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A B S T R A C T

Blockchain technology combined with Federated Learning (FL) offers a promising solution for enhancing pri-
vacy, security, and efficiency in medical IoT applications across edge, fog, and cloud computing environments.
This approach enables multiple medical IoT devices at the network edge to collaboratively train a global
machine learning model without sharing raw data, addressing privacy concerns associated with centralized
data storage. This paper presents a blockchain and FL-based Smart Decision Making framework for ECG data in
microservice-based IoT medical applications. Leveraging edge/fog computing for real-time critical applications,
the framework implements a FL model across edge, fog, and cloud layers. Evaluation criteria including energy
consumption, latency, execution time, cost, and network usage show that edge-based deployment outperforms
fog and cloud, with significant advantages in energy consumption (0.1% vs. Fog, 0.9% vs. Cloud), network
usage (1.1% vs. Fog, 31% vs. Cloud), cost (3% vs. Fog, 20% vs. Cloud), execution time (16% vs. Fog, 28% vs.
Cloud), and latency (1% vs. Fog, 79% vs. Cloud).
1. Introduction

The integration of the Internet of Things (IoT) with medical appli-
cations has brought about a significant transformation in healthcare,
particularly in real-time patient monitoring facilitated by connected
medical devices. Among these advancements, Electrocardiogram (ECG)
anomaly detection stands out as a critical tool in identifying cardiovas-
cular irregularities, potentially preventing life-threatening conditions.
However, the effectiveness of ECG anomaly detection heavily relies
on processing extensive and sensitive medical data generated by dis-
tributed IoT devices (Moghadas et al., 2020). Traditionally, such data
processing has been centralized in the cloud. However, transitioning
to edge and fog computing is now imperative for real-time analysis
at the network’s edge, ensuring minimal latency in identifying cardiac
abnormalities. Edge/fog computing allows for the timely detection of
potentially life-threatening ECG signal abnormalities, thus significantly
enhancing patient care (Prakash et al., 2017).

Nevertheless, this shift towards edge/fog computing also raises con-
cerns, particularly regarding data privacy, security, and latency, espe-
cially in time-critical medical applications. Addressing these challenges,
FL has emerged as a promising solution. Federated Learning (FL)
facilitates collaborative training of a global machine-learning model
among multiple IoT devices while preserving data decentralization and
security. It offers enhanced privacy and security by avoiding the need
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to share sensitive data with a central server, making it particularly well-
suited for medical IoT applications. Despite these advantages, FL still
faces limitations such as communication overhead and vulnerability to
Byzantine attacks (Lakhan et al., 2022).

In response to these challenges, blockchain technology has gar-
nered increasing attention. By combining blockchain’s decentralized
and tamper-proof ledger with FL, a distributed and trustless environ-
ment is created for training machine learning models (Mohanta et al.,
2019). Blockchain ensures data integrity and eliminates the dependence
on a single entity for data aggregation and model updates, thereby
further enhancing decision-making processes within the healthcare
domain (Ratta et al., 2021). This paper’s research contributions are
outlined below:

• Design of an early warning system to detect anomalies in ECG
readings.

• Integration of Blockchain-based Federated Learning, a privacy-
preserving method, into critical healthcare applications to protect
end-user data.

• Identification of the most suitable placement policy for deploy-
ing the Blockchain-based Federated Learning module within the
architecture’s Edge, Fog, and Cloud layers.
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, including those for text and data mining, AI training, and similar technologies. 
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The rest of this paper is organized as follows. Section 2 and Sec-
tion 3 discuss the background and related work. Section 4 presents
he proposed method followed by the experimental setup in Section 5.

Section 6 summarizes the results, and Section 7 concludes the paper.

2. Background and motivation

The integration of IoT with healthcare, commonly referred to as
medical IoT, has undergone significant growth, offering opportunities
for real-time patient monitoring and personalized healthcare. ECG
nomaly detection stands out among the various medical IoT appli-
ations for its crucial role in identifying potential cardiovascular ir-
egularities and aiding in timely diagnosis and treatment. Accurate
CG anomaly detection is paramount for preventing life-threatening
onditions and improving patient outcomes (Prabhu and Hanuman-
haiah, 2022). However, traditional centralized approaches to ECG

anomaly detection, which involve storing medical data in cloud-based
infrastructures for model training, raise concerns regarding data pri-
vacy, security, and latency. Medical data, being highly sensitive and
regulated, requires stringent protection to comply with data privacy
laws and maintain patient trust. Moreover, reliance on centralized
servers introduces vulnerabilities, making the system susceptible to
cyber-attacks and data breaches (Bharathi et al., 2022).

To address these challenges, FL offers a promising solution by
decentralizing data processing and keeping data locally processed on
user devices. This decentralized approach minimizes the risk of data
breaches and facilitates compliance with data protection regulations,
ensuring that sensitive medical information remains with the users who
generate it (Jin and Dong, 2018). However, FL still faces limitations
n resource-constrained IoT environments, including communication
verhead, limited computational capabilities of edge devices, and the
otential for Byzantine attacks (Zhang et al., 2020a).

Wearable devices and IoT technologies continuously generate vast
mount of data, posing significant security challenges. Particularly in
he realm of medical data, a thorough investigation has revealed nu-

merous issues related to the security and privacy of healthcare informa-
ion. Globally, medical data breaches threaten patient confidentiality,
xposing sensitive health information to unauthorized access. These
reaches not only raise individual privacy concerns but also risk the
ntegrity of healthcare systems and undermine trust in the protection
f critical medical data worldwide. In this context, blockchain tech-
ology emerges as a complementary solution to enhance the security,
ransparency, and efficiency of FL in medical IoT environments. By pro-
iding a tamper-proof and decentralized ledger, blockchain ensures the
ntegrity and transparency of data and model updates. When combined
ith FL, blockchain creates a distributed and trustless environment for

ollaborative training (Cheikhrouhou et al., 2021).
This research aims to leverage blockchain-based Federated Learning

for ECG anomaly detection in Edge-Fog-Cloud computing environ-
ments. By harnessing blockchain’s immutability and decentralization,
we seek to address the privacy and security concerns of medical data
while enabling efficient and accurate ECG anomaly detection. Our
implementation will empower medical IoT devices, edge, and fog nodes
o collaboratively participate in the training process, thereby improv-

ing model accuracy and robustness. This research endeavor aims to
ontribute to the advancement of healthcare services by presenting
 cutting-edge solution that guarantees data privacy, security, and
fficient model training. Integrating blockchain and FL in medical IoT
pplications has the potential to revolutionize patient care, enabling
ore personalized and timely medical interventions while upholding

he highest standards of data protection and confidentiality. The mo-
tivation for this study stems from the inadequacy of existing research
on edge/fog/cloud-based FL methods in addressing healthcare concerns
related to the detection of ECG anomalies within microservice-oriented
IoT healthcare applications.
 w
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3. Related work

The previous section highlights the importance of using blockchain-
ased FL in edge/fog/cloud computing applications. The following

paragraphs delve into the current advancements in the utilization of
blockchain technology for FL within the context of IoT applications
spanning edge, fog, and cloud computing

Cherukuri et al. and Awan et al. both propose blockchain-based
olutions to address the challenges of federated learning, such as the
ingle point of failure and data leakage (Cherukuri et al., 2024; Awan

et al., 2019). Cherukuri et al. (2024) uses blockchain as a model
aggregator and incorporates a privacy-preserving technique, while the
roposed framework in Awan et al. (2019) leverages blockchain’s im-

mutability and decentralized trust for secure aggregation of local model
updates. Dias et al. introduces BlockLearning, a modular framework
that supports vertical federated learning and various blockchain algo-
rithms (Dias and Meratnia, 2022). Zhang et al. presents a blockchain-
ased protocol for federated learning, emphasizing secure communi-
ation in physically distributed datasets (Zhang et al., 2020b). These

studies collectively highlight the potential of blockchain in enhancing
the security, privacy, and reliability of federated learning.

