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ABSTRACT 5G (Fifth Generation) technology represents a significant advancement in telecommunications,
facilitating industry innovation and advancement for applications across various sectors. It enhances high-
speed, low-latency communication, making it ideal for task offloading in resource-constrained mobile
devices. By leveraging task offloading, 5G networks maximize the efficiency of both computational and
network resources, ensuring faster, more reliable data delivery and enabling high-performance requirements
of modern applications. However, dynamic and secure task offloading remains a challenge due to fluctuating
network conditions and trust concerns. This paper proposes SAGE (Secured Adaptive Generalized Edge),
a reinforcement learning-based task offloading framework that leverages contextual bandits for adaptive
decision-making in Multi-Access Edge Computing (MEC) environments. By integrating blockchain smart
contracts for security and SDN-based orchestration for dynamic resource management, SAGE ensures
robust, low-latency offloading. Experimental evaluations demonstrate that SAGE reduces task offloading
delays by 36% and task durations by 30% compared to baseline methods under varying load and energy
constraints.

INDEX TERMS 5G mobile, software-defined-networking (SDN), mobile edge-computing (MEC),
blockchain-assisted offloading, fog/edge computing, security, trust modeling, dynamic edge server offload
(DESO), secured adaptive generalized edge (SAGE).

I. INTRODUCTION
Advancements in cloud computing and wireless communica-
tions have increased mobile network connectivity for appli-
cations such as wearable devices, VR streaming, self-driving
automobiles, wearable social media, and vehicle systems [1].
These edge applications require resources with continuous
data processing capabilities where communication networks
need to undertake computational offloading from devices
in support of the future [2]. Current ‘‘smart’’ devices lack
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the processing powers needed to execute these activities.
Ultra-dense networks (UDN), which include small andmacro
cell Base stations (BSs), are key technologies in 5G that
can handle these environments. Computations dependent on
networks have significant delays where the deployment of
edge clouds or fog nodes on networks have been probable
solutions. Edge cloud computing has two distinct advantages
over local computing environments [3]:

1) They are alternatives for overcoming the restricted
computational capacities of mobiles, and

2) They substantially minimize latencies while offload-
ing computations to Blockchain and Learning-Based
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Secure task offloading framework for software-defined
5G edge networks to distant clouds.

MEC, uses network edges to move tasks to the nearest
data centers, is a better workaround for time-sensitive
and computationally demanding tasks [4]. MEC may help
mobile devices execute resource-intensive apps. However,
establishing trust amongst several stakeholders in MEC is
difficult because these parties have conflict of interests with
one another. Integrating MEC with blockchains is another
area with several advantages in computations, flexibility,
data integrity, and security with minimized latencies. Edge
computing employs computational offloads to disperse tasks
to idle and computation-free edge nodes that shareworkloads.
These offloads can be to local or remote devices. They ensure
continuous data flows and avoid needless computational
latencies and service delays. Effective offloading in MEC
results in several Quality of Service (QoS) benefits [5]. Task
offloads involve shifting tasks from low-powered devices at
edges to higher-powered devices or clouds. Content offloads
encompass caching heavy data contents like multimedia
maintained at BSs or neighboring edge gateways. Mobile
devices can upload tasks to ESs using migration mechanisms.
Future communication systems can integrate UDNs with
edge clouds for offloading processing to users [6], though
most current developments in MEC and UDNs are done
separately [7]. The integration of these two need to handle:

• Management of dispersed computing resources.
• Consideration of offloading computing tasks.
• Security and privacy challenges over wireless channels.

SDNs are cutting-edge network designs that can address these
issues with their controller-based resource management [8]
and can assist cloud service providers with centralized
controllers to adjust resource sharing and offload computa-
tions dynamically to satisfy end-user demands depending on
their dynamic service selections. Blockchains are also new
paradigms considered in this work’s architectural design as
they can better control edge services and devices, making
them an impertinent part of MEC settings. Distributed digital
ledger systems also offer security for network data, privacy,
integrity checks, and resource access [9].

A formal instance of edge computing offloads supported
by blockchain is shown in Figure 1. Task offloading
frameworks are susceptible to mismanagement and misuse
by bad actors in the network. Most implementations do
not consider security and are not executed in trusted
environments. This study examines integrated optimizations
of communications and computing resource allocations
and partial offloading ratios while considering offloading
periods and security requirements to improve total secrecy
offloading data (TSOD). The proposed system architecture
is for 5G device trust-based work offloads [10]. Deep
learning and reinforcement learning are two examples of
artificial intelligence technologies that have developed as
effective ways to handle compute offloading difficulties
in recent years. In complicated and dynamic situations,

reinforcement learning (RL) can be effective. In unpre-
dictable environments, Reinforcement Learning (RL) agents
learn how to maximize their rewards across several decisions.
RL agents are used to learn offloading procedures that may
be dynamically changed to real-time conditions, enabling
intelligent task allocation. RL helps the system learn optimal
policies over time, tackling task-offloading decision-making
issues such as edge node trustworthiness-offloading ESs and
dynamic network conditions [11]. This allows efficient and
reliable task distribution while preserving privacy, fairness,
and security during unloading. This architecture targets com-
putational offloads with low device resources. Cryptographic
5G blockchain devices synchronize edge nodes securely
using a networked clock mechanism. Discussed the benefits
of the proposed architecture for safe task offloading in 5G
MEC and future applications, there are certain challenges and
limitations pertaining to interoperability, scalability, security,
and cost which is briefly explained towards the end of this
research work. The research’s significant contributions are:

• Blockchain and smart contracts in multi-user/server
MEC-enabled 5G and wireless networks to manage and
secure Edge-to-Cloud real time offloading for privacy,
and security.

• SAGE, a RL based SDN framework, jointly addresses
security and workload optimization by incorporating
threat detection, secure decision-making, and adaptive
offloading policies. It ensures safe task execution
while minimizing delay and resource waste in dynamic
environments.

• DESO (Dynamic Edge Server Offload) algorithm in the
proposed architecture dynamically identifies and assigns
tasks to the most reliable and capable MEC servers.
It detects harmful or overloaded edge servers to reduce
the risk of task delays or failures, thereby improving
offloading reliability and efficiency.

This study found 20% of work time reductions and 30%
of energy cost savings over random and even job offloads.
These findings demonstrate that the integrated RL and DESO
methodology optimizes work offloading in 5G-enabled MEC
systems.

II. RELATED WORK
This section details work related to 5G technology, including
offloads, security, and clouds. Numerous studies have exam-
ined how computational offloads may reduce network energy
utilization and service response times. Table 1 depicts the
comparison of few of the research approaches, its advantages
and the limitations. Applications like Clonecloud [12], [13]
offloads heavy or complex computations frommobile devices
to clouds mainly due to reduced execution times and sharing
of findings. Significant delays can be caused while shifting
tasks from cellular networks to clouds where MEC was
used to offload tasks to the edges of multiple users in [14].
Though multi-server MECs were deemed in [15], UDNs
were disregarded. Hence, this work proposes SDN-based task

VOLUME 13, 2025 56821



N. Sethu Subramanian et al.: Blockchain and RL-Based Secured Task Offloading Framework

FIGURE 1. Block chain-based edge computing and offload framework.

