
Research Article
Blockchain-Enhanced Fair Task Scheduling for Cloud-Fog-Edge
Coordination Environments: Model and Algorithm

Wenjuan Li ,1 Shihua Cao ,1 Keyong Hu ,1 Jian Cao ,2 and Rajkumar Buyya 3

1Qianjiang College, Hangzhou Normal University, Hangzhou, China
2Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
3&e Cloud Computing and Distributed Systems (CLOUDS) Laboratory, &e University of Melbourne, Melbourne, Australia

Correspondence should be addressed to Wenjuan Li; liellie@163.com

Received 6 January 2021; Revised 3 March 2021; Accepted 22 March 2021; Published 5 April 2021

Academic Editor: Honghao Gao

Copyright © 2021 Wenjuan Li et al.)is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

)e cloud-fog-edge hybrid system is the evolution of the traditional centralized cloud computing model.)rough the com-
bination of different levels of resources, it is able to handle service requests from terminal users with a lower latency. However, it is
accompanied by greater uncertainty, unreliability, and instability due to the decentralization and regionalization of service
processing, as well as the unreasonable and unfairness in resource allocation, task scheduling, and coordination, caused by the
autonomy of node distribution.)erefore, this paper introduces blockchain technology to construct a trust-enabled interaction
framework in a cloud-fog-edge environment, and through a double-chain structure, it improves the reliability and verifiability of
task processing without a big management overhead. Furthermore, in order to fully consider the reasonability and load balance in
service coordination and task scheduling, Berger’s model and the conception of service justice are introduced to perform
reasonable matching of tasks and resources. We have developed a trust-based cloud-fog-edge service simulation system based on
iFogsim, and through a large number of experiments, the performance of the proposed model is verified in terms of makespan,
scheduling success rate, latency, and user satisfaction with some classical scheduling models.

1. Introduction

)e traditional centralized cloud service mode, with all tasks
being handled in the center, faces big challenges in practical
applications, including high latency, network dependency,
single point of failure, and failure scale effect and cannot
adapt to the instant transaction scenarios.)erefore, re-
searchers put forward the idea of distributing some time-
sensitive and low-resource demand services to be processed
at the edge of the network, which is the prototype of fog or
edge computing.

Based on the idea, this paper designs a cloud-fog-edge
hybrid computing architecture, in which the fog layer is
actually a management middleware between edge and cloud,
helping the scheduler decide where to deploy and implement
a service, thus to better achieve the resource balancing and
low service latency [1].

)e cloud-fog-edge computing model provides a su-
perior framework for the distributed coordination of

resources and the timely process of tasks. However, due to
the different level of heterogeneity and resource asymmetry,
the possible cross-layer task offloading, and the dynamics
and mobility of edge nodes, the three-tier hybrid architec-
ture has been facing with a more severe crisis in terms of
service credibility and rational resource allocation and
scheduling [2–5]. On the other hand, the hybrid service
provision environment, which contains the edge or IoT
layer, has more abundant, random, and diversified appli-
cation scenarios than traditional cloud computing and re-
quires the task scheduling strategy to be more adaptive and
robust.

At present, researchers have proposed many valuable
solutions for the efficient task scheduling in the distributed
systems (see [6–11]). However, the existing strategies cannot
achieve full functions in a cloud-fog-edge environment due
to the following reasons: (1) the centralized trust manage-
ment model cannot handle the identity authentication and
behavior management under the heterogeneous and

Hindawi
Security and Communication Networks
Volume 2021, Article ID 5563312, 18 pages
https://doi.org/10.1155/2021/5563312

mailto:liellie@163.com
https://orcid.org/0000-0002-3833-2794
https://orcid.org/0000-0002-9391-2345
https://orcid.org/0000-0002-8963-6237
https://orcid.org/0000-0002-0036-9436
https://orcid.org/0000-0001-9754-6496
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5563312

decentralized architecture, (2) the existing distributed or
decentralized trust models cannot provide enough trust
evidence with sufficient credibility to convince entities in the
same domain or across domains, and (3) it is difficult to
guarantee the relative fairness and global rationality of re-
source distribution in scheduling.

In response to these problems, this paper proposes a trust-
enhanced fair scheduling model for the cloud-fog-edge en-
vironments. It firstly deploys the blockchain technology to
build a decentralized trust framework to solve the problem of
service credibility. And then, it introduces Berger’s theory of
wealth distribution to propose the concept and evaluation
method of service fairness. Considering the mobile applica-
tion scenarios, we divide scheduling into two levels.)e first
level is user scheduling, which deals with the matching of
mobile terminals and access points, and the second one is task
scheduling, which realizes thematching of tasks and resources
in the local pool. Task scheduling in a cloud-fog-edge envi-
ronment is treated as a multiobjective optimization problem,
which comprehensively considers terminal mobility, QoS
service requirements, and workload.

)e main contributions of this paper are (1) it proposes a
novel distributed decentralized trust management model
based on blockchain technology; (2) it introduces Berger’s
fairness theory to design a preference-based fair task
scheduling model for the cloud-fog-edge environments; and
(3) it designs a new task scheduling algorithm that com-
prehensively considers user mobility, load balancing, and
trust.

)e rest of the paper is organized as follows. Section 2
briefly introduces the related work. Section 3 introduces the
system architecture along with the design details of the
double-blockchain structure-based service transaction
framework.)e trust-enhanced location-aware fair sched-
uling algorithm is proposed in Section 4. And performance
evaluation is presented in Section 5.)e last section con-
cludes the paper.

2. Related Work

2.1. Task Scheduling Model. Task scheduling refers to the
process of unified resource allocation among all resources
and users based on a certain resource usage rules and user
requirements in a specific service provision environment.
Task scheduling is the core of cloud computing.)e existing
task scheduling models can generally be divided into three
categories: performance-centric, user-centric, and hybrid.

)e goal of the performance-centric models is to im-
prove the performance of the systems, such as system
throughput, makespan, and energy consumption.)e
classical task algorithms like min-min, max-min, greedy
algorithm, swarm intelligence, and genetic algorithm all
belong to this group. Aiming at solving the energy efficiency
(EE) problem in fog computing, Y. Yang et al. proposed a
collaborative task offloading algorithm named MEETS
[12, 13]. In [14], they developed a delay and energy con-
sumption balanced scheduling algorithm called DEBTS.
H. Sun et al. designed a contract and cluster-based resource
allocation model for fog-cloud hybrid platform [15].

N. Auluck et al. proposed a security aware task scheduling
model for fog computing, through the classification of users
and providers, achieving a better system performance [16].

Improving service QoS and enhancing user service ex-
perience are the primary tasks of the user-centric models
[17–24]. In order to minimize the service delay, Z. Liu et al.
proposed a dispersive stable task scheduling model named
DATS [25]. M.Mukherjee et al. introduced a deadline-aware
task scheduling algorithm for fog computing to complete as
many tasks as possible before their deadlines [26]. G. Zhang
et al. proposed a task offloading algorithm for fog computing
systems to reduce the service delay [27]. G. Zhang et al. put
forward a fog task offloading algorithm named DOTS to
decrease latency with the help of the voluntary nodes (VNs)
[28]. H. Apat et al. proposed a three-layered priority-based
fog task scheduling model to meet the different deadline
requirement of tasks [29].