Ali et al. emphasizes the importance of addressing privacy con-
cerns in IoT systems leveraging blockchain and FL technologies. It
highlights the need for research on privacy preservation techniques
n blockchain-enabled IoT and the potential of FL in decentralized
earning (Ali et al., 2021). Fan et al. proposes a hybrid blockchain-
ased resource trading system to incentivize heterogeneous edge node

participation, addressing the need for fair market establishment among
distinct edge companies (Fan et al., 2020). Qu et al. suggests the
growing importance of addressing privacy and efficiency concerns in
fog computing through innovative approaches like blockchain-enabled
Federated Learning (FL-Block). It highlights FL-Block’s capability to
facilitate autonomous machine learning without central authority, mit-
gating privacy risks while enhancing efficiency and resilience against
oisoning attacks (Qu et al., 2020a). Wan et al. highlights the growing

importance of addressing privacy concerns in edge computing, espe-
cially with the advent of 5G and beyond 5G networks. It emphasizes
he utilization of FL to preserve privacy, while acknowledging existing
hallenges such as centralized processing costs and data falsification

issues (Wan et al., 2022).
Lu et al. present a secure data-sharing architecture using blockchain

technology, integrating privacy-preserving FL into the consensus mech-
anism of a permissioned blockchain, thus utilizing computational ef-
forts for both consensus and federated training (Lu et al., 2020a).
okhrel et al. implement FL in vehicular communication networks au-

tonomously, utilizing blockchain technology to ensure privacy and effi-
iency by decentralizing the exchange and validation of local machine-

learning model updates on vehicles (Pokhrel and Choi, 2020).
Aich et al. propose a two-stage workflow: customers train an ini-

tial model using smartphones and the mobile edge computing (MEC)
server, sending signed models to the blockchain for protection against

alicious activities. In the second stage, manufacturers select cus-
omers as miners to compute the averaged model, utilizing differential

privacy and a novel normalization technique to safeguard customer
privacy and enhance test accuracy (Aich et al., 2021). Lu et al. in-
roduce an asynchronous FL approach for training models with edge

data, emphasizing efficiency by selectively involving nodes to mini-
ize costs. Additionally, they enhance model reliability by integrating

earned parameters into a blockchain and ensuring their integrity via
 two-stage verification procedure (Lu et al., 2020b). Lu et al. propose
 novel blockchain-driven FL model that replaces the central authority
ith a custom-designed blockchain, integrating decentralized privacy
rotocols. This enables local updates from end devices to be transmitted
o servers inside fog devices for generating and storing global updates.
otably, the blockchain manages only the pointer to global updates,

hile data is securely stored using a distributed hash table (DHT),
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ensuring resilience, privacy, and protection against potential poisoning
attacks on fog servers (Qu et al., 2020b).

The following paragraphs present the current state of the art in
blockchain-based FL methods used in medical applications. In real-
world scenarios, hospitals and relevant institutions often exhibit reluc-
tance when it comes to sharing patient data, primarily to protect patient
privacy. This reluctance poses a significant challenge in obtaining
essential information for the detection of cognitive diseases. However,
the emergence of wearable devices and advancements in computing
technology has facilitated the gathering of valuable health data. Smart
healthcare solutions leverage machine learning models trained on am-
ple user data while ensuring privacy preservation by the incorporation
of blockchain technology (Myrzashova et al., 2023). FedHealth em-
ploys FL and homomorphic encryption to aggregate data from multiple
organizations, creating personalized models through transfer learning

hile strictly preserving user privacy without any data leakage during
the parameter sharing process (Chen et al., 2020). A novel secure
ggregation protocol is proposed by Passerat et al., combining hard-
are components and an encryption toolkit native to Ethereum that
nsures security (Passerat-Palmbach et al., 2019). Kumar et al. present a
ramework that consolidates a limited volume of data originating from
arious origins, including diverse hospitals and global deep learning
odel training via blockchain-based FL (Kumar et al., 2021).

Passerat et al. introduce the aggregation actor, a trusted third-party
r a central entity with secure hardware like Intel SGX, centralizing the

collection of updates from participants to create new model versions.
However, this centralization entails risks, such as training interruptions
if the server fails or potential malicious actions affecting the training
process. To mitigate these concerns, they employ blockchain as a
decentralized alternative to coordinate the process (Passerat-Palmbach
et al., 2020). The presence of incorrect masked gradients and unmasked
hares uploaded by dishonest local trainers to the parameter server,
ndermines the integrity of FL and hinders its ability to attract suf-

ficient distributed training data and computation power. To address
this, Bao et al. proposes FLChain, a decentralized, public auditable,
and incentivized FL ecosystem that ensures trust and incentive where
FLChain nodes collect and combine locally documented gradients, and
later submit the aggregated results back to FLChain (Bao et al., 2019).
A summary of the related work can be seen in Table 1.

Various methods exist for determining the participants of the mining
process, type of data being updated on the blockchain, and the location
where the aggregation of models occur. These methods depend on the
architecture and design of the blockchain and FL based IoT application.
The selection of devices participating in the mining process can be
based on factors such as computational power, network connectivity,
or pre-defined roles. The data being updated on the blockchain include
local model updates, training progress, and consensus-related informa-
ion (Wang et al., 2019). The decision on what data to store on the

blockchain is influenced by the specific use case and the desired level of
transparency and security. Regarding the aggregation of local models, it
can happen either at a central server or through a distributed consensus
algorithm. In the central server approach, all participating devices
send their local model updates to a centralized entity responsible for
aggregating the models into a global model. On the other hand, in
a distributed consensus algorithm, devices collaborate directly with
each other to collectively update the global model. The choice between
these methods depend on factors like the scale of the IoT network,
communication latency, privacy requirements, and the desired level
of decentralization. Each approach has its benefits and trade-offs, and
the final design should align with the specific needs and goals of the
blockchain and FL based IoT application (Zhang et al., 2021).