offloads for MEC in UDNs with efficient task offloads. Most
works on blockchains and learning-based work offloads are
conducted independently. Historically, the bulk of approaches
were user-centric. For example, [17] investigated trustful
task offloads of end users in MECs using blockchains and
reinforcement learning, while [18] employed DNNs (Deep
Neural Networks) for offload decisions to ESs in mobile
blockchain networks. The study in [17] examined end-
user-centered offloading strategies that included blockchains,
machine learning, and game theories, while ESs began
to host typical end-user perspectives [19]. None of these,
however, used blockchain technology to address security
and privacy concerns. A blockchain-based method called
Task Offloading and Resource Allocation (TO-RA) was
created from smart contracts for resource allocation. MEC
for wireless blockchain networks was proposed in [20],
where MEC servers mimicked edge nodes and block’s
cryptographic hashes blocks. User groups were formed by

offloading tasks in networks or adjacent access points.
Distributions were handled in [6] for huge data using the
resource-efficient blockchain called theAlternatingDirection
Method of multipliers (ADMM). According to the study
in [21], SDN-UDNs for MEC may be used to offload tasks,
reduce delays, and extend battery life. Systems that use Trust
and Reputation Systems (TRSs) for task offloading must
also be secure. Several investigations into assaults against
TRSs include attacks like (i) speaking poorly about someone,
speaking well about someone, colluding, acting selectively,
and self-promotion. Most attack evaluations concentrate
on network-level protocols routing packets in networks.
System resource constraints make them vulnerable to several
attacks that apply to conventional wireless systems (such as
eavesdropping, jamming, replay, and others). Investigations
into the security of communication layers like DTLS and
OSCORE have been prompted by systems that depend
on the security these levels provide. Threat modeling
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research is highlighted in this part for suggestive trust-based
job offloading system architectures that carry executions
from constrained resource domains to resource-rich device
domains. This implies the need to identify attacks and threats
to systems, a deeper understanding of system components,
interactions, and how assaults can be integrated to help
adversaries. DFD employs De Marco notation to help with
threat modeling for this system [22]. Data flows from context
databases to entity borders demonstrate the necessity of
OSCORE security contexts in communications. Systems
may confront three prominent threat actors: (i) malicious
resourceful edges, (ii) malicious devices with constrained
resources, and (iii) external threat actors. Threats can be
categorized as Tactics, Techniques, and Procedures (TTPs),
where techniques are precise explanations of conduct in
contexts of methods, tactics are high-level explanations
of behaviors, and procedures are at lower levels where
specific methodologies are described [23]. Attackers can
easily jam wireless transmissions using DoS attacks, making
communications impossible as these attacks involve flooding
systems with requests. This increases the costs of conducting
cryptographic operations. In contrast to previous techniques,
ESs have devices with limited resources and must employ
suitable offloads [24], [25]. With 5G, several ESs may be
deployed to deliver computing services to customers [26],
[27]. Given the complexity of 5G applications, solitary
actions are usually subdivided into smaller tasks to allow
for multi-threaded processing and increased task execution
efficacy [28]. Despite the efforts in these papers, challenges
in offloading persist. Reinforcement Learning (RL) is an
optimistic method that lets a learning agent experiment and
learn from mistakes to find the best solution without prior
knowledge of the environment [29]. It is strongly believed
that complex offloading problems involving multiple-use IoT
devices result in a high-dimensional state and action space.
This, in turn, causes RL-based solutions to be inefficient [30].
Thankfully, researchers have developed Deep Reinforcement
Learning (DRL) methods [31], [32], such as deep Q-network
(DQN) to solve high dimensional offloading task problems.
The authors in [33] focused on a strategy for shifting
blockchain mining duties to edge clouds, to improve the
quality of service (QoS) and reduce the workload on mobile
miners. The study described in [34] introduced aMobile Edge
Computing (MEC) that incorporates blockchain technology
to enhance future wireless networks. Spectrum distribution,
block size, and the number of successive blocks are all factors
that the model takes into account to maximize computation
offloading and resource allocation. This optimization is
achieved using a double-dueling deep Q network. [35]
examined a collaborative computation offloading framework
for IoT networks that utilizes blockchain technology. The
Multi-Agent Deep Reinforcement Learning (MA-DRL) algo-
rithm lets IoT devices collaborate to examine offloading
scenarios to reduce long-term expenses associated with
offloading. Study in [45] describes offloading decision in
MEC, however, privacy and security were not considered.

The study presented in reference [31] examines the security
and computation offloading challenges in a multi-user system
with blockchains using DRL with Q-network. It is observed
that combining contextual bandits with DRL techniques
produces better outcomes.

III. PROPOSED SDN-ENABLED ARCHITECTURE
The proposed architecture primarily focus on 5G devices
on the 5G network, which provides ultra-low latency,
high bandwidth, extensive device connectivity essential
for large-scale, real-time, and secure job offloading. The
dynamic characteristics of task migration, coupled with the
necessity for trust-aware judgments, necessitate a network
infrastructure proficient in managing high-speed and low-
latency communications — a capability that 4G and previous
generations cannot consistently assure. Furthermore, MEC is
most efficacious when seamlessly integrated with 5G infras-
tructures, as it was conceived with 5G architecture to reduce
round-trip latency and improve computational offloading
performance. Legacy devices and networks generally do
not possess inherent support for MEC and SDN, which
are essential to our approach. The foundational features
of the proposed architecture — such as safe offloading
via blockchain and adaptive learning can potentially be
adapted to non-5G contexts; however, modifications would
be necessary to address constraints in latency, throughput,
and edge computing integration. These extensions are beyond
the scope of the current study but are recognized as potential
avenues for future investigation. The 5G MEC paradigm
presents difficulties in developing effective tactics that
offload applications to fog or cloud layers while maintaining
the best possible service response times. Though response
times are dominated by execution times of traditional com-
puting offloading policies, variables such as application fea-
tures and contextual considerations can affect reaction times.
Most of the available literature on the computation offloading
problem offers effective solutions but considers only a few
factors like computing capacities and network bandwidths,
ignoring other important factors. This section presents SAGE,
the proposed secure edge computing/offloading framework.
Figure 2 shows the proposed TCO Architecture, the structure
for MEC job offloads in SD-UDNs includes three planes,
namely control, data, and user planes. User planes encompass
users who offload tasks. SD-UDN controllers integrated
into macro cell BSs implement control planes. Wireless
links connect users to small or macro cell BSs where
the former is implicitly connected to centralized macro
cell BSSs by high-speed front haul networks. Macro-cell
BSs provide control coverage, while small-cell BSs provide
data coverage. The SD-UDN controllers oversee all critical
control functions, including allocations of resources and
schedules, and acquire mobile user information through small
cell BSs. Job offloading mechanisms in SD-UDNs are based
on control, data plane separations, and aggregations in macro
cell BSs. The centralized controllers separate computational
and control features from data from small cell BSs. These
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TABLE 1. Summary of related work section.
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TABLE 1. (Continued.) Summary of related work section.

controllers can distinguish and gather data from cloud edges
and mobile devices, and mobiles can execute tasks locally
or send them to ESs based on user preferences. SD-UDN
controllers are responsible for updating task, BS, and mobile
device information tables. This information table contains
data such as radio access loads and edge cloud computing
loads. Tables of task information provide listings of job kinds,

data volumes, and task computation amounts. Regularly,
users provide measurement data to serving BSs in the area,
which integrate it with edge cloud data from many users
and send it to the SD-UDN. SD-UDN controllers update all
information tables, give task offloading policies for mobile
devices, and determine how to assign resources to the edge
cloud depending on task latency and energy usage.
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A. SAGE FRAMEWORK
BSs offer computation and communication services to
their coverage nodes. Edge server computing allows
nodes to outsource their jobs to adjacent ESs with extra
resources when BSs are overloaded. Thus, overloads
are handled by shifting node workloads to ESs. The
blockchain-based edge server computing infrastructure com-
prising of SDN Controller (SDNC) and three main compo-
nents in data planes, BSs, nodes, and ESs are detailed below
(See Figure 3).

