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Abstract—Most of existing resource provisioning methods are
designed for traditional Web applications with linear structures.
However, Web systems with the meshed topology are becoming
widespread. Meshed connections among different tiers make
Virtual Machine (VM) provisioning and bottleneck elimination
complex. In this paper, a Jackson network based Proactive and
Reactive VM auto-scaling Method (JPRM) is proposed. In JPRM,
request transition behaviors among tiers are modeled as a finite-
state Markov stochastic process. A transition probability matrix
is studied on-line to predict resource requirements based on
M/M/N queuing models as proactive control. For reactive provi-
sioning, the final increased request rate of each tier is determined
based on stable state checking and Jackson equilibrium equation
solving to eliminate bottleneck tiers and avoid bottleneck shifting.
The JPRM is evaluated in a simulation environment established
using CloudSim. Experimental results show that JPRM avoids
bottleneck shifting with reasonable additional VM rental costs
compared with existing methods.

Index Terms—Resource provisioning; Bottleneck eliminating;
Meshed Web systems; Jackson network; Cloud computing

I. INTRODUCTION

More and more Web system vendors migrate their appli-
cations to virtual data center built on elastically rented VMs
[1]. Most existing works assume that Web systems have linear
multi-tier structures. However, due to various machine learning
algorithms have been used in big data processing to generate
better service experiences [2], services provided by one Web
system are becoming diverse which makes the Web system
have a mesh structure. It is crucial to design Cloud resource
auto-scaling methods for mesh-structured Web systems (called
Meshed Web systems) to minimize resource rental costs and
guarantee Quality of Service (QoS).

Mesh structures make the resource provisioning problems
complex. Most existing works mainly focus on single-tier Web
systems or single tiers of multi-tier Web systems. For multi-
tier systems, some works treat the Web system as a whole
using black-box based methods, making it hard to decide
which tiers to increase resources confronted with bottlenecks.
Some other works provision for each tier independently using
methods designed for a single-tier directly. This kind of divide-
and-conquer based method is helpful to find bottlenecks and
eliminate them but cannot avoid their shifting among tiers.

Only a few methods have been designed to deal with the
bottleneck shifting of multi-tier systems. The ratio of the
request arrival rate in each tier to the total arrival rate to

the whole system is measured on-line. Then, resources are
increased in proportion to the ratios when there are bottle-
necks [3]. For single-function Web systems, request ratios are
relatively stable. However, in a Meshed Web system, there
are requests accessing different services and the proportions
of users generating these requests may change as time goes
[4], which decrease the performance of this proportion-based
method.

In this paper, a Jackson network based Proactive and Re-
active VM auto-scaling Method (JPRM) is proposed which
uses the Markov stochastic process to describe the request
transition behaviors among tiers in Meshed Web systems. The
main contributions are as follows:
• A method based on stable state checking of queuing

models is proposed to estimate the additionally passed
request rate of each bottleneck tier after the bottleneck is
eliminated.

• Queuing network and Jackson equilibrium equation based
reactive method is proposed to predict the final increased
request arrival rates and VM requirements of all tiers after
eliminating bottleneck tiers to avoid bottleneck shifting.

The structure of the rest in this paper is as follows. Section II
reviews related works. The problem is described in Section III.
Section IV explains the JPRM. Section V shows experimental
results and conclusions are depicted in Section VI.

II. RELATED WORK

Resource provisioning techniques for a single-tier of Web
systems can be mainly categorized into time series analysis
[5], [6], queuing model [7], [8], [9], [10], [11], control theory
[12] and reinforcement learning [13]. Different time series
analysis models are usually used to predict workloads of
Web applications, based on which reasonable resources are
determined by various queuing systems such as M/M/N [7],
[8], [9], M/G/N/N+K [10], MMPP/PH/1 [11] and M/GI/1
[12]. A Proportional Integral (PI) controller [12] and other
control techniques are then applied to control QoS precisely.
Reinforcement learning models performance characteristics
more flexibly, but needs more training time [13].

Based on these techniques, resource provisioning methods
for multi-tier Web systems include provisioning for each tier
independently [4], [14], [15], [16], queuing networks [17],
[18], [19], embedded Markov chain [20] and reinforcement
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Figure 1: An example of Meshed Web systems providing multiple services.

learning [21]. However, most of them focus on predicting
workloads and resource requirements of different tiers as
accurately as possible, but predicted results still deviate from
the actual requirements inevitably which is likely to generate
bottlenecks. Urgaonkar et al. [3] proposed a Proportional Pro-
visioning Method (PPM) for multi-tier systems. To eliminate
bottlenecks, VMs are added in proportion to the ratio of
the request arrival rate in each tier to the total arrival rate.
However, request ratios change when the proportions of user
types change which decreases the performance of PPM.

