
Cluster Computing in the Classroom: Topics, Guidelines, and Experiences

Amy Aponα, Rajkumar Buyyaβ, Hai Jinδ, and Jens Mache φ

Computer Science and Computer Engineeringα
University of Arkansas, Fayetteville, Arkansas, USA

Email: aapon@comp.uark.edu

School of Computer Science and Software Engineeringβ
Monash University, Melbourne, Australia

Email: rajkumar@csse.monash.edu.au

Department of Electrical Engineering - Systemδ
University of Southern California, Los Angeles, USA

Email: hjin@ceng.usc.edu

Department of Mathematical and Computer Scienceφ
Lewis & Clark College, Portland, Oregon, USA

Email: jmache@lclark.edu

Abstract - With the progress of research on cluster computing,
more and more universities have begun to offer various courses
covering cluster computing. A wide variety of content can be
taught in these courses. Because of this, a difficulty that arises
is the selection of appropriate course material. The selection is
complicated by the fact that some content in cluster computing
is also covered by other courses such as operating systems,
networking, or computer architecture. In addition, the
background of students enrolled in cluster computing courses
varies. These aspects of cluster computing make the
development of good course material difficult. Combining our
experiences in teaching cluster computing in several
universities in the USA and Australia and conducting tutorials
at many international conferences all over the world, we
present prospective topics in cluster computing along with a
wide variety of information sources (books, software, and
materials on the web) from which instructors can choose. The
course material described includes system architecture, parallel
programming, algorithms, and applications. Instructors are
advised to choose selected units in each of the topical areas and
develop their own syllabus to meet course objectives. For
example, a full course can be taught on system architecture for
core computer science students. Or, a course on parallel
programming could contain a brief coverage of system
architecture and then devote the majority of time to
programming methods. Other combinations are also possible.
We share our experiences in teaching cluster computing and
the topics we have chosen depending on course objectives.

1. Introduction
Clusters, built using commodity-off-the-shelf (COTS)
hardware components and free, or commonly used,
software, are playing a major role in solving large-scale
science, engineering, and commercial applications.
Cluster computing has emerged as a result of the
convergence of several trends, including the availability
of inexpensive high performance microprocessors and
high speed networks, the development of standard

software tools for high performance distributed
computing, and the increasing need of computing power
for computational science and commercial applications
[6][7]. Clusters have evolved to support applications
ranging from supercomputing and mission-critical
software, through web server and e-commerce, to high-
performance database applications. Educators have an
opportunity to teach many types of topics related to
cluster computing in universities at various levels, from
upper-division undergraduate to graduate.

Cluster computing provides an inexpensive
computing resource to educational institutions. Colleges
and universities need not invest millions of dollars to buy
parallel computers for the purpose of teaching "parallel
computing". A single faculty member can build a small
cluster from student lab computers, obtain free software
from the web, and use the cluster to teach parallel
computing. Many universities all over the world,
including those in developing countries, have used
clusters as a platform for high perfo rmance computing.

Many resources are available for teaching cluster
computing. For example, the IEEE Computer Society
Task Force on Cluster Computing (TFCC) [16] provides
online educational resources. It promotes the inclusion of
cluster-related technologies in the core curriculum of
educational institutions around the world through its
book donation program in collaboration with
international authors and publishers.

Even with all of the available resources for cluster
education, it is difficult to design a good course that
covers a reasonable subset of topics of cluster
computing. The first difficulty has to do with the diverse
set of topics that cluster computing entails. Many typical
undergraduate or graduate courses have significant
overlap with the topics that may also be covered in a
cluster computing course. For example, undergraduate

courses in operating systems, networks, computer
architecture, algorithms, or Java computing may cover
topics such as threads and synchronization, network
protocols and communication, or issues related to
symmetric multiprocessing. Since all of these courses
may or may not be required in the curriculum, students
enroll in the cluster computing course with various
backgrounds, depending on whether or not they have had
such courses as prerequisites. It is impossible to assume
all the above courses as prerequisites. If so, many
students would not be able to take the cluster computing
course because they would not have time to fit it in
before graduation.