1) BSs: Blockchains are maintained by authorized BSs
acting as consensus nodes which encompass:

• Register Authority Components (RAC): RAC
controls identity management and registrations.
It refers to mobile operators ‘Certificate Author-
ities (CA) and unique digital certificates for
guaranteeing legitimacy.

• Computing Components (CCs): CCs are respon-
sible for designing and executing smart contracts.
They are a part of blockchain mining for financial
gains.

• Storage Components (SC): SCs ensure block
validations and task offloading and maintain
blockchain ledgers.

2) Nodes: These are network endpoints for redistributions
or transmissions of data. They recognize, process, and
route communications to other nodes automatically
when programmed.

3) Edge Servers: These are powerful computers existing at
networks’ edges. Their physical locations are nearer to
systems or applications generating data or used by ESs.

Blockchain-based edge server implementations are
detailed as follows: All entities must first get hold of safe
wallets containing many digital currencies. Like Bitcoin [36],
a digital coin is a form of virtual money hosted on
Ethereum [37] used to settle task-offloading transactions.
The entities generate public and private keys separately. The
public and private keys of the devices are used for data
encryption and decryption. Digital signatures are created
and verified using BSs’ public and private keys, where BSs
share the same key pairs. Nodes register with RACs for
receiving certificates. Secondly, nodes choose one of the
available ESs and notify BSs of their need for job offloads
and required latencies. The BSs then carry out task unloading
of smart contracts. The chosen ESs receive nodes offloaded
encrypted data. ESs process the received data and send
results to BSs and nodes. Thirdly, BSs examine offloads to
detect malicious activities. Honest nodes are rewarded with
virtual cash in line by smart contracts, while dishonorable
nodes are fined. BSs create transaction blocks and upload
them to SDUDN through blockchains while remaining BSs
tie amongst themselves to find real PoW. BSs broadcast
transactional blocks to other BSs for verifications, and on
authorization by most BSs, the blocks are put at the ends of
blockchains.

B. THREAT MODEL
The following assumptions are made: (i) Blockchain nodes
are safe, (ii) 5G devices are not disposed to exchange private
keys with one another. Despite securing nodes, certain nodes
may engage in harmful behaviors posing security risks. These
dangers are categorized and explained below:

• Nodes Engaging in Malicious Behaviors: ‘‘Double
claim’’ attacks refer to malicious node attempts to claim
rewards several times for increasing profits. A rogue
node may undertake repudiations to prevent ESs from
receiving rewards even after the successful completion
of tasks. They can cheat BSs and deny inputs from ESs.

• ESs with harmful Behaviors: Malicious ESs or freeride
attacks attempt to gain incentives without executing
any computations. They may allocate minimal or no
computing resources, resulting in taskoffloading delays
and failures. This threat model assumes that ESs are
honest and cannot produce false results.

• BSs that Display Malicious Behaviors: Attackers may
change the CCs of BSs using remote hijacks. The hacked
CCs may not be able to settle transactions fairly i.e.
they may refuse rewards to trustworthy nodes, and
repudiation attacks may ensue

• Privacy Disclosures: Despite the anonymity of nodes
during task offloads, attackers may deduce personal
information by intercepting task data.

C. NETWORK MODEL
Assuming SD-UDNs include densely deployed BSs with
edge clouds where B = {b1, b2, . . . , bn} stands for Mobile
Edge Clouds while U = {u1, u2, . . . , um} represents users
of SD-UDNs. Mobiles have computational workloads that
can be executed locally or offloaded. These tasks Qi can be
detailed using task models [38] i.e., Qi = (i, Si), where Si
denotes sizes of computational tasks Qi i.e., data inputs and
associated processing codes sent to edge clouds, and i denotes
computational parts of tasksQi, or total CPU cycle counts for
task completions. Figure 4 illustrates the different phases of
SAGE pipelines and their corresponding delays modeled in
this work’s solution. This study aims to execute mobile tasks
locallywhile offloading computations toESs tominimize task
duration.

D. DELAY MODEL
Apps on mobile face queueing delays and lengthy queuing
times, resulting in bad user experiences. Little’s Law states
that queue lengths determine queuing times. Hence, this work
aims at minimizing queuing backlogs and MEC congestions.
The proposed DESO (Dynamic Edge Server Offloading)
algorithm splits and distributes executions amongst resources
for optimizations.

E. MATHEMATICAL BASIS
The computational processes can be delegated to edge clouds
or performed locally, and these concepts of MEC, local
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FIGURE 2. Proposed TCO architecture.

FIGURE 3. Blockchain-based edge service proposed computing architecture.

FIGURE 4. SAGE pipeline delay.

computing, models, and parameters used in the offload
scheme are detailed below:

• User planes encompass users who need computing
work.

• Data planes encompass small cell BSs and edge clouds.

• The control plane includes an SDN controller installed
in macro cell BSs.

• VMs in ES are instantiated as instances with heteroge-
neous computing capacities

• Active VM instances measure resource utilizations in
VM pools.

We also assume that VMm refers to counts of VM instances
in the m-th ESs em.
The set of mobile edge clouds is represented as

β = {b1, b2, . . . , bn }. Users connected to networks are
represented as µ = {µ1, µ2, . . . , µn}. The set of BSs is
represented as:αui = { α1, α2, . . .αn}, where BSs bj are
elements of ( b2 ϵ αui ). Since interference and other
parameters are needed for computing communications gains,
channel gains (hij) between users (µi) and and BSs (bj) are
considered, assuming task offloads happen in low mobility.
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Data rates,

rij = B log2

(
1 +

pihij
Iij + σ 2

)
,

where σ 2 is the noise power of mobile devices,
B is channel bandwidth,
Iij is inter-cell interference power,
pi is the transmission power of user µi.
When nodes receive results outside specific delays,

it implies task offload failures. Considering transmissions of
tasks from mobiles/devices to ESs, we get:

Transmission Delays

tTij =
Si
rij

,

where tTij are transmission delays in offloading tasks from
users µi to servers bj. Si implies data sizes of tasks needing
offloads. Transmission Energy Consumptions Eij =

pisi
rij

where assuming two scenarios
1) The tasks are executed locally; their execution time

becomes ti =
wi
fi
.

2) Tasks are executed remotely by offloading them to edge
cloud servers’ execution times becomes t = wi

KCi
i f i

+
Si
rici

and Eij represents energies consumed by mobiles in
offloading tasks from users ui to servers bj and since the
processing is done remotely, and energy consumption of
mobile device/user equipment becomes Ei = piwi

F. DESIGN OVERVIEW
It is typical for 5G users to offload delay-sensitive jobs to
ESs for quicker task executions. This work’s algorithmic
offload selections are ideal for multi-tasking environments
as their outcomes are best offloading decisions in minimal
completion times. The strategies use multiple ESs in design
where servers quickly decide on migrations. They also
consider signal interferences caused by user migrations/
relocations in their decisions. The EFP approach is also
enhanced by minimizing work lengths to handle edge
computing offloads in multi-user contexts and limitations
of battery energies. The offloading strategy has two stages,
namely

1) deciding on task execution types local (based on
remaining mobile battery power) or ESs (selecting
available ESs) and

2) managing allocations of resources, which are further
divided into two minor problems and 0-1 assignment
of tasks

Different optimizations are used for the placement of tasks
and resource allocations in task offloads based on [39].
Security in task offloads can be realized by ensuring the
elements detailed below:

• Privacy: Recommended mechanisms should safeguard
the privacy of nodes, preventing attackers from deter-
mining their genuine identities.

• Fairness: Mechanisms should force fairness, like
rewarding successful task offloads and ESs that return
findings within specific periods.

• Defense : against ‘‘double-claim’’ attacks: Malicious
nodes need to be identified and punished using smart
contracts, which also need to penalize malicious ESs
engaged in ‘‘free-ride’’ assaults.