In recent years, researchers have proposed many hybrid
scheduling models considering multifactors, of which en-
ergy consumption and delay were their focus. For example,
C. Tang et al. used genetic algorithms to design a hybrid task
scheduling algorithm for mobile cloud computing taking
into consideration multifactors such as energy consumption
task requirement like deadline and cost [30]. J. Xu et al.
proposed a task scheduling model combining laxity and ant
colony algorithm to satisfy both energy consumption and
latency [31]. In order to improve the makespan and exe-
cution cost, M. Yang et al. put forward an evolutionary
heuristic-based multiobjective task scheduling model for fog
environment [32]. Caching is an effective way to reduce the
execution delay of tasks in edge computing, and thus some
novel caching strategies have been proposed by researchers
[33–35].

However, indicators considered by most current
scheduling models are simply makespan, service QoS, load
balancing, or economic principles, and the fairness of
scheduling is usually ignored.

2.2. Trust Management in Distributed Systems. Trust is an
efficient mechanism in dealing with the reputation and
reliability issues in the distributed open network environ-
ment. A large number of highlight resulting in trust and
trust-enabled interactions are achieved [36, 37].

W. Tian et al. made a survey on trust evaluation
methods in sensor cloud systems [38]. J. Wang et al.
proposed a recommendation trust evaluation method
based on the cloud model and attribute weighted clustering
[39]. P. Zhang et al. introduced a domain-based trust
management model for the public cloud [40]. For the trust-
base service management, Y. Li put forward an online
learning aided service offloading model for mobile edge
computing [41]. H. Yang et al. designed a context-aware
trust prediction model for vehicle edge computing [42].
S. Jian et al. proposed a trust-based multiobjective task
allocation model for cloud service transactions [43]. C. Hu
et al. designed an e-commerce recommendation algorithm
combining trust and distrust factors [44]. X. Meng et al.
proposed a two-tier service selection method that matched

2 Security and Communication Networks

credibility and behavior patterns [45]. Z. Ma et al. intro-
duced a trust-enabled edge data management model based
on blockchain technology [46]. L. Cui et al. put forward an
edge service configuration method combined with the
decentralized trust [47]. We have also done some inter-
esting work in this area, such as the service trust archi-
tecture for open cloud environment [48], trust decision
strategy based on fuzzy clustering [49], and trust and
preference learning-based service matching and combi-
nation models [50, 51].

However, the existing solutions cannot achieve full
functions in mobile fog computing systems due to the
following limitations: (1) the centralized trust framework
cannot be accurately integrated with the cloud-fog-edge
hybrid systems characterized by node dynamic distributed
autonomy and topology loosely coupled, (2) trust crisis of
the center node, which easily leads to single point of failure,
(3) huge trust management overhead prevents it from being
used in the instant trading scenario, and (4) trust evidence
lacks transparency.)erefore, the decentralized trust
management model and trust-enabled transaction mecha-
nism for the cloud-fog-edge hybrid environments require
further exploration.

3. System Overview

3.1. Trust-Enhanced Cloud-Fog-Edge Hybrid Framework.
In a cloud-fog-edge hybrid framework, fog computing ar-
chitects a management middleware between cloud servers
and edge devices to coordinate resource allocation, thus
improving system performance and fulfilling the customized
demand of different devices and users. Figure 1 shows the
hybrid scheduling framework of the proposed model.
Blockchain technology is introduced to construct a decen-
tralized trust model in the IoTdevice layer, thereby enhancing
the interactive credibility of the entire cloud-fog-edge hybrid
architecture.

)e framework consists of three layers: (1) trust-
enhanced edge/IoT layer, (2) fog layer, and (3) cloud layer.
)e trust-enhanced edge/IoT layer implements the peer-to-
peer interconnections through the ubiquitous sensors and
communication protocols over the traditional IoT
infrastructure layer and constructs the distributed and
decentralized trust management with a blockchain archi-
tecture.)e fog layer is introduced to decide the allocation
and management of resources and handle complex trans-
actions such as cross-group/cross-cloud tasks.)e fog layer
consists of a large number of fog servers deployed at the
network edge. Fog servers are much closer to users or
terminals than the centralized cloud server and are more
capable than the terminals.)erefore, they can ensure lower
latency and meet the needs of cross-group or cross-domain
interactions. Trust management becomes one part of the
responsibility of edge/fog servers.)e cloud layer is located
at the top of the framework. It is mainly used to deal with
some high-level and highly complex tasks, such as data
mining and behavior or preference analysis, which impose
high requirements on computing and storage capacity and
relatively loose requirement on the response time.

3.2. Service Transaction Model Based on a Double-Blockchain
Structure. Generally speaking, a complete trust authenti-
cation contains two parts: identity authentication and be-
havior evaluation. And the first part is easy to obtain or
evaluate because the identity information of a node is rel-
atively statically stable even in a P2P network topology. In
contrast, trading behavior is dynamic, requiring a lot of
computing power to record and assess.)erefore, to im-
prove the integrity and efficiency of the trust management in
a real-time trading environment, a cloud service transaction
model based on a double-blockchain structure is proposed,
as shown in Figure 2.

)e double-blockchain structure contains two block-
chains, including a trust authentication blockchain and a
trading behavior blockchain.

Definition 1. Trust Authentication Blockchain (TAB). TAB
is a blockchain structure that stores the trust data of the
cloud-fog-edge hybrid transaction system and assists trust
transaction decisions. TAB adopts an alliance chain struc-
ture, in which blocks store the trust data of nodes in the
transaction system.

TAB is responsible for managing trust data in the cloud
service markets and provides trust evaluation results to other
nodes. Each block in TAB contains two parts: identity trust
data and behavior trust data. When a node initially joins,
only the identity part is written; however, as time goes by
with the transactions progressing, the behavior part is
continuously written. Authentication is completed by a
small number of supervisors, who can be the normal miners
or some special nodes elected by the market authority.
Miners are responsible for storing and authenticating trust
data and ensuring the consistency of the data through some
specifically designed consensus mechanisms. When nodes
apply to enter the trading network, theymust pay a fee to run
a smart contract for the initial identity authentication. In
addition, when they want to obtain the trust data of the other
nodes, they also have to pay a fee.)e funding provides the
incentive fee for the miners. Figure 3 shows the basic content
of a trust block of TAB.

Definition 2. Trading Behavior Blockchain (TBB). TBB is a
blockchain structure that stores the transaction data in the
cloud-fog-edge transaction system. A block in TBB contains
both the transaction data and the evaluation data, which will
assist in generating the behavioral trust data.

TBB is responsible for generating and storing the trading
data. In TBB, the miners have two tasks, one is to generate
the new transaction blocks based on the latest transaction
results and the other is to evaluate the behavior trust,
generate a trust block, and then forward it to TAB.)e
corresponding trust block will be confirmed and stored by
the miners in TAB. Figure 4 shows the basic content of a
trading block in TBB.)e block structure of TBB is very
similar to that of TAB, and the only difference is the storage
content.

TAB and TBB jointly ensure the credibility of cloud-fog-
edge interaction. When an entity registers for the first time,
its identity trust will be written into TAB. As the transaction

Security and Communication Networks 3

progresses, the trading record between entities will be
written into TBB one by one and then the behavior trust will
be evaluated in TBB and be forwarded into TAB.When TAB

gradually grasps enough trust data of the entities in the
transaction chain, it can help entities make trust decisions
more accurately, which improves the reliability and success

Trading behavior
blockchain

Cloud trading network

Trust block

Trustrequest

Trustevaluationresult

Trust authentication
blockchain

N

N

N N

N
N

N

Transaction
records

Figure 2: Service transaction model based on a double-blockchain structure.

