N ] or j /∈ [1, p], then SP

ij(p) = RP
ij = −∞.

And if i /∈ [1, N − 1] or j /∈ [1, p], thenSM
ij = RM

ij = −∞. The
initial conditions of (2) are:

SP
11 = 0, RP

N1 = SP
Np + FP

N (3)

Substituting (3) into (2) obtains the expressions of FP:⎧⎪⎪⎨
⎪⎪⎩
SP
ij =

∑i−1
k=1

(
FP
k + FM

k

)
+(j − 1)max

(
max1≤k≤i−1

(
FP
k , FM

k

)
, FP

i

)
SM
ij =

∑i
k=1

(
FP
k + FM

k

)− FM
i

+(j − 1)max1≤k≤i

(
FP
k , FM

k

) (4)

where 1 ≤ i ≤ N and 1 ≤ j ≤ p. The expressions of BP are:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
RP

(N−i)j = SP
Np + FP

N +
∑i−1

k=1

(
BP

N−k +BM
N−k

)
+BP

N

+(j − 1)max
(
max1≤k≤i−1

(
BP

N−k, B
M
N−k

)
, BP

N

)
RM

(N−i)j = SP
Np + FP

N +
∑i

k=1

(
BP

N−k+1 +BM
N−k

)
+(j − 1)max1≤k≤i

(
BP

N−k+1, B
M
N−k

)
(5)

Then, the time-cost for one iteration of one mini-batch is:

T = RP
1p +BP

1 =

N∑
k=1

(
FP
k + FM

k +BP
k +BM

k

)
+ (p− 1) max

1≤k≤N

(
max

(
FP
k , FM

k

))
+ (p− 1) max

1≤k≤N

(
max

(
BP

k , BM
k

))
(6)

where FM
N = BM

N = 0. From (6), the training time (makespan)
of MBPP consists of three parts: the sum of the calcula-
tion time and communication time of one micro-batch in
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Fig. 3. The diagram of the whole computing process and the corresponding
symbols for training one micro-batch of DNN.

all pipeline stages (i.e.,
∑N

k=1(F
P
k + FM

k +BP
k +BM

k )); the
computation time or communication time of the longest
micro-batch data in FP multiplied by (p− 1) (i.e., (p−
1)max1≤k≤N (max(FP

k , FM
k ))); the time of the longest

micro-batch data in BP multiplied by (p− 1) (i.e., (p−
1)max1≤k≤N (max(BP

k , BM
k ))). Compared to (1), (6) takes

the computations and communications into consideration si-
multaneously. The derivation process of (6) only depends on
the recursive relationship between the micro-batch processes in
MBPP, and does not limit the form of the basic time functions
and the device nodes. Therefore, (6) is applicable to scenarios
considering both nonlinear time relationships and clusters com-
bining various devices.

B. Theoretical Analysis of Cost Model

In parallel training of MBPP, two aspects need to be op-
timized: dividing DNN into N stages (network division) and
finding the optimal number of data partitions.

If FP
i (p), FM

i (p), BP
i (p) and BM

i (p) are given, the optimal
partition number can be obtained by the extreme values of
(6). Thus, we first discuss network division which needs to be
determined before solving the optimal data partition.

It can be set that the DNN has K layers denoted as L =
〈L1, L2, . . . , LK〉 where Li corresponds to the i-th layer. In
this paper, we mainly discuss the situation that K ≥ N and
the network layers within the same device must be continuous,
which means each device must at least contain one layer of
network. For the sake of analysis, we also set that the computing
time and communication time (time required to communicate
its output data to the next layer) for FP of the i-th layer are
respectively HP

i (p) and HM
i (p) where 1 ≤ i ≤ K. That for the

BP are set as JP
i (p) and JM

i (p). Thus, we can plot a diagram of
the whole computation process and the corresponding symbols
for one micro-batch as Fig. 3.

The division of the network layer is actually to determine
on which device each layer is executed on. It can be set that
the collection of layers on the i-th device is Ci, i.e., Lj ∈ Ci

means the j-th layer is executed on the i-th device. The MBPP
structure divides the network layer in order, thus: if Li1 ∈ Cj

and Li2 ∈ Cj where i1 ≤ i2, then Li ∈ Cj for i1 ≤ ∀i ≤ i2.

Fig. 4. The diagram of network division (K layers to N stages) in FP.

Therefore, we can set the maximum index of layers in Ci as αi

where αi−1 < αi. This means if αi−1 < j ≤ αi then Lj ∈ Ci,
elseLj /∈ Ci. It also meansCj = 〈Lαi−1+1, Lαi−1+2, . . . , Lαi

〉.
Then, we can useHP ,HM , JP and JM to express theFP ,FM ,
BP and BM as (7).{

FP
i =

∑αi

k=αi−1+1 H
P
k , FM

i = HM
αi

BP
i =

∑αi

k=αi−1+1 J
P
k , BM

i = JM
αi+1

(7)

where FP
i =

∑αi

k=αi−1+1 H
P
k means the computing time of i-th

pipeline stage equals to the sum of computing time of all the
layers in this stage; FM

i = HM
αi

means the communication time
of i-th pipeline stage equals to the time to transmit the output
data of the last layer (i.e., Lαi

) in this stage.
For the sake of presentation of the relationship between

pipeline stages and layers of DNN, we plot the diagram of net-
work division with FP in Fig. 4. The process of BP is analogous
to that of FP. Substituting (7) into (6) can obtain the expression
of training time regarding decision variables of network division
(i.e., αi) and data partition (i.e., p):

T =

K∑
i=1

(
HP

i + JP
i

)
+

N−1∑
i=1

(
HM

αi
+ JM

αi+1

)
+(p− 1) (ρ1 (λ, p) + ρ2 (λ, p)) (8)

where ρ1 = maxNi=1(max(
∑αi

k=αi−1+1 J
P
k , JM

αi+1)) and ρ2
= maxNi=1(max(

∑αi

k=αi−1+1 H
P
k , HM

αi
)), respectively corre-

sponding to the longest FP and BP pipeline stages.
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Fig. 5. CSIMD framework of joint optimization for parallel training.