In this paper, JPRM models the request transmitting re-
lations among different tiers using a transition probability
matrix. When bottleneck tiers are eliminated, the impacts on
other tiers are also predicted based on the transition probability
matrix which is helpful to avoid bottleneck shifting.

III. PROBLEM DESCRIPTION

A Meshed Web system usually provides diverse services
(functions) such as video processing, machine learning and
so on in one platform with a network structure. Fig. 1 is
an example of such systems which provide multiple types of
services. All requests from users or other applications first
arrive at the Router tier and then are distributed to other
tiers. Requests in a tier may invoke other tiers with different
probabilities. Virtual cluster of each tier consists of multiple
elastically rented homogeneous VMs with hour-based pricing
models. The Service Level Agreement (SLA) of Web systems
usually specifies a mean response time limitation Wsla (called
sub-SLA). The objective of this paper is to design a resource
auto-scaling method for Meshed Web applications to minimize
VM rental costs and guarantee Wsla.

IV. PROPOSED RESOURCE PROVISIONING METHOD

As shown in Fig. 2, the proposed JPRM mainly consists
of four parts: (1) The Jackson queuing network is used to
describe the Meshed Web system and a request transition
probability matrix is measured on-line. (2) A Jackson network
based Proactive VM Scaling-Up method (JPSU) is applied to
provision VMs based on obtained transition probability matrix
and M/M/N queuing models for every time interval T p. (3)
When a bottleneck is detected for every time interval T r,
the Jackson network based Reactive Bottleneck Elimination
method (JRBE) is employed to obtain final estimated arrival
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Figure 2: The overall framework of JPRM.

rates of all tiers after eliminating bottleneck tiers based on
stable state checking and the transition probability matrix. (4)
Whenever there is a VM reaching its pricing point, a Queuing
model based VM Scaling-Down Method (QSDM) is used to
decide whether to release the VM.

A. Jackson Queuing Network based Modeling

Although inter-arrival time and processing time of requests
may have different distributions, it is acceptable to assume
that both of them follow the exponential distribution [8], [18].
Since each tier consists of homogeneous VMs, the M/M/N
queuing model is applied to model each tier. All K tiers have
different probabilities to generate new requests to other tiers
which can be described by a transition matrix

P =

p0,0 ... p0,j
... ... ...
pi,0 ... pi,j


where i ∈ {0, 1, ...,K} and j ∈ {0, 1, ...,K}. P can be
measured on-line by the request number of each tier, which is
studied from the request history.

B. Jackson Network based Proactive VM Scaling-Up Method

Predicting workloads is helpful to prepare VMs for work-
load changes in advance. Multiplicative Holt-Winter’s model
[6], which obtains well performance, is applied. In order to
decrease the time spent on training data, the total outside
arrival rate λ is predicted based on the real total workloads λr

of each interval T p. According to the Jackson queuing network
theory [22], the estimated arrival rate λi of each tier can be
obtained based on the transition probabilities as follows.

λj =

K∑
i=0

λi × pij , j ∈ {1, 2, ..K} (1)

λ0 = λ (2)
Then, based on λi and sub-SLA W i

sla, the M/M/N queuing
model is used to predict the required VM number of each tier.
Given λi, N VMs and service rate per VM µi for Tier i, its
expectation of response time W i

s(N,λi, µi) can be obtained
based on queuing theory [8]. However, the function from W i

s

to N cannot be deduced directly, an exhausted search method



is applied to find the minimum number of VMs N
′

i to fulfill
W i

sla as follows.
N

′

i = min
N∈Z+

{N |W i
s(N,λi, µi) ≤W i

sla} (3)

The formal description of JPSU is shown in Algorithm 1.
Firstly, the number of VMs in each tier should not be smaller
than bλi/µic + 1 according to the stable requirements of
M/M/N queuing models. Then, an exhausted search is applied
to determine Φ, based on which new VMs are rented.

Algorithm 1: Jackson network based Proactive VM
Scaling-Up method (JPSU)

Input: sub-SLA W i
sla and service rate µi of each tier

1 begin
2 Initialize renting plan Φ← φ;
3 Predict λ based on Holt-Winter’s model;
4 Calculate λi of each tier by solving (1) and (2);
5 for each tier i ∈ {1, 2, ...,K} do
6 Initialize N ← bλi/µic+ 1;
7 Calculate W i

s(N,λi, µi);
8 while W i

s > W i
sla do

9 N ← N + 1;
10 Calculate W i

s(N,λi, µi);

11 N
′

i ← N and Φ← Φ
⋃
N

′

i ;

12 Scaling up VMs of each tier according to Φ;

C. Jackson Network based Reactive Bottleneck Elimination
Due to inevitable inaccuracy of Holt-Winter’s prediction

model, workload fluctuations and the proportion changes of
requests accessing different services, existing resources may
be not sufficient to cope with the real workloads. It is crucial
to detect bottlenecks, eliminate them and avoid their shifting
among tiers in every interval T r.