Trust-enhanced smartthings/mobile devices

Fog node Fog node

Cloud serverCloud layer

Fog layer

Edge/IoT
layer Edge node Edge node Edge node

TV News

Router Router

Figure 1: Trust-enhanced cloud-fog-edge hybrid framework.

4 Security and Communication Networks

rate of interactions. Furthermore, with the benefits of the
double-blockchain structure, an efficient parallel computing
is realized. Because trust value is provided by TAB, while the
large-scale calculation or evaluation is done on the TBB side,
this effectively reduces the latency caused by trust man-
agement and makes it possible for the application of
blockchain in a real-time and high-reliability scenarios.

4. Trust-Enhanced Location-Aware Fair
Scheduling Model in a Cloud-Fog-Edge
Computing System

4.1. Service Justice.)e theory of distribution justice
(Berger’s theory) proposed by Berger et al., is a theory of the
distribution of social wealth. Berger et al. believed that
justice is a subjective behavior, of which the conclusion is
drawn from the comparison with the comparable objects. In
the real world, people usually refer to the surrounding social
information, such as the status and compensation of others,
to generate their own expectations, which are used to judge
whether they are fairly treated or not. Furthermore, the
satisfaction of these expectations affects their future be-
haviors. Figure 5 is the diagram of Berger’s model.

Here, c or C is the attribute set and go or GO is the
expectation set; go represents the expectation value, while
GO means the actually obtained value. In Berger’s theory,
the distribution justice holds only when the local self-

structure and the reference structure are significantly
related.

In a cloud-fog-edge hybrid scheduling framework, fog
provides services to users by coordinating resources from
edge or cloud and users pay a service fee according to the
usage of resources or time.)erefore, service fairness of
users is reflected in the following: the scheduling system is
able to provide services on user demand and preferences,
ensuring a high user satisfaction and experience.

Definition 3. Service Justice (SJ). It represents the degree of
agreement between the QoS of user actually obtained and the
expected. How to evaluate SJi is given in the following
formula:

SJi � θ ln
OSi

ESi

, (1)

�e previous
block

�e next
block

�e previous
block

Timestamp

Node id

Trading
numberIdentity trust Behavior

trust

Public key
of the

accounting node Merkle root

Merkle treeBlock body

Block head

Figure 3:)e basic content in a trust block of TAB.

�e previous
block

�e next
block

�e previous
block

Timestamp

Trading id

Transaction
feedback

Transaction
type

Transaction
content

Public key
of the

accounting node Merkle root

Merkle treeBlock body

Block head

Figure 4:)e basic content in a trading block of TBB.

cx Cx

gox GOx

Self-structure Reference structure

Figure 5: Berger’s model.

Security and Communication Networks 5

where θ represents the equilibrium coefficient, OSi means
the actual obtained service quality vector of useri, and ESi is
the demand vector of useri.

Obviously, the overall service justice of the scheduling
system is the average of all system users’ SJ, which is il-
lustrated in the following formula:

SJ � 􏽘
n

i�1
φiSJi. (2)

)e overall system balance is achieved by constraining
the overall system service justice, namely, min SJ.

Suppose the capability vector of a resource can be de-
scribed by CR � (Ccpu, Cram, Cbd), where Ccpu, Cram , and
Cbd represent the CPU, memory, and bandwidth capability
of the resource/vm.)e resource expectation of a user to the
resource is described by ER � (Ecpu, Eram, Ebd), where
Ecpu, Eram , andEbd represent the expected CPU, memory,
and bandwidth capability of the resource. In order to
eliminate the influence of dimensions of different capability,
it uses the following formula for normalization:

Ci − Cmin

Cmax − Cmin
or

Ei − Emin

Emax − Emin
. (3)

After normalization, performance or expectation pa-
rameters of the virtual machine are mapped to the [0, 1].
However, different users or tasks have different service
preferences, for example, some are CPU or computing
power enthusiasts and some are bandwidth pursuers. Let
P � (Pcpu, Pram, Pbd) describe the service preference or
weight of the attribute. It uses modified cosine function to
compare the similarity and distance between expectation
and obtained. Let SJij denote the service justice when taski is
scheduled to resourcej, and SJij can be calculated by the
following formula:

SJij �
CRiPi · ERiPi

CRiPi

����
���� ERiPi

����
����
. (4)

Accordingly, the SJ of the task set can be obtained by the
following formula:

SJ � 􏽘

n

i�1

CRiPi · ERiPi

CRiPiERiPi

. (5)

Here, n denotes the number of tasks in the scheduling
system.

4.2. Trust-Based Location-Aware Fair Scheduling Model

4.2.1. User/Smart &ing Model. A user or a smart thing is an
intelligent entity who requests for mobile services. Let ST�

{st0, st1, . . ., stk−1} represents a user or a smart thing set.)e
ith user sti (i ∈ [0, k− 1]) can be further described as sti � {stID,
stName, stLocation, stTaskSet, stTrust}.)e meaning of each at-
tribute is as follows:

(i) stID represents the unique system identity of a user/
smart thing

(ii) stName represents the name of the user/smart thing

(iii) stLocation represents the location of the user/smart
thing

(iv) stTaskSet represents the task set submitted by the
user/smart thing

(v) stTrust represents the trust requirement of the user/
smart thing

4.2.2. Task Model. T� {t0, t1, . . ., tn−1} represents a task set,
where the ith task ti (i∈ [0, n− 1]) can be further described as
ti� {tID, tState, tRRes, tORSet, tDeadLine}.)e meaning of each
attribute is as follows:

(i) tID represents the identity of a task
(ii) tState represents the state of the task
(iii) tRRes represents the resource requirements of the

task, tRRes can be further described as tRRes � {tComp,
tBW, tStor}, where tComp, tBW, and tStor represent the
computation, network, and storage requirement of
the task

(iv) tORSet represents the obtained resource set of the
task

(v) tDeadLine represents the latest completion time of the
task

4.2.3. Provider Model. AP� {ap0,ap1,. . .,apk−1} represents
the provider set. In this paper, service provider refers to the
access point or gateway server. In a cloud-fog-edge hybrid
platform, a service provider can be a cloud server, a fog
server, or even an edge server.

)e ith provider api (i ∈ [0, k− 1]) can be further de-
scribed as api� {apID, apName,apResouceSet, apLoad, apLocation}.
)e meaning of each attribute is as follows:

(i) apID represents the unique system identity of a
provider

(ii) apName represents the name of the provider
(iii) apResourceSet represents the resource set managed by

the provider
(iv) apLoad represents the load of the provider
(v) apLocation represents the location of the provider

4.2.4. Resource Model. R� {r0, r1, . . ., rm−1} represents the
resource set.)e jth resource rj (j ∈ [0,m− 1]) can be further
described as rj� {rID, rName, rProvider, rCap}.)e meaning of
each attribute is as follows:

(i) rID represents the unique system identity of a
resource

(ii) rName represents the name of the resource
(iii) rProvider represents the manage provider of the

resource
(iv) rCap represents the capability of the resource,

rCap� {rComp, rBW, rStor}, where rComp, rBW, and
rStor represent the computation, network, and
storage capability of the resource.

6 Security and Communication Networks

4.2.5. Two-Level Service Scheduling Model.)is paper di-
vides scheduling in a cloud-fog-edge hybrid environment
into two levels, user scheduling and task scheduling. User
scheduling realizes the binding of the smart thing (mobile
user or terminal) to the credible nearest access point, while
task scheduling realizes the matching of tasks issued by the
user with resources/vms managed by the access point.