In the literature, several methods have been proposed for devel-
ping a global model in a blockchain and FL based IoT application
sing fog/edge devices. One of the proposals involves fog/edge de-
ices actively participating in the mining process and collaboratively
 r
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developing the global model with the assistance of consensus algo-
ithms (Kim et al., 2019). The updated global model is then broadcast to
nd devices, ensuring that all participants have the latest version (Zhao

et al., 2020). In another method, fog/edge devices also participate in
the mining process, but instead of directly developing the global model,
hey send their local model updates to the network. End devices receive

these updates and collectively generate the global model through aggre-
gation (Drungilas et al., 2021). A combination of fog/edge devices and
end nodes collaboratively participate in the mining process to develop
the global model collectively (Rahman et al., 2020). Each method offers
unique advantages and challenges, and the choice depends on factors
like network scale, privacy concerns, and the desired level of decen-
tralization (Ejaz et al., 2021). In the present state of the field, there is
 noticeable research gap surrounding the collaborative involvement
f fog/edge devices and end nodes in the mining process, working

together to develop a global model collectively. This innovative ap-
proach diverges from the traditional method of constructing the global
model directly. Instead, these entities choose to distribute their local
model updates with the network, with the global model generation
taking place at the end device. This unique paradigm which is proposed
here has significant advantages such as complete decentralization and
improved quality global model generation. A summary of the proposed
approach and comparison with existing work can be seen in Table 2.

4. Proposed method

4.1. Key elements from prior base application - FedSDM

We will briefly outline the base project in the following paragraph
o provide an overview of our proposed method. It is important to note
hat comprehensive details about the base approach can be found in
ur previous paper (Rajagopal et al., 2023). This summary aims to

serve as a concise introduction to the core concepts and foundations
upon which our current research builds. The summary will encompass
key aspects of the base project, including its architecture, mobility
oncepts, microservice principles, and evaluation metrics, which have

been detailed in our previous work.
Federated Learning-based Smart Decision Making (FedSDM) is a

decision-making module designed for ECG data management within the
oT Edge-Fog-Cloud computing environment. Leveraging FL, it offers

intelligent decision-making capabilities. This module operates at the in-
ersection of healthcare and advanced computing, demonstrating its ca-
acity to harness ECG data efficiently while considering factors such as

mobility, latency, and resource allocation. The edge and fog computing
integration, optimizes real-time processing, enabling timely and critical
health assessments. This architecture leverages edge/fog computing to
address latency and bandwidth challenges in healthcare applications,
emphasizing efficient utilization of intermediate edge/fog devices. It
incorporates virtual machine partitioning on edge/fog nodes to manage
data processing and adopts a modular microservice approach to support
eal-time medical applications.

The integrated edge/fog healthcare application follows a multi-
tier placement with IoT devices in tier 0, edge/fog nodes in tiers
1 and 2, and the cloud in tier 3, utilizing fog as an intermediary
for real-time healthcare data processing which is depicted in Fig. 1.
Edge/fog nodes are equipped with virtualized resources, and requests
are processed locally if resource requirements are met; otherwise, they
are forwarded to neighboring devices with adequate resources. The
mobility of edge/fog nodes and IoT devices poses a challenge for
resource proximity in fog computing. iFogSim2 addresses this by incor-
porating a mobility component, enabling distributed node movements
and customization of device mobility, thereby enhancing the realism
and accuracy of system simulations. Resource augmentation is vital
for resource-limited fog environments, and iFogSim2’s clustering tech-
nique fosters dynamic coordination among multiple nodes, improving
esource utilization efficiency in fog computing. This approach enables
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Table 1
Summary of related works.

Paper Area Technology Advantages Drawbacks

Lu et al. (2020a) Industrial IoT FL with secure
data-sharing
architecture

Distributed Consensus

Pokhrel and
Choi (2020)

Vehicular
Communication
Networking

Distributed
model updates

Autonomous Update
complexities

Aich et al.
(2021)

MEC Differential
privacy

Two-stage Blockchain
overhead

Lu et al. (2020b) Edge Data
Processing

Asynchronous FL Efficient Integration
complexity

Qu et al.
(2020b)

Decentralized
Privacy

Robustness Decentralizing Protocol
challenges

Chen et al.
(2020)

Medical
Applications

Homomorphic
encryption

Preserving
privacy

Implementation
complexity

Passerat-
Palmbach et al.
(2019)

General
Blockchain

Secure
aggregation
protocol

Enhanced
security

Reliance on
Ethereum

Kumar et al.
(2021)

Medical
Applications

Blockchain-based
FL

Global training Cooperation
requirement

Passerat-
Palmbach et al.
(2020)

Various
Applications

Decentralization Risk-mitigating Trust reliance

Bao et al. (2019) Various
Applications

Incentivized
participation

Decentralized Implementation
complexity

Proposed Edge-Fog-Cloud
Computing

Blockchain and
Federated
Learning

Intelligent
Decision-
Making

Data scalability
Table 2
Proposed approach comparison with existing works.

Paper Area Mining Global model
update

Enhanced
security

Complete decentralization

Passerat-
Palmbach et al.
(2020)

Blockchain and
FL based IoT

Fog/edge devices Yes No (Limited
node
participation)

No (Limited decentralization since only edge and fog nodes participation)

Bao et al. (2019) Blockchain and
FL based IoT

Fog/edge devices Yes No (Limited
node
participation)

No (Limited decentralization since only edge and fog nodes participation)

Wang et al.
(2019)

Blockchain and
FL based IoT

Fog/edge devices
and end nodes

Yes No (Limited
node
participation)

Yes (Greater decentralization since edge, fog, and end nodes participation)

Zhang et al.
(2021)

Blockchain and
FL based IoT

Fog/edge devices
and end nodes

Yes No (Centralized
global model
update)

No (Centralized control)

Kim et al.
(2019)

Blockchain and
FL based IoT

Fog/edge devices
and end nodes

Yes Yes (Broader
node
participation)

No (Centralized control)

Proposed Blockchain and
FL based IoT

Fog/edge
devices and
end nodes

Yes Yes (Broader
node
participation)

Yes (Greater decentralization since edge, fog, and end nodes participation)
nodes to query and register cluster members based on specific policies,
nhancing overall effectiveness. The proposed system adopts edge/fog
omputing and microservice architecture featuring small, independent
icroservices that communicate efficiently through lightweight proto-

cols. These microservices offer numerous benefits, including scalability,
resilience, and ease of deployment, making them ideal for large-scale
IoT applications. The system’s application model comprises three core
microservices: the client, residing on users’ smartphones to receive
ECG data; the preprocessing service, responsible for data validation
and cleaning; and the decision-making service, which analyzes ECG
data in real-time and sends health alerts. These microservices can be
deployed on edge or fog nodes based on placement policies, and a
fog architecture that incorporates multiple hierarchical levels. This

optimizes resource provisioning and enhances system performance by

4 
distributing containerized microservices effectively within the edge/fog
environment, which is presented in Fig. 2.

In the proposed system, edge/fog devices leverage the FedAvg
methodology for the FL module, which efficiently reduces communica-
tion costs between servers and clients by employing multiple local SGD
updates and a single aggregation step in each communication cycle.
This decentralized approach enhances the efficiency and effectiveness
of FL, eliminating the need for substantial storage and computing
capacity typically associated with traditional cloud deployments as
depicted in Fig. 3.

