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Abstract—Cloud resource providers in a market face dynamic
and unpredictable consumer behavior. The way, how prices are
set in a dynamic environment, can influence the demand behavior
of price sensitive customers. A Cloud resource provider has
to decide on how to allocate his scarce resources in order to
maximize his profit. The application of bid price control for
evaluating incoming service requests is a common approach
for capacity control in network revenue management. In this
paper we introduce a customized version of the concept of self-
adjusting bid prices and apply it to the area of Cloud Computing.
Furthermore, we perform a simulation in order to test the
efficiency of the proposed model.

I. INTRODUCTION

Since the idea of Grid Computing came up in 1998 by
Foster et al. [1], the development of the infrastructure was
mainly driven by scientific applications. Traditional resource
management techniques focus on maximizing throughput or
minimizing waiting time in a queue. In the recent years,
markets for computer utility have become popular. Systems
like Nimrod-G [2], Bellagio [3], Tycoon [4], Mirage [5],
Gridbus [6] or the SORMA Open Grid Market [7] have
stressed the usage of market mechanisms as an efficient way
to allocate resources among the participants. While the former
are more resource-centric approaches, markets try to optimize
the usage from the users’ perspective and to utilize resources
in off-peak time. Since users in a distributed network act in a
self-interested manner, the design of incentives is crucial for
increasing efficiency in a network [8].

Economic concepts help to set incentives for resource own-
ers to provide their resources. Cloud service providers offer
their services similar to Grid Computing resources. However,
contrary to the mainly scientific driven Grid scenarios, Clouds
providers have to define Service Level Agreements and apply
business models [9], [10]. The virtualization technologies in
Clouds allow to define the exact resource usage for one
product of a Cloud provider. Moreover, Grid participants are
contemporaneously consumer and provider, whereas Cloud
providers and consumers can be clearly distinguished. In

Clouds resellers like Jollat1 or RightScale2 come into play by
enhancing standard services from Amazon3 with new services
[11], [12].
In a market Cloud providers face dynamic and unpredictable
consumer behavior. The way, how prices are set in a dynamic
environment, can influence the demand behavior of price
sensitive customers [13]. Consequently, customers with a low
valuation for a service would use it in a cheap period. Business
customers are willing to pay a higher amount for the usage.
By identifying the right price for a customer and a requested
service at a certain point in time, higher revenues can be
achieved [14]. However, in some settings, it is difficult to
change prices over time. For example, Amazon offers for
its Elastic Cloud Computing4 service a fixed price of $0.10
for a CPU hour without frequently changing the prices. Price
changes can be realized on specific markets like auctions for
computing resources like the solution from Zimory5.

In this paper, we present a decision concept for a provider
known from Revenue Management to accept or deny incoming
requests for services in order to increase revenue in a scarce
resource market. A provider offers several services, which
use the same resources from his cluster. From his point of
view he is interested in selling the more expensive services
[15]. When a buyer requests a service with low revenue,
the provider has the possibility to accept this request or to
wait for prospective customer asking for high valued services.
We analyze different decision rules well known from the
Airline Industry and show how to apply Revenue Management
concepts to Cloud Computing. Our contribution comprises a
more efficient decision rule called customized bid price policy.
The efficiency is proved via simulation.

1http://www.jollat.com/
2http://www.rightscale.com/
3Amazon Web Services (http://aws.amazon.com)
4A small Linux instance (http://aws.amazon.com/ec2)
5http://www.zimory.com
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II. RELATED WORK

A. Revenue Management for Cloud Computing

In Clouds, resources e.g. processing power, memory, stor-
age, and bandwidth, can be bundled as services, which are
offered to other Cloud users. Providers have to plan their
resource usage carefully and be aware of dynamic changes of
the incoming requests for their services. Examples of services
on the infrastructure level (also known as Infrastructure as a
Service) are Amazons Web Services like EC2, S3 or Simple
DB. All of them are based on pure resources like CPU or
storage. Although, advance reservation diminishes the unpre-
dictable requests, users can still request important services
on-demand and cancel pending requests or reservation. The
provider can apply revenue management strategies to enhance
revenue and optimally allocate his resources to the consumers.
He can set booking limits for his services and accept a certain
amount of customers. An acceptance strategy is required due
to the competition for the resources by the services. The
resources in a cluster are accessed by different services. It is
important to know, which service request should be accepted
now to gain enough revenue in the future. The described
problem is an instance of the dynamic inventory network
capacity control (NCC) for finite time horizon T (Figure 1).