A second difficulty with designing a good course in
cluster computing is the illusion that many students (and
instructors) have about cluster computing. Building a
cluster, such as a Linux cluster, is so easy that even a
person without much experience can handle this with the
guidance of a brief brochure. Such information can
easily be found on the web. This ease of constructing
clusters may give students a misunderstanding of the
difficulties involved in cluster computing. The next
challenge, which is how to make the individual
computers operate as an integrated system for the
purpose of solving a single problem, is more difficult.
The main challenges lie in developing applications that
exploit the cluster infrastructure, and in understanding
the design tradeoffs for the cluster architecture.
Applications need to be parallelized and developed using
application programming. Students may be unprepared
for the difficulties involved in these tasks.

To address these difficulties in teaching cluster
computing, we present a set of sample syllabi of cluster
computing for instructors to use in major universities. In
this paper, we focus on how to design a good syllabus
for a cluster computing course, considering various
student backgrounds, and without repeating most of
topics covered by other courses. In section 2, we first list
possible topics of cluster computing. We provide a set
of sample syllabi in section 3 for use in teaching cluster
computing at both the senior undergraduate and graduate
level. These syllabi cover the necessary topics related to
cluster computing, including system architecture, parallel
programming, algorithms, and applications. For the
convenience of instructors, several related books and
references are also listed. We discuss our experiences in
teaching cluster computing in several universities in the
USA and Australia in Section 4. Finally, we end with
conclusions.

2. Prospective Topics for Teaching
A cluster is a type of parallel or distributed processing
system that consists of a collection of interconnected
stand-alone computers working together as a single,
integrated computing resource [6]. A generic architecture

of a cluster computer is shown in Figure 1. A node of the
cluster can be a single or multiprocessor computer, such
as a PC, workstation, or symmetric multiprocessor
(SMP). Each node has its own memory, I/O devices and
operating system. A cluster can be in a single cabinet, or
the nodes can be physically separated and connected via
a LAN. Typically, a cluster will appear as a single
system to users and applications.

Figure 1: Typical Cluster Architecture. (Source [6])

In addition to describing these general cluster
characteristics, topics that may be covered in a course on
cluster computing include:
q System architecture
Ø SMP and CC-NUMA multiprocessor

architectures
Ø Network interface
Ø Network topology
Ø Network communication protocols, including

TCP/IP programming and low-latency protocols
such as VIA (virtual interface architecture) [32].

Ø Cluster run-time support, including
§ Hardware level support for communication

such as Digital Memory Channel and
hardware distributed shared memory

§ Operating systems such as Mosix [22]
§ Application level support, including runtime

system support such as software DSM (e.g.,
TreadMarks) and parallel file systems (e.g.,
PVFS), and resource management and
scheduling systems such as LSF and PBS.

Ø Case studies, such as Linux Clusters, IBM SP2,
Digital TruCluster, and Berkeley NOW [31].

q Parallel programming
Ø Shared memory programming and tools such as

POSIX and Java threads.
Ø Distributed memory programming using message

passing programming tools such as MPI and PVM
Ø Middleware programming tools such as CORBA,

Remote Procedure Call (RPC), Java Remote Method
Invocation (RMI), Java Servlets, Java Database
Connectivity (JDBC), and Jini.

q Parallel algorithms and applications
Ø High performance algorithms and applications

Ø Techniques of algorithm design
Ø Performance evaluation and tuning, including

optimization, visualization, high availability,
network security, and benchmark experiments,
such as NAS parallel benchmark (NPB) and
Linpack benchmark.

System architecture topics relate the responsibility of
the network interface hardware for transmitting and
receiving packets of data between nodes and the
responsibility of the communication software to offer an
efficient and reliable means of data communication
between nodes and potentially outside the cluster. For
example, clusters with a high-performance network such
as Myrinet generally use a user-level communication
protocol such as VIA for fast communication between
nodes. This interface bypasses the operating system and
provides direct user-level access to the network
interface, thus removing critical communication
overhead. System-level middleware is responsible for
offering the illusion of a unified system image (single
system image) from a collection of independent but
interconnected computers.