The proposed architecture employs an autoencoder implemented
with Artificial Neural Networks (ANN) to classify ECG data as normal
or anomalous based on the reconstruction error. It utilizes a self-
supervised learning approach by training the model on standard ECG
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Fig. 1. Multitier placement of devices.
Fig. 2. Data Flow Diagram for the proposed approach.
data and identifying anomalies when the reconstruction error exceeds a
predefined threshold, improving healthcare monitoring accuracy. The
proposed system leverages the Flower framework for large-scale FL
experiments, offering advanced tools for heterogeneous device environ-
ments, even accommodating up to 15 million clients with just a pair
of high-end GPUs. Within this framework, the integration of the au-
toencoder enhances FL’s capabilities, enabling the effective detection of
anomalies in ECG data during the FL process and enhancing healthcare
monitoring which is presented as sequence diagram in Fig. 4.
5 
In evaluating the FedSDM system, we utilized key performance
indicators (KPIs) such as latency, network use, cost, execution time, and
energy consumption to assess the suitability of edge/fog/cloud comput-
ing in various use case scenarios. We present the formulas for parameter
evaluations concisely in Table 3, with a detailed description of these
formulas provided in our previous work (Rajagopal et al., 2023) and
notations used in measurements of evaluation metrics equations in
Table 4.
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Fig. 3. Operational Concept of Federated Learning.
Fig. 4. Autoencoder working sequence diagram.
Table 3
Evaluation of parameters.
Parameter Formula

Execution Time (TXT) ∑

𝑚[𝐸 𝑋 𝑇 (𝑁𝑖)]

Latency (TL) ∑

𝑚 𝐶 𝐴𝐿
Energy Consumption ∑𝑚

𝑖=0(
∑𝑛

𝑘=1 𝐸 𝑁𝑖𝑘 + 𝐸0)

Network Usage (NU) ∑

𝑛(𝑙 ∗ 𝑇 𝑁 𝑆)
Total Cost ∑

𝑇 𝑖
𝑘∈𝑁𝑖 Tasks cost(𝑇 𝑖

𝑘)

4.2. Proposed advanced application model: Blockchain-based federated
learning integration

Blockchain technology plays a crucial role in enhancing the trust-
worthiness of the FL process by creating a decentralized and tamper-
proof ledger. Unlike traditional FL systems, which often rely on a
central authority and are vulnerable to single points of failure and
centralization, blockchain distributes trust across all participants. This
decentralized trust mechanism ensures that no single entity has control
over the system, thereby reducing the risk of centralization-related
vulnerabilities and ensuring that all participants have equal confidence
in the integrity of the system.

The utilization of blockchain-based FL in the edge/fog/cloud layer
for ECG anomaly detection holds great promise for developing precise
and effective anomaly detection models while ensuring the security
and privacy of sensitive medical data. However, numerous research
6 
gaps remain that require attention to fully harness the potential of
blockchain and FL in this field. In the current literature, there is
a lack of existing research on actively involving both participating
edge/fog devices and end devices in the mining process to collectively
enhance the quality of the global model in blockchain and FL based IoT
applications. Our proposed work aims to develop a blockchain-based FL
model for ECG monitoring, which on successful implementation, could
offer improved data privacy, increased data diversity, efficient resource
utilization, and real-time updates by enabling active participation from
both edge/fog devices and end devices in the mining process to improve
the global model’s quality collaboratively. The proposed Blockchain-
based FedSDM model predicts ECG anomalies by implementing FL in
edge, fog, and cloud layers while also providing appropriate usage
guidelines.

The proposed approach adopts a strategy centered around federated
clients. Within this framework, every client is furnished with a pre-
existing model from the federated server. This model is curated using a
public data set, which serves as a foundational resource for initializing
the training procedures of individual clients. By leveraging the knowl-
edge encapsulated within this initial model, federated clients can then
embark on personalized training based on their local data, ultimately
contributing to the collective learning process in a distributed and
privacy-preserving manner. This distributed architecture enables clients
to harness the power of collective data while maintaining data privacy
on their local devices. Leveraging this access, each federated client
autonomously undertakes model training using its own local data,
tailoring the model to its unique circumstances and requirements.



S.M. Rajagopal et al. Journal of Network and Computer Applications 233 (2025) 104037 
Table 4
Notations used in evaluation metrics equations.
Symbol Meaning Symbol Meaning

𝑇 Tasks 𝐸0 Power required for the server in an idle state
𝑁 Nodes 𝑁 𝑈 Network use
𝑚 The Number of servers 𝑙 Latency experienced by the network
𝑛 Number of VMs inside the host 𝑇 𝑁 𝑆 Tuple network size
𝐸 𝑋 𝑇 (𝑁𝑖) The execution time required by node 𝑁𝑖 𝑐 𝑜𝑠𝑡(𝑇 𝑖

𝑘) Cost for processing task 𝑇 𝑖
𝑘

𝑇 𝑋 𝑇 Total execution time 𝑀(𝑇 𝑖
𝑘) Memory needed by task 𝑇 𝑖

𝑘
𝑇 𝐿 Total latency 𝐵 𝑤(𝑇 𝑖

𝑘) Bandwidth needed by task 𝑇 𝑖
𝑘

𝐶 𝐴𝐿 Current average latency 𝑁 𝑈 Network use
𝐶 𝐶 Simulator clock
𝐸 𝑇 Execution time of the tuple
𝐸 Total energy consumption
𝐸 𝑁𝑖𝑘 Energy consumption by the task 𝑇𝑘
Fig. 5. Sequence diagram of the Proposed BCFL architecture for a single federated client.
Upon the local training phase’s completion, the federated clients
transmit their model updates back to the federated server. This com-
munication process facilitates information exchange, allowing the fed-
erated server to consolidate the various local models into a unified
and robust global model. The aggregation of insights from diverse
data sources enhances the overall model’s accuracy and adaptability.
Notably, the federated server employs a mining process that involves
the active participation of all federated clients and edge devices. Smart
contracts play a crucial role in this stage, ensuring the mining pro-
cess’s transparency, security, and fairness. This collaborative mining
process is vital for producing a reliable and trustworthy global model
that caters to the collective needs of the federated ecosystem. To
ensure tamper-proof storage and easy accessibility, the resulting global
model is securely stored inside a blockchain. The immutable nature
of blockchain technology ensures the integrity of the model and en-
ables efficient retrieval whenever needed. This integration of FL with
blockchain offers a cutting-edge solution that combines privacy, decen-
tralization, and reliability, fostering a new paradigm for collaborative
and secure machine learning in diverse applications. The sequence
diagram corresponding to the previously described explanation with
one federated client can be found in Fig. 5. The described approach
functions in the following manner: Patient-generated ECG sensor data
is stored on the edge device, for instance, a mobile phone. Computation
tasks are managed by the client and data preprocessing microservices,
respectively, both located at the edge. Subsequently, the preprocessed
ECG data is transferred to the Smart Decision Making module for
7 
anomaly analysis. In the event of anomaly detection, a notification is
sent to the end device to inform the user of potential health concerns.