Fig. 1. Incoming requests for different services in different timeslots

The first paper analyzing Revenue Management concepts
for cluster systems was published by Dube et al. [16]. In the
suggested model one resource is offered at different prices.
By assuming the customer behavior follows a logit model, the
authors analyzed an optimization model for a small number
of price classes and provided numerical results. Although the
authors state that ”in an on demand operating environment,
customers and jobs, or service requests arrive at random”, the
behavior of price sensitive customers can be influenced by
offering different prices for the same product, which in turn
reduces the randomness [13], [17].

Cancelations and no-shows reduce the efficiency of resource
usage. In [18] Sulisto et al. analyzed how overbooking strate-
gies can be applied to maximize revenue. Different prices were
charged for one resource and three overbooking policies were

implemented and compared via simulation. The benefits of
overbooking for shared hosting platforms was emphasized by
Urgaonkar [19] as well. He did not optimize the revenue by
classifying different services, but only the throughput rate.

Anandasivam and Neumann [20] presented a framework for
applying Revenue Management in Grid Computing. They gave
an introduction and outlined some requirements, which have
to be fulfilled. Their theoretic model comprises bundles of
resources and shows how they can be priced. However, none of
these papers analyzes capacity planning strategies of resource
bundles via simulations.

Nair and Bapna [21] introduced Revenue Management con-
cepts for a similar application domain of an Internet Service
Provider. The provider has to decide whether to accept an
incoming customer request or to reject it. The application
domain is different from Cloud Computing as it does not take
advance reservation and bundles into account. Customers can
only instantly get an internet access.

B. Bid price control in Revenue Management

Each offered service represents a booking class, which has
a fixed price. The provider has to decide, if a service request
should be accepted or denied. Thus, a limit defining how
many requests are operable for each booking class has to
be identified, which is known as capacity control. Nested
booking limits allow to prevent that bookings for services
with high revenue are being rejected in favor of bookings with
low revenue. They define how much capacity is reserved for
a certain booking class. Every service has limited access to
the resources like CPU, memory, storage, or bandwidth. Due
to multiple resources a nested booking limit control must be
defined for each resource. This is called virtual nesting control
[22], [23]. It is difficult to forecast demand appropriately for
virtual classes. The requirement of mapping services to virtual
classes increases complexity. Furthermore, the assumption that
demand for low-class services occurs earlier than for high-
class services is typical in Revenue Management. If demand
arrives in a strict high-to-low order the provider simply needs
to accept customer requests in a first-come-first-serve order
to maximize his revenue. On the other hand when demand is
stochastic the strict low-to-high order is also less appropriate.
Therefore, we assume that demand for low-class services is
more likely to arrive earlier and demand for high-class service
is more likely to arrive later in time.

For the application of bid price controls, at any point in
time a simple threshold value for each resource has to be
stored. Bid prices are interpreted as an approximation of
the opportunity cost [24] of reducing the resource capacities,
which are needed to satisfy incoming service requests. [25]
describes bid prices as monetary values of single capacity
units, and the resource demands of a request weighted with the
corresponding bid prices must be summed. If this sum exceeds
the revenue yielded by the sale of one unit of the respective
product, the request is rejected, otherwise it is accepted [22].
Regular updating of bid price values is necessary to guarantee
a continuous precision of the bid prices. Less accurate bid
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prices can lead to accept/reject decisions of minor value.
Continuously updated bid prices are based on the current
booking situation at a certain point in time t. That is, if a
high amount of capacity has already been sold, the bid prices
turn out to be higher.