• Protection against repudiation attacks: Guarding
BSs against false claims by nodes, as BSs cannot
refuse reimbursements to honest nodes on successful
offload executions. The job offloads can be dynamically
optimized based on observed queue times, handover
costs, and dependability of ESs with three parameters
listed below:

1) QUEUING-DELAY AWARENESS
Significant weights, F (t), are added to queuing delays
to encourage nodes to offload more data. This factor is
obtainedwhen queuing delays deviate significantly from their
corresponding needs.

2) HANDOVER-COST AWARENESS
Nodes are compelled tominimize handover intervals between
ESs and are granted significant weights, Z(t). This factor
is obtained when handover costs deviate significantly from
corresponding requirements.

3) TRUSTFULNESS AWARENESS
This factor is possible by nodes’ propensity to choose highly
trustful ESs. The recommended strategy should allow BSs
to learn and select optimum task-offloading approaches with
minimal delays while handling information. The offload
costs are formulated by combining computational cost with
queue lengths, a complex issue while unloading in dynamic
contexts. The unloading costs and queue lengths should be
balanced to reduce MEC offload costs, as it may result in
overworked or unstable MEC. Moreover, as device counts
increase, offloading complexity also rises. This work pro-
poses a dynamic offloading method, DESO, for ESs divides
optimization issues into sub-issues where offload decisions of
time slots solve the issues efficiently. DESO algorithm is an
offloading method (Figure 5) in which each sub-problem of
the job to be offloaded is delivered to one MEC server linked
to BSs within the users’ communication range. The task to
be offloaded is modeled as a dynamic programming problem
and divided into sub-problems. By maximizing work size and
job complexity, DESO offers a practical response to the issue
of task dumping to the edge and allocation over a sustained
duration rather than an instantaneous burst of time. This is
achieved by also utilizing reinforcement learning, as detailed
in the following steps. Figure 6 shows the RL algorithm.
The RL algorithm is integrated with the SAGE framework,
utilizing blockchain-based smart contracts and SDN-based
dynamic computation offloading and migration, as specified
in the original text. This integrated framework leverages
the RL-based contextual bandits’ approach and the DESO
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algorithm to optimize task offloading in 5G environments.
It aims to reduce task offloading delays improve energy
efficiency, and other performance objectives specified in
the reward function. Task offloading to ESs in 5G is our
goal. Device load, network circumstances, and available ESs
should be considered to minimize task offloading delays and
energy consumption. Considering factors like CPU, RAM,
Disc space etc., [44] while choosing an optimal and efficient
ES is one of the key essentials. First, we use the Q-learning
update rule to teach the agent the value of a certain action in
a state. To update the Q-value for a state-action combination,
it combines the current Q-value, observed reward, learning
rate (α), and discount factor (γ ).

Q(s, a) = (1 − α).Q(s, a) + α.
(
r + γ.max

a

(
Q

(
s′, a

)))
,

where Q(s, a) is the Q - value for state s and action a
α is the learning rate parameter: we can set α = 0.1,
r is the observed reward for taking action a in state s
γ is the discount factor parameter: we can set γ = 0.9
s’ is the next state after taking action
max
a

(
Q

(
s′, a

))
represents the maximum Q-value for the

next state.
The agent chooses actions using the epsilon-greedy policy

after this. It balances exploration (random activities) and
exploitation (highest Q-value actions).

π (a|s|) =
ϵ

|A|
+ 1 − ϵ, if a∗

= argmax
a

(
Q

(
s′, a

))
,

π (a|s|) =
ϵ

|A|
otherwise,

where
π (a|s|): Probability of selected action a in state s
a∗: Action with the highest Q-value in state s
ϵ: Exploration factor, probability of exploration

(e.g., ϵ = 0.1)
|A|: Total number of possible actions Finally, the DESO

task offloading algorithm will then determine the most
suitable MEC (Multi-Access Edge Computing) server for
the offloading task. The optimizations are divided into slots
denoted by T = {1, . . . , t, . . . ,T }. Task data generated by
nodes A(t) initially enter local buffers and subsequently
offloaded to N ESs within nodes’ communication ranges
indicated by S = {s1, . . . , sn, . . . , sN }. Task offloading
approaches are represented by binary indications xn,t , where
xn,t = 1 indicates that ESs n are selected in nth slots and
xn,t = 0 otherwise.

G. IMPLEMENTATION OF SAGE DYNAMIC SECURE AND
INTELLIGENT OFFLOADING FRAMEWORK
The implementation involves system configurations, smart
contract developments, and blockchain creations. Figure 7
is a diagrammatic overview of the major operations of the
SAGE pipeline.

FIGURE 5. Dynamic task offloading decision.

1) SYSTEM AUTHENTICATIONS
These authentications are based on keys and certificates. BSs
first produce their public and private keys (Kp, Ks) used in
encryptions. Nodes also create their respective key pairs (Kp,
Ks) and (Knp, Kns), where Kp is sent to BSs, which encrypts
nodes’ profiles using Ks resulting in unique signatures for f
(Sig Node necessary for node communications to BSs). RAC
then combines nodes’ public keys with digital signatures
for generating certificates. SCs store these certifications, and
anonymous blockchain network nodes obtain legal identities.

2) REQUESTS FOR TASK OFFLOADS
Node task offloads to CCs with max delays. On receiving
offloading requests, smart contracts assure fairness and
security in offloads [40]. CCs send node signatures to RAC,
which transmits them to nodes for authenticity. Migration
requests may originate from nodes or contract controllers,
which dynamically offload tasks to ESs.

3) TASK OFFLOAD DECISIONS
DESO dynamically offloads computing jobs and decides
on ESs considered by controllers at BSs. DESO uses
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FIGURE 6. Reinforcement learning algorithm.

parameter W to balance offload costs and performances and
respond to changing external environments. Reducing offload
costs occurs while limiting queue lengths.

4) DATA TRANSMISSIONS
Nodes encrypt data and send them using their certificate’s
public keys. The task offloads are verified by constructing
Merkle hash trees as leaf nodes.

5) DATA COMPUTATIONS
Encrypted task data are decrypted using Kn and begin
computations. Merkle hash root values (m) are computed
using task data and computational results comparable to [41].

6) FEEDBACK ON RESULTS
Task data size ratios are considered constant inside slots,
like [40] by t. Selected ESs Sn, must transfer data back to
nodes after computations, and hence, results are transmitted
to nodes through BSs where τ represents resulting delays.
Nodes communicate Root (m2) to CCs, which compares

Root (m1) obtained from nodes to Root (m2) obtained
from nodes. When these two are similar, it implies ESs are
misleading CCs in data computations by directly leveraging
offloaded data to construct Root (m2). If nodes fail to send
Root (m2) to CCs before the specified time, smart contracts
instantly conclude transactions and directly conduct Case 2 of
transaction settlements otherwise, they assume nodes have
completed computations, and findings are encrypted and sent
back to nodes using their certificate’s public keys.

7) BLOCKCHAIN CONSTRUCTIONS
SDN Controllers record transactions as blocks and upload
them to blockchains whose heads have difficulty, timestamps,
the last block’s hash value, and the Block’s Merkle hash
root value. Authorized BSs deduce their proof-of-work by
computing block hash values with random numbers and
information, including dates. This discovered proofs-of-work
is broadcast to other BSs for verifications and earn rewards.
Blocks added become permanent when most BSs accept
proof-of-work.