Programming topics include a discussion of portable,
efficient, and easy-to-use tools for developing
applications. Such environments include tools and
utilities such as compilers, message passing libraries,
debuggers, and profilers. A cluster can execute both
sequential and parallel applications. A comprehensive
discussion of cluster-based architectures, programming,
and applications can be found in [6][7][13][25][29][30]
[33]. In the following sections, we discuss the
organization of courses mainly based on these references
and other sources.

3. Suggested Course Components
A cluster computing course can focus on a number of
topics, including system architecture, programming
environments and languages, the design of algorithms,
and applications. One option is to conduct a separate
course on each of these topics. For example, a full course
on “Advanced Network-based Computer Architecture”
or “Parallel Programming” can be taught as a single
course. An alternate option is teaching a single course
on cluster computing that comprises selected units from
different course components. For example, instructors
can pick complementary topics from system architecture
and parallel programming to develop a course.

3.1 System Architecture

Junior undergraduate level courses in computer science
teach computer organization, networking, basics of
operating systems, and programming subjects. A student
having studied these courses meets the prerequisite for a
course on network-based advanced computer

architecture. As cluster-based systems are developed
using standard, COTS hardware and software
components, a great exercise would be learning how to
build one’s own cluster-based high-performance and/or
high-availability computer systems. Such a project can
be coupled with a number of projects that focus on
developing software that provides an illusion of a single
system image. Course projects can also focus on
developing scientific and business applications.

Two complementary textbooks on cluster-based
system architecture issues that can provide the
foundation for a course that focuses on system
architecture are Buyya[6] and Pfister[25]. The system
architecture course can be divided into four units:
introduction, cluster building blocks, system-level cluster
middleware (focusing on single system image and high
availability infrastructure), and projects. Among these
units, it is advisable to dedicate the largest amount of
time (more than 50%) to system-level middleware.

Unit 1: Introduction

The computing industry is one of the fastest growing
industries and it is fueled by the rapid technological
developments in the areas of computer hardware and
software. Many different computer architectures
supporting high performance computing have emerged.
These include: vector processors, Massively Parallel
Processors (MPP), Symmetric Multiprocessors (SMP),
Cache-Coherent Non-Uniform Memory Access (CC-
NUMA), distributed systems, and clusters. The success
of these systems in the marketplace depends on their
price-performance ratio. This unit discusses these
competing computer architectures and their
characteristics. An important question to be addressed is,
“What exactly is cluster computing, and why is it a good
idea?” A primary goal is to understand the key reasons
for the development of cluster technology that supports
low-cost high performance and high availability
computing. A suitable textbook for this unit is [13].

Unit 2: Cluster Building Blocks
Clusters are composed of commodity hardware and
software components. The hardware components include
standalone computers (i.e., nodes) and networks. Cluster
nodes can be PCs, workstations, and SMP’s. Networks
used for interconnecting cluster nodes can be local area
networks such as Ethernet and Fast Ethernet, system area
networks such as Myrinet and Quadrics switches, or
upcoming InfiniBand communication fabric [26].
Various operating systems, including Linux, Solaris, and
Windows, can be used for managing node resources. The
communication software can be based on standard
TCP/IP or user-level messaging layers such as VIA.
Suitable references for this unit are [6] (chapters 1, 9, 10)
and [25].

Unit 3: System-Level Middleware
System-level middleware offers Single System Image
(SSI) and high availability infrastructure for processes,
memory, storage, I/O, and networking. The single
system image illusion can be implemented using the
hardware or software infrastructure. This unit focuses on
SSI at the operating system or subsystems level. A
modular architecture for SSI allows the use of services
provided by lower level layers to be used for the
implementation of higher-level services. This unit
discusses design issues, architecture, and representative
systems for job/resource management, network RAM,
software RAID, single I/O space, and virtual networking.
Books by Buyya [6] and Pfister [25] cover each of these
topics in depth. A number of operating systems have
proposed SSI solutions, including MOSIX, Unixware,
and Solaris -MC. It is important to discuss one or more
such systems as they help students to understand
architecture and implementation issues.

Unit 4: Course Projects

Absorbing all the course’s conceptual material is
impossible without hands-on experience of some aspect
of cluster systems. Fortunately, several cluster-based
software systems are freely available for download (with
source code), including Linux, VIA, PBS, Condor, MPI,
PVM, GFS, GLunix, and MOSIX [8]. Students can
explore these components by changing some of the
policies used in these systems. For example, students can
develop a new scheduling policy and program it as
modification of the PBS cluster management source
code.