Although prices which are charged from the customers are
fixed for the booking period, bid price policies can be seen as
some kind of (dynamic) pricing from the provider’s interior
point of view. The parameters of the bid price policy can be
adjusted for subsequent booking periods due to changes in
demand. In [26] linear functions are introduced to compute
bid prices for each arriving request at time t. The essential
requirements of Dynamic Pricing functions in [27] can also
be transferred to bid price functions:

• Flexibility: The bid price function has to be configurable
in an easy way to enable changes in the accept/reject
decision policy by the provider.

• Fairness: Naturally, higher bid prices are attached to more
expensive resources, and the opportunity costs of reserv-
ing resources of services with high resource demands are
higher.

• Dynamic: Bid prices should not be static thresholds. To
guarantee a certain precision they need to be adjusted to
the current booking situation.

• Adaptability: Fluctuations in supply and demand have to
be considered in calculation of bid prices.

III. MODEL

The decision of accepting or denying a request depends on
the policy which applies the decision rule. Capacity control
and dynamic pricing known from Revenue Management are
an instance of linear programming models. Since speed of
computation matters (especially for large resource/product
settings), bid price control is an approximation method to
quickly update the policies after the arrival of new requests. It
provides a good estimate, but not always an optimal solution.
Especially in the NCC setting, the calculation of the optimum
increases exponentially with the number of resources m and
products n [28].
In the following we assume that the provider has m resources
h ∈ {1, . . . ,m} available and offers n services i ∈ {1, . . . , n}.
Resources are CPU, memory, storage, and bandwidth, whereas
services can be low, medium, and high instances like the
Amazon Web Services. Resources have to be quantifiable, and
dividable into discrete units. Matrix A describes the usage of
resources by the services in the case of four resources and
five services, what is illustrated in table I. An element ahi

represents the usage of resource h by one unit of service i.
The total amount of capacity for each resource h is given
by ch. At a certain time t ∈ {T, T − 1, . . . , 0} the reserved
capacity of resource h is cht. Selling one unit of service i
yields a revenue of ri. The decision of accepting a request is
based on the bid price πht for resource h at time t as well as
on the resource usage of the request: ri ≥

∑
h∈Ai

ahi · πht

must be fulfilled.

A. Demand

At t the entire demand DiT arriving in T for service i is
divided into the demand arriving between the current time t
and the end of the booking period denoted as Dit, and the
arrived demand until t D̂it (see Figure 2).

Fig. 2. Demand definition in a finite time

It is assumed that there can arrive at most one service
request per discrete unit of time t, as for example in [29].
A request for service i at time t arrives with probability pit,
and thus, the arrival of a request for service i at time t is
a random variable Xt with Xt = {0, i} |i ∈ {1, . . . , n}, i.e.
Xt = 0 if no request comes in at t. T is finite and countable,
and thus, the arrival process of requests by the customers is
a time-discrete stochastic process X , which is a sequence of
random variables Xt. The value of the demand arrived from T
until t changes from its previous value D̂it at t+1 to D̂it +1
at t if a request for service i occurs in time slot t (note that
time runs backwards).

It is assumed that customers book the services for usage at a
certain time in the future. The low-before-high arrival (cf. [30])
is expressed by a high booking probability of low-fare services
at the beginning of the booking period. This probability
decreases during the time period. Contrarily, the probability
of booking high-fare services is low at the beginning of the
booking period, and increases until the end of the time period.

Naturally, the condition
∑n

i=0 pit = 1 must be valid at each
point in time t.

B. Deterministic Linear Programming Model (DLP)

The NCC approximation method for bid prices assumes
expected demand information and excludes the stochastic
nature of the demand [31], [22]. Based on demand forecasts
the expected aggregate demand-to-come Dit for the remaining
booking periods is calculated, and it is assumed that the
demand is equal to its mean values. An approximation for
the objective-value function V is obtained by:

Max. V (x) =
n∑

i=1

ri · xi (1)

s. t.
∑
i∈Ah

ahi · xi ≤ ch − cht ∀h ∈ {1, . . . ,m} (2)

0 ≤ xi ≤ Dit ∀i ∈ {1, . . . , n} (3)

(1) is the objective function, which maximizes the total
revenue. The total revenue results from the sum of the prices ri

92

Authorized licensed use limited to: UNIVERSITY OF MELBOURNE. Downloaded on January 17, 2010 at 02:06 from IEEE Xplore.  Restrictions apply. 



charged for each service multiplied with the number of units
sold of each service in the booking period xi. (2) ensures
that enough capacity of each resource is available to satisfy
the need for capacity by the number of allocated units of the
services. (3) guarantees that the number of services sold are
not below zero and do not exceed the expected demand-to-
come.