For any tier i, it is considered a bottleneck tier when the real
response time MRTi is larger than assigned sub-SLA W i

sla

and the queuing model can be used to analyze its additionally
passed request rate. Tier i is still in a stable state if the
real arrival rate λri is still smaller than its current processing
rate Nr

i × µi. Increasing additional VMs to this tier will not
increase the arrival rates of other tiers. Otherwise, it is in a
nonstable state, its queue length will increase continually if no
VMs are added and the passed request rate is smaller than its
arrival rate. After additional VMs are added, the additional
request rate passing through this tier which also generates
additional workloads to other tiers can be obtained by

4λ
′

i =

{
λri − (Nr

i × µi) λri > Nr
i × µi

0 Otherwise
(4)

However, complex request transition relationships among
tiers make it complicated to calculate the impacts of elimi-
nating all bottleneck tiers simultaneously on other tiers. The
Jackson queuing network [22] can solve this problem well by
the Jackson equilibrium equation as follows.

4λj = 4λ
′

j +

K∑
i=1

4λi × pij , j ∈ {1, 2, ..K} (5)

By solving this linear system, the final increased arrival rate
4λi of each tier is obtained by the additional arrival rate of
the current tier and additional transferring arrival rates from
other tiers. 4λi will be added to the original real arrival rate
λri to obtain the final reactive arrival rate λui after eliminating
bottlenecks. Specially, the original arrival rate of a bottleneck
tier is Nr

i × µi when λri > Nr
i × µi. Based on obtained λui ,

the M/M/N queuing model is used to calculate the required
VM number of each tier N

′

i by (3) as shown in Algorithm 2.

Algorithm 2: Jackson network based Reactive Bottle-
neck Elimination method (JRBE)
Input: assigned sub-SLA W i

sla for each tier;
mean response time MRTi of each tier;

1 begin
2 Initialize renting plan Φ← φ;
3 set of bottleneck tiers Bt← φ;
4 for each tier i ∈ {1, 2, ...,K} do
5 if MRTi > W i

sla then
6 Bt← Bt

⋃
i;

7 for each tier i ∈ Bt do
8 Calculate 4λ′

i based on (4);

9 Compute 4λi, i ∈ {1, 2, ...,K} by solving (5);
10 for each tier i ∈ {1, 2, ...,K} do
11 if λri > Nr

i × µi then
12 λui ← Nr

i × µi +4λi;
13 else
14 λui ← λri +4λi;
15 Calculate N

′

i based on λui using (3);
16 Φ← Φ

⋃
N

′

i ;

17 Scaling up VMs of each tier according to Φ;

D. Queuing Model based VM Scaling-Down Method

To save rental costs, VMs are only released when rented
hours for them are used up. Whenever a VM m of Tier
i reaches its pricing point, it is checked that whether the
left capacity after releasing this VM can fulfill the resource
requirement of this tier. Let Nr

i be the existing real VM
number of Tier i then N = Nr

i −1 be the number of left VMs.
If W i

s(N,max(λi, λ
u
i , λ

r
i ), µi) ≤ W i

sla, VM m is released.
Otherwise, the next hour is still rented on this VM.

V. PERFORMANCE EVALUATION

Since PPM [3] is one of a few methods considering bottle-
neck eliminating in multi-tier Web systems, JPRM is compared
with PPM first which is modified by using the M/M/N queuing
models for fair comparison. JPRM is also compared with
JPSU which uses the Jackson queuing network as a proactive
resource provisioning technique [18]. They are evaluated on
CloudSim [23], in which on-demand VM type “c4.2xL” of
Amazon EC2 with the price of $0.419 per hour is simulated.

The realistic Wikipedia traces [24] are applied. A Meshed
Web system with eight tiers is used as the test-bed. Because
the original Wikipedia trace data has no information about



TABLE I: PARAMETERS OF THE MESHED WEB SYSTEM

Parameters Tiers 1 to 5 Tiers 6 to 8

Service rate µi (requests/s) 38.75 3.875
Sub-SLA W i

sla (second) 0.03 0.275
Mean task length (MIPS) 400 4000
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(c) MRTs of JPRM.
Figure 3: MRTs of requests in Tier 3.

request transition among different tiers, hierarchical folders in
the Uniform Resource Locator (URL) of requests are mapped
to eight tiers to simulate the request transition among tiers.
Each original request in the Wikipedia trace data is considered
as a session, which will generate multiple requests to different
tiers in the order of hierarchical folders of its URL. Tier 0 is
the Router tier. Tier 1 to Tier 5 are parallel Web Server tiers
for five different services. Tier 6 and Tier 7 are two common
Application tiers and Tier 8 is the Database tier. The service
rate per VM, assigned sub-SLA and average task length of
requests in each tier are shown in Table I. And the proactive
and reactive control intervals are set to be T p = 1 hour and
T r = 5 minutes, respectively. To simulate proportion changes
of request accessing different services, user sessions to Tier 3
are increased to 2 × λr3 and 3 × λr3 in two sequential thirty-
minute intervals then decreased in opposite order in another
two sequential thirty-minute intervals.