The presented architecture assesses and contrasts the effectiveness
of various placement strategies for the decision-making module built
on FL, as outlined in the preceding section. In every placement cir-
cumstance, be it at the Edge, Fog, or Cloud, the individual updates
from the associated devices or nodes are consolidated within their
respective tiers. Following each round of FL, the clients and edge
devices collaborate in the data extraction process and engage in the
execution of smart contracts.

The key functions of smart contract are ‘‘updateGlobalModel’’ and
‘‘getGlobalModel’’. The former allows for updating the global model
with a new model represented as an array, ensuring that the new
model’s length matches the existing global model’s length to prevent
invalid updates. The latter function enables clients to retrieve the latest
version of the global model. This smart contract is intended to be
used in conjunction with the FL system, where a federated server
generates a new global model after each round of training, and clients
interact with the smart contract using web3.js to obtain the global
model for their local training, enabling collaborative machine learning
while preserving data privacy on the blockchain. Consequently, the
globally generated model is securely stored on the Ganache blockchain
and is treated as a transaction. The integration of blockchain technol-
ogy enhances the system’s resilience, facilitating smooth cooperation
among participants while safeguarding data privacy and preventing any
unauthorized alterations to the global model. Smart contract algorithm
proposed in this work is presented in Algorithm 1.
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The proposed method explores three different deployment scenarios
or FedAvg in various layers: edge, fog, and cloud. In the edge scenario,

the computation and model training takes place on the edge devices
closer to the end users. In the fog scenario, the computation occurs
on intermediate fog nodes, while in the cloud scenario, the central
server handles the computation and aggregation of the global model.
ach scenario offers unique advantages and trade-offs in terms of
ommunication efficiency, latency, and resource utilization, allowing
he system to adapt and optimize according to the application’s specific
equirements. Following every round of FL, the clients and edge devices
ctively engage in the mining process and execute smart contracts.
s a result, the collectively generated global model is securely stored
ithin the Ganache blockchain, where it is treated as a transaction.
his decentralized and immutable ledger ensures the integrity and
ransparency of the model updates, enhancing the overall security and
rustworthiness of the FL system. By leveraging blockchain technol-
gy, the process becomes more robust, enabling seamless collaboration
mong the participants while preserving data privacy and preventing
nauthorized modifications to the global model.

Each deployment policy is assessed for its learning efficiency and
uality of Service (QoS) parameters, which are detailed in the sub-

equent section of the study. By comparing the results from various
eployment options, the proposed method aims to determine the most
ffective and efficient approach for integrating FL in the healthcare
ystem for ECG anomaly detection in real time.

The suggested approach includes applying blockchain-based FedSDM
in the edge, fog, and cloud layers to assess effectiveness and cost-
efficiency. The equations and strategy analyze resource usage and
xpenses, providing valuable insights for deploying blockchain-based
edSDM across diverse layers in the distributed computing environ-

ment. While the blockchain does not store sensitive medical data
directly, it plays a vital role in securely logging global model updates.
Each validated update to the global model is recorded immutably
on the blockchain, creating a permanent and verifiable history of
all changes. This approach ensures that the global model’s integrity
is preserved, as any attempt to tamper with the updates would be
immediately detectable. The immutable nature of the blockchain ledger
thus provides a robust security mechanism, preventing unauthorized
alterations and ensuring that the FL process remains transparent and
trustworthy. The integration of blockchain into the FL system signif-
icantly enhances the security of the global model. By safeguarding
the model against potential malicious actors, blockchain ensures that
all updates are recorded transparently and immutably, preventing any
manipulation of the model. This is particularly important in environ-
ments where the integrity and security of data are paramount, such
as in medical applications. The combination of decentralized trust and
immutable recording provided by blockchain technology reinforces the
reliability of the FL process, making it a more secure and trustworthy
solution for critical applications.

5. Experimental setup

5.1. IFogSim2

In our study, we have carefully considered various simulators avail-
able for modeling and simulating cloud, fog, and edge computing in-
frastructures and services. Among the available options such as FogNet-
Sim+, Yet Another Fog Simulator (YAFS), Edge-Fog, PureEdgeSim, and
dgeNetworkCloudSim, we have chosen iFogSim2 as our simulator of

choice. iFogSim2 is an extension of Cloudsim, a widely-used simulation
framework that offers several advantages for our experiments (Mahmud
t al., 2022).

iFogSim2 allows us to create and execute experiments for edge,
og and cloud devices, considering factors like I/O, compute, VM al-
ocation, memory, and VM power models. It provides a comprehensive
nvironment for simulating the behavior of fog computing scenarios,
 b

8 
Algorithm 1 Smart Contract for Global Model
Initialize the global model in the smart contract with zeros in the
onstructor.
unction updateGlobalModel(newModel: array):
if newModel.length == globalModel.length then

require newModel.length == globalModel.length, "Invalid
model size"
globalModel = newModel

end
Function getGlobalModel():

return globalModel
call updateGlobalModel(newModel) ⊳ Passing the new model
arameters as an array
all getGlobalModel ⊳ To retrieve the latest version of the global
odel
⊳ Clients use the retrieved global model for local training ⊳ and

updates in subsequent rounds of Federated Learning

including properties such as service migration, microservice orchestra-
tion, and distributed cluster building across fog nodes. The simulator’s
components, such as mobility microservices and clustering, are loosely
coupled, making it highly flexible and suitable for simulation in various
scenarios.

An important benefit of iFogSim2 is its integration of actual datasets
to assess the effectiveness of various service management strategies in
fog computing settings. This feature sets it apart from most existing
solutions and allows us to conduct realistic and accurate simulations.

By leveraging iFogSim2’s capabilities, we can validate the perfor-
mance of our proposed approach in the fog computing environment,
using real-world datasets and benchmarking against various service

anagement strategies, including mobility management, microservice
rchestration, and node clustering. This simulation framework enables

us to make informed decisions about the efficiency and effective-
ness of our approach, ensuring that it can meet the challenges and
requirements of real-world healthcare applications.

In the iFogSim2 simulation framework, the core classes, namely
AppModule, FogDevice, Sensor, and Actuator, are interconnected throug
bject references within the Controller class. This interconnection

enables seamless communication and coordination between different
components of the simulation.

The FogDevice class represents the fog computing nodes in the
imulation, and it encapsulates the properties and functionalities of
hese devices. The AppModule class represents the applications running
n the fog devices and defines the modules that process the data.
he Sensor class simulates the sensors attached to the devices and is
esponsible for generating data from the devices. The Actuator class
epresents the actuators connected to the fog devices, which perform
ctions based on the outcomes of the applications.

The Tuple class is accessed through an Application object, which
represents the data structure used to transmit information between
nodes in the fog computing environment. It allows data to be exchanged
and processed between different components of the simulation.