The solution vector of the primal problem is discarded, and
the variables of the optimal solution of the dual problem are
used as bid prices [29] . The optimal solution can have multiple
optimal dual bid price vectors. The DLP can either be solved
at the beginning of the booking period with the given demand
forecast by using static bid prices or by recalculating and
updating the bid prices at certain data collection points during
the booking period, what is advantageous in order to keep up a
certain precision of the bid prices. The main benefit of the DLP
model is that it can be solved computational efficiently, which
makes it popular for practical applications. Its performance
strongly depends on the size of the network as well as on
reliability of the demand forecasts. However, this model does
not imply any uncertainty in demand.

1) Randomized Linear Programming Model (RLP): The
RLP model induces stochastic information. The expected
demand as in the DLP case is replaced by a random demand
vector D [23]. For instance, in [32] demand is modeled as a
Poisson Process. The probability distribution of the demand
for each service is used to generate executions of the demand-
to-come. The optimal solution of this problem represents a
random variable, which provides the approximation to the
objective-value function V . The application of RLP leads to
significant higher revenue than DLP [33].

C. Certainty Equivalent Control (CEC)

The accuracy of bid price values in the DLP model with
updates during the booking period depends on how frequent
these recalculations are performed. The most frequent calcula-
tion of bid prices is carried out by recalculating bid prices each
time a request occurs. An approach called certainty equivalent
control [24] extends the concept of bid prices and directly
calculates an approximation of the opportunity costs. For this
purpose it solves two instances of the DLP problem described
above: The first instance solves the initial DLP problem (1)
and the second instance also subtracts the amounts of resources
demanded by the request from the remaining capacity of the
resource

ch − cht − ahi,∀h ∈ {1, . . . ,m} . (4)

The approximation of the opportunity cost of service i is then
obtained by subtracting the objective function value of instance
2 (V ′(x)) from the objective function value of instance 1
(V (x)). This approximation does not depend on the optimal
dual variables, thus, the drawback of multiple optimal dual
variables of the linear programming model is eliminated. The
CEC policy requires forecasts for the total demand for each
service, as well as forecasts for the expected demand-to-
come (Dit). One advantage of the CEC policy arises from

the numerous and periodic updates of the approximation of
the opportunity costs, thereby guaranteeing a certain accuracy.
Because CEC is based on the DLP problem, it shares the same
disadvantage of only incorporating expected demand and not
considering uncertainty of the demand process.

D. Self-adjusting bid prices (SABP)

The idea of self-adjusting bid prices is to compute bid
price functions for resources based on the amount of capacity
already reserved as well as the expected demand-to-come [26].
Unlike the approaches described above SABP uses simple
linear functions with parameters which can be easily kept track
of during the booking period. The concept involves the de-
termination of coefficients (control variables) via simulation-
based optimization that are used for calibrating the bid price
functions adequately. SABP can be interpreted as some type
of interior dynamic pricing by the provider, which was derived
from the optimal dynamic pricing of a single product [32].

Our approach uses a customized version of the resource-
oriented bid price function as proposed in [26], and further is
abbreviated with SABP-c. The bid price of resource h at time
t is calculated by the formula:

πht = (πh) + αh ·
cht

ch
− βh ·

uht

UhT
(5)

The control variables πh, αh, and βh are determined via
a genetic algorithm, which is described in section III-E. πh

is the base bid price and provides the basis for the bid price
calculation. The value of πh has a strong impact on the bid
price. In [26] the base bid price is calculated by creating a
random number and multiplying it with the minimum bid price
of resource h. The minimum bid price is the value for which, if
it is exceeded, requests for at least one service i are no longer
accepted, and is computed by πmin

h = min
{
ri/ahi|i ∈ Ah

}
.