8) EDGE SERVER TRUSTFULNESS ASSESSMENTS
The Trustworthiness of ESs is assessed using a subjective
logic framework [42] based on beliefs and connection prob-
abilities. Trustworthiness of nodes, represented as opinion
vectors πn,t = {µn,t , µι

n,t · · · ucn,t}, here µn,t , µι
n,t and

ucn,t denote beliefs, disbeliefs, and uncertainties whereµn,t+

µι
n,t + ucn,t = 1. The uncertainties cn,t are connection

probabilities. The data saved in local buffers of nodes are
established in initialization phases when data queues backlog.
Selection indicators and queue backlogs are set to 0. Available
ESs during decisions are selected at least once. The suggested
architecture for safe and intelligent task offloads is not
restrictive and can be extended to cellular-based vehicular
networks or Narrow-band IoT in unique signatures for f
(Sig Node necessary for node communications to BSs). RAC
then combines nodes’ public keys with digital signatures
for generating certificates. SCs store these certifications, and
anonymous blockchain network nodes obtain legal identities.

IV. PERFORMANCE EVALUATION
We performed several simulations to gain an in-depth
understanding of the components that make up a complete
5G network and build a testing environment for applications
utilizing 5G networks. The experiments of this work mimic
network environments with large numbers of concurrently
available ESs and user devices distributed randomly around
these Es, which can handle multiple sub-tasks based on
their processing capabilities as user devices split tasks into
sub-tasks.

Hardware Configuration:

• CPU: Intel® CoreTM i7-6700HQ
• RAM: 16GB
• GPU: NVidia GeForce 960M
• OS: Ubuntu 16.04.6 LTS 64-bit
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FIGURE 7. SAGE framework’s operational flow.

Software Used:

• ns-3: Discrete-event simulation generator for Internet-
related protocols

• CloudSim: This is a framework for modeling and
simulating cloud infrastructures

• openLEON: Emulator that builds on Mininet
• srsLTE to build MEC-compliant simulations

A. PERFORMANCE ANALYSIS OF THE LEARNING
ALGORITHM
This section analyzes the suggested RL algorithm’s perfor-
mance in choosing the offloading server in the dynamic task
offloading scheme (DESO) using simulation.

1) CONVERGENCE ANALYSIS
Convergence performance in machine learning is a criti-
cal metric that measures the rate at which an algorithm
approaches a stable or optimal solution during the iterative
refinement process. It signifies the point at which further
iterations yield diminishing returns, indicating that the
solution has nearly stabilized. Achieving convergence is
fundamental in training models effectively, as it ensures
that the algorithm converges within a reasonable time
frame. In dynamic and diverse environments, prioritizing
convergence over specific learning rates and batch size
values proves to be a prudent approach. The algorithm gains
adaptability across various datasets and problem landscapes
by emphasizing convergence. This flexibility allows the
model to effectively navigate different scenarios without
being tethered to rigid hyper parameter values, a crucial
quality in real-world applications. Moreover, a convergence-
centric approach bolsters the robustness of the system, par-
ticularly in dynamic settings like 5G-enabled MEC systems.
Prioritizing convergence also mitigates the risk of overfitting
a specific dataset’s hyper parameters like learning rate and
batch size. Instead, it encourages the development of a more
generalized and versatile model that can perform well across
diverse scenarios. Convergence-oriented strategies strike a
balance between speed and accuracy.While specific values of
learning rate and batch size are important considerations, they
should be chosen in the context of achieving convergence.

TABLE 2. Binary decision counts vs actual value counts.

This ensures that progress is neither overly slow nor erratic,
striking an equilibrium that allows for both efficiency and
effectiveness in model training. Figure 8 illustrates the
rewards of the system in the proposed blockchain-enabled
M2M communications networks at various learning rates.
In the context of Deep Reinforcement Learning (DRL),
the learning rate corresponds to the scale at which the
network parameters are tweaked based on the gradient of
the loss function. To explain simply, a higher learning rate
corresponds to a wider range of parameter updates. The
system incentivizes consistent performance by utilizing a
reduced learning rate, as it possesses the ability to accurately
determine the optimal value’s exact position. Furthermore,
a higher learning rate facilitates superior convergence

2) ALGORITHM ACCURACY
Accuracy testing is a crucial metric in machine learning,
assessing the proportion of right predictionsmade by amodel.
It is particularly relevant in classification tasks, quantifying
the model’s correctness in its classification decisions. For a
binary classification task, the confusion matrix includes:

• True Positive (TP): Correctly predicted positives
(e.g., correctly offloaded tasks)

• True Negative (TN): Correctly predicted negatives
(e.g., correctly retained tasks locally)

• False Positive (FP): Incorrectly predicted positives
(e.g., tasks incorrectly offloaded)

• False Negative (FN): Incorrectly predicted negatives
(e.g., tasks incorrectly retained locally).

The accuracy is expressed mathematically as:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
The accuracy score is computed using the confusion

matrix. This matrix is very advantageous when addressing
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FIGURE 8. System rewards under different learning rates.

FIGURE 9. Cross-validation values of RL algorithm.

categorization challenges. For our research problem focused
on task offloading in 5G-enabled MEC systems with
integrated RL and DESO algorithms, accuracy is a pivotal
metric for several reasons. Accuracy directly evaluates
the precision of the offloading decision-making process.
It measures the system’s proficiency in correctly allocating
tasks to the optimal destination, a critical aspect for efficient
and responsive offloading strategies.

Generalization and Validation: A model’s accuracy reveals
how effectively it can generalize to new data. Evaluating
the model’s performance on a validation or testing dataset
ensures it can make accurate offloading decisions in real-
world scenarios. Comparative Analysis and Optimization:
Using accuracy facilitates meaningful comparisons between
different iterations or versions of the offloading model.
This aids in identifying the most effective configuration for
accurate task allocation.

Feedback Loop for Continuous Learning: In the integrated
RL component, accuracy is a crucial feedback signal for
training the agent. It allows the reinforcement learning
algorithm to adjust its policy based on the accuracy of
its offloading decisions, enabling continuous learning and
improvement. In the RL-based offloading decision-making
process, the agent uses accuracy as a feedback signal for
policy updates. Assuming that at each step (t), the agent

selects an action at (task offloading decision) and receives a
reward rt based on the accuracy of the decision:

rt = f (Accuracy (at))

where f(.) is a function that maps the accuracy to a reward
value. The RL agent’s objective is to gain themost anticipated
cumulative reward over time:

J (π ) = E

[
∞∑
t=0

γ trt

]
where π is the policy, and γ is the discount factor. Balancing
Trade-offs for Efficiency: While accuracy is primary, it can
be balanced with critical considerations like latency, energy
consumption, and fairness in task allocation must also be
considered. A multi objective optimization problem can be
formulated as:

Minimize: L = w1 · Accuracy + w2 · Latency

+ w3 · Energy Consumption + w4 · Fairness

where (w1,w2,w3) and w4 are weights representing the
importance of each metric. Other metrics that can be derived
from the confusionmatrix to further evaluate the performance
include:

• Precision (Positive Predictive Value):

Precision =
TP

TP+ FP

• Recall (True Positive Rate or Sensitivity):

Recall =
TP

TP+ FN

• F1-Score (Harmonic mean of Precision and Recall):

F1 = 2 ·
Precision · Recall
Precision + Recall

Beyond accuracy, these metrics provide a whole picture
of the model’s performance, which is especially useful in
cases when there is a potential for class imbalance. These
equations help quantify the effectiveness of task offloading
decisions, allowing for an analysis of the performance across
various dimensions, including accuracy, latency, energy
consumption, and fairness. This ensures that the offloading
system meets the specific requirements and constraints of the
dynamic 5G-enabled MEC environment. Table 2 displays the
number of binary decisions and the corresponding counts of
real values. There exist four distinct categories of output:

• T0 denotes the value of true as 0
• T1 denotes the value of true as 1
• F0 denotes the value of false as 0
• F1 denotes the value of false as 1

The values 0 and 1 correspond to the choices of performing
the task locally or offloading the task, respectively.
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FIGURE 10. Comparative regret values.