To incorporate the mobility component into the iFogSim2 simu-
ation, the framework comprises classes such as DataParser and Mo-
ilityController. The DataParser class is responsible for parsing and

processing the mobility-related data, enabling dynamic mobility pat-
terns for fog devices or users, and is pivotal in managing location
data from various IoT end devices by segregating and assimilating the
data to enable application services tailored to their distinct mobility
patterns. The MobilityController class manages and controls the move-
ment of devices or users in the simulation, facilitating realistic and
dynamic scenarios for evaluating the performance of the fog computing
nvironment with mobile elements. This manages dynamic adjustments
y triggering consecutive and concurrent actions on distinct FogDevice
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Fig. 6. Data flow process - BCFL.
and AppModule referenced objects, ensuring seamless handling of mo-
bility events, like devices relocating or connecting to new fog nodes,
through change detection and responsive actions.

By incorporating these functionalities and classes, iFogSim2 pro-
vides a comprehensive simulation environment for modeling and eval-
uating distributed fog computing scenarios, including dynamic collabo-
ration and coordination among multiple fog devices and the mobility of
devices or users. This allows for more realistic and accurate simulations
of fog computing systems, considering various real-world scenarios and
challenges.

During the simulation process, our proposed model considers two
types of mobility patterns: ’RANDOM MOBILITY’ and ’DIRECTIONAL
MOBILITY’. In the ’DIRECTIONAL MOBILITY’ model, the user or IoT
device maintains a constant speed by having equal time intervals be-
tween consecutive motions. This pattern involves multiple consecutive
coordinates placed at specific distances across the Melbourne Central
Business District, representing the movement of the associated end IoT
device. These coordinates serve as events to simulate the continuous
movement of the IoT device in a consistent direction.

Conversely, the ’RANDOM MOBILITY’ model integrates a range of
random mobility patterns accessible within the simulator. These pat-
terns denotes diverse user behaviors regarding direction, stopping time,
velocity, location, and duration within the communication coverage of
each edge/fog node. This simulation accurately emulates real-time user
and IoT device behavior, enhancing the precision of the evaluation of
our proposed system’s performance.

By considering both ’RANDOM MOBILITY’ and ’DIRECTIONAL MO-
BILITY’ patterns during simulation, we can create dynamic scenarios
that closely resemble real-world user movements and interactions with
the edge/fog nodes. This comprehensive approach helps us assess the
effectiveness and efficiency of our proposed system under various
mobility conditions and ensures a more reliable evaluation of its per-
formance in practical scenarios. Fig. 6 is a schematic representation of
the entire data flow process, beginning with the acquisition of ECG data
from medical IoT devices and culminating in the global update within
the blockchain.

5.2. Ganache

Ganache is a popular personal blockchain designed specifically for
Ethereum development and testing purposes. It serves as a local and
9 
private Ethereum network, enabling developers to deploy, interact,
and debug their smart contracts without the need for real transactions
on the main Ethereum network. One of its essential functionalities is
providing a local blockchain environment, which significantly speeds
up development and testing cycles. Ganache comes with predefined
accounts containing test Ether, facilitating the testing of various sce-
narios and functionalities in smart contracts. Interaction with the local
blockchain through the RPC interface using JSON-RPC or web3.js,
making it easy to integrate with smart contract development tools and
libraries. Although Ganache is a local network, it simulates gas prices
and limits, giving developers insights into how their smart contracts
would perform on the main Ethereum network. Another crucial fea-
ture is the ability to take snapshots of the blockchain state and later
reset it, allowing for easy testing and debugging with different initial
states. Ganache also offers transaction tracing and logs, enabling de-
tailed analysis and debugging of smart contract executions. Integrated
seamlessly with the Truffle development framework, Ganache provides
Ethereum developers with a convenient and efficient environment for
local testing, making smart contract development a smoother and more
enjoyable experience (Lee and Lee, 2019)

In our proposed approach, Ganache is set up with port 7545 selected
for accessibility through ‘localhost’ or ‘127.0.0.1’. A smart contract
was then created using Truffle, a widely used development framework
that streamlines the building and deployment of smart contracts. The
contract was meticulously compiled to ensure its precision and effi-
ciency. The smart contract was successfully deployed to the Ganache
blockchain, leveraging Truffle’s migration scripts, making it readily
available and operational on the network. The web3.js library, a pow-
erful JavaScript framework, was utilized to facilitate interaction with
the deployed smart contract. This integration with web3.js enabled
seamless communication with the smart contract, empowering the
applications to invoke its functions and execute transactions with ease.

5.3. Simulation environment

This section presents the simulation environment utilized to assess
the proposed approach. The sensors are responsible for detecting the
patient’s ECG data, which is then regularly transmitted to the fog
nodes. On the fog nodes, the data undergoes processing and analysis
to determine the patient’s health condition, whether it is normal or
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Fig. 7. Ganache interface.
Table 5
Configuration parameters (Mahmud et al., 2022).

Parameter Cloud Fog Smartphone

CPU length (MIPS) 44 800 2800 2800
RAM (MB) 40 000 4000 4000
Uplink BW (MB) 100 10 000 10 000
Downlink BW (MB) 10 000 10 000 10 000
Busy power (J) 16*103 107.339 87.53
Idle power (J) 16*83.25 83.433 82.44

critical. The outcomes are subsequently transmitted to the patient’s
smartphone and cloud for storage. To establish the connection between
the fog nodes and the cloud server, a proxy server is employed.

To collect sensor data, the client module is seamlessly incorporated
into IoT devices. In contrast, the processing module is embedded within
the edge/fog nodes, enabling them to handle the incoming data and
conduct a thorough evaluation of the patient’s health condition. After
the analysis is finished, the edge/fog node forwards the findings to the
connected IoT device, which then presents the information to the user.

Various parameters need to be defined during the generation of fog
devices in iFogSim2, such as CPU length, Bandwidth, RAM, and more.
The settings employed for device configuration in iFogSim2 (Mahmud
et al., 2022) are listed in Table 5.

In summary, this simulation environment facilitates the evaluation
of the proposed approach’s performance by simulating the flow of ECG
data from sensors to fog nodes, cloud storage, and end-user devices.
It allows for the examination of various system configurations and pa-
rameter values to assess the efficiency and effectiveness of the proposed
system in processing and analyzing real-time critical healthcare data.

In the iFogSim2 simulation, computational devices are categorized
into fog devices, and they are available at various levels. The highest
level, Level 3, represents the parent node, which functions as the cloud
server. At Level 2, the fog nodes are connected to the cloud server
through a proxy server. These fog nodes, situated at Level 1, are closer
to the end-users and are considered edge devices. They offer more
frequent computational and storage capabilities. At the lowest level,
Level 0, IoT devices are equipped with sensors and actuators.

In iFogSim2, the physical topology is simulated using the Microser-
viceFogDevice, Sensor, and Actuator classes. The scenarios are con-
ducted on a computer system with an Intel Core i7 CPU running at
10 
1.80 GHz and 4 GB of RAM. The input–output relationship’s fractional
selectivity within a module is configured to a value of 1.0.

This configuration enables the simulation of the proposed system’s
behavior across different levels of computational devices, from edge
to fog and cloud servers, with realistic processing capabilities and
communication links. The simulation is conducted on a standard com-
puter setup, allowing for comprehensive evaluations of performance
and efficiency under various scenarios.