In our approach the genetic algorithm uses the minimum bid
price as upper bound for the base bid price.

The bid price function further is based on two parts. The
first part (+αh · cht

ch
) is responsible for the increase of the

respective bid price over time. cht is the amount of capacity
of a resource h reserved at time t relative to the total capacity
of resource h. If a request for a service i is accepted, the bid
price of a resource increases by the delta of the value cht

ch
,

and also depends on the value of αh. Thus, the bid price of a
resource h only increases through the acceptance of incoming
requests. This corresponds to the fact that available resources
get less due to sales and hence become more expensive.
The second part of the formula (−βh · uht

UhT
) decreases the

bid price for every occurring request. A decrease is required
because if some requests are rejected, some future requests can
be accepted again. If there was no decrease in the function,
the bid price only would rise, and from a certain point every
future request would be rejected, and no more sales could take
place. uht is the capacity required to satisfy the demand for
the products i ∈ Ah until t. The expected demand until t D̂it

for a service i ∈ Ah can be calculated by DiT − Dit, what
requires forecasts of the total demand per service i (DiT ), as
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well as forecasts of the demand-to-come (Dit) for every point
in time t until the end of the booking period. However, it is
more intuitive to simply count the requests for each service i
until t, what leads to an exact value of D̂it for each i. uht in
our case is calculated by∑

i∈Ah

ahi · D̂it. (6)

For every service its demand for resource h (ahi) is mul-
tiplied with the demand arrived until t (D̂it), and the sum of
these products is taken. UhT is the capacity of resources which
is needed to satisfy the total demand of the complete booking
period. It is calculated by

∑
i∈Ah ahi ·(DiT , where DiT is the

forecasted total demand for service i. UhT can also be denoted
as the total resource demand. It requires a forecast of the total
demand for service i in the booking period. The quotient of
uht/UhT increases over time as more demand is realized, and
hence, the bid price decreases with time proceeding.

The two parts of the resource-oriented bid price function
make sure that the total value of a bid price πht increases
only, if a request is accepted. The increase amplifies if the
amount of reserved capacity cht is high. The parameters αh

and βh attach importance to variables. They have a strong
impact on the accept/reject decisions. For instance, very high
values for coefficient αh and very low values for coefficient
βh lead to more frequent reject decisions because the increase
of the bid price function turns out too high. This would imply
losses in revenues due to rare sales. In the opposite case, very
low αh values and very high βh values result in too frequent
accept decisions of low-fare requests leading to an inefficient
reservation for later arriving high-fare requests, what also
implies potentially lost revenues. Because of these reasons,
promising values for the control variables are obtained by the
genetic algorithm.

The main advantage of self-adjusting bid prices is the
very frequent recalculation of bid prices. Thereby, information
about the current booking situation is always considered and
the bid prices exhibit a certain precision. [26] states that this
approach is robust to errors in the forecast. If the realized
demand is less than the forecasted one, less capacity units
are reserved to satisfy incoming requests. Thus, the increasing
part of the bid price function is lower and more requests with
lower revenues can be accepted. On the other hand, if realized
demand is higher, the bid price increases stronger as more
requests are accepted. Furthermore, a strict fragmentation of
the services into only two subsets (S1: accepted, i.e. ri ≥∑

h∈Ai
ahi · πht); S2: rejected, i.e. ri <

∑
h∈Ai

ahi · πht), is
avoided to permanently update the bid prices and to guarantee
a certain degree of accuracy.

Although the concept shows some robustness against fore-
cast errors as mentioned above, it does not imply stochas-
tic information about demand. This assumption is not very
realistic, and does also concern other deterministic models,
such as DLP and CEC. The computational effort which is
required for finding appropriate values for the control variables

πh, αh, and βh is significantly high, which mainly comes
from the necessity for simulation-based optimization. Another
weakness of the original model is, that it requires a high
number of forecast values. For each point in time and for each
product offered, the expected demand-to-come (Dit) needs to
be stored in order to be able to calculate the demand until t
and the resource demands (uht) every time a request comes
in. However, this can be overcome by simply counting the
demand until t for each service i. Furthermore, some bid prices
turned out to be negative, and the question of how to interpret
negative bid price values comes up.