TABLE 3. Comparative accuracies of RL algorithms for both divisions of
the dataset.

TABLE 4. F1 score.

Figure 9 depicts the results achieved by the application
of the cross-validation technique on the RL algorithm.
By repeatedly dividing the dataset into training and validation
sets, cross-validation assesses the model’s performance. The
dataset is partitioned into k subsets, or folds, in k-fold cross
validation. The model is trained k times, with each training
iteration utilizing k − 1 fold and the remaining fold for
validation. The overall accuracy can be computed as the mean
of the accuracies across all folds:

AccuracyCV =
1
k

k∑
i=1

Accuracyi,

where Accuracyi is the accuracy obtained in the i-th folder.
We showcase the efficacy of our supervised learning model
by evaluating its performance using both train-test split
and cross-validation procedures on a generated dataset.
The data is inputted into several classification algorithms.
A comparison of the RL algorithms’ accuracy scores for both
divisions of the dataset is depicted in Table 3. Table 4 shows
the F1 score for the various algorithms included the proposed
one.

3) LEARNING RATE
Learning regret, a crucial metric in reinforcement learning,
quantifies the sub-optimality of an agent’s decisions com-
pared to an oracle with perfect knowledge of the environment.
It represents the difference between the agent’s actual
cumulative rewards and what could have been achieved with
ideal decision-making. Learning regret proves invaluable in
the context of our task offloading challenge within 5G-
enabled MEC systems. It quantitatively assesses how well
the reinforcement learning agent performs compared to an
idealized oracle. This metric is instrumental in fine-tuning
the agent’s offloading policies for more effective decision-
making. Figure 10 shows the learning regret values of the
proposed SAGE algorithm with the already available UCB1
and AVUB algorithms under diverse occurrence times of
SeVs and identical loads.

4) COMPUTATIONAL COMPLEXITY ANALYSIS
TheDESO algorithm employs a dynamic programming-based
task offloading approach integrated with reinforcement
learning (RL) to optimize the assignment of tasks to
mobile edge computing (MEC) servers. The computational
complexity of DESO depends on the offloading decision-
making process, learning updates, and queue management
mechanisms. The DESO framework solves the offloading
decision problem using dynamic programming, which
typically has a complexity of O(N × T) where:

• N is the number of edge servers,
• T is the number of time slots considered

This makes DESO computationally feasible for real-time
offloading as long as N and T are moderate. The RL-based
decision-making inDESO employs aQ-learning process. The
update rule for the Q-table follows O(S × A) where:

• S is the number of system states (e.g., available
resources, network conditions),

• A is the action space (offloading decisions)

For large-scale 5G edge computing, the state-action space
grows exponentially, requiring function approximation tech-
niques (e.g., DRL) for scalability. DESO integrates queu-
ing delay awareness into the decision-making process.
Based on Little’s Law, queue-related computations follow
O(N log N) complexity for sorting and scheduling tasks
among multiple servers. Compared to DRL - based offload-
ing, DESO has a lower computational overhead as it avoids
deep neural networks’ training complexities. Compared to
Federated Learning, Federated Learning requires multiple
iterations of local training and global aggregation, making it
O(K × M × D) where:

• K is the number of communication rounds,
• M is the number of participating devices,
• D is the dataset size per device.

To summarize, in the best case scenario, If offloading
decisions are computed efficiently, DESO runs in O(N log N)
time. In the worst-case scenario, with a large state space,
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TABLE 5. DESO vs. drl (deep reinforcement learning-based offloading).

TABLE 6. DESO vs. federated learning (FL) for task offloading.

the Q-learning update process may require O(S × A × T),
impacting real-time deployment where:

• S is the number of system states (e.g., available
resources, network conditions),

• A is the action space (offloading decisions),
• T is the number of time slots considered
Table 5 describes the comparative analysis with the state

of the art approaches between DESO (proposed) and Deep
Reinforcement learning-based offloading. Likewise, Table 6
shows the comparison between DESO and FL for task
offloading.

To conclude, our proposed algorithm DESO is more
suitable for real-time, low-latency applications, while Deep
Reinforcement learning-based offloading approaches are
effective when long-term optimization and deep learning
models can be trained offline. DRL provides better long-term
performance but at a higher computational cost. If privacy is
the primary concern, FL is preferred over DESO, but at the
cost of higher latency and energy consumption. If the goal
is real-time task offloading with low overhead and moderate
privacy, DESO outperforms DRL and FL approaches.

B. PERFORMANCE OF THE DESO SCHEME
The benefits of the recommended SAGE algorithm are
illustrated through a comparison. These closely related
edge computing offloading techniques are considered (re-
implemented based on the description of their algorithms
in the corresponding publications) for comparison testing as
follows:

• FCFS (First-come-First Service): For execution, each
subtask within a task is transferred to the edge server,
as opposed to being executed locally. After being carried
out, the user device is subsequently notified of the task’s
execution structure in the order in which it was executed.

• CEFO [35] is a centrally controlled edge computing
offloading technique based on SDWN. The SDWN
selects the appropriate migration method for each job
based on the task data provided by each user device.

For any offloading system, the combined graph of
user tasks assigned to the same server is considered
an integrated directed acyclic graph (DAG). Which
offloading approach results in the shortest waiting time
is used to decide the dispatching strategy

• p-MEFP [43] is the first algorithm with the shortest
time-to-completion when multiple users are present in
a resource contention environment.

1) TASK QUEUEING OVERHEAD
This section contrasts the typical task delay for each strategy
considering the Benchmark, CEFO, and p-MEFP simulation
experiment under various resource contention circumstances.
The network environment is set to three different levels: high
contention (two ESs, each one can execute only one task),
medium contention (five ESs, each one can execute up to two
tasks), and low contention (eight ESs, each one can execute
up to two tasks). Figure 11 compares the average task queuing
delays for various techniques in heavy resource competition.
In a case with intense competition for resources, the method’s
noticeable queuing delay gap becomes more pronounced
as the job number grows. The average queuing delay gap
reaches maximum of 100 ms for a set of 50 tasks, with the
most notable difference being 60 ms for a group of 30 jobs.
This demonstrates that the SAGE strategy is highly effective
in reducing task waiting delays. The average task delays
for the four algorithms for different task counts in a high
contention environment are shown in Figure 12 In a highly
competitive environment, the availability of ESs that can
offer computational resources is limited, and the utilization
of ESs for tasks is increasing. The Figure 12 demonstrates
that the execution impacts of the four methods are equivalent
when there are few jobs, with the SAGE method being just
slightly superior.As the number of concurrent tasks grows,
the waiting time contributes an ever-increasing proportion
to the total delay, and the issue of users fighting for ESs
gets ever more acute. The difference between the methods in
terms of mean task delay widens as the difference in queuing
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FIGURE 11. Average queuing delays.

FIGURE 12. Average total delay.

delay widens. The difference between the best and worst
performance, when there are 20 jobs, is only 10 milliseconds.
The difference is 40 milliseconds when there are 40 jobs,
but when there are 100 tasks, the average delay in the
SAGE pipeline is 80milliseconds and around 70milliseconds
lESs than CEFO. It significantly reduces execution latency
and is very effective at reducing delays. Contrarily, the
performance of SAGE increases with the number of users,
proving its effectiveness in lowering task delay in a situation
with resource competition. Nevertheless, the rate of delay
escalates rapidly as the number of tasks grows. Compute
offloading, data caching, and four various sensing services
(such as encryption/decryption, video streaming, alert mes-
sages, temperature, and sensing for wearable devices) are the
job categories the ICPsmay do in the reference scenario. Each
has a different execution time, required latency, packet size
(i.e., for both requests and answer messages), and the interval
between two consecutive requests. All four methodologies
are employed to calculate and transfer a set of tasks using
20 distinct directed acyclic networks within the same network
environment. The obtained average task delays are compared
in Figure 13. The job of task type 1 has the most significant
task execution delay, as shown in Figure 13, while task type 3
has a significantly better task execution impact than other task
types. Because its five sub-tasks may only be completed in
sequence, task category 1 has the longest execution delay. For
task type 3, a maximum of three sub-tasks may be carried

FIGURE 13. Average delays vs. offloaded task types.