Therefore, the key to solving the problem of minimizing
total training time is to find the optimal collection of λ =
〈α1, α2, . . . , αN 〉 and p. In the scenario of this paper, λ and
p necessarily and sufficiently correspond to a unique parallel
training scheme under MBPP. Thus, we can use the vector 〈λ, p〉
to represent the joint solution of a parallel training problem and
use T (λ, p) to represent its corresponding training time under
MBPP for one mini-batch.

When p is given,
∑K

i=1 (H
P
i + JP

i ) is a constant. Thus,
the problem can be transformed into the balancing division
of layers (a multi-dimensional array segmentation problem).
If only considering the computing of FP, the problem is con-
verted to minimizing maxNi=1(

∑αi

k=αi−1+1 H
P
k ), which is seg-

menting K numbers to N groups without changing orders to
minimize the maximum sum of these groups (one-dimensional
array segmentation problem). However, considering communi-
cation and computation simultaneously or considering FP and
BP simultaneously will increase the complexity significantly,
because changing network division will also change the layers
involved in communication. Additionally, it will change both
maxNi=1(

∑αi

k=αi−1+1 H
P
k ) of FP and maxNi=1(

∑αi

k=αi−1+1 J
P
k )

of BP, hence requiring a method to simultaneously optimize data
partition and network division (jointly optimizing the parallel
schemes of DP and PMP).

IV. METHODOLOGY

Based on the theoretical formulation and analysis in the above
section, the problem of solving the optimal training scheme for
MBPP can be transformed into three aspects:

1) ω1: solving optimal λ = 〈α1, α2, . . . , αN 〉 (network divi-
sion) of PMP with given p (partition number) of DP;

2) ω2: solving optimal p (partition number) of DP with given
λ = 〈α1, α2, . . . , αN 〉 (network division) of PMP;

3) Jointly solving problem ω1 and problem ω2 to obtain the
optimal parallel training scheme 〈λ, p〉.

To achieve the solutions of the above three aspects, we pro-
posed CSIMD (cross-search with improved multi-dimensional
dichotomy algorithm), whose framework is presented in
Fig. 5. As shown in Fig. 5, CSIMD contains three key com-
ponents: improved multi-dimensional dichotomy (IMD) for ω1,
optimal data partition algorithm (ODPA) for ω2, and cross-
search for jointly solving ω1 and ω2, respectively corresponding
to the above three aspects. In this section, we will detail the
corresponding methods to solve these three aspects.

A. Cross-Search for Joint Solution of ω1 and ω2

First, we discuss the systematic method, i.e., cross-search for a
joint solution of ω1 and ω2. Supposing two algorithms, denoted
as A1 and A2, can respectively obtain the theoretical optimal
solution of problems ω1 and ω2, two avenues to get the joint
solution of ω1 and ω2 are:

1) Traversing all feasible partition numbers to find the corre-
sponding optimal network divisions, and then comparing
their solutions to obtain the optimal scheme;

2) Traversing all network divisions to find their correspond-
ing optimal partition number, and then comparing their
solutions to obtain the optimal scheme.

However, these two traversal avenues both need to consume
a lot of computational complexity. To improve the speed for
jointly solving ω1 and ω2 with maintaining the optimality, we
propose a cross-search algorithm whose pseudo-code can be
seen in Algorithm 1:

1) First, set an initial data partition p (Line 1), and obtain the
corresponding initial network divisions λ (Line 2).

2) The loop from Line 3 to Line 10 is the cross-search
to update the optimization schemes of data partitions
and network divisions alternately, until there is no
better network layer division and no better partition
number.
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Algorithm 1: Cross-Search Algorithm for Joint Solution of
ω1 and ω2.

By switching the sub optimization problems between ω1 and
ω2, the cross-search of Algorithm 1 enables joint optimization
of network division and data partition.

With the framework of the systematic method (cross-search),
two algorithms A1 and A2 which can respectively solve prob-
lems ω1 and ω2 are significantly required. Next, we will discuss
them successively.

B. IMD to Divide Network Layers

1) Algorithm and Framework: The problem ω1, that solv-
ing the optimal network division with a given partition num-
ber, is a variant of the array-balanced segmentation problem,
i.e., multi-dimensional array segmentation problem. The typ-
ical array balanced segmentation problem only considers a
one-dimensional array. For example, when only considering
computing of BP, the objective of problem ω1 can be sim-
plified to min(maxNi=1(

∑αi

k=αi−1+1 J
P
k )) setting p is given,

which is a one-dimensional array segmentation problem. A well-
performed method to solve the one-dimensional array segmenta-
tion problem is the dichotomy method, while it does not apply to
multi-dimensional array segmentation. To solve the problem ω1

in real scenarios which requires considering JP , JM , HP , and
HM simultaneously, we introduce multiple weight vectors and
propose improved multi-dimensional dichotomy method (IMD),
whose pseudo-code can be seen in Algorithm 2 and algorithm
framework is shown in Fig. 5.