)e user scheduling model is defined as USM� (ST, AP,
ACS), which selects the most suitable gateway or access
point for the user from the list of providers:

(i) ST means the smart thing set, as defined in 4.2.1.
(ii) AP represents the gateway or access point set, as

defined in 4.2.3.
(iii) ACS: AP->APi represents the selection of the access

point ap for smart thing st using a certain strategy.
In a cloud-fog-edge environment, since the location
of a user or terminal is constantly changing and a
fog or edge server also has a limited service capa-
bility, distance between st and ap must be consid-
ered. Besides, for a trustworthy trading, credibility is
another important factor.)erefore, the primary
principles of ACS include distance and trust.

)e task scheduling model is defined as TSM� (T, R,
RCS), which matches the most suitable resources for the task
set of the user.

(i) Tmeans the task set, as defined in 4.2.2.

(ii) R means the resource set managed by the service
provider, as defined in 4.2.4.

(iii) RCS: R->Ri represents the selection of the resource
r for task t using a certain strategy.)e main se-
lection principle of RCS in this paper is service
justice defined in 4.1 and work load.

Figure 6 shows the general steps of the proposed model
in this paper.

(1))e user scheduler searches appropriate access
points for a specific user/smart thing according to
the current location and makes recommendation
according to distance and trust;

(2) When the recommendation arrives, the user/smart
thing requests a trust service from the TAB and
makes decision after obtaining the trust data. If it
agrees to trade, then proceed to step (3); otherwise, it
asks the scheduler to resume recommendation and
returns to step (1);

(3))e access point (gateway) starts the task scheduler
to select specific resources for the user;

(4))e task scheduler selects the appropriate virtual
machines to perform tasks according to the principle
of service justice and load balance;

(5))e user obtains the service and makes service
evaluation.)e transaction data enter the TBB;

(6) TBB regularly performs trust evaluation and for-
wards trust blocks into TAB.

4.3. User Scheduling Algorithm.)e user scheduler chooses
the most suitable access point for user or smart thing as
shown in Algorithm 1.)e basic principle is distance and
trust.

In Algorithm 1, coverage means the service coverage of
an ap, and trust_threshold is the minimum required trust
value of the smart thing.

)e user scheduler chooses the nearest and reliable
access point for a user.)e general steps of user scheduling
are as follows: (1) the user scheduler selects the candidate
subset APcandidate from AP that can cover sti and meet its
minimum trust requirement, (2) it calculates the distance
between ap and sti and chooses the nearest ap, namely,
apchosen from APcandidate, and (3) it connects sti with apchosen.

4.4. Task Scheduling Algorithm.)e task scheduling algo-
rithm references Berger’s model to ensure the overall system
justice.

Algorithm 2 shows how task scheduler (running on an
access point) chooses the suitable resources/servers for
mobile tasks triggered by a user or a smart thing.

In Algorithm 2, load_safe_range represents the safe load
limit of a server or a resource.)e general steps of task
scheduling are as follows: (1) it puts the load-safe virtual
resources into the candidate resource set Rcandidate, (2) it
calculates the service fairness of each resource rk in Rcandidate
according to the demand of ti and the capability of rk, and
selects the most suitable resource rchosen, which achieves the
maximum SJ, and (3) it schedules ti to rchosen and updates the
workload of rchosen.

4.5. Blockchain-Architected Lightweight Trust Algorithm.
Trust runs through the entire process of scheduling.)e
node initiates the transaction requests trust service from the
trust blockchain TAB. After paying a certain fee, the
trustworthiness of the candidate provider (the access server
or the application server) is obtained, thereby helping it to
make trustworthy decisions. After each transaction, trans-
action-related data (transaction type, content, and evalua-
tion data) will be used to generate transaction blocks and be
added to the transaction blockchain TBB after consensus.
)ereafter, TBB initiates a trust evaluation transaction at
regular intervals and pushes the new trust block to TAB.

)is paper uses a lightweight method to compute the
trust of a specific trading node as shown in the following
formula:

Ti � 􏽘

n

k�1
θVki, (6)

where Ti is the trust value of node i, θ is the evaluation
weight of trustor node k, and Vki represents the trust
evaluation value from k to i.

In the proposed mode, in order to deploy blockchain-
based framework, we defined some transaction-related
classes and trust-related classes.)e transaction-related
classes are used to maintain the transaction data and keep it
traceable and tamper-proof.)e trust-related classes are

Security and Communication Networks 7

used to maintain trust data.)ey are mainly generated
offline and can support trust decisions in the real-time
transactions. Following is the definition of the critical data
structures.)e class “transaction” defined in Algorithm 3
stores transaction data of the trading system, through which
trust value from trustor to trustee can be obtained. And the
class “TrustBlock” defined in Algorithm 4 is used to store the
trust value of a certain node. Each block in TAB or TBB has
the normal content of a blockchain block (timestamp, hash

value, and the pointer to the previous block) and some
special functions (mineBlock, calculateHash, and add-
Transaction). (Algorithms 3 and 4)

5. Performance Evaluation

5.1. Experimental Design.)is paper designed a task
scheduling prototype for performance test in a cloud-fog-edge
environment based on iFogsim [52]. In iFogsim, FogDevice is

Resource pool

Resource pool

Resource pool

Task set

vm vm vm

vm vm vm

vm scheduling based
on SJ policy

Mobile users

Access point

Access pointAccess point

Location and trust aware
AP allocation

Task queue

vm vm vm

TBB

TAB

Generate trust block

Trust decision

Trading records

Figure 6: Trust-based location-aware fair scheduling model.

Input: AP, sti, coverage, trust_threshold
Output: the matching of sti to an appropriate ap

(1) for each apj in AP do
(2) Calculate the distance from sti to apj;
(3) Calculate trust from sti to apj;
(4) if (distancesti_apj≤ coverage) && (truststi_apj≥ trust_threshold) then
(5) apj −>APcandidate
(6) end if
(7) done
(8) for each apk in APcandidate do
(9) if (distancesti_apk<min_distance) then
(10) min_distance� distancesti_apk;
(11) apchosen � apk;
(12) end if
(13) done
(14) if apchosen!�NULL then
(15) connect sti to apchosen;
(16) end if

ALGORITHM 1: Connect sti with an appropriate access point ap.

8 Security and Communication Networks

used to represent a common device from terminal to fog
server. In order to reflect the mobility and distinguish the
functions of different devices, new entities are added:
MobileDevice, AccessPointDevice, MobileSensor, and
MobileActuator. Inheriting from parent class FogDevice,
MobileDevice handles mobile tasks, making trust decision
and service selection. A mobile device randomly appears in a
specific location and has its own specific resource preferences.
MobileSensor inherits from sensor, acting as a mobile sensor,
and is able to generate and transmit tasks. While Mobi-
leActuator inherits from Actuator to deal with the execution
and output of tasks. AccessPoint also inherits from FogDe-
vice, which is an intermediary for resource allocation and
service scheduling according to the location of the mobile
devices. It helps a mobile device to choose the most cost-
effective service resources and handles real-time task mi-
gration.)e resource pool that actually executes tasks is a
collection of traditional fog devices, and each fog device is
configured with certain capabilities. Figure 7 shows the key
classes and their inherent relationships in the scheduling
model.

)is paper draws on the idea of blockchain to construct a
trust-enhanced task scheduling model.)e proposed model
contains a dual-blockchain structure, including a transac-
tion blockchain and a trust blockchain.)us, the new classes
including the class of TransactionBlock and TrustBlock class
are derived.)e transaction block records the actual
transactions of the system in a traceable and nontamperable
manner. And the trust block records the trust value of the
nodes, where the identity trust depends on the authenticity
of the node, while the behavior trust is continuously updated
by the transaction evaluation results.)e generation of the
trust block mainly adopts the offline mode, and a trust block
is generated according to the feedback data obtained from
the transaction blockchain. Trust management contains

three parts: trust initialization, trust decision, and trust
maintenance. Trust decision helps entities to choose the
credible trading partners. Figure 8 is the UML diagram of the
trust-related classes and their relationships.