Some of the projects that can be explored include:
• Build a low-cost cluster using PC’s, Linux and

Ethernet
• Install PVM and MPI on a cluster
• Evaluate various job management systems
• Develop tools for system administration
• Develop a simple job scheduler
• Implement a standard user level communication

layer based on VIA
• Develop cluster monitoring tools
• Develop share-based scheduling policy and

implement in systems such as PBS.
• Develop a computational economy -based policy for

scheduling and implement it for PBS.
• Develop a web based job submission system
• Develop parallel Unix tools
• Students are advised to play with a number of

clustering software systems listed in [8].
One of the best course projects for students is to

develop web-based access mechanisms for clusters.
Students can also identify deficiencies and limitations of
existing systems and develop new solutions and policies

to overcome them. Deeper explorations of new methods,
mechanisms, and policies for single system image can
also serve as nice thesis topics.

3.2 Programming
A course in cluster computing that focuses on
programming can provide students with an abundance of
hands-on experience with clusters. The tools that are
required to teach these topics are generally available on
most campuses, computer science students generally
have the background required at the senior level to study
cluster programming, and much tutorial material is
available on-line in various locations. Thus, the course
can cover a range of topics without requiring the students
to purchase a large number of expensive textbooks.

 It may be possible to teach a course on cluster
programming with fewer prerequisites than is required
for a course covering more advanced architectural topics.
At a minimum, students should have been exposed to
data structures, basic algorithms, and computer
organization prior to the units in a course on cluster
programming. A course on programming can be divided
into four major units. The four units presented in this
section are largely independent of one another, although
the prerequisites for each unit may vary.

Unit 1: Shared Memory Programming
Given that many clusters are composed of symmetric
multiprocessors, background in shared memory
programming is a good entry into cluster programming
for advanced undergraduates and beginning graduate
students. A prior operating systems course is helpful,
since an operating systems course usually covers topics
such as mutual exclusion, synchronization, and the
solution of classic problems. However, this material can
be taught without prior operating systems exposure if
some time is planned at the beginning to cover some
basic operating systems concepts on processes.

Several languages are available to teach shared
memory programming. The most accessible include:
• C or C++ using the pthreads library on Linux or

Unix, or the threads library on Solaris. The pthreads
library is a POSIX-compliant version of threads, and
offers named condition variables. The monitor itself
must be coded using mutex variables.

• Java threads. Java threads do not support named
condition variables, but rather support wait sets on
an object. An instructor using Java for shared
memory programming may want to spend some
time discussing programming techniques for Java
threads. Depending on how much time the instructor
wants to spend on language skills, the students do
not have to have prior experience in Java to teach
this unit in Java.

Students do not have to have access to a symmetric

multiprocessing computer to gain experience
programming with threads. However, some programs
that examine the performance of thread programs work
best if the students have access to at least a dual-
processor computer.

Typical topics that may be covered in a unit on shared
memory programming include:
• Processes versus threads, pthreads, Java Threads
• Race conditions, synchronization locks, and mutual

exclusion
• Monitors, semaphores, and solutions to classic

synchronization problems
• Design patterns for concurrency

Resources include [1][5][12][18]. A suitable follow-
on material for Unit 1 is the hardware issues associated
with symmetric multiprocessors. A follow-on coverage
of symmetric multiprocessors for students with limited
hardware background is [25] Chapter 6. A sample
course that covers this unit can be found at [2].

Unit 2: Message Passing Primitives
Although new high-performance protocols are available
for cluster computing, some instructors may want to
provide students with a brief introduction to message-
passing programs using the BSD Sockets interface to
Transmission Control Protocol/Internet Protocol
(TCP/IP) before introducing more complicated parallel
programming with distributed memory programming
tools. If students have already had a course in data
communications or computer networks then this unit
should be skipped.

