
 

FEATURE: Software-Defined Networking 

CLOUDS-Pi: A Low-Cost 
Raspberry-Pi-Based Micro 
Datacenter for Software-
Defined Cloud Computing 

Software-defined networking (SDN) is rapidly 

transforming the networking ecosystem of cloud-

computing datacenters. However, replicating SDN-

enabled cloud infrastructures to conduct practical 

research in this domain requires a great deal of effort 

and capital expenditure. This article presents the 

CLOUDS-Pi platform, a small-scale cloud datacenter for doing research on software-

defined clouds. As part of it, Open vSwitch is integrated with Raspberry-Pis, low-cost 

embedded computers, to build up a network of OpenFlow switches. The article provides 

two use cases and reports on validation and performance evaluation. It also discusses 

the benefits and limitations of CLOUDS-Pi in particular and SDN in general. 

The need for agile, flexible, and cost-efficient computer networks has formed the nucleus for the 
global efforts toward software-defined networking (SDN). SDN is an emerging approach to 
computer networking that separates the tightly coupled control and data (forwarding) planes in 
traditional networking devices. Thanks to this separation, SDN can provide a logically central-
ized view of the network in a single point of management. This is achieved via open interfaces 
and abstraction of lower-level functionalities and transforms the network to a programmable 
platform that can dynamically adapt its behavior. SDN is becoming so popular that its usage has 
spread beyond ordinary networks and is even suggested to address the challenges of smart-grid 
systems.1 

Cloud computing is a successful computing paradigm that delivers computing resources residing 
in providers’ datacenters as a service over the Internet on a pay-as-you-go basis. With the grow-
ing adoption of cloud computing, datacenters hosting cloud services are rapidly expanding their 
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sizes and increasing in number. Therefore, resource management in clouds’ large-scale infra-
structure becomes a challenge. 

In the meantime, SDN is increasingly being accepted as the technology for a new generation of 
networks in cloud datacenters, where the need exists for efficient management of large mul-
titenant networks of dynamic, ever-changing environments. In fact, SDN not only reduces the 
complexity seen in today’s cloud datacenter networks but also helps cloud providers manage net-
work services from a central management point. 

The fruitful combination and deployment of cloud computing and SDN require significant inno-
vation and research to fuse them together.2 However, evaluation and experimentation of SDN-
based applications for cloud environments present many challenges in terms of complexity, scal-
ing, accuracy, and efficiency.3 The major classes of performance evaluation techniques for these 
methods can be categorized as analytical modeling, simulation, emulation, and measurement. 

If we exclude analytical modeling owing to its limitations and complexity, simulation tools (e.g., 
CloudSimSDN4) play a significant role in the performance evaluation of these methods owing to 
their flexibility and affordability. However, simulations always present imperfect models and are 
limited in their ability to reproduce real-world software-defined clouds (SDCs). 

Emulation techniques, on the other hand, seem to be the method of choice for achieving a de-
tailed understanding of the operation of SDCs. Software emulators (e.g., Mininet5) expedite pro-
totyping of SDN on a single machine. But there is not enough support for network dynamicity 
and the performance measurement of the virtualized hosts and virtual machines (VMs) in such 
tools.6 Rapid and affordable prototyping of algorithmic advances in SDCs is challenging, and 
significant capital expenditure is required to replicate practical implementations and performance 
measurements. 

With these issues in mind, this article puts together all the elements to build a low-cost micro 
software-defined datacenter by leveraging off-the-shelf hardware and open source software. We 
propose a system architecture for constructing a testbed and micro datacenter for researching 
SDCs. We focus on the cost-effectiveness of our setup by reusing existing equipment and coping 
with the budget and space limitations of an academic research laboratory. 

One of the most important benefits of SDN is that commodity hardware can be used to build net-
working devices. Therefore, we use Raspberry Pis, low-cost and small single-board computers, 
to create a small-scale datacenter network. To make a network switch out of a Raspberry Pi, we 
integrate each Pi with an Open vSwitch (OVS), which is one of the most widely used virtual 
switches in SDN. 

In summary, our main contributions are the following: 

• We propose a system architecture and design to build a low-cost experimental testbed or 
infrastructure for conducting practical research in the domain of SDCs. 