Following the strategy of typical dichotomy, IMD converts the
problem ω1 to the ordered bin-packing problem and transforms
the solution target to find the minimum volume of bins. Line 1
to Line 3 in Algorithm 2 are respectively setting convergence
standard (i.e., ε), the initial range of packing volume (Dmin and

Algorithm 2: Improved Dichotomy to Solve Multi-
Dimensional Array Segmentation (IMD).

Dmax), and the weight groups (W ). The operations in Line
2 can ensure that the initial range must contain the optimal
packing volume. The loop from Line 4 to Line 15 is the search
process of the multi-dimensional dichotomy. As Line 5, IMD
utilizes the mean value (Dmean) of the maximum value (Dmax)
and the minimum value (Dmin) as the preset packing volume.
The volume is measured by ρ1 + ρ2. Because the proportion
between ρ1 (corresponding to the longest FP pipeline stage)
and ρ2 (corresponding to the longest BP pipeline stage) varies
with pipeline network divisions, IMD introduces multi-weight
vectors to distribute the preset volume (Dmean) according to
different proportions (as Line 7) to check: whether there is a
packing scheme satisfying the current preset packing volume
after proportional distribution (i.e., v1 and v2) so that the total
number of packing bins (τ ) is not greater than the number of
pipeline stages (N ). The loop from Line 6 to Line 11 is to
traverse all vectors in the weight groups. Shown as Lines 12
to 15, IMD updates the search range by adjusting the upper
and lower boundaries. If there is a weight vector satisfying the
number of bins is not greater than the number of pipeline stages
(i.e., τ ≤ N ), the preset volume can be further reduced (i.e., the
value ρ1 + ρ2 corresponding to the theoretical optimal solution
of λ is less than Dmean), otherwise, to enlarge the preset volume.
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Algorithm 3: Multi-Dimensional Array Segment Packing
Algorithm (MASP).

As the IMD transforms the problem ω1 to an array segmen-
tation packing problem, it needs to call an improved multi-
dimensional array segmentation packing algorithm (MASP),
shown as Algorithm 3. When v1 and v2 are given, the theoretical
optimal solution of the problem of partitioning ordered arrays
can be obtained through the local greedy algorithm.

2) Analysis to Convergent Solutions of IMD: The improved
dichotomy to solve multi-dimensional array segmentation
(IMD, Algorithm 2) aims at solving the problem that

minω(1)(λ) = ρ1 (λ, p) + ρ2 (λ, p) (9)

Denoting the convergent solution of Algorithm 2 as λID, the
feasible solution set of the problem as Λ, and the theoretical
optimal solution is λO, then the solution has the following
property according to the process of Algorithm 2.

Property 1: If ε → 0 and the weight groups W has adequate
weights η → +∞ which can ergodic all possible proportions
between ρ1 and ρ2, then for ∀ω(1) > 0 the following formula
must be tenable.{

τ(ω) ≤ N, if ω ≥ ω(1)
(
λ(ID)

)
τ(ω) > N, if ω < ω(1)

(
λ(ID)

) (10)

where τ(ω) is the minimum required number of bins when
setting the preset volume of bins as ω.

The proof of Property 1 can be seen as follows considering
τ(ω) is a non-increasing function.

Proof 1: Because τ(ω(1)(λ(ID))) = N , therefore τ(ω) ≤ N
when ω ≥ ω(1)(λ(ID)). If ∃ω < ω(1)(λ(ID)) s.t. τ(ω) ≤ N ,
then the valueDmin < Dmean. Then, the Algorithm 2 needs to be
continued, which is in contradiction with λ(ID) is a convergent
solution. Therefore, for ∀ω < ω(1)(λ(ID)), τ(ω) > N . Thus,
Property 1 is proved.

On the basis of Property 1, we can obtain Property 2.
Property 2: For ∀λ ∈ Λ, ω(1)(λ) ≥ ω(1)(λ(ID)) = ω(1)

(λ(O)) under the conditions of Property 1, i.e., λ(ID) is one
theoretical optimal solution of problem minω(1).

The proof of Property 2 is as follows by contradiction.

Proof 2: If ∃λ ∈ Λ s.t. ω(1)(λ) < ω(1)(λ(ID)), then
τ(ω(1)(λ)) > N according to the second formula of (10). Be-
cause λ ∈ Λ is a feasible solution of problemminω(1), therefore
τ(ω(1)(λ)) ≤ N . These two inequalities are contradictory. Thus,
for ∀λ ∈ Λ, ω(1)(λ) ≥ ω(1)(λ(ID)), i.e., λ(ID) is a theoretical
optimal solution.

In fact, Property 1 and Property 2 are equivalent to reveal
that the convergent solution of Algorithm 2 is the theoretically
optimal solution. However, there are two indispensable condi-
tions for Property 1 and Property 2 to be tenable, i.e., ε → 0,
and W has adequate weights (η → +∞). In real computer pro-
grams, these two conditions are generally unable to be achieved,
since the computer cannot generate infinitely small numbers. In
practical implementation of Algorithm 2 to solve the problem
minω(1), the error between ω(1)(λ(ID)) and ω(1)(λ(O)) is re-
lated to both ε and η, which is revealed by Property 3 through
deduction.