Students should have access to a networked computer
lab with the Sockets libraries enabled. Sockets usually
come installed on Linux workstations. Typical topics
covered in this unit include:
• Basic networking, the Internet Protocol (IP) stack,

client/server programming
• TCP and UDP sockets library
• Internet programming issues: stream messaging vs.

datagram messaging, endian issues
A nice project that combines Unit 1 and Unit 2 is for

the students to develop a multithreaded server
application and the corresponding client using sockets
and threads. A good follow-on for Unit 2 is some
coverage of the Virtual Interface Architecture (VIA)
[32], and discussion of the overhead in TCP/IP.

A convenient on-line resource for instructors is a
Guide to Sockets Programming, available at
http://www.ecst.csuchico.edu/~beej/guide/net/ and a
sample course that covers this unit is [3].

Unit 3: Parallel Programming Using MPI
An introduction to distributed memory programming
using a standard tool such as Message Passing Interface
(MPI)[23] is basic to cluster computing. Current versions

of MPI generally assume that programs will be written in
C, C++, or Fortran. However, Java-based versions of
MPI are becoming available. The resources for students
for this unit include a networked cluster of computers
with MPI installed. Setting up a cluster the first time can
require some effort, but once the cluster is set up lit tle to
no maintenance is required on it throughout the semester.

Typical topics that may be covered include:
• Introduction to parallel computing
• I/O on parallel systems
• Tree communication, broadcast, tags, safety
• Collective communication: reduce, dot product,

allreduce, gather/scatter, allgather
• Grouping data, derived types, type matching,

pack/unpack
• MPI communicators and topologies
• Data-parallel vs. control-parallel
• Algorithm development and MPI programming

A good co-unit for this unit is some coverage of
parallel algorithms and applications (see section 3.3.)
Resources for instructors include [7][23][24][28][33] and
sample courses that cover this unit are [3] and [9].

Unit 4: Application-Level Middleware
Application-level middleware is the layer of software
between the operating system and applications.
Middleware provides various services required by an
application to function correctly. A course in cluster
programming can include some coverage of middleware
tools such as CORBA, Remote Procedure Call, Java
Remote Method Invocation (RMI), or Jini. Sun
Microsystems has produced a number of Java-based
technologies that can become units in a cluster
programming course, including the Java Development
Kit (JDK) product family that consists of the essential
tools and APIs for all developers writing in the Java
programming language through to APIs such as for
telephony (JTAPI), database connectivity (JDBC), 2D
and 3D graphics, security as well as electronic
commerce. These technologies enable Java to
interoperate with many other devices, technologies, and
software standards.

Advanced middleware products such as CORBA are
often taught as an entire course of their own, often
forming the basis for topics courses at the advanced
undergraduate or beginning graduate level. Resources
available to instructors include Jini [10] and Javasoft
(http://www.javasoft.com/products/). A sample course
for this unit is: http://csce.uark.edu/~rdeaton/cscomp/

3.3 Algorithms and Applications
In a course on cluster computing, it makes sense to study
algorithms and applications, since “killer-applications”
are one building block of cluster computing (together
with killer-microprocessors, killer-networks, and killer-

tools). Moreover, covering algorithms and applications
provides (1) the opportunity and context for
programming projects and (2) examples of how clusters
are put to work. The algorithms and application topic can
be divided into four units: overview of applications,
techniques of algorithm design, evaluation & tuning, and
specific algorithms & applications.

Unit 1: Overview of Applications

Clusters have infiltrated not only the traditional science
and engineering marketplaces for research and
development, but also the huge commercial marketplaces
of commerce and industry. It should be noted that
clusters are not only being used for high-performance
computation, but increasingly as a platform to provide
highly available services, for applications such as web
and database servers.

Clusters are used in many scientific disciplines,
including biology (genome mapping, protein folding),
engineering (turbo-fan design, automobile design), high-
energy physics (nuclear-weapons simulation),
astrophysics (galaxy simulation) and meteorology
(climate simulation, earth/ocean modeling).

Typical topics that may be covered include [4]:

• Internet applications: Systems like Linux Virtual
Server directs clients’ network connection requests
to multiple servers that share their workload.

• Compression: Systems like Evoke Communications’
speech-to-email service uses clusters to perform
transcoding that meets real-time requirements.