• We present the challenges, detailed requirements, all the required elements, and our 
expriences building CLOUDS-Pi, a testbed and micro datacenter built in the CLOUDS 
(Cloud Computing and Distributed Systems) Laboratory at the University of Melbourne 
for researching SDN-enabled cloud computing based on our proposed recipe. 

• We discuss two use cases to illustrate how CLOUDS-Pi can be utilized to offer applied 
solutions and drive research innovations. 

• We explore the benefits and limitations of such a testbed. 

SYSTEM ARCHITECTURE 
In this section, we present the CLOUDS-Pi platform along with the physical-infrastructure setup 
and utilized software. In contrast to other work in this domain, such as Zebra7 or Elasticcon,8 that 
particularly focuses on architectural frameworks for advancing SDN controllers, we intend to use 
current advances in SDN and cloud technologies to put together a recipe for constructing a plat-
form for conducting empirical research in SDCs. 
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Physical Infrastructure 
The primary aim of our small cloud datacenter is to provide an economical testbed for 
conducting research in SDCs. Therefore, we focus on reusing existing infrastructure, equipment, 
and machines (hosts) connected through a network of OpenFlow switches made out of Rasp-
berry Pis, used by others as computational resources.9 Our platform comprises a set of nine 
heterogeneous machines with the specifications shown in Table 1. To keep up with common 
practice, we use separate networks for management, data, and control. 

Table 1. Specifications of machines in CLOUDS-Pi. 

Machines CPU 
No. of 
cores 

Memory 
Stor-
age 

3 × IBM 
x3500 M4 

Intel Xeon E5-2620 
@ 2.00 GHz 

12 
64 Gbytes (4 × 16 
Gbyte DDR3, 1,333 
MHz) 

2.9 
Tbytes 

4 × IBM 
x3200 M3 

Intel Xeon X3460 @ 
2.80 GHz 

4 
16 Gbytes (4 × 4 
Gbyte DDR3, 1,333 
MHz) 

199 
Gbytes 

2 × Dell Opti-
Plex 990 

Intel Core i7-2600 @ 
3.40 GHz 

4 
8 Gbytes (2 × 4 
Gbyte DDR3, 1,333 
MHz) 

399 
Gbytes 

 

The management network is used by OpenStack, our deployed cloud OS, for internal communi-
cation between its components and resource management. It constitutes a 16-port 10/100 Mbps 
Ethernet switch (NetGear Model FS516) connecting the hosts and OpenStack controller. 

The data network is used for data communication among VMs deployed within the cloud envi-
ronment and for providing Internet access to them through the gateway host. This network is a 
100 Mbps fat-tree-like network10 built on top of 10 Raspberry Pis (Pi 3 Model B) with OVS inte-
grated, each playing a role of a 4-port switch with an external port for control. Each Raspberry Pi 
3 Model B has four USB 2.0 ports and only one Ethernet interface. Therefore, we used TP-Link 
UE200 100 Mbps USB-to-Ethernet adapters to add four extra Ethernet interfaces to the Rasp-
berry Pi switch. 

The control network connects control ports on the Raspberry Pi switches to the SDN controller 
and transfers OpenFlow packets between the controller and the switches. 

To monitor the power consumption of individual machines, all cluster nodes are connected to 
two Eaton EMAB03 vertical managed enclosure power distribution units (ePDUs). Eaton ePDUs 
allow us to monitor and switch on and off power outlets connected to an individual machine re-
motely through the network. These measurements can be used to evaluate the energy efficiency 
of the testbed and developed algorithms. 

Figure 1 depicts our datacenter setup, including the network topology for the management, data, 
and control networks. Figure 2 depicts the CLOUDS-Pi platform. 
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Figure 1. The system architecture of CLOUDS-Pi. 

 

Figure 2. The CLOUDS-Pi platform. The top-left image shows a Raspberry Pi in an enclosure with 
four TP-Link USB-to-Ethernet adapters connected to available USB ports. The bottom-left image 
illustrates the 10 Raspberry Pi switches in a fat-tree-like topology. The middle image shows 
CLOUDS-Pi’s tower servers in the racks. The right image shows the two Eaton ePDUS (enclosure 
power distribution units) for power monitoring and management. 