Property 3: When ε > 0 and η < +∞, the error ξ between
the convergent solution ω(1)(λ(ID)) and the theoretical optimal
solution ω(1)(λ(O)) is:

0 ≤ ξ = ω(1)
(
λ(ID)

)
− ω(1)

(
λ(O)

)
≤ ε+

ω(1)
(
λ(O)

)
η − 1

(11)

According to the process of Algorithm 2, we can present the
proof of Property 3 as follows.

Proof 3: When the Algorithm 2 reaches convergence, the
following relationships are tenable:

1) ∃i s.t. Dmax i
η ≥ 	1(λ

O) and Dmax η−i
η ≥ 	2(λ

O);

2) ∀i ∈ [0, η], Dmin i
η ≤ 	1(λ

O) or Dmin η−i
η ≤ 	2(λ

O);

3) 0 ≤ Dmax −Dmin ≤ ε.
If 0 ≤ ∃i ≤ η s.t. Dmin i

η ≤ 	1(λ
O) and Dmin η−i

η ≤
	2(λ

O), then Dmin ≤ 	1(λ
O) + 	2(λ

O) = ω(1)(λ(O)). Be-
cause, ω(1)(λ(ID)) ≤ Dmax ≤ Dmin + ε, thus ω(1)(λ(ID)) ≤
ω(1)(λ(O)) + ε.

If for 0 ≤ ∀i ≤ η, (Dmin i
η ≤ 	1(λ

O)) ∧ (Dmin η−i
η ≤

	2(λ
O)) = False, then there must 0 ≤ ∃i < η s.t.

Dmin i
η ≤ 	1(λ

O), Dmin η−i
η ≥ 	2(λ

O), Dmin i+1
η ≥ 	1(λ

O)

and Dmin η−i−1
η ≤ 	2(λ

O). Therefore, Dmin η−1
η ≤

	1(λ
O) + 	2(λ

O). Thus, ω(1)(λ(ID)) ≤ η
η−1ω

(1)(λ(O)) + ε.
Thus, Property 3 is proved.
Property 3 reveals the theoretical optimality of IMD. From

(11) of Property 3, we can also obtain that:

lim
ε→0,η→+∞

(
ω(1)

(
λ(ID)

)
− ω(1)

(
λ(O)

))
= 0 (12)

3) Analysis of Computational Complexity and Selection of
Parameters: To further discuss the performance of Algorithm
2, we analyze its computational complexity CIMD.

Since the dichotomy will reduce the search space by half each
time, it needs log2(

D
ε ) times to reach convergence where D =

D1 +D2 −max(max(HP , JP ),min(HM , JM )). The com-
plexity of each time is determined by η and Algorithm 3. It can
be obtained as O(η(2K)), where the complexity of Algorithm
3 is O(2K). Thus, the complexity of Algorithm 2 can be
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derived as

CIMD = O

(
2Kη log2

(
D

ε

))
(13)

If the maximum allowable error is given as ξ where ξ = ε+
1

η−1ω
(1)(λ(O)) according to (11) of Property 3, we can obtain

the complexity of Algorithm 2 with respect to ε as:

CIMD = O

(
2K

ω(1)
(
λ(O)

)
ξ − ε

log2

(
D

ε

))
(14)

MinimizingCIMD is equivalent to minimizing 1
ξ−ε ln(

D
ε )where

ξ and D are given. It can be derived that when

ε (lnD − ln ε+ 1) = ξ, (15)

CIMD achieves the minimum. Equation (15) presents a way
to select the appropriate parameters of ε and η to reduce the
computational complexity under the given maximum error ξ.
Equation (15) can be solved through various numeric methods
such as Newton iteration method and secant method.

Contemporary methods to solve the pipeline networks divi-
sion mainly include dynamic programming and recursive al-
gorithm [15], [22], [24], whose computational complexities are
bothO(2NK2). One advantage of IMD is that its computational
complexity is not affected by the number of stages (i.e., N ), and
the other is that it has a linear relationship with the number of
networks (i.e., K). Thus, IMD is significantly faster than the
state-of-the-art methods.

C. Optimal Data Partition Algorithm (ODPA)

To obtain the optimal solution of parallel training, we also
need to find the optimal partition number p of data parallelism
(i.e., problem ω2) under a given network division scheme λ.

When, HP , HM , JP and JM are known, it is easy to
calculate the training time T (λ, p) for ∀p. Then, it only needs
to choose the partition number corresponding to the minimum
running time. As the network division scheme λ is given,
matrix operation can be used to accelerate the calculation of
training time for all possible partition numbers. The algorithm
to obtain the number of the optimal partitions under given λ

is as Algorithm 4, where X × Y means matrix multiplication,
max(X, dim = 1) means taking the maximum value of each
row in X , max(X,Y ) means taking the maximum value of the
homologous elements of two matrices,X · Y means multiplying
the homologous elements of two matrices. In Algorithm 4,
Line 1 and Line 2 are to prepare the matrix for subsequent
calculation. Line 3 is to calculate the training time of each
data partition schemes, where U1 = 〈. . . , (p− 1)ρ1(λ, p), . . .〉,
U2 = 〈. . . , (p− 1)ρ2(λ, p), . . .〉, and Z = 〈. . . , T (λ, p), . . .〉.