FIGURE 14. Overhead of stages in the pipeline.

out continuously in parallel. By moving parallel processing
workloads to many edge computing servers, the three
subtasks can be computed simultaneously. Experimental
results show that task parallelism affects optimization clarity
following compute offloading and time savings.

2) PIPELINE STAGES OVERHEAD
We evaluate our proposed SAGE with additional com-
putation workloads, N = 60, 70, and 150, respectively,
and compare the overall computation overhead with those
by adopting various offloading techniques, such as local
computing by all mobile devices (MD), in our experiments.
Additionally, this series of tests shows that the offloading
method using multiple MEC servers can improve perfor-
mance by an average of 60% compared to the method
using a single MEC server, proving the value of using
multiple MEC servers in 5G Edge/Fog networks. This
pattern scales effectively as the number of computing jobs
increases. Three main stages comprise a task offloading
process:

• Choosing a server
• Building a blockchain or smart contract
• Transmitting task data, computing, receiving and vali-
dating the results

Figure 14 displays the system’s overall end-to-end perfor-
mance and the time required for each major stage.
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3) SCALING WITH EDGE SERVER COUNTS
This section compares the total processing times of four
algorithms—benchmark FIFS, CEFO, p-MEFP, and SAGE—
across a range of edge server numbers (see Figure 15).
Although SAGE provides certain advantages over the other
techniques in terms of optimization, which can reduce the
average task execution latency, these advantages eventually
fade as the number of ESs increases. Overall, SAGE is still
successful at lowering latency, and it is evident that the
number of ESs significantly impacts how quickly tasks are
executed. The continuous incorporation of ESs results in a
decreased average task execution latency to one-third of its
original value.

4) LOAD BALANCING OVERHEAD
ES clusters have limited resources, so the computational
resources of ESs are represented by a collection of virtual
machines (VMs). When there are more tasks sent to the ES
than the VMs can handle, some tasks have to wait in a queue
until the ES finishes processing the previous tasks. There
is a delay in the waiting queue. Efficient load balancing is
crucial for evaluating the effectiveness of task offloading.
The condition of the ES cluster improves significantly with
a lower value. According to the mathematical basis, the load
balancing may be calculated as:

LB(st) =
1
UK

·

W∑
w=1

[
UV

(
stn,i

)
− UC

(
stn,i

)]2
Moreover, when the number of user applications or users
grows, the ultimate load-balancing values of the three
techniques are about equal. The reason for this is that each
ES is in a state of equilibrium, with all of its resources fully
utilized. The SAGE architecture is highly adaptable to various
situations.

5) AVERAGE RESOURCE UTILIZATION
An important benchmark to use when evaluating the effec-
tiveness of the ESs is the average resource utilization. The
number of running virtual machine instances in an ES’s VM
pool is a proxy for resource use. The VM instances become
occupied once all compute applications have been transferred
to ESs utilizing the offloading strategy. The VM pool has
fewer unusedVM instances due to higher resource utilization.
The average resource utilization is calculated as

ARU (st) =
1
EE

M∑
m=1

Cm

where EE denotes the number of actively ‘‘Employed Edge’’
Servers, and Cm is the resource utilization for each mobile
device m. Figure 18 shows the comparative findings for
the average resource utilization of the four approaches
discussed above for various MDs and applications. Figure 19
compares average resource utilization for these threemethods
at various application scales. As shown, the SAGE framework

FIGURE 15. Processing time vs. edge server counts.

FIGURE 16. Load balancing across the ESs clusters for mobile devices.

FIGURE 17. Load balancing across the ESs clusters for applications.

outperforms the other approaches in all the scenarios.
The key reason is that for a range of application sizes,
in comparison to the other methods, SAGE analyzes a variety
of hyperparameters to assign applications more sensibly and
enhance average resource utilization.

6) BLOCKCHAIN TRANSACTION PERFORMANCE
The unit of gas in Ethereum reflects the amount of
computational work performed. Figure 20 illustrates the use
of gas consumption and transactions. Transactions result in
a rise in the consumption of gas. This approach resulted in a
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FIGURE 18. Comparative findings for average resource utilizations of
approaches with mobile devices.

FIGURE 19. Comparative findings for average resource utilizations of
approaches with applications.

30% increase in transaction throughput and an 85% reduction
in transaction time. For transactions under 200, the amount
of gas consumed and the processing time are similar (up to
27 seconds). With the increase in the transaction quantity,
the gas consumption amount also increases linearly, however,
the time to process remains unchanged. The scalability of our
system is achieved by using the shorter processing time of an
SDN controller compared to the gas required for a Blockchain
transaction. Our proposal integrates the use of Blockchain
technology to ensure both great safety and efficiency

In this benchmark, the blockchain consortium maintains a
100% success rate for permitted transactions from incoming
transaction rates of 0 to 500. After that, the success rates
quickly declined to almost nothing, showing that both
blockchains have topped 500 TPS. However, for both test
systems, the transaction latency remained consistent between
15 and 22 seconds during the evaluation time. At a rate of
[100, 1000] transactions per second (TPS), 1000 transactions
are being put into the blockchain.

C. SECURITY ANALYSIS
This section will analyze numerous attack scenarios and
their security. We will conclude by using real-world attack

FIGURE 20. Blockchain energy consumption.

FIGURE 21. Computation delays vs. no. of devices.

scenarios to demonstrate how our proposed SAGE system
protects endpoints and network infrastructure.

1) SECURITY PROPERTIES AND ATTACK STUDIES
This section provides the findings of a practical assessment
of the security capabilities of SAGE. We presented case
examples that demonstrate such functionalities in operation.
To demonstrate the vulnerability of a device that is either
in the process of being supplied or has already been
provisioned, we conducted real-time assault scenarios. These
case examples illustrate how an adversary might quickly
compromise the device. Pre-condition and post-condition
constraints, however, shield our SAGE system from these
attacks.

Case 1—‘‘Device sending a Single Malicious Packet’’: By
using stolen login credentials, a person can access a device
without authorization and attack its gateways. To lessen
this attack, an identity and verification system is required.
Case 2—‘‘Device sending several Malicious Packets’’:
In this scenario, fake data is used to take control of the IoT
gateway via a gadget. This attack evaluates authentication
mechanisms’ legitimacy.

Case 3—‘‘Compromised Device Injecting Malware’’:
Access to the smart network is restricted to devices that
have been pre-authenticated and provided beforehand. For
example, malware such as Mirai infiltrates devices. We will
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FIGURE 22. Offloading delays based on trust.

FIGURE 23. Malicious device counts vs. selection probabilities.

orchestrate such attacks to thoroughly test the effectiveness
of our permission policies.

Case 4—‘‘State Change of a Device Due to External
Manipulation’’: The SAGE analyses events and situations to
monitor the device. This test case is designed to verify the
real-time effectiveness of SDN Security Monitoring. Here,
we will carry out attacks on the network’s connected devices,
such as mobile phones, to cause changes in the state of those
devices. Authorization policies face challenges in detecting
these state shifts. The event-driven status monitoring services
of our SDN controller quickly identify these changes.