• Data mining : Efforts like Terabyte Challenge uses
clusters at multiple sites to manage, mine, and
model large distributed data sets for high-energy
physics, health care or web crawlers.

• Parameter study: Tools like Nimrod uses a cluster
to execute task farming and parameter study
applications (the same program repeatedly executed
with different initial conditions) as a means of
exploring the behavior of complex systems like
aircrafts or ad-hoc networks.

• Image rendering. A ray tracer can distribute the
rendering among different nodes.

Unit 2: Techniques of Algorithm Design

It is important to show by example how to design and
implement programs that make use of the computational
power provided by clusters. Typical topics that may be
covered include:
• Process-level parallelism
• Partitioning and divide-and-conquer
• Communication and synchronization
• Agglomeration and mapping
• Load balancing and termination detection

Unit 3: Evaluation and Tuning
Once the fundamental issues of the existence of
sufficient parallelism have been addressed, there often
are several algorithms or strategies available, and
tradeoffs must be weighed to determine which is most
appropriate. How to choose and develop appropriate
algorithms? How to evaluate resulting implementations?
How to optimize overall performance?

Parallel algorithms can be categorized according to a
number of criteria, including regular or irregular,
synchronous or asynchronous, coarse or fine grained,
bandwidth greedy or frugal, latency tolerant or
intolerant, distributed or shared address space. Typical
topics that may be covered include:
• How to model, measure and analyze
• Visualization and debugging
• Optimization by minimizing communication and

tolerating latency

Unit 4: Specific Algorithms and Applications
Typical topics that may be covered include:

• Sorting
• Numerical algorithms
• Image processing
• Graph algorithms
• Computational geometry
• Searching and optimization
• Genetic algorithms
• Parallel simulation
• Molecular modeling
• Climate ocean modeling
• Computational fluid dynamics
Teaching resources include [7][11][17] [19][27] [33].

4. Discussions and Experience
Generally, the topics chosen for a course on cluster
computing depends on the course objective. In this
section, we discuss our experiences with teaching
courses that centered on cluster computing in our
universities.

University of Arkansas
Cluster computing has been taught three times and the
two different versions of the course have been offered at
the advanced undergraduate level [2][3]. Students
coming into the course have a varied background, but
which includes at least computer organization and
generally also operating systems. Serious students who
have not had operating systems prior to cluster
computing can be successful in the course. The best-
prepared students either had good background in
computer architecture, computer networks, or significant
experience with programming or setting up computers.

The first part of the course covers shared memory
parallel programming. Programming exercises have
focused on the solution to the classic problems that are
typically found in an operating systems course. The
programs have not generally included concepts such as
GUI interfaces, although these could be incorporated if
desired. Since many students have not had a course in
computer architecture, about a week of lecture is spent
on hardware issues such as cache, symmetric
multiprocessing, and snoopy bus architectures. If time
allows, distributed shared memory and memory
consistency are also covered.

The second part of the course covers distributed
memory parallel programming using sockets and MPI.
Programming exercises include a client and concurrent
server program, a matrix/vector multiply program in
MPI, and at least one advanced MPI program. The
advanced program is sometimes beyond the capability of
weaker students in the course, so it is generally at most
ten percent of the total grade. MPI features such as
collective communication, communicators, and efficient
message passing are covered. Along with MPI, the
course also covers programming issues such as control
parallel versus data parallel programming and systems
issues such as network protocol stacks, cost of network
communication, Amdahl’s Law, and a comparison of
clusters to symmetric multiprocessors.

The third part of the course covers miscellaneous
topics, as time allows, including high availability, single
system image, tools for cluster setup and maintenance,
and performance testing.

A significant portion of the course grade is based on a
programming project that each student selects and which
is due near the end of the semester. The project is a
great way to allow students to focus more thoroughly on
a topic that interests them, or to cover a topic for which
class time did not allow.

Monash University

As part of the subject "CSC433: Parallel Systems" for
BSc Honors degree, we dedicated half of the course to:
(a) parallel systems and machine architectures and (b)
various communication models and languages for
parallel programming [9]. The topics covered in part (a)
include: pipelined architectures, shared memory,
distributed memory, SIMD, MIMD, MPP, and
application specific parallel systems. The topics covered
in part (b) include: early work on simple language
extensions for concurrency; simple extensions for
message passing; programming with tuples; message
passing for parallel architectures; data parallel
programming; mapping problems to parallel systems,
and optimization of parallel programs to exploit
architectural features.