With cross-search for joint optimization problem, improved
multi-dimensional dichotomy method (IMD) for the subproblem
ω(1) and optimal data partition algorithm (ODPA) for the sub-
problem ω(2), we can obtain the systematic method for solving
optimal parallel schemes of MBPP, i.e., cross-search based on
IMD and ODPA (CSIMD) whose framework is shown as Fig. 5.
Subsequently, we will evaluate the performance in the real GPU
cluster.

Algorithm 4: Optimal Data Partition Algorithm via Basic
Time Function (ODPA).

Input: K, N , λ, the functions of HP
i , HM

i , JP
i , and JM

i

for ∀1 ≤ i ≤ K
Output: The optimal partition number p
1 Get four matrices Q(1), Q(2), Q(3) and Q(4) to

respectively represent HP
i , HM

i , JP
i , and JM

i . For

example, the element Q(1)
ji in Q(1) equals to HP

i (j)

2 Get two K ×N matrices (P (1) and P (2)) and a
one-dimensional matrix P (3) where⎧⎪⎪⎨

⎪⎪⎩
P

(1)
ij =

{
1, if αi−1 + 1 ≤ j ≤ αi

0, others
,

P
(2)
ij =

{
1, if j = αi

0, others
, P

(3)
i = i− 1

3 Calculate Z (the array composed of respective training
time under each data partition schemes):⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

U1 = max

(
max

(
Q(1) × P (1), dim = 1

)
max

(
Q(2) × P (2), dim = 1

)) · P (3)

U2 = max

(
max

(
Q(3) × P (1), dim = 1

)
max

(
Q(4) × P (2), dim = 1

)) · P (3)

Z = sum
(∑4

i=1

(
Q(i)×P (2−(i mod 2))

)
, dim = 1

)
+U1 + U2

4 Obtain the index corresponding to the minimum value of
matrix Z as the optimal partition number that

p = argmin(Z)

V. EXPERIMENT EVALUATION

For the sake of the comprehensive evaluations of our proposed
methodologies, we carry out three groups of experiments from
various aspects including:

1) EX1: evaluation of IMD to solve the ordered multi-
dimensional array segmentation problem;

2) EX2: evaluation of CSIMD in the CV-related networks
with CNN layers to obtain jointly optimal schemes of
network division and data partition;

3) EX3: evaluation of CSIMD in the NLP-related networks
(typical LLMs) with transformer layers to obtain jointly
optimal schemes of network division and data partition.

In the actual parallel training, there is also a restriction that the
peak memory of the workload in each GPU cannot exceed that
of the corresponding GPU. Then, the experiments are launched
on a real cluster with multi-servers. The configurations of the
realistic cluster environment are as follows.
� Communication Network: 10 Gigabit, full duplex;
� Program version: Python 3.7 + Pytorch 1.13.1;
� Servers:

– CPU: Intel i9 10850 K @ 3.6 GHz, 10 cores;
– RAM: LPX 64 GB DDR4 3200;
– GPU: NVIDIA TESLA V100 @ 32 GB;

The datasets used to execute training in experiments mainly
include Mnist (with 60000 training images resized to 100× 100
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Fig. 6. The maximum approximations for different numbers of weight groups
when using IMD to solve multi-dimensional array segmentation where each
combination of (K,N) has 100 instances.

Fig. 7. The probabilities achieving the theoretical optimization (PATO) for
different numbers of weight groups when using IMD to solve multi-dimensional
array segmentation where each combination of (K,N) has 100 instances
corresponding to Fig. 6.

), ImageNet (with more than 14M images uniformly resized to
100× 100 ) and WikiText-2 (with 2M tokens divided by the seq
length). To observe the algorithm performance in the scenarios
with more GPUs, we also use process concatenation to simulate
the parallel operation of neural networks appropriately.

A. EX1: Evaluating the Theoretical Performance of IMD

To evaluate the optimality of the improved dichotomy al-
gorithm (IMD) in solving multi-dimensional array segmen-
tation, we carry out experiments in two groups of scenarios
with the small scale that (K ∈ [5, 100], N = 4) and (K ∈
[5, 100], N = 5) to observe the approximation and probabil-
ities to achieve the theoretical optimization (PATO). In each
combination of (K,N), we execute 100 instances by randomly
generating the values of the array in a uniform distribution,
i.e., HP

i , HM
i , JP

i , JM
i ∼ U[50, 100]; use an enumerative al-

gorithm to obtain theoretical optimization solution; and record
the maximum approximation and PATO of each (K,N) using
IMD respectively with the number of weight group as 11, 101,
and 1001. Then, we plot the approximation in Fig. 6 and the
corresponding PATO in Fig. 7.

From the results of Fig. 6, the maximum approximations of
η = 1000 (within the range of [1,1.001]) are lowest, followed by
that of η = 100 (within [1,1.01]) and η = 10 (within [1,1.1]). As
η increases, the maximum approximation decreases, indicating
that the solution of the algorithm is closer to the theoreti-
cally optimal solution. The fluctuation range of the maximum
approximations is approximately inversely proportional to η.
Additionally, as K increases, the maximum approximation ratio

Fig. 8. The average execution time (computational complexity) for different
sizes of weight groups when using IMD to solve multi-dimensional array
segmentation where each combination of (K,N) has 20 instances.