In order to serve mobile devices, we designed the
mapping and migration rules for tasks in virtual machines,
which were implemented in the class MigrationPolicy.)e
main strategies include load balance, shortest distance
between smart)ing and AccessPoint or between smart-
)ing and foglets (vms), lowest latency, and trust-based.
Figure 9 shows the migration-related classes and their
relationships.

5.2. Simulation Indicator and Benchmarks. In the experi-
ments, we use various evaluation indicators for performance
test of the different scheduling models, such as makespan,
tuple loss rate, distribution justice, latency, and transaction
success rate. Here, makespan represents the overall execu-
tion time of the task set. Tuple loss rate refers to the per-
centage of tasks dropped due to the limited processing
capacity of the edge server or task migration. And the system
justice is defined in formula (5).

)e mentioned strategies were implemented and tested
in the EEG Tractor Beam Game [53]. It is a latency-critical
game requiring each player to wear an EEG headset to
process the EEG signals and obtain his brain state. In EEG
Tractor Beam Game, there are seven types of tuples carried
between the different modules of the application, as shown
in Table 1.)e capabilities of cloud, fog, and edge devices are
shown in Table 2, and the task sending interval of two
different EEG headsets is 10ms and 5ms, respectively.

)e speed of MobileDevice is set to be 20m/s, including
nine different moving directions: NONE, EAST, NORTH,
NORTH EAST, NORTHWEST, WEST, SOUTHWEST,

(i) Input: R, ti, load_safe_range
(ii) Output: the matching of ti to an appropriate r
(1) for each rj in R do
(2) observe the workload of rj;
(3) if (workloadrj≤ load_safe_range) then
(4) rj ->Rcandidate
(5) end if
(6) done
(7) for each rk in Rcandidate do
(8) Calculate service justice SJti _rk of ti in rj according to formula (4);
(9) If (SJti _rk<min_sj) then
(10) min_sk� SJti _rk;
(11) rchosen � rk;
(12) end if
(13) done
(14) if rchosen!�NULL then
(15) schedule ti to rchosen;
(16) update the workload of rchosen;
(17) end if

ALGORITHM 2:. Matching mobile task ti with the suitable resource r.

Security and Communication Networks 9

SOUTH, and SOUTHEAST.)e maximum switch radius of
vm to a certain access point is set to be 40 meters. Various
fog devices (resources and access points) are randomly and
evenly distributed on the map.

)is paper aims at improving the performance of re-
source scheduling in a cloud-fog-edge hybrid computing
architecture, including the total execution time, service

delay, the fairness, and reliability.)erefore, we chose the
min-min and Berger’s model as the benchmark comparison
models. At the same time, in order to measure the influence
of the different factors in the proposed model, we also
compared it with the subtraction models, namely, locate-
ware and load-balance.)e locate-ware is the subtraction
model which only remains the location switching strategy of

class Transaction {
(1) String transactionId;
(2) PublicKey trustor;//the public key of trustor
(3) PublicKey trustee;//the public key of trustee
(4) double trust;//trust value from trustor to trustee
(5) byte[] signature;
(6) ArrayList<Transaction> transactions;
(7) boolean processTransaction() {
(8) verifySignature();
(9) transactionId� calulateHash();
(10) generateTrust();//generate trust according to transaction details
(11) TransactionOutput(this.recipient, trust, transactionId));
(12) return true;
(13) } //add transactions into transactionChain TBB
(14) boolean addTransaction(Transaction transaction) {
(15) verifyTransaction();
(16) processTransaction();
(17) transactions.add(transaction);
(18) return true;
(19) }

}

ALGORITHM 3: Class of transaction.

TrustBlock {
(1) String hash;
(2) String previousHash;
(3) String merkleRoot;
(4) long timeStamp;
(5) int nonce;//the proof of miners
(6) double trust;//the integrated trust of a certain node
(7) TrustBlock(String previousHash) {//the basic structure of a trust block
(8) this.previousHash� previousHash;
(9) this.timeStamp� new Date().getTime();
(10) this.hash� calculateHash(); }
(11) void mineBlock() {
(12) merkleRoot� StringUtil.getMerkleRoot(transactions);
(13) while(!hash.substring(0, difficulty).equals(target)) {
(14) nonce ++;
(15) hash� calculateHash();
(16) }
(17) }

}

ALGORITHM 4: Class of TrustBlock.

10 Security and Communication Networks

PowerDatacenter

MobileDevice

Mid
Location

Service_Preference

TrustManagement

Trust_Threshold

Transmit_Tuple

TrustStrategy
TrustRelationshipMaintenance

TrustList

FogDevice
Fid

Service_Capability
Location
workload
Reliability

AccessPointDevice

APid
Max_SmartThings

Location
Reliability

SimEntity

Sensor Actuator

MobileSensor

Sid
Application

MobileActuator

Aid
GeoLocation

processTupleArrival

Handle_Migration

Migration_Policy

location_ware
load_balance

trust

vm_Allocation

vmAllocationPolicy

App_Submit

vmAllocationPolicy

Handle_vmMigration

Figure 7:)e key classes in scheduling procedure.

TrustManagement

Trustor
Trustee
Type

Threshold

Trust_Initialization

context

TrustMaintenance

TrustList
Policy

Block

Bid

TrustBlock

trust_value
time_Stamp
context

TransactionBlock

Transaction
time_Stamp

Transaction

Tid
sender
receiver

evaluation
signature

TrustChain

trustblock_list TransactionChain

trust_value
time_Stamp
contextadd_trustBlock

trustBlock

Calculate_trust

Trust_Decision

get_trust

Figure 8: Blockchain-enhanced trust architecture.

Migration_Decision

APList
Cloudlet_List

Migration_Policy

distance
load_balance

trust

LowestDistance LowestLatency

LoadBalance

LowestDistance_St_Ap LowestDistance_St_Sc

Trust_based

Figure 9: Types of migration rules.

Security and Communication Networks 11

the proposed model in scheduling, and the load-balance is
the subtraction model that only maintains the load-sensitive
strategy.

)e task scheduling algorithms including min-min,
Berger’s Model, proposed model, location-aware, and load-
balance model are compared from various perspectives.

5.3. Simulation Result.)e experimental results are shown
in Figures 10–17. From the results, we can see that the
proposed model has achieved better effect than the other
models on almost all the experimental metrics. And two
subtraction models also gained better results than the other
benchmark models.

5.3.1. Comparison on System Performance. For the test of
system performance, we compared the mentioned models in
terms of makespan, service latency, and tuple loss rate.

)e proposed model and the location-aware model work
well in the total completion time and service delay. Because
the built-in location-sensitive scheduling strategy takes into
account the mobility of nodes to match it with the closer
access point, which is able to effectively reduce the trans-
mission overhead, the service delay, and the total execution
time.)e load-balance model gains a good performance in
the index of the tuple loss rate because it considers the load
status of resources in the task scheduling stage, which can
effectively reduce the waiting time in queue and avoid tuple
loss caused by overload.