The remaining half of the course is dedicated to: (a)
cluster computer architecture, (b) message passing
programming with MPI, and (c) development of parallel
programs using MPI. The topics covered in cluster
architecture include cluster building blocks, middleware
and single system image. The teaching material is drawn
from [6] (chapters 1, 2, 4, 26) and [25] (chapter 11).
Topics covered in MPI programming include data types,
process management, point-to-point and group
communications, communication patterns, etc. Each of
these topics is illustrated with example programs. Much
public domain information on MPI is available on the
web. The teaching material is drawn from books [7]
(chapters 1, 2, and 3), [30] (selected sections from
chapters 3, 4, 9, 10, and 12), and tutorial material [20].

As part of the laboratory experiments, we have used
MPICH software [23] on our 32-node Linux cluster [21].
All 32 machines are dual-processor Pentium PCs running
Linux operating systems. Among these, two nodes are
acting as servers and are publicly accessible, whereas
remaining client nodes located on a private fast network,
which are only accessible through the servers. Students
are given assignments to develop parallel programs for
solving matrix manipulation, sorting, searching, data
mining, and shortest path algorithms.

The second assignment focused on developing a
survey report on selected topics in state-of-the-art cluster
technologies such as cluster operating systems, resource
management systems, cluster administration, new
programming environments, genetic programming,
commercial applications, and emerging cluster building
blocks. For this, each student surveyed a different topic
with a focus on recent advances and wrote a report. The
outcome of both the laboratory exp eriments and the
state-of-the-art-report writing experience was rated by
students to be a good experience and helped in
evaluating the students understanding of the course.

University of Southern California (USC)

Cluster computing has been taught as part of courses
“EE557: Computer System Architecture” [14] and
“EE657: Parallel Processing” [15]. EE557 focused on
system architecture for parallel and distributed systems.
They include SMP and CC-NUMA mu ltiprocessors,
clusters of servers and PC/workstations, and massively
parallel processing (MPP) systems. Another cluster
related topic covered is distributed software RAID and
parallel I/O. As USC Trojans cluster research group has
done very extensive research work on distributed
software RAID, more design detail and benchmark
experiments are taught in these courses. Students can
learn very intensive techniques on how to implement
single I/O space in the environment of Linux PC cluster.

Taking EE557 was a prerequisite for EE657 research-
oriented course that covers scalable computers, network

security, concurrent programming, agent technology, and
middleware support for cluster and Internet applications.
Case studies of parallel computers and benchmark
programming experiments are performed on SGI Origin
2000 superserver and on USC Trojans PC cluster. Again,
based on extensive research experience on agent
technology and cluster and network security, several
units are devoted to explain the topics on multi-agent
technologies, firewall security architecture, and e-
commerce security applications. As this is a research-
oriented course, only two projects are performed to
finish this course. The mid-term project is a research
report. Students can select one out of 20 different topics
on cluster and network security. For the final project,
students need to use MPI parallel programming to
perform the Linpack benchmark experiments on SGI
Origin 2000 and USC Trojans PC Linux cluster.

Lewis & Clark College
Cluster computing has twice been taught to upper-
division undergraduate students as a 10-week summer
course. The first part of the course was an introduction to
cluster building blocks and MPI programming.
Afterwards, most of the time was spent on building the
cluster and parallelizing a ray tracer, including
performance measurements and tuning. Experiments
included different network technologies (including
Gigabit Ethernet), different network topologies, and
different file systems (including PVFS).

Students seemed to part icularly enjoy hands-on
components like cabling and experimenting with parallel
ray-tracing programs. When the cluster was up and
several students were ready to run programs,
coordination (or a scheduling system) became necessary.

5. Conclusions
The variety of references cited illustrates that cluster
computing ties together systems, communications,
architecture, programming, applications, and algorithms.
While this can make the selection of course topics
difficult, the sample courses described in this paper can
help instructors to design a course in cluster computing
at their own institutions. Our experience with teaching
cluster computing has been very favorable. The nature
of cluster computing allows students to tie together
material from a number of different courses in their
curriculum to provide a sort of “capstone” experience in
an undergraduate education, or to provide a source of
thesis topics at the graduate level.