TABLE II
THE FITTED SLOPE (FS) AND GOODNESS-OF-FIT TO LINEARLY FIT THE

EXECUTION TIME OF IMD CORRESPONDING TO FIG. 8

does not show a significant upward trend, which indicates that
the approximation (or relative error) is mainly influenced by η
and has no explicit positive or negative correlation with (K,N).
These observations are consistent with the theoretical conclusion
of Property 3, which can serve as supplementary proof of theory
verifying the theoretical error of the IMD algorithm proposed in
this paper.

From Fig. 7, the probability of the algorithm reaching the
theoretical optimal solution increases with the η. The PATO is
within the range of (0.45,1]when η = 10, (0.70,1] when η =
100, and (0.95,1] when η = 1000. This is also consistent with
the conclusion of Property 3.

As concluded by Property 3, Figs. 6 and 7, when η approaches
infinity, the approximation and PATO will both tend to 1.
However, the actual selection of η needs to be based on the
requirements of computational complexity and optimality. To
further observe the time complexity required for IMD to achieve
the convergent solution, we execute experiments in two groups
of scenarios with the huge scale that (K ∈ [100, 10000], N =
50) and (K ∈ [2000, 50000], N = 1000). Each combination of
(K,N) has 20 instances. Fig. 8 plots the average execution time
of IMD.

As shown in Fig. 8, the average execution time of each η
increases approximately linearly with K. As η increases, the
gradient of the curve significantly increases. To further observe
the relationship between slope and η, we linearly fit the curves
in Fig. 8, and then obtained their fitted slope and goodness-of-fit
(R-square) as shown in Table II.

The R-squares of all rows in Table II are larger than 0.9,
indicating that the execution time can be statistically acceptable
as proportional toK. The fitted slope in Table II is approximately
proportional to η, which equals to that the execution time is pro-
portional to η. These conclusions on computational complexity
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Fig. 9. The average execution time (computational complexity) of IMD and
baselines (dynamic programming) to solve multi-dimensional array segmenta-
tion where each combination of (K,N) has 20 instances.

are consistent with (14) in Section IV-B3, which means that in the
statistical sense, IMD is a linear time algorithm with controllable
errors in solving the multi-dimensional array segmentation.

To demonstrate the rapidity of IMD, we also carry out ex-
periments to compare it with contemporary methods includ-
ing dynamic programming and recursive algorithm. Based on
the simulation dataset, incremental experiments, for K and N
respectively, were conducted on IMD, dynamic programming
and recursive algorithms. Due to that multi-layer recursions will
affect the stability of the program and system, some experiments
in ultra-large scale scenarios only present the results of IMD
and dynamic programming, without losing representativeness.
While, in large-scale scenarios, it can be seen that the com-
putational complexity of recursive algorithms is similar to that
of dynamic programming, i.e., both satisfying O(2NK2). In
experiments, each combination of (K,N) contains 20 instances.
IMD method chooses 1000 weights (i.e., η = 1000). Then, the
results of the average execution time of these three algorithms to
solve the multi-dimensional array segmentation (problem ω(1))
are plotted in Fig. 9.

From Fig. 9, the computational complexity of the state-of-the-
art algorithms (dynamic programming and recursive algorithm)
is slightly lower than that of IMD for small-scale cluster, while
IMD has a significantly lower computational complexity with
increasing scale, which may be because small-scale corresponds
to a search space that can be traversed in a short period of time,
in which the advantages of IMD (using η = 1000) have not yet
been manifested. IMD is an algorithm for the linear polynomial
computational complexity of K (the number of network layers);
dynamic programming and recursive algorithm are algorithms
for the quadratic polynomial computational complexity of K.
For N (the number of stages), dynamic programming and re-
cursive algorithm are algorithms with positive linear polyno-
mial computational complexity; while the complexity of IMD

TABLE III
DETAIL OF SELF-DESIGNED CNNS

decreases with increasingN . This is because, in IMD,N mainly
affects the calculation process of the total occupancy in each bin
after transforming multi-dimensional segmentation problems
into orderly packing. As N increases, the average number of
layers in each stage decreases, resulting in a decrease in overall
computational complexity. Thus, the computational complexity
of IMD can be further updated as:

CIMD = O

(
2 (K − φ(N)) η log2

(
D

ε

))
(16)

where φ(N) is an increasing positive function related to N ,
satisfying φ(N) ≤ K and φ(K) = K.

The experiments on approximation, PATO, and computational
complexity in this subsection not only verify the theoretical
derivation of IMD algorithm performance in Section IV-B, but
also again demonstrate its optimality and rapidity. We set η =
1000 considering the number of DNN’s layers in the subsequent
experiment is much smaller than the order of magnitude of K in
the experiment of this subsection. The optimization algorithm
can give a parallel scheme in advance without affecting the actual
process of parallel training.

B. EX2: Evaluating CSIMD in the CV-Related Networks

To evaluate the CSIMD in solving the joint optimization
problem to obtain the network division and data partition, we first
carry out the experiments in CV-related networks which mainly
consist of convolutional layers and fully connected layers. The
compared strategies are selected as:

1) GPipe-R: GPipe based on random network divisions and
data partitions;

2) GPipe-E: GPipe based on the evenly distributed network
divisions and a fixed number of data partitions.