2) RESILIENCE TO MALICIOUS 5G DEVICES
Malicious mobile devices significantly affect the commu-
nication systems’ functionality and security. The ability
of SAGE to differentiate between authentic and malicious
devices is of utmost importance. The SAGE security con-
troller cannot carry out device re-authentication until it has
received all of the messages in the series. Our authentication
technique allows us to greatly reduce the computational
and communication needs for identifying malicious users
of devices. This test compares the computational expenses
of the standard approach and SAGE in the scenario of
malicious cellular devices. The vertical axis of Figure 21
utilizes a log scale to represent computational latency for
simplicity

3) MALICIOUS EDGE SERVERS
Figure 22 depicts the correlation between the average delay
in task offloading and the number of time slots when one or
more malicious ESs attempt to disrupt the offloading process
within the framework. SAGE outperforms other schemes by
reducing the average task offloading delay by 18%, 27.9%,
and 36.5% respectively. This improvement is achieved by
taking into account queuing delay awareness, handover-cost
awareness, and awareness of trust. As a result, the SAGE
DESO algorithm in the controller frequently chooses the
detrimental ESs, which decreases the occurrence of delays
and failures in job offloading. The FIFS scheme, when
compared to other benchmarks, performs poorly. This is
because CEFO does not take trustworthiness into account and
often selects ESswithmalicious tendencies or low connection
probabilities. This leads to frequent task offloading failures
and significant performance degradation. Figure 23 depicts
the median selection times for malicious ESs to the total
sample size of malicious ESs. Simulation results demonstrate
that when there is only one malicious edge server, SAGE can
decrease the selection of malicious ESs by 65%, 85.4%, and
90.2% compared to p-MEFP, CEFO, and FIFS, respectively.
Due to its trust awareness, this algorithm consistently
outperforms other algorithms even as the count of malicious
ESs increases. The SAGE system experiences fewer delays
and failures in task offloading because it is highly sensitive
to detecting and mitigating malicious ESs.

D. KEY FINDINGS AND RESULTS DISCUSSION
The experiments in our performance evaluation compared the
various aspects and key metrics in this problem space with
other competitive schemes and benchmarks - computation
overhead and running times. It can be observed from Table 7,
which summarizes Key Findings from Evaluations, that
SAGE may generate a nearly optimum solution, unlike
the benchmark. With a dynamic SDN-based algorithm,
SAGE outperforms all other schemes regarding computing
efficiency and flexibility in re-configuring the process at run
time.

V. LIMITATIONS AND FUTURE WORK
Despite the various benefits the proposed architecture
provides for secure offloading of tasks in 5G MEC and
future applications, there remain unresolved concerns that
must be tackled. In spite of the proven success of utilizing
integrated methods to improve performance metrics and
security posture, it is essential to recognize the limitations and
challenges associated with this approach, which are briefly
discussed below.

A. CELLULAR TECHNOLOGY
The 5G devices are primarily focused because 5G network
offers ultra-low latency, high bandwidth, and massive device
connectivity necessary to support real-time and secure task
offloading at scale. The dynamic nature of task migration,
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TABLE 7. Key findings and results.

combined with the need for trust-aware decisions, requires
a network infrastructure capable of handling high-speed
and low-delay communications — a feature that 4G and
earlier generations cannot reliably guarantee. Moreover,

MEC is most effective when tightly integrated with 5G
infrastructures, as MEC was designed with 5G architecture
in mind to minimize round-trip delays and enhance com-
putational offloading performance. Older generation devices
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and networks typically lack native support for MEC and
SDN, which are critical to our proposed approach. The
underlying principles of the proposed architecture — such as
secure offloading using blockchain and adaptive learning —
can theoretically be extended to non-5G environments, but
would require adjustments to account for limitations in
latency, throughput, and edge computing integration. These
extensions are considered out of the current study’s scope but
are identified as potential directions for future research.

B. INTEROPERABILITY
It might be a concern when it comes to 5G cellular
(eSIM) technologies, as various manufacturers and providers
may employ different approaches, leading to compatibility
problems. Efforts should be undertaken to standardize
connection and Over-the-Air (OTA) management platforms,
as well as the devices that participate in them, to guarantee
compatibility.

C. SCALABILITY
The proliferation of connected devices and the ever-increasing
data volume make this a formidable task. The architecture’s
ability to supply, manage, and interface with devices
and cloud services is crucial for supporting large-scale
deployments.

D. SECURITY
Participating devices are protected by 5G cellular-enabled
technology, however they are not immune to attacks. In order
to protect against cybercrime, data breaches, and unautho-
rized access, stringent security measures are required.

E. COST
Smaller firmsmay struggle to integrate offloading technology
in participating devices due to cost.

F. REGULATION
Offloading at the Edge/Fog infrastructure needs more reg-
ulation to ensure device participation. Device data security
and privacy must be protected by Government and regulatory
policies.

G. CLOUD SERVICE VULNERABILITIES
Cloud services consist of complex software components that
may have security vulnerabilities. Existing cloud systems
need to address the misconception that all distributed cloud
services are reliable. Therefore, if a component version in a
cloud service is not updated or if there is a misconfiguration,
it can allow attackers to spread assaults to other cloud
services, thereby endangering the cloud resources of any user.
Communications between services, hosts, nodes, and mecha-
nisms are secure and confidential with the SAGE framework.
Nevertheless, even if a cloud service is compromised,
it might still exhibit malicious behavior or propagate attacks.
We will thoroughly analyze the existing security measures
in place to protect against vulnerabilities in cloud services

and misconfigurations by mobile operators. This analysis
will be conducted in a detailed manner with a focus on
quality. The suggested framework for safe and intelligent task
offloading is not just for 5G MEC using minor adjustments;
it may be extended to mobile edge computing (MEC) using
Vehicle Fog Servers (VFS) and the hybrid scenario with
MEC and VEC. The edge server in the hybrid system may
establish its legitimate identity in the anonymous blockchain
network by creating a key pair and acquiring a certificate to
connect with the cars and the base station. Future research
will concentrate on privacy-conscious compute offloading
for scientific process applications and gearbox control in
MEC-enabled automobile networks. In our forthcoming
project, we plan to enable security services to offload tasks
in the MEC (Multi-access Edge Computing) setting, where
the Edge Servers (ESs) and Mobile Devices (MDs) will
need to create their security frameworks. Deep reinforcement
learning is amodel-freemethod used to enable job offloading,
and computation for D2D communication and meet specified
performance criteria.

VI. CONCLUSION
After examining the delay and energy use of edge computing
offloading in the 5G network, the research’s goal of reducing
job delay was set. Employing a delay-aware offloading
approach that has been expanded for multi-user situations
is suggested. Dividing computational work into several
smaller jobs decreases the overall completion time of device
applications. Additionally, the algorithm has been adjusted
to consider probable resource competition. The efficacy of
the proposed strategy has been verified through simulation
studies. The results indicate that the recommended work can
substantially decrease the overall project delay in comparison
to the current work. This study examines the security and
energy-efficient collaboration of task offloading in device-to-
device (D2D) communications. It introduces a unique secu-
rity framework formobile devices. The number of CPU cores,
CPU frequency, and data size are all considered in this model.
This security paradigm may be used in a heterogeneous D2D
situation. The collaborative task offloading problem is then
defined to lower MDs’ energy and time-average delays while
ensuring security. The combined design of communications
and computation resource allocations and partial offloading
ratios was studied to optimize the TSOD under latency and
secrecy constraints. An efficient approach that converges
rapidly and outperforms several heuristics was used to tackle
this problem. Enough tests and analyses have proven our
proposal’s efficacy and advantage over the alternatives in
various scenarios. Our investigation of combining several
emerging technologies in a highly dynamic and advanced
framework lays the groundwork for further research in this
exciting new area.
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