Note, that in [26] the SABP concept has been developed for
managing resources in the context of airlines. Usually, in that
case a sale of one flight means a change in capacity of one unit
of the respective resource, i.e. a seat on a flight at a certain
date. This is a major difference to the change in capacity in the
context of resources and services in Clouds, in which a sale
of a service means a change in capacities of several units of
the resources involved in the service sold. Because of that, the
usage of the original bid price function would lead to very high
values of the decreasing part of the function in the setting of
services in Clouds, and thus, some bid price values turned out
to be inappropriate. This is avoided by using relative values
in (5).

E. Genetic Algorithm

Genetic Algorithms belong to the class of evolutionary
algorithms. They are optimization concepts for searching a
solution space of a given problem for reasonable solution
values [34]. By considering only a small part of the solution
space, a simulation of an evolution is performed using the
survival of the fittest strategy. Individuals which are fitter than
other individuals have a higher probability of surviving and
of still being persistent in the next generation in the evolution
process.

A genetic algorithm involves some terminology from biol-
ogy (cf. [34]), and consists of several elements. These have
to be defined depending on the application context and the
problem to solve.

The choice of an appropriate chromosome representation,
which defines how many genes the chromosome contains,
and which values the genes are allowed to obtain, is a key
component. The control variables (πh, αh, βh) in (5) are used
as genes within the genetic algorithm and are optimized in the
evolution process.

It is essential to specify the numerical range for the values
of the control variables. As mentioned above, we use the
minimum bid price πmin

h as upper bound for the base bid
price. Thereby, the production of counterproductive values is
prevented, as in the case if the base bid price exceeds the
price of a service i (πh > ri), which would lead to rejecting
requests for all services i already at the beginning of the
booking period. As a consequence, the genes containing the
values of the base bid prices can lie in the interval

[
0;πmin

h

]
.

The range for αh and βh is set to [1; 2]. This is because in
some cases values below one have turned out to be too low and
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may produce too low bid prices, what can lead to an inefficient
accept/reject behavior.

The objective of the genetic algorithm is to find adequate
values for the control variables of the bid price function. The
genetic algorithm must simulate a complete booking period,
which includes the demand expected for the given sales period
based on the forecast by the provider.

The genetic algorithm performs the following steps:
1) At the beginning an initial population is created based

on the chromosome representation as described above.
This generation is numbered with generation 0.

2) In the second step the fitness value of all chromosomes
in the population is calculated by the fitness function,
which evaluates the expected demand with the gene
values as control variables in the bid price function.

3) After steps 1 and 2 the evolution process is started.
In each evolution phase the GA’s selection operator
randomly selects pairs or bigger subgroups of the pop-
ulation of chromosomes for reproduction.

4) The chromosomes selected by the selection function are
reproduced, and then they are recombined (crossover) or
mutated by the genetic operators defined.

5) Subsequently, some chromosomes of the current pop-
ulation are replaced by the new altered chromosomes,
thereby creating a new generation.

6) Given the new generation, the generation enumerator is
incremented by one.

7) Steps 2 to 6 are repeated until the maximum number of
allowed evolutions is reached.

8) When the evolution process is terminated, the fittest
chromosome, i.e. the set of control variables with the
highest potential revenue, is taken as input for the self-
adjusting bid prices function.

Fig. 3. Runtime analysis with chromosome size of 12 (control variables),
population size of 3 and different number of evolution steps

The runtime analysis of the customized SABP policy clearly
shows that the main amount of computational effort arises
from the genetic algorithm. Naturally, the runtime is dependent
on the population size, the number of variables to search for,
and the number of evolution steps (figure 3). It is important

to state that a longer evolution time does not necessarily lead
to a better solution. Moreover, a raise of the population size
leads to a longer runtime of the genetic algorithm, but it also
adds diversity to the population, what in turn increases the
probability of finding a better solution more quickly in terms of
the number of evolution steps. Therefore, it is recommended to
use a higher population size and a higher number of evolution
steps in order to increase the probability of reaching a near-
optimal solution.