Software 
We installed the CentOS 7.0 Linux distribution as the host OS on all nodes. Then, using RDO 
Packstack, we installed OpenStack to build our cloud platform. Given that the OpenStack con-
troller resides beside the SDN controller, we used one of our more powerful machines (an IBM 
X3500) as the controller node. All other nodes play the same role of computation hosts in the 
design. 
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In addition, we created NAT (network address translation) forwarding rules on the controller, 
using Linux iptables to enable all other nodes to connect to the Internet. In this way, the control-
ler node is configured as the default gateway for external network access (Internet access) for all 
other nodes and OpenStack VMs. We also set up an L2TP/IPsec virtual private network (VPN) 
server using Openswan and xl2tpd Linux packages on the controller node to provide direct ac-
cess to VMs for our cloud users outside the datacenter network (see Figure 3). 

 

Figure 3. The software stack on the controller node. VM = virtual machine, VPN = virtual private 
network, eth = Ethernet interface, and NAT = network address translation. 

CLOUDS-Pi uses OpenDaylight (ODL), one of the popular open source SDN controllers, to pro-
vide the brain of the network and handle OpenFlow-capable Raspberry Pi switches. ODL is in-
stalled on the same host as the OpenStack controller and manages OpenFlow switches via the 
control network (see Figure 3). Every Raspberry Pi in our setup uses a Debian-based Linux OS 
of Raspbian Version 8 (Jessie) and has OVS version 2.3.0 installed as an SDN-capable virtual 
switch. We configured OVS as a software switch having all USB-based physical interfaces con-
nected as forwarding ports and used Raspberry Pi’s built-in interface as an OpenFlow control 
port. 

We also developed some open source tools (https://github.com/Cloudslab/sdcon) to provide inte-
grated manageability and monitoring for our platform. For example, the Status Visualizer is a 
tool implemented to visualize traffic flows among hosts and VMs in the network. This module 
retrieves the topology information and then plots network links along with the real-time moni-
tored flows with different colors, where the thickness of the connector line represents the used 
bandwidth. Figure 4 depicts the screenshot of the Status Visualizer web UI showing sample traf-
fic in CLOUDS-Pi between groups of VMs. 

 

Figure 4. Sample network traffic in CLOUDS-Pi visualized by the Status Visualizer. 
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USE CASES 
We introduce two use cases to illustrate how the CLOUDS-Pi platform and its SDN-enabled fea-
tures can be utilized to offer solutions and drive research innovations. The first use case shows 
dynamic flow scheduling for efficient use of network resources in a multirooted tree topology. 
The second use case demonstrates that the communication cost of pairwise VM traffic can be 
reduced by exploiting collocation and network locality through live VM migration. 

Dynamic Flow Scheduling 
Datacenter network topologies such as fat trees typically consist of many equal-cost paths be-
tween any given pair of hosts. Traditional network forwarding protocols often select a single de-
terministic path for each pair of source and destination, and sometimes protocols such as equal-
cost multipath (ECMP) routing11 are used to evenly distribute the load on multiple paths. This 
static mapping of flows to paths does not take into account network utilization and the duration 
of flows. We propose and demonstrate the feasibility of building dynamic flow scheduling for a 
given pair of hosts in our multirooted-tree testbed using ODL APIs. 

The key insight is to iteratively redirect a flow of interest (e.g., VM migration traffic) to one of 
the shortest paths with the lowest load when multiple shortest paths are available between the 
source and destination. In an SDN-enabled datacenter, this can be simply performed by a flow 
entry setup on the switches along the path, which can be configured centrally and then propa-
gated throughout the entire path. 

As input, the algorithm receives the IP addresses of a given pair of hosts and specifications of the 
target flow (e.g., the protocol and source and destination ports). It then finds multiple paths of 
equal length between the source and the destination and iteratively measures the average byte 
rate on the path for the last time interval (e.g., every 15 seconds). Since the target flow happens 
through one of the shortest paths, we have to make sure that the byte rate of the flow is excluded 
from the calculation. Thus, the byte rate for the matching flow is deducted from the total calcula-
tion. 

As soon as the shortest path with the lowest average byte rate between the source and the desti-
nation is found, appropriate flow rules are pushed into the switches on the path to redirect the 
flow to this path. In line with this idea, we are working on a more advanced version of a dy-
namic-flow-scheduling algorithm for efficient migration of VMs in SDCs. 