References
[1] G. Andrews, Foundations of Multithreaded, Parallel, and

Distributed Programming, Addison-Wesley, 1999.
[2] A. Apon, CSCE 4253: Concurrent Computing,

http://csce.uark.edu/~aapon/courses/concurrent/

[3] A. Apon, CSCE 4253: Concurrent Computing,
http://csce.uark.edu/~aapon/courses/cluster/

[4] M. Baker, A. Apon, R. Buyya, H. Jin, “Cluster Computing
and Applications”, Encyclopedia of Computer Science and
Technology, Vol.45, Marcel Dekker, Aug. 2001.

[5] D. Butenhof, Programming with POSIX Threads,
Addison-Wesley, 1997.

[6] R. Buyya (ed.), High Performance Cluster Computing:
Systems and Architectures, Prentice Hall, 1999.

[7] R. Buyya (ed.), High Performance Cluster Computing:
Programming and Applications, Prentice Hall, 1999.

[8] Cluster Info Centre: http://www.buyya.com/cluster
[9] T. Dix and R. Buyya, CSC433: Parallel Systems,

http://www.buyya.com/csc433/, Monash Uni., 2000.
[10] W.K. Edwards, Core Jini, The Sun Microsystems Press

Java Series, Prentice Hall, 1999.
[11] I. Foster, Designing and Building Parallel Programs,

Addison-Wesley, 1995
[12] S. Hartley, Concurrent Programming, the Java

Programming Language, Oxford Press, 1998.
[13] K. Hwang and Z. Xu, Scalable Parallel Computing,

McGraw-Hill, 1998.
[14] K. Hwang, EE557: Computr Systems Architecture,

http://www-classes.usc.edu/engr/ee-s/557h/
[15] K. Hwang, EE657: Parallel Processing, http://www-

classes.usc.edu/engr/ee-s/657h/
[16] IEEE Task Force on Cluster Computing (TFCC),

http://www.ieeetfcc.org/.
[17] V. Kumar, A. Grama, A. Gupta, and G. Karypis,

Introduction to Parallel Computing: Design and Analysis
of Algorithms, Benjamin/Cummings, 1994.

[18] D. Lea, Concurrent Programming in Java: Design
Principles and Patterns, Addison-Wesley, 2000.

[19] F.T. Leighton, Introduction to Parallel Algorithms and
Architectures, Morgan-Kaufman Press, 1992.

[20] MHPCC, SP Parallel Programming Workshop – MPI
Tutorial, http://www.mhpcc.edu/doc/mpi/mpi.html, 2000.

[21] Monash Parallel Parametric Modeling Engine (PPME),
http://hathor.csse.monash.edu.au/

[22] MOSIX – http://www.mosix.cs.huji.ac.il/.
[23] MPI Software - http://www-unix.mcs.anl.gov/mpi/mpich/
[24] P. Pacheco, Parallel Programming With MPI. Morgan

Kaufmann Publishers, 1996.
[25] G. Pfister, In Search of Clusters, Prentice Hall, 1998.
[26] G. Pfister, “An Introduction to the InfiniBand

Arechitecture”, High Performance Mass Storage and
Parallel I/O, IEEE Press, 2001. www.infinibandta.org

[27] S. Roosta, Parallel Processing and Parallel Algorithms:
Theory and Computation, Springer Verlag, 2000.

[28] M. Snir, S. Otto, S. Lederman, D. Walker, J. Dongarra,
MPI: The Complete Reference, MIT Press, 1996.

[29] D. Spector, Building Linux Clusters, O’Reilly, 2000.
[30] Thomas Sterling, J. Salmon, D. Becker, and D. Savarese,

How to Build a Beowulf, MIT Press, 1999.
[31] UC Berkeley NOW project, http://now.cs.berkeley.edu/
[32] Virtual Interface Architecture, http://www.viarch.org/.
[33] B. Wilkinson and M. Allen, Parallel Programming,

Prentice Hall, 1999.