)e overall system performance of the min-min model is
not bad. However, since it does not consider the resource
preferences, mobility, and load, it may cause tuple loss and
redistribution, which ultimately affects the overall execution
time. Berger’s model does not work well because it focuses
only on the fairness of scheduling, which tends to satisfy the
needs of users rather than the overall performance of the
system. In a cloud-fog-edge hybrid environment with nodes
moving frequently, although the global fairness algorithm
can find the most suitable resource for nodes, the scheduling
result may not be implemented due to the distance, which

increases the possibility of tuple loss and redistribution, thus
eventually increasing in the total execution time. In par-
ticular, the overhead of Berger’s model is relatively large.
When the total number of tasks increases, its execution time
is very long, which may affect its deployment in the actual
applications.

5.3.2. Comparison on User Satisfaction. User satisfaction,
measured by service justice (SJ) in this paper, is an important
index to evaluate the quality of scheduling algorithms.
Berger’s model performed the best in this respect because
scheduling fairness was its core concern. However, using the
traditional Berger’s model to perform global matching and
fairness calculations during task scheduling often leads to
high computational overhead, which may cause the paralysis
of the resource allocation system when the task scale is large.
)e experimental results indicate that when the number of
tuples is greater than 125, Berger’s model cannot give a
resource allocation decision within the tolerable time.

)e proposed model still performs well in terms of user
satisfaction because it adopts a two-level scheduling mode,
and through the fairness factors, it takes into consideration
the specific requirements of tasks in the process of task
scheduling.

5.3.3. Influence of the Decentralized Trust Mechanism.
)is section tested the performance of the double-block-
chain-based trust mechanism proposed in this paper.

Figure 17 shows the result of the transaction success rate.
It can be seen that the decentralized trust can maintain a
high degree of the transaction success rate despite the in-
crease in the malicious nodes, indicating that it can effec-
tively assist a reliable transaction decisions. In sharp
contrast, in the random transaction scenario, the transaction
success rate drops sharply as the number of malicious nodes
increases.

)is paper also used NetLogo [54] to test the efficiency of
the proposed trust mechanism. Table 3 shows the parameters
of the simulations.

Table 2:)e configuration of the device.

Tuple type CPU (GHz) RAM (GB) Power (W)
EEG 2000(A)/2500(B) 500 107.339(M) 83.433(I)
_SENSOR 3500 500 107.339(M) 83.433(I)
PLAY_GAME_STATE 1000 1000 83.53(M) 82.44(I)
CONCENTRATION 14 500 107.339(M) 83.433(I)

Table 1:)e parameters of the intermodule tuples in the EEG tractor game.

Tuple type CPU length (MIPS) N/W length
EEG 2000(A)/2500(B) 500
_SENSOR 3500 500
PLAY_GAME_STATE 1000 1000
CONCENTRATION 14 500
GLOBAL_GAME_STATE 1000 1000
GLOBAL_STATE_UPDATE 1000 500
SELF_STATE_UPDATE 1000 500

12 Security and Communication Networks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Smart thing identity

Comparison of latency

0

50

100

150

200

250

300

La
te

nc
y

(m
s)

Min-min
Berger’s model
Proposed model

Location-aware
Load-balance

Figure 11: Comparison of service latency.

25 50 75 100 125 150 175 200

Number of tuples (k)

Comparison of execution time

–2000

0

2000

4000

6000

8000

10000

M
ak

es
pa

n
(s

)

Min-min
Berger’s model
Proposed model

Location-aware
Load-balance

Figure 10: Comparison of makespan.

0.00 0.20 0.40 0.60 0.80 1.00 1.20

25

50

75

100

125

150

175

200

Tuple loss rate (%)

N
um

be
r o

f t
up

le
s (

k)

Comparison of tuple loss

Load-balance
Location-aware
Proposed model

Berger’s model
Min-min

Figure 12: Comparison of tuple loss rate.

Security and Communication Networks 13

Several experiments were done to observe the impact of
trust on the success rate of transactions when the proportion
of malicious providers was fixed to 30%. Figure 15 is the
experimental result when trust mechanism was loaded, and
Figure 16 is the experimental data without any trust
mechanisms (in the case of random transactions).

In the simulation chart, users are represented by the blue
color person-shaped turtles, and the fog providers (access
point or service providers) are the red color star-shaped
turtles.)e links in the charts represent the relationship
between the different entities, including the trading rela-
tionship (blue edges), the recommendation relationship
(yellow edges), and the cooperation between service pro-
viders (red edges).

Figures 15(a) and 16(a) are the initial state of the sim-
ulation, Figures 15(b) and 16(b) are the final state of the
trading cycle, and Figures 15(c) and 16(c) are the records of
transaction success ratio output from NetLogo reporter. It
can be seen from the figures that, when the trust mechanism

is loaded, the transaction success rate gradually increases
with the increasing of the number of transactions, which
remains almost the same when no trust is loaded.

In order to measure the overhead of trust, we also
evaluated the influence of trust on the total execution time.
Figure 17 shows the additional time overhead brought by
the loading of trust, from which we can see that trust does
not have much influence on the total execution time, with
even a few nodes showing the shorter execution time.)e
reason is that after trust has been running for a period of
time, when entities in the system are able to correctly select
the credible trading partner, the reselection or transaction
failure in the random transactions can be effectively
avoided, thus, to a certain extent, reducing the total exe-
cution time.

In summary, in the cloud-fog-edge hybrid environment,
in order to improve the effective matching of terminals,
access points, and their expected resources, it is necessary to
fully consider the location, the workload, and also the

25 50 75 100 125 150 175 200

Number of tuples (k)

Comparison of user satisfaction

–1.50

–1.00

–0.50

0.00

0.50

1.00

1.50

2.00

U
se

r s
at

isf
ac

tio
n

Min-min
Berger’s model
Proposed model

Location-aware
Load-balance

Figure 13: Comparison of user satisfaction.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
Malicious provider ratio

0

0.2

0.4

0.6

0.8

1

1.2

Tr
an

sa
ct

io
n

su
cc

es
s r

at
io

No trust
With trust

Figure 14: Comparison of transaction success ratio.

14 Security and Communication Networks

(a) (b)

0 10 20 30 40 50 60 70 80 90 100
Total transaction number

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

Tr
an

sa
ct

io
n

su
cc

es
s r

at
io

 (%
)

(c)

Figure 15: (a))e initial state (with trust). (b))e final state (with trust). (c))e transaction success rate (with trust).

(a) (b)

Figure 16: Continued.

Security and Communication Networks 15

credibility of nodes.)e proposed decentralized trust
strategy is able to guarantee the safety and the reliability of
interaction.

6. Conclusion and Future Work

)is paper proposes a trust-enhanced location-aware fair
task scheduling model for the cloud-fog-edge hybrid envi-
ronment.)e new model contains a three-layer architecture
of IoT, fog, and cloud.)e fog layer is utilized to achieve the
cloud-fog or fog-edge resource coordination and unified
scheduling.)e proposed task scheduling algorithm com-
prehensively considers user mobility, system justice, load
balance, and trust requirement. Berger’s theory is introduced
to solve the fairness problem in task scheduling. In resource

allocation, it comprehensively considers the location, task’s
QoS requirements, the capability, and the load of the re-
sources. In addition, to improve the credibility of service
interaction, it draws on the idea of blockchain to build a
decentralized trust framework.)e performance of the new
model and the related strategies was evaluated by a series of
related experiments.