In self-designed CNNs, as shown in Table III, we continuously
increase the number of CNN layers, where the number of output
channels of each CNN layer is a random value generated by
uniform distribution U(20, 50). Three fixed partitions of GPipe-
E are set as 1, 4 and mini-batch size (BS). The mini-batch size
is set as 64, the input figures are resized to 100× 100. Then,
we record the time to train 6400 images in Mnist dataset for one
iteration respectively in each instance of two groups of scenarios
that (K ∈ [8, 19], N = 4) and (K ∈ [8, 19], N = 8) and plot
results in Fig. 10.

As shown in Fig. 10, the curve of CSIMD remains the lowest,
followed by GPipe-E-4. The results of Fig. 10 demonstrate
using CSIMD to search the network division and mini-batch
partitions can further improve the performance of MBPP. This
also indicates that setting fixed network division and mini-batch
partitions cannot adapt to all scenarios. The observation that
GPipe-E-4 is better than GPipe-E-1 indicates performing certain
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Fig. 10. The training time with respect of K (number of layers) for self-
designed CNN in Table III to train 6400 images of Mnist under different network
division and batch partition strategies where mini-batch size is 64, the resize of
image is 100× 100.

Fig. 11. The training time regarding N (number of stages) for VGG16 to train
6400 images of ImageNet under different network division and batch partition
strategies where mini-batch size is 64, the resize of image is 224× 224.

mini-batch partitioning can improve training speed, which is
consistent with the goal proposed by GPipe. However, as the
number of partitions increases to 64, the training time actually
becomes larger on the contrary. This indicates that there are one
or more network layers whose time cost (computing time or
communication time) is non-linear to the data volume (batch
size), i.e., HP

i , HM
i , JP

i , JM
i may not be inversely proportional

to p.
Additionally, to verify the performance of CSIMD in parallel

training of existing common CV-related neural networks, we
execute experiments in VGG16 on the ImageNet dataset. We
collect training performance data in two network bandwidth
environments that are under the Gigabit bandwidth and 10
Gigabit bandwidth. As the layers of VGG16 are given, we select
the number of stages (N ) as abscissa. Then, we plot their training
time for training 6400 images in Fig. 11.

In Fig. 11, the curve of CSIMD also remains the lowest
showing a decreasing trend with the increase of N . The curve of
GPipe-E-1 increases withN , which is because adding the stages
actually increases additional communication time. In addition,
with the change in the number of stages, the experimental results
of GPipe-E have a certain fluctuation, which may be mainly
because the division of network layers is not strictly balanced
under different numbers of pipeline stages, and the real device
operation status also has a certain fluctuation. This also reflects
the necessity of optimizing the network division of pipeline
stages. Comparing Fig. 11(a) to (b), as bandwidth increases,
the training time of CSIMD and GPipe-E decreases, which
indicates that improving communication speed can accelerate

TABLE IV
THE (MINIMUM, AVERAGE, MAXIMUM) RATIOS OF TRAINING TIME BETWEEN

THE COMPARISON STRATEGIES AND CSIMD UNDER CNNS

TABLE V
DETAILS OF EXPERIMENTS AND CONFIGURES OF LLMS

parallel training. However, the acceleration effect by improving
communication for GPipe-E-1 with the longest training time is
the most significant, and that for CSIMD is the smallest. This is
because CSIMD minimizes the impact of communication time
on the overall training speed by optimizing network division and
mini-batch partition, which once again validates the advantage of
cross-search when considering both nonlinear computation time
and communication time. To our knowledge, there is currently
no algorithm that can achieve this.

To quantitatively evaluate the improvement effect of CSIMD,
we compile various experimental results on CNNs in this sub-
section and record the (minimum, average, maximum) ratios of
training time between the comparison strategies and CSIMD
under CNNs. Then, we list the ratios in Table IV.

As shown in Table IV, CSIMD can achieve 2.0×, 3.5×,
1.5× and 2.1× speeds on average respectively over GPipe-R,
GPipe-E-1, GPipe-E-4 and GPipe-E-BS in CNNs of the experi-
ments. On average, the training speeds of CSIMD in CNNs are
(2.0, 2.5)× of (GPipe-R, GPipe-E).

C. EX3: Evaluating CSIMD in the NLP-Related Networks

To evaluate CSIMD in the NLP-related networks, we carry
out experiments on GPT series and Llama series which are some
representative LLMs. Different from CNNs, transformer-based
NLP models can not only be partitioned in data batches but also
in tokens, i.e., Terapipe [13]. Since these two aspects are actually
both data parallelism obeying the same cost model of (6), our
CSIMD is applicable to both of them. Therefore, in experiments
of transformer-based DNNs, we present the verification for the
partition of both batch size and token size, comparing the heuris-
tic strategies under GPipe and Terapipe respectively. Table V
lists the configures and details of LLMs in experiments, where
D_model is embedding dimension, M means mini-batch size
and S means seq length.

For the perspective of micro-batch-based data parallelism,
we carry out experiments on real clusters, training LLMs on
WikiText-2, comparing CSIMD with the heuristic strategies
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Fig. 12. The training time with respect of number of stages for typical LLMs
to train 10240 sequences of WikiText-2, comparing CSIMD with heuristic
strategies from the perspective of micro-batch-based data parallelism.

under GPipe. Applying the number of stages as abscissa, we
plot the time to train 10240 sequences in Fig. 12.