6. Results and discussion

6.1. Dataset

6.1.1. Dataset for federated learning
The dataset utilized in this study, sourced from Kaggle (Lee and Lee,

2019), comprises 5000 ECG readings, each with 140 data points. The
dataset also includes a label encoded as 0 or 1, indicating whether the
corresponding ECG is considered abnormal or normal. The data points
in columns 0–139 are represented as floating-point numbers, capturing
the ECG readings for each patient. It is pertinent to mention that the
dataset is not preprocessed, as the preprocessing of ECG values had
already been conducted by the source of the dataset.

In terms of class distribution, the dataset contains approximately
58% of the tuples belonging to the normal class and the remaining
42% belonging to the abnormal class which helps in developing and
evaluating the proposed approach efficiently.

6.1.2. Dataset for mobility
The EUA dataset (Lai et al., 2018) comprises geographical location

details for numerous fog nodes situated within the Central Business
District regions of major Australian cities, specifically Melbourne and
Sydney. This dataset is structured into various regions, which are
further subdivided into multiple blocks. In each block, one node is
randomly assigned as the proxy server, ensuring a fine level of detail
within the dataset. Within a given block, all nodes, with the exception
of the proxy server, operate as gateways for IoT devices.

This repository contains a collection of EUA datasets sourced from
real-world data. The datasets are openly accessible to the public and
serve as valuable resources for supporting research in the domain
of edge computing. The data provided in these datasets pertain to
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Fig. 8. Smart contract deployment.
Fig. 9. Transactions.
the Australian region and are instrumental in creating more realistic
simulations of natural time environments.

6.2. Analysis and observations

6.2.1. Blockchain-based federated learning (BCFL) deployment results in
Ganche interface

The Ganache Interface encompasses functionalities for account man-
agement, network configuration, blockchain data, logs, and events. It
enables users to create, import, and fund Ethereum accounts, config-
ure network settings, and access vital blockchain information. Fig. 7
provides the snapshot of Ganache Interface of the proposed approach.
The Smart Contract Deployment Interface within Ganache facilitates
11 
compiling and deploying Solidity contracts to the local or test Ethereum
network. It includes a transaction history recording deployment details
like transaction IDs and statuses, along with interaction capabilities
for deployed contracts. Fig. 8 provides the snapshot of smart contract
deployment interface component of the proposed approach. The Trans-
actions page presents a comprehensive transaction history, displaying
sender and receiver information, gas costs, timestamps, and transaction
hashes. It aids in tracking transaction flow and associated data. Fig. 9
provides the snapshot of transactions of the proposed approach. The
Created Blocks page serves as a block explorer, offering insights into
each added block’s details such as block numbers, timestamps, gas
usage, and included transactions. It also provides information on the
mining process and helps developers monitor blockchain structure and
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Fig. 10. Created blocks.
relationships between blocks and transactions. Fig. 10 provides the
snapshot of details of the created blocks in the proposed approach.

After compiling the smart contract to generate bytecode, a process
facilitated by Ganache’s smart contract deployment interface, the in-
terface provides tools to compile the Solidity contracts into bytecode
and subsequently deploy them onto the local or test Ethereum network.
Following successful deployment, interactions with the deployed smart
contract are conducted through the Ganache interface. Specifically,
calls to the functions defined within the smart contract which is de-
scribed in 1, such as updateGlobalModel and getGlobalModel, are
made to update and retrieve the latest version of the global model,
respectively. During the evaluation process of the BCFL model, these
interactions with the deployed smart contract play a crucial role.
Clients participating in the FL process utilize the retrieved global model
for local training and subsequently update it in the following rounds
of federated learning. This iterative process allows for the seamless
integration of the blockchain technology facilitated by Ganache into
the BCFL model evaluation, ensuring transparency and integrity in the
training process.

6.2.2. BCFL results for different layers placement of decision-making mod-
ule

In this section, we present the results and observations of the pro-
posed model, which were evaluated using different placement policies,
as explained in the preceding sections. These reconstructed ECGs play
a crucial role in predicting whether the ECG readings are anomalous.
An ECG is considered anomalous if its reconstruction error surpasses
a predefined threshold. The error values calculated from these figures
facilitate the classification of ECG readings.

Fig. 11 also provides a comprehensive comparison of the perfor-
mance parameters for various placement policies examined within this
research. When the FL module is deployed in the edge layer, significant
improvements are observed compared to placing it in the cloud layer.
Specifically, deploying FL in the edge layer reduces cloud energy
consumption by 1%, decreases network usage by 32%, cuts down costs
by 23%, reduces execution time by 40%, and decreases latency by 80%.

Similarly, when comparing the FL module placement in the fog layer
against the cloud layer, significant improvements are also observed.
Deploying FL in the fog layer reduces cloud energy consumption by
12 
Table 6
Comparison of Edge and Fog FL placement against Cloud.

Metric Edge FL placement Fog FL placement

Energy Consumption (J) 1.07% .95%
Network Use (KB) 32% 31%
Cost ($) 23% 20%
Latency (ms) 80% 79%
Execution Time (ms) 40% 28%

Table 7
Comparison of Edge FL placement against Fog.

Metric Edge FL placement

Energy Consumption (J) 0.1%
Network Use (KB) 1.1%
Cost ($) 3%
Latency (ms) 1%
Execution Time (ms) 16%

0,9%, decreases network usage by 31%, lowers costs by 20%, reduces
execution time by 28%, and decreases latency by 79%.

Furthermore, a comparison between FL module placement in the
edge and fog layers reveals that edge deployment outperforms fog de-
ployment. Specifically, edge deployment shows improvements of 0.1%,
1.1%, 3%, 16%, and 1% in terms of energy consumption, network
usage, costs, execution time, and latency, respectively.

Tables 6 and 7 compile the findings, facilitating a more comprehen-
sive comprehension of the conducted comparisons. To summarize, the
deployment of the FL module in the edge layer outperforms both fog
and cloud layer deployments, supporting the incorporation of AI at the
edge for efficient and intelligent healthcare systems. This configuration
allows for immediate processing of clinical tests, enabling real-time or
advanced remote patient monitoring.

6.2.3. BCFL results comparison with FL
In the upcoming paragraph, the results of the BCFL model are

compared with those of the FL model without Blockchain, as depicted
in Fig. 12. This comparative analysis aims to provide insights into the
performance, efficiency, and effectiveness of the BCFL model in the
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Fig. 11. Result of BCFL deployment in Edge/Fog/Cloud layers.
context of the specific application or scenario under investigation. The
following description presents the findings from the comparison.

• The utilization of blockchain technology leads to a marginal
increase in cloud energy consumption in comparison to scenar-
ios where blockchain is not integrated. This elevated energy
consumption can be attributed to the additional computational
requirements associated with maintaining the blockchain net-
work and validating transactions, ultimately impacting the overall
energy expenditure in cloud environments.

• The incorporation of blockchain technology increases router en-
ergy consumption across edge, fog, and cloud layers when con-
trasted with setups without blockchain. This increase in energy
usage can be attributed to the added computational demands im-
posed by blockchain-related processes, such as consensus mecha-
nisms and cryptographic operations, impacting energy consump-
tion in all layers of the network infrastructure.