However, the proposed model still has some imperfec-
tions. For example, it adopts a two-level scheduling mode to
solve the problem of mobile access. However, the location of
the mobile terminals is constantly changing, requiring the
timely replacement of the access point.)erefore, it is
necessary to determine where and when to switch and also
the resource reservation algorithms.)ings like the moving
direction, speed, and preferences can be used to predict the

0 10 20 30 40 50 60 70 80 90 100
Total transaction number

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

Tr
an

sa
ct

io
n

su
cc

es
s r

at
io

 (%
)

(c)

Figure 16: (a))e initial state (without trust). (b))e final state (without trust). (c))e transaction success rate (without trust).

�e impact of trust on the total execution time

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Malicious provider ratio
–1.00

–0.50

0.00

0.50

1.00

Ex
tr

a t
im

e o
ve

rh
ea

d
(%

)

Figure 17: Percentage of increased time overhead by trust.

Table 3:)e parameters in the trust performance test.

Number of providers Number of users Link probability Ratio of malicious providers (%)
200 100 0.20 30

16 Security and Communication Networks

next access point and make resource reservations for re-
ducing the handover delay. In addition, the dual-blockchain-
based trust management, with all the transactions recorded
in the trading behavior blockchain, needs to find the most
appropriate time to generate the trust blocks, whether in a fix
time period or a certain number of transactions. All these
problems are our future work.

Data Availability

Data is available upon request to the corresponding author.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Acknowledgments

)is work was supported by the National Natural Science
Foundation of China under grant 61702151, 61702320,
61772334, the National Key Research and Development Plan
under grant 2018YFB1003800, and the Joint Funds of the
Zhejiang Provincial Natural Science Foundation of China
under grant LHY21E090004.

References

[1] C. Chang, S. Srirama, R. Buyya, and I. Fog, “An efficient fog-
computing infrastructure for the internet of things,” Com-
puter, vol. 50, no. 9, pp. 92–98, 2017.

[2] C. Huang, X. Mei, G. Zhao, J. Wu et al., “Transaction
modelling and execution analysis of uncertainty composition
service in mobility computing environments,” Science China:
Information Science, vol. 45, no. 1, pp. 70–96, 2015.

[3] X. Deng, P. Guan, E. Liu et al., “Integrated trust based re-
source cooperation in edge computing,” Journal of Computer
Research and Development, vol. 55, no. 3, pp. 449–477, 2018.

[4] J. Zhang, Y. Zhao, B. Chen et al., “Survey on data security and
privacy-preserving for the research of edge computing,”
Journal on Communications, vol. 39, no. 3, pp. 1–21, 2018.

[5] M. Mukherjee, R. Matam, L. Shu et al., “Security and privacy
in fog computing:challenges,” IEEE Access, vol. 5,
pp. 19293–19304, 2017.

[6] L. Bittencourt, J. Diaz-Montes, R. Buyya et al., “Mobility-
aware application scheduling in fog computing,” IEEE Cloud
Computing, vol. 4, no. 2, pp. 26–35, 2017.

[7] M. Lopes, W. Higashino, M. Capretz et al., “MyiFogSim: a
simulator for virtual machine migration in fog computing,” in
Proceedings of UCC Companion 17, the 10th International
Conference. ACM, pp. 47–52, Zurich, Switzerland, December
2017.

[8] Y. Yin, F. Yu, Y. Xu, L. Yu, and J. Mu, “Network location-
aware service recommendation with random walk in cyber-
physical systems,” Sensors, vol. 17, no. 9, p. 2059, 2017.

[9] Y. Yin, J. Xia, Y. Li, Y. Xu, W. Xu, and L. Yu, “Group-wise
itinerary planning in temporary mobile social network,” IEEE
Access, vol. 7, pp. 83682–83693, 2019.

[10] B. Xu, C. Zhao, E. Hu et al., “Job scheduling algorithm based
on Berger model in cloud environment,” Advances in Engi-
neering Software, vol. 42, no. 7, pp. 419–425, 2011.

[11] C. Zhao, “Research and realization of job scheduling algo-
rithm in cloud environment,” Master’s thesis, Beijing Jiaotong
University, Beijing, China, 2009.

[12] Y. Yang, K. Wang, G. Zhang, X. Chen, X. Luo, and M. Zhou,
“Maximal energy efficient task scheduling for homogeneous
fog networks,” in Proceedings of the IEEE INFOCOM
2018—IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), pp. 274–279, Honolulu,
HI, USA, April 2018.

[13] Y. Yang, K. Wang, G. Zhang, X. Chen, X. Luo, and M. Zhou,
“MEETS: maximal energy efficient task scheduling in ho-
mogeneous fog networks,” IEEE Internet of &ings Journal,
vol. 5, no. 5, pp. 4076–4087, 2018.

[14] Y. Yang, S. Zhao, W. Zhang, Y. Chen, X. Luo, and J. Wang,
“DEBTS: delay energy balanced task scheduling in homo-
geneous fog networks,” IEEE Internet of &ings Journal, vol. 5,
no. 3, pp. 2094–2106, 2018.

[15] H. Sun, H. Yu, and G. Fan, “Contract-based resource sharing
for time effective task scheduling in fog-cloud environment,”
IEEE Transactions on Network and Service Management,
vol. 17, no. 2, 2020.

[16] N. Auluck, O. Rana, S. Nepal, A. Jones, and A. Singh,
“Scheduling real time security aware tasks in fog networks,”
IEEE Transactions on Services Computing, 2019.

[17] H. Gao, Y. Xu, Y. Yin, W. Zhang, R. Li, and X. Wang,
“Context-aware QoS prediction with neural collaborative
filtering for internet-of-things services,” IEEE Internet of
&ings Journal, vol. 7, 2019.

[18] H. Gao, Y. Duan, L. Shao, and X. Sun, “Transformation-based
processing of typed resources for multimedia sources in the
IoT environment,” Wireless Networks, 2019.

[19] J. Yu, J. Li, Z. Yu, and Q. Huang, “Multimodal transformer
with multi-view visual representation for image captioning,”
IEEE Transactions on Circuits and Systems for Video Tech-
nology, vol. 14, no. 8, 2019.

[20] J. Yu, M. Tan, H. Zhang, D. Tao, and Y. Rui, “Hierarchical
deep click feature prediction for fine-grained image recog-
nition,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2019.

[21] H. Gao, C. Liu, Y. Li, and X. Yang, “V2VR: reliable hybrid-
network-oriented V2V data transmission and routing
considering RSUs and connectivity probability,” IEEE
Transactions on Intelligent Transportation Systems(T-ITS),
2020.

[22] H. Gao, L. Kuang, Y. Yin, B. Guo, and K. Dou, “Mining
consuming behaviors with temporal evolution for personal-
ized recommendation in mobile marketing apps,” ACM/
Springer Mobile Networks and Applications (MONET), vol. 25,
no. 4, pp. 1233–1248, 2020.

[23] Y. Yin, Z. Cao, Y. Xu et al., “QoS prediction for service
recommendation with features learning in mobile edge
computing environment,” IEEE Transactions on Cognitive
Communications and Networking, 2020.

[24] X. Yang, S. Zhou, and C. Min, “An approach to alleviate the
sparsity problem of hybrid collaborative filtering based rec-
ommendations: the product-attribute perspective from user
reviews,” Mobile Networks & Applications, vol. 25, no. 2,
pp. 376–390, 2020.

[25] Z. Liu, X. Yang, Y. Yang, K. Wang, and G. Mao, “DATS:
dispersive stable task scheduling in heterogeneous fog net-
works,” IEEE Internet of &ings Journal, vol. 6, no. 2,
pp. 3423–3436, 2019.

[26] M. Mukherjee, M. Guo, J. Lloret, R. Iqbal, and Q. Zhang,
“Deadline-aware fair scheduling for offloaded tasks in fog
computing with inter-fog dependency,” IEEE Communica-
tions Letters, vol. 24, no. 2, pp. 307–311, 2020.