TABLE I
RESOURCE USAGE BY THE FIVE SERVICES

i = 1 i = 2 i = 3 i = 4 i = 5

CPU 2 4 3 8 10
Memory 2 8 3 4 10
Storage 8 2 4 4 8

Bandwidth 4 2 8 4 8

Price ri 18.00 19.50 22.50 27.00 46.00

IV. SIMULATION

A. Setting

There are five different service offered by the provider in
the context of this paper (see table I), and the provider has
1500 units of capacity of each resource. The demand for
each of these services are independent, that is, a customer
who has needs for service-1 will not book a higher and
more expensive service. It is assumed that the provider has
certain demand information from past booking periods, and
is able to perform a more or less accurate demand forecast.
Fluctuations in demand will be handled by passing through
different demand scenarios in the simulation. We assume that
customers who do not use the services booked do not get a
refunding. Hence, if customers book a service they will have
to pay for it.

TABLE II
DEMAND INTENSITIES OF THE DIFFERENT SERVICES IN EACH SCENARIO

Demand i = 1 i = 2 i = 3 i = 4 i = 5

Scenario0 375 184 156 91 108
Scenario1 382 168 149 89 104
Scenario2 378 148 174 91 91
Scenario3 352 154 166 94 86
Scenario4 387 158 160 98 82
Scenario5 376 166 156 93 86
Scenario6 373 169 155 96 73
Scenario7 377 171 148 90 72
Scenario8 369 176 151 95 67
Scenario9 353 156 175 92 64

Forecast 377 162 158 98 92

B. Demand scenarios

According to the arrival process described, numerous de-
mand scenarios were created. A scenario represents an instance
of the demand realized in the booking period. Because of the
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random arrival of a request for service i the demand scenarios
show variation for all services. Furthermore, we assume a
booking period with length T = 1.000. The simulation
is performed over ten different demand scenarios and one
additional scenario, in which the realized demand equals the
forecasted one. All ten scenarios are read and evaluated by
every policy implemented. Each policy requires a forecast of
the total demand for each service. The forecast corresponds
to the expected demand and is created based on the same
distributions as the demand scenarios. Table II comprises the
demand intensities for the different services i in each scenario.
All scenarios differ in the demand intensities as well as in the
time of arrival of all services due to the random arrival of
requests. The service provider achieves the highest profit with
service i = 5. Scenarios 6 to 9 show the greatest variation
compared to the forecast. This is done to test the robustness to
forecast errors. In addition, table IV contains the results of only
CEC and SABP-c in scenarios 10 to 14 in order to demonstrate
the dependency of the CEC policy on the forecasted data. In
scenarios 10 to 14 the demand intensity of services 1 to 4
exactly equals the forecasted one, but demand for the service
i = 5, which yields the highest profit and also consumes
the most resources, is explicitly deviated downwards from the
forecast: in scenario 10 the demand intensity of service i = 5
deviates by approximately 10% from the forecast, in scenario
11 the deviation is 20%, and in scenarios 12 to 14 the deviation
is increased by additional 10% per scenario, so that in scenario
14 the deviation is 50%.

TABLE III
SIMULATION RESULTS: ACHIEVED REVENUES BY EVERY POLICY

Demand FCFS DLP RLP CEC SABP-c
Scenario0 3730.5 6123 6190.5 7473.5 7208.5
Scenario1 3670.5 6268.5 6069 7461 7364.5
Scenario2 3720 5959.5 6312 7392.5 7286
Scenario3 3730.5 6081 6463.5 7342 7356
Scenario4 3693 5947.5 6519 7291 7434.5
Scenario5 3687 6003 6190.5 7327 7418
Scenario6 3703.5 5851.5 6477 7264 7356
Scenario7 3616.5 6415.5 6415.5 7271.5 7405
Scenario8 3703.5 6037 6346 7255.5 7330.5
Scenario9 3703.5 6051 6415.5 7146 7345.5

Forecast 3676.5 6012 6199.5 7513 7456.5

C. Simulation results

The main results of the simulation are summarized in
table III. For the purpose of comparison, all scenarios were
also evaluated using the first-come-first-serve behavior. FCFS
lead to poor results in revenue compard to all other policies
due to almost only accepting requests for lower services, since
these requests are at the beginning of the period.