To evaluate the impact of the proposed dynamic flow scheduling on bandwidth, using ipref3 in 
TCP mode, we generated 10 synthetic and random flows between different hosts in the network. 
We measured the transmission time and available bandwidth for the flow of interest (given a pair 
of hosts) with or without enabling dynamic flow scheduling. 

Figure 5 shows a graphical representation of the network topology detected by the ODL User 
Interface (DLUX), along with the labeled given pair of hosts. Table 2 shows the available band-
width and transmission time for 700 Mbytes of data between the given hosts. Enabling dynamic 
flow scheduling reduced the transmission time by 13.6% compared to the static-routing method. 
The average bandwidth also improved from 35.24 Mbps with no flow management to 40.61 
Mbps with dynamic flow scheduling. 
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Figure 5. Physical-network topologies detected by OpenDaylight. 

Table 2. The transmission time and average bandwidth with and without dynamic flow scheduling. 

Method Transmission time (s) Bandwidth (Mbps) 

Without dynamic flow schedul-
ing 

159 35.24 

With dynamic flow scheduling 137 40.81 

 

The performance gain of the proposed dynamic scheduling was heavily dependent on the rates 
and duration of the flows in the network. This experiment demonstrates the feasibility of build-
ing a working prototype of dynamic flow scheduling in the CLOUDS-Pi platform. 

Virtual-Machine Management 
Live migration, one of the core concepts in modern datacenters, allows moving a running VM 
between physical hosts with no impact on the VM’s availability. While VMs in datacenters are 
often migrated between hosts to reduce energy consumption or for maintenance purposes, live 
VM migration also provides an opportunity to enhance link utilization and reduce network-wide 
communication costs. This can be done by relocating communicating VMs to nearby hosts with 
fewer connecting links in the higher layers of the datacenter network topology. 

We measured the bandwidth between two communicating VMs running on physical hosts (hosts 
192.168.0.2 and 192.168.0.9 in Figure 5) connected through core switches. We ran experiments 
by moving these two VMs closer to each other in the network topology. First, we performed a 
VM migration to remove any core switches on the connecting shortest path and then another mi-
gration to remove both the core and aggregation switches. Meanwhile, we investigated the im-
pact of migrations on the available bandwidth. 

During the experiment, random and synthetic background traffic was generated between all hosts 
in the network, both periodically and continuously. The graph in Figure 6 shows the available 
bandwidth from the source VM (labeled 1 in Figure 5) to the destination VM (labeled 2 in Figure 
5), measured with the iperf3 tool. Before the first migration (time 0 to 70), the source VM was 
placed on a different pod from the destination VM. As shown in the graph, during this period the 
average bandwidth was roughly 71 Mbps and fluctuated considerably owing to the background 
traffic generated by other hosts. 
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Figure 6. The impact of VM live migration on the bandwidth of a communicating VM pair. 

After 70 seconds, a live VM migration was performed to move the source VM to the host labeled 
2 in Figure 5 and connected to a different access switch in the same pod of the destination VM. 
During the live-migration process, the VMs’ networking became unavailable for a short period. 
After this migration, the bandwidth fluctuated less and increased to 79 Mbps on average because 
fewer background flows conflicted with the traffic of the source-and-destination VM pair. 

The last migration was done after 170 seconds of the experiment. The source VM was migrated 
to the host labeled 3 in Figure 5, which was connected to the same access switch as the destina-
tion VM. With this migration, bandwidth became more stable and rose to an average of 86 
Mbps, where the least background traffic affected the networking performance of the VMs. 