Security and Communication Networks 17

[27] G. Zhang, F. Shen, Y. Zhang, R. Yang, Y. Yang, and
E. A. Jorswieck, “Delay minimized task scheduling in fog-
enabled IoT networks,” in Proceedings of the 2018 10th In-
ternational Conference on Wireless Communications and
Signal Processing (WCSP), pp. 1–6, Hangzhou, China, October
2018.

[28] G. Zhang, F. Shen, N. Chen, P. Zhu, X. Dai, and Y. Yang,
“DOTS: delay-optimal task scheduling among voluntary
nodes in fog networks,” IEEE Internet of&ings Journal, vol. 6,
no. 2, pp. 3533–3544, 2019.

[29] H. K. Apat, “An optimal task scheduling towards minimized
cost and response time in fog computing infrastructure,” in
Proceedings of the 2019 International Conference on Infor-
mation Technology (ICIT), pp. 160–165, Bhubaneswar, India,
2019.

[30] C. Tang, S. Xiao, X. Wei, M. Hao, and W. Chen, “Energy
efficient and deadline satisfied task scheduling in mobile cloud
computing,” in Proceedings of the 2018 IEEE International
Conference on Big Data and Smart Computing (BigComp),
pp. 198–205, Shanghai, China, 2018.

[31] J. Xu, Z. Hao, R. Zhang, and X. Sun, “A method based on the
combination of laxity and ant colony system for cloud-fog
task scheduling,” IEEE Access, vol. 7, pp. 116218–116226,
2019.

[32] M. Yang, H. Ma, S. Wei, Y. Zeng, Y. Chen, and Y. Hu, “A
multi-objective task scheduling method for fog computing in
cyber-physical-social services,” IEEE Access, vol. 8, 2020.

[33] X. Wei, J. Liu, Y. Wang, C. Tang, and Y. Hu, “Wireless edge
caching based on content similarity in dynamic environ-
ments,” Journal of Systems Architecture, vol. 115, pp. 1–8, 2021.

[34] J. Zhang, X. Hu, Z. Ning et al., “Joint resource allocation for
latency-sensitive services over mobile edge computing net-
works with caching,” IEEE Internet of &ings Journal, vol. 6,
no. 3, pp. 4283–4294, 2019.

[35] W. Wen, Y. Cui, T. Q. S. Quek, F.-C. Zheng, and S. Jin, “Joint
optimal software caching, computation offloading and
communications resource allocation for mobile edge com-
puting,” IEEE Transactions on Vehicular Technology, vol. 69,
no. 7, pp. 7879–7894, 2019.

[36] J. Jiang, G. Han, L. Shu, S. Chan, and K. Wang, “A trust model
based on cloud theory in underwater acoustic sensor net-
works,” IEEE Transactions on Industrial Informatics, vol. 13,
no. 1, pp. 342–350, 2017.

[37] P. Zhang, Y. Kong, and M. Zhou, “A domain partition-based
trust model for unreliable clouds,” IEEE Transactions on
Information Forensics and Security, vol. 13, no. 9, pp. 2167–
2178, 2018.

[38] T. Wang, G. Zhang, S. Cai et al., “Survey on trust evaluation
mechanism in sensor-cloud,” Journal on Communications,
vol. 39, no. 6, pp. 37–51, 2018.

[39] J. Wang, Z. Yu, H. Zhang et al., “Service recommended trust
algorithm based on cloud model attributes weighted clus-
tering,” Journal of System Simulation, vol. 30, no. 11,
pp. 275–289, 2018.

[40] P. Zhang, Y. Kong, and M. Zhou, “A novel trust model for
unreliable public clouds based on domain partition,” in
Proceedings of the of IEEE 14th International Conference on
Networking, Sensing and Control (ICNSC), pp. 275–280, IEEE,
Calabria, Italy, May 2017.

[41] Y. Li, X. Wang, X. Gan, H. Jin, L. Fu, and X.Wang, “Learning-
aided computation offloading for trusted collaborative mobile
edge computing,” IEEE Transactions on Mobile Computing,
vol. 8, 2019.

[42] H. Yang, J. Cho, H. Son, and D. Lee, “Context-aware trust
estimation for realtime crowdsensing services in vehicular
edge networks,” in Proceedings of the 17th Annual Consumer
Communications & Networking Conference (CCNC), pp. 1–6,
IEEE, Las Vegas, NV, USA, January 2020.

[43] J. Shu, C. Liang, and J. Xu, “Trust-based multi-objectives task
assignment model in cloud service system,” Journal of
Computer Research and Development, vol. 55, no. 6,
pp. 1167–1179, 2018.

[44] C. Hu, X. Tong, and W. Liang, “)e real-value restricted
Boltzmann machine recommendation algorithm based on
trust-distrust relationship,” Systems Engineering-&eory &
Practice, vol. 39, no. 7, pp. 1817–1830, 2019.

[45] X. Meng, J. Ma, D. Lu, and Y. Wang, “Trust and behavioral
modeling based two layer service selection,” Journal of Xidian
University (Natural Science), vol. 41, no. 4, pp. 198–204, 2014.

[46] Z. Ma, X. Wang, D. Jain, H. Khan, H. Gao, and Z. Wang, “A
blockchain-based trusted data management scheme in edge
computing,” IEEE Transactions on Industrial Informatics,
vol. 16, no. 3, pp. 2013–2021, 2020.

[47] L. Cui, S. Yang, Z. Chen, Y. Pan, Z. Ming, and M. Xu, “A
decentralized and trusted edge computing platform for In-
ternet of)ings,” IEEE Internet of &ings Journal, vol. 11,
2019.

[48] W. Li, L. Ping, and X. Pan, “Trust model to enhance security
and interoperability of cloud environment,” in Proceedings of
CloudCom’09, pp. 69–79, Springer, Bangalore, India, Sep-
tember 2009.

[49] W. Li, L. Ping, Q. Qiu, and Q. Zhang, “Research on trust
management strategies in cloud computing environment,”
Journal of Computational Information Systems, vol. 8, no. 4,
pp. 1757–1763, 2012.

[50] W. Li, J. Cao, S. Qian, and R. Buyya, “TSLAM: a trust-enabled
self-learning agent model for service matching in the cloud
market,” ACM Transactions on Autonomous and Adaptive
Systems, vol. 13, no. 4, pp. 1–41, 2019.

[51] W. Li, J. Cao, K. Hu, J. Xu, and R. Buyya, “A trust-based agent
learning model for service composition in mobile cloud
computing environments,” IEEE Access, vol. 7, pp. 34207–
34226, 2019.

[52] H. Gupta, A. Dastjerdi, S. Ghosh, and R. Buyya, “iFogSim: a
toolkit for modeling and simulation of resource management
techniques in the Internet of)ings, Edge and Fog computing
environments,” Software Practice & Experience, vol. 47,
pp. 1275–1296, 2017.

[53] J. K. Zao, T. T. Gan, C. K. You et al., “Augmented brain
computer interaction based on fog computing and linked
data,” in Proceedings of the International Conference on In-
telligent Environments (IE), pp. 374–377, IEEE, Shanghai,
China, June-July 2014.

[54] NetLogo, “NetLogo user manual version 6.0.3,” 2020, https://
ccl.northwestern.edu/netlogo/docs/.

18 Security and Communication Networks

https://ccl.northwestern.edu/netlogo/docs/
https://ccl.northwestern.edu/netlogo/docs/