The DLP policy was implemented using a dynamic version,
i.e. with recalculation of the bid prices at each tenth part of
the booking period, what means that the dual problem of the
DLP policy is solved several times during the booking period.

In scenarios 0 to 9 DLP on average yielded about 64.4% more
revenue than a simple FCFS acceptance.

RLP was also implemented with recalculation of the bid
prices at each tenth part of the booking period. Due to using
the average of numerous instances of the demand distribution
instead of the expected demand, RLP produced an average
revenue increase of 4.5% compared to the DLP policy in
scenarios 0 to 9.

The CEC policy showed a good revenue performance in
scenarios 0 to 9, and on average yielded 20.5% more revenue
compared to DLP and 15.5% more revenue compared to RLP.
Furthermore, it achieved slightly better results in revenue than
SABP-c in scenarios 0 to 2.

Overall, the customized SABP policy resulted in the best
revenues. In the direct comparison between DLP and SABP-c,
SABP-c outperformed DLP with an average revenue increase
of 21.1%, and outperformed RLP with an average revenue
increase of 16.0%. Compared to CEC the revenue yielded
turned out higher in seven out of ten scenarios. Additionally,
by looking at scenarios 10 to 14 in table IV, it is observable
that when demand for high-class services deviates downwards,
SABP-c is more independent from the forecast and can keep
up a better revenue performance.

TABLE IV
SIMULATION RESULTS: ACHIEVED REVENUES - CEC AND SABP-C

Demand CEC SABP-c Diff. in %
Scenario10 7396 7464.5 0.93
Scenario11 7306 7426.5 1.65
Scenario12 7189 7407.5 3.04
Scenario13 7072 7366.5 4.16
Scenario14 6955 7317.5 5.21

V. CONCLUSION

Commercial providers in a Cloud have to decide how to
set their prices and how to plan the capacity. Efficiency and
revenue play an important role. The decision about accepting
or denying requests has a high impact on the revenue of
the provider. Revenue Management concepts known from the
airline industry comprise interesting policies. In this paper we
analyze the policy concepts and present how to apply these
concepts in the Cloud Computing domain. Furthermore, we
propose a bid price based policy to determine the minimum
price a consumer has to pay for requesting a service. The
complexity arises when services utilize the same resources.

Evaluating incoming requests with the DLP policy can be
critical, because the usage of the dual solution as bid prices
turned out to be non-optimal and very inaccurate.

The customized version of the SABP concept is able to
calculate promising values for the bid prices, but strongly
depends on the configuration of the control variables. The
revenue performance of the customized SABP policy clearly
is better than the one of DLP and RLP policies. Moreover,
it is more robust to deviations from the expected demand.
The main computational effort of SABP-c arises from the
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calibration of the control variables by the genetic algorithm. If
the provider has sufficient information on future demand, and
thereby is able to calibrate the bid price function appropriately,
the computational effort only concerning the recalculation
of the bid prices for each request arriving, is moderate and
acceptable.

Furthermore, the CEC policy showed good results concern-
ing revenue performance. But in cases, in which demand for
the more expensive services is less than expected, CEC can be
outperformed by SABP-c. It is important to note that the CEC
policy does not use bid prices to estimate the opportunity cost.
It directly calculates an approximation of the opportunity cost
of reserving capacity required to satisfy an accepted request.
Although CEC seems to compute an accurate approximation of
the opportunity cost in the present setting, it is more dependent
on the forecast than SABP-c.

Due to the reasons explained, the integration of the cus-
tomized SABP policy into a Cloud system can be more
efficient in evaluating customer requests than using the DLP
or even the CEC approach in terms of revenue performance.
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