Experimental results show that workloads can be predicted
by Holt-Winter’s model accurately with a very small mean
prediction error of 2.4%, but there are still large deviations
leading to bottlenecks in some cases. As shown in Fig. 3(a)
and Fig. 4(a), because there are no reactive strategies in
JPSU, requests will block all related tiers one by one, e.g.,
SLA violations of Tier 3 and Tier 7 increase to about 50
seconds and last for a long time until workloads decrease.
When bottlenecks occur in the Web system, PPM increases
VMs for each tier in proportion to the ratio of the number
of requests arriving at each tier to the number of sessions
arriving at the whole system. These ratios computed on-line
will change when the request proportions change. Therefore,
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(c) MRTs of JPRM.
Figure 4: MRTs of requests in Tier 7.
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(b) MRTs of Tier 8 (one step is 5 minutes).
Figure 5: A comparison of request MRTs in the 7th workload fluctuation.

there is great deviation between real ratio and historical ratio
of each tier after the proportion of requests belonging to
Tier 3 increases greatly. Tier 3 and Tier 7 are both under
provisioned by PPM, which makes their MRTs smaller than
those of JPSU but still larger than their corresponding sub-SLA
as shown in Fig. 3(b) and Fig. 4(b). In contrast, JPRM uses the
transition probability matrix which can predict the impacts of
bottleneck tiers on other tiers accurately to determine where
and how many VMs are added to eliminate bottlenecks and
avoid bottleneck shifting. Therefore, JPRM’s MRTs in Tier 3
and Tier 7 drop greatly when additional VMs are rented as
shown in Fig. 3(c) and Fig. 4(c). Then, requests from Tier 7
generate new requests to Tier 8, causing that Tier 8 will be a
bottleneck tier when there is a bottleneck in Tier 7. Because of
the request transmission delays, the SLA violation peak of Tier
8 appears several minutes later than that of Tier 7 while using
JPSU and PPM as MRTs within a short time shown in Fig.
5. On the contrary, there is no or only a minor SLA violation
peak for JPRM, which shows that JPRM has the ability to
avoid bottleneck shifting among tiers.

Table II describes the VM rental costs of different tiers
which shows that JPSU is the cheapest because it never
reacts to bottlenecks. PPM’s proportional provisioning strategy



TABLE II: VM RENTAL COSTS OF DIFFERENT TIERS

JPSU PPM JPRM

Tier 1 196.092 198.187 196.511
Tier 2 188.969 192.740 191.064
Tier 3 405.173 406.849 414.810
Tier 4 219.975 225.841 222.489
Tier 5 141.622 143.298 141.622
Tier 6 901.688 928.085 1507.562
Tier 7 3484.823 3510.382 3909.270
Tier 8 3421.554 3464.292 3920.583

makes Tier 3, Tier 7 and Tier 8 under-provisioned, but Tier 1,
Tier 2, Tier 4 and Tier 5 over-provisioned. Therefore, PPM’s
costs of Tier 3, Tier 7 and Tier 8 are lower than those of JPRM
while costs of Tier 1, Tier 2, Tier 4 and Tier 5 are higher than
those of JPRM. Moreover, JPRM’s cost of Tier 6 is also larger
than other two algorithms’ costs because this tier becomes a
bottleneck caused by original workload fluctuations in some
cases. JPRM has the highest total rental cost because it needs
an appropriate amount of additional resources to eliminate
bottlenecks quickly.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, the Jackson queuing network is applied to
model the Meshed Web system, based on which a proactive
and reactive resource auto-scaling and bottleneck eliminat-
ing method is proposed. Experimental results show that the
M/M/N queuing model and Jackson equilibrium equation
based method can estimate the impacts of eliminating bottle-
neck tiers on other tiers accurately. Bottlenecks are not shifted
to other tiers after existing bottleneck tiers are eliminated. VMs
are reasonably rented for different tiers incurring appropriate
additional rental costs to eliminate bottleneck tiers. Combining
control theory to improve the controllability of the balance
between costs and performance of provisioning algorithms for
Meshed Web systems is promising future work.
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