In Fig. 12, the curves of CSIMD are significantly lower
than compared strategies, which verifies the feasibility and
superiority of CSIMD in optimizing parallel training of typical
LLMs. The trends of GPipe-E-1, GPipe-E-4 and GPipe-E-BS
indicate there are layers with nonlinear time cost (comput-
ing time or communication time) with respect to data volume
in transformer-based NLP networks, otherwise, GPipe-E-BS
(GPipe-E-256 or GPipe-E-512) should be better than GPipe-E-4
and GPipe-E-1, because if following the linear assumptions of
time functions, more partitions of mini-batch will cause a smaller
training time usually. In addition, as the number of layers contin-
ues to increase, the advantages of CSIMD become increasingly
apparent, which is because an increase in the number of network
layers will bring more possibilities for network division, and
CSIMD can find optimal solutions among these possibilities due
to the optimality of IMD. In experiments, whenN is greater than
a certain number, the training time achieved by CSIMD remains
almost unchanged and does not decrease as N increases. This
is because using a certain number of GPUs in CSIMD search
results is optimal, while more GPUs may actually introduce
additional communication time. Therefore, when the graphics
card has enough memory, the more stages of the pipeline, the
shorter the training time may not be.

To further verify the practicability of CSIMD for the general
MBPP parallel training architecture, we carry out experiments
on real clusters to observe performance of CSIMD for micro-
tokens-based data parallelism, by training LLMs on WikiText-2
(significantly, the training performance mainly corresponds to
the training time of the language text under the specific sequence
length. In fact, it has little relevance to the dataset itself). To adapt
to micro-tokens-based data parallelism, we leverage the heuristic
strategies under Terapipe as the baselines. Then, the results of

Fig. 13. The training time with respect of number of stages for typical LLMs
to train 1024 sequences (with 1024× 1024 tokens) of WikiText-2, comparing
CSIMD with heuristic strategies from the perspective of micro-tokens-based
data parallelism.

TABLE VI
THE (MINIMUM, AVERAGE, MAXIMUM) RATIOS OF TRAINING TIME BETWEEN

THE COMPARISON STRATEGIES AND CSIMD UNDER LLMS

the time to training 1024 sequences (with 1024× 1024 tokens)
are plotted in Fig. 13 where “SL” means the fixed partitions of
tokens are seq length (i.e., partitioning one sequence into 1024
micro-sequences in experiments).

Overall, CSIMD remains lowest in Fig. 13, which demon-
strates the superiority of CSIMD in MBPP with micro-tokens.
In fact, the partitions from tokens and mini-batches both cor-
respond to a certain dimension of the input data matrix, not
changing the formulas of the cost model. The theoretical cost
model and optimization algorithm of CSIMD are targeted at the
pipeline parallel training with the general data parallelism, so
they are not only suitable for micro-batch-based GPipe, but also
suitable for micro-tokens-based Terapipe.

Similarly, in order to quantitatively evaluate the improvement
effect of CSIMD in NLP networks, we compile results in this
subsection and list the (minimum, average, maximum) ratios of
training time between the comparison strategies and CSIMD
in Table VI. On average, the training speeds of CSIMD in
transformer networks are (2.66, 5.48)× of (MBPP-R, MBPP-E)
(MBPP can represent various pipeline parallel training architec-
ture based on data time-sharing parallelism such as GPipe and
Terapipe).

VI. CONCLUSION

Distributed parallel training is now a hotspot in the de-
velopment of artificial intelligence models. Micro-batch-based
pipeline parallelism (MBPP, e.g., GPipe and Terapipe) is one
of the popular strategies to improve the performance of parallel
training. In MBPP, two key factors are the division of the network
layers and the partition of mini-batches. Additionally, due to the
complexity of the parallel training process, some cost models
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make a lot of assumptions, which makes them deviate from the
real scenarios.

In view of these, we consider computing time and commu-
nication time simultaneously and consider them nonlinear to
data size. Then focusing on the scenario where the number of
network layers is greater than the number of devices, we derive a
time-cost model with respect of network division and data parti-
tions. Based on the time cost model, we formulate the problem of
solving network division and data partitions as a joint optimiza-
tion problem, where solving network division can be regarded
as an ordered multi-dimensional array segmentation problem.
To solve the joint optimization problem, we propose CSIMD, in
which we propose an improved multi-dimensional dichotomy
(IMD) to solve multi-dimensional array segmentation. Through
theoretical derivation, we present and prove the theoretical
performance of IMD, indicating that IMD can approximately
achieve theoretical optimum with linear calculational complex-
ity. Finally, experiments have verified the theoretical optimal-
ity and linear computational complexity O(2Kη log2(

D
ε )) of

IMD, far faster that the state-of-the-art methods, i.e., dynamic
programming and recursive algorithm with quadratic polyno-
mials calculational complexity as O(2NK2). We also carry out
extensive experiments in CNN-based networks and transformer-
based networks. Experimental results demonstrate our proposed
CSIMD can obtain optimal network division and data partition
schemes under MBPP. On average, training speeds of CSIMD in
CNN- and transformer-related deep neural networks are respec-
tively (2.0, 2.5)× and (2.66, 5.48)× of (MBPP-R, MBPP-E).

This paper not only provides an algorithm to obtain optimal
parallel schemes but also provides a complete idea of solving
high-performance parallel training schemes from the perspec-
tive of solving joint optimization problems, which can also be
applied to scenarios adding tensor model parallelism. In the
future, we consider combining 3D or 4D parallelism to explore
time-cost models and optimization algorithms for more complex
scenarios.
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