The experiment demonstrates the feasibility of building a prototype system allowing network-
wide communication minimization in a cloud datacenter. It also opens up the possibility of re-
search on joint VM and traffic consolidation. Other interesting research ideas include 

• how to select the destination for a VM migration to get the best bandwidth or perfor-
mance after migration, 

• how to jointly consolidate VMs and traffic in datacenters,12 and 
• how to place virtual network function (VNF) instances in a datacenter supporting ser-

vice function chaining (SFC).13 

Discussion and Future Directions 
Our results demonstrate the potential of the CLOUDS-Pi platform in enabling investigation of 
different aspects of SDN-enabled cloud computing. One of the main benefits of CLOUDS-Pi for 
conducting research on SDN in cloud computing, compared to other prototyping methods or em-
ulators such as Mininet, is the option of VM management. VM management and, in particular, 
the possibility of VM migration are essential aspects of cloud computing that allow for VM con-
solidation to reduce power consumption and increase cost efficiency. Thanks to the OpenStack 
setup in our platform, we can jointly leverage virtualization capabilities and SDN for performing 
research on VM and traffic consolidation.12 

Another benefit of CLOUDS-Pi is the possibility of conducting innovative research in traffic 
control and network management with high accuracy and performance fidelity. As shown in the 
first use case, using ODL’s northbound APIs and its flow-scheduling feature, we can investigate 
dynamic traffic engineering and load balancing for reducing network congestion with a level of 
confidence that would otherwise be beyond our reach. 
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Apart from network management, research directions that can be followed on our testbed plat-
form include, but are not limited to, security (e.g., network intrusion detection), SFC, and appli-
cation-specific networking. 

The current setup of CLOUDS-Pi has a limited number of resources. The number of switches 
and hosts used in building the CLOUDS-Pi platform is far from enough to test the scalability of 
approaches that need to be deployed in cloud datacenters hosting tens of thousands of servers 
and thousands of network switches. In addition, since we are using USB 2.0 ports on Raspberry 
Pis with a nominal bandwidth of 480 Mbps and 100 Mbps USB-to-Ethernet adapters as switch 
ports, our network bandwidth, even though suitable for the scale of our testbed, is much lower 
than gigabit or terabit networks used in real-world cloud datacenters. Although CLOUDS-Pi of-
fers a suitable environment to carry out empirical research on SDN and cloud computing without 
the expenditure of full-size testbeds, we recommend the use of simulators such as 
CloudSimSDN4 to evaluate the scalability of policies. 

Besides our testbed limitations, SDN itself currently faces some challenges, such as scalability, 
reliability, and security, that hinder its performance and application. The logically centralized 
control in SDN causes scalability concerns, and controller scalability especially is one of the 
problems that need particular attention. The scalability issue of SDN becomes more evident in 
large-scale networks such as cloud datacenters, compared to small networks.14 Controller distri-
bution with the use of east–west APIs is one way to overcome computational loads on the con-
troller, but it brings consistency and synchronization problems into the picture.14 It also requires 
standard protocols for an interoperable state exchange between controllers of different types. 

The centralized control plane of SDN—for example, the single-host deployment of the ODL 
controller in our testbed—has a critical reliability risk, such as a single point of failure. To tackle 
this problem, running backup controllers is a common approach. However, defining the optimal 
number of controllers and the best locations for the primary and backup controllers is challeng-
ing. Synchronization and concurrency issues also need to be addressed in this regard.15 

SDN has two fundamental security issues:16 

• The potential exists for a single point of attack and failure. 
• The southbound API connecting the controller and data-forwarding devices is vulnera-

ble to interception and attacks on communication. 

Even though TLS/SSL encryption techniques can be used to secure communication between 
controllers and OpenFlow switches, the configuration is very complicated, and many vendors do 
not provide support for TLS in their OpenFlow switches by default. SDN security is critical 
since threats can degrade the availability, performance, and integrity of the network. While many 
efforts are currently being made to address SDN security issues, this topic is expected to draw 
increased attention in the coming years. 

CONCLUSION 
We presented CLOUDS-Pi, a low-cost testbed environment for SDN-enabled cloud computing. 
All aspects of our platform, from its overall architecture to particular software choices, were 
explained. We also demonstrated how economical computers such as Raspberry Pis could be 
used to mimic a network of OpenFlow switches in an SDN-enabled cloud datacenter on a small 
scale. In order to evaluate our testbed, two use cases for dynamic flow scheduling and VM man-
agement were identified. We discussed the benefits and limitations of CLOUDS-Pi as a research 
platform for different aspects of SDN in clouds, and we proposed future research directions. Our 
work demonstrates the potential of the CLOUDS-Pi platform for conducting practical research 
and prototyping SDN-enabled cloud-computing environments. 
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