• The cost associated with implementing blockchain deployments
is greater when compared to setups that do not incorporate
blockchain across edge, fog, and cloud layers. This increased cost
13 
can be attributed to several factors, including the complexity of
blockchain infrastructure and the additional operational overhead
required for maintaining blockchain networks, all of which collec-
tively contribute to the higher overall costs in these multi-layer
implementations.

• The utilization of network resources experiences a slight up-
surge when blockchain technology is integrated, as opposed to
scenarios where blockchain is not employed in the implementa-
tion across edge, fog, and cloud layers. This increment in net-
work use can be due to the increased data transmission re-
quirements associated with blockchain transactions and the prop-
agation of blocks among nodes, which collectively contribute
to the increased network usage observed in these multi-layer
implementations.

• In the context of edge, fog, and cloud layer implementations,
there is a slight increase in latency when blockchain technology is
integrated, in contrast to setups where blockchain is not utilized.
This heightened latency can be attributed to the additional com-
putational processes and consensus mechanisms inherent to the
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Fig. 12. Result of FL deployment in Edge/Fog/Cloud layers with and without Blockchain integration.
blockchain, resulting in a delay in data processing and transmis-
sion, which ultimately leads to the observed increase in latency
across these layers.

• Across the edge, fog, and cloud layer implementations, the execu-
tion time experiences an increase when blockchain technology is
integrated, as opposed to scenarios where blockchain is omitted.
This increase can be attributed to the additional computational
processes and cryptographic operations that blockchain entails,
leading to a delay in overall task completion and causing the
observed increase in execution time across these layers.

In conclusion, the deployment of Blockchain-based Federated Learn-
ing (BCFL) in the Ganache interface brings significant advantages to
the field of decentralized healthcare systems. Ganache’s versatile in-
terface streamlines account management, network configuration, and
access to crucial blockchain data, while also facilitating logs and events
14 
tracking. Additionally, the results and observations obtained from the
deployment of BCFL with different layers of decision-making modules
showcase the effectiveness of this approach in optimizing healthcare
systems. When BCFL is deployed in the edge layer, it leads to significant
improvements, reducing cloud energy consumption, network usage,
costs, execution time, and latency. Similar enhancements are observed
when comparing BCFL deployment in the fog layer against the cloud
layer. This data emphasizes the value of edge computing in healthcare,
enabling real-time and advanced remote patient monitoring through
the immediate processing of clinical tests. Furthermore, a comparison
between BCFL and traditional FL models without blockchain integra-
tion reveals that BCFL introduces marginal increase in cloud energy and
router energy consumption due to the added computations associated
with blockchain maintenance and validation. The cost of implementing
blockchain deployments and network resource utilization are higher,
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mainly due to the complexity of blockchain infrastructure and oper-
ational overhead. In addition, there is a minor increase in latency
and execution time. Despite these trade-offs, BCFL presents promising
opportunities for secure and efficient healthcare systems, particularly

hen deployed in edge computing environments. One notable limita-
tion of the proposed approach lies in its partial consideration of energy
consumption calculation aspects, neglecting comprehensive coverage.
While it is true that blockchain introduces additional computational
and network overheads, its usefulness in our approach is multifaceted
and addresses several critical issues inherent in federated learning. The
rimary purpose of introducing blockchain is to tackle the security chal-
enges associated with medical data and ensure privacy. Furthermore,
he omission of thorough examination regarding real-time deployment
ssues further underscores a gap in the approach’s scope.

7. Conclusions and future directions

In edge/fog environments, safeguarding patient privacy is pivotal
ue to the dynamic demands of critical medical IoT applications.

This study investigates a blockchain-driven Federated Learning module
tailored for ECG data in microservice-based IoT medical systems. We
evaluate its efficacy across three deployment strategies—edge, fog, and
cloud layers. Deploying Blockchain-based FL in Ganache streamlines
healthcare solutions, with notable performance enhancements observed
in edge deployment. However, integrating blockchain entails trade-
offs in energy usage and expenses. Emphasizing privacy and security,
Blockchain-driven Federated Learning emerges as essential for uphold-
ing the integrity of medical IoT applications and ensuring patient
confidentiality. Even with improved Key Performance Indicators, safe-
guarding data privacy remains paramount. Likewise, FL deployments
are significant for optimizing KPIs, provided there is a readiness to
compromise on data privacy and security.

Future research will address the limitations of this work and fo-
us on experimenting with the model’s energy usage. The proposed
ethod will be implemented, and additional aggregation techniques
ill be explored and deployed to enhance prediction models. Moreover,
lockchain techniques will be leveraged to enhance system security in
eal-time edge/fog/cloud enviornments.

CRediT authorship contribution statement

Shinu M. Rajagopal: Conceptualization, Visualization, Writing –
original draft, Validation, Methodology, Investigation, Formal analysis,

ata curation, . Supriya M.: Writing – review & editing, Visualization,
alidation, Supervision, Project administration, Methodology, Investi-
ation, Formal analysis, Conceptualization, . Rajkumar Buyya:Writing
 review & editing, Visualization, Validation, Supervision, Software,
esources, Project administration, Methodology, Investigation, Formal
nalysis, Data curation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

Data availability

Data will be made available on request.
15 
References

Aich, S., Sinai, N.K., Kumar, S., Ali, M., Choi, Y.R., Joo, M.-I., Kim, H.-C., 2021. Pro-
tecting personal healthcare record using blockchain federated learning technologies.
In: 2021 23rd International Conference on Advanced Communication Technology.
ICACT, pp. 109–112. http://dx.doi.org/10.23919/ICACT51234.2021.9370566.

Ali, M., Karimipour, H., Tariq, M., 2021. Integration of blockchain and federated
learning for internet of things: Recent advances and future challenges. Comput.
Secur. 108, 102355.

Awan, S.M., Li, F., Luo, B., Liu, M., 2019. Poster: A reliable and accountable privacy-
preserving federated learning framework using the blockchain. In: Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications Security.
URL https://api.semanticscholar.org/CorpusID:203645025.

Bao, X., Su, C., Xiong, Y., Huang, W., Hu, Y., 2019. Flchain: A blockchain for auditable
federated learning with trust and incentive. In: 2019 5th International Conference
on Big Data Computing and Communications. BIGCOM, IEEE, pp. 151–159.

Bharathi, P.D., Narayanan, V.A., Sivakumar, P.B., 2022. Fog computing enabled air
quality monitoring and prediction leveraging deep learning in IoT. J. Intell. Fuzzy
Systems 43 (5), 5621–5642.

Cheikhrouhou, O., Mahmud, R., Zouari, R., Ibrahim, M., Zaguia, A., Gia, T.N.,
2021. One-dimensional CNN approach for ECG arrhythmia analysis in fog-cloud
environments. IEEE Access 9, 103513–103523.

Chen, Y., Qin, X., Wang, J., Yu, C., Gao, W., 2020. FedHealth: A federated transfer
learning framework for wearable healthcare. IEEE Intell. Syst. 35 (4), 83–93.
http://dx.doi.org/10.1109/MIS.2020.2988604.

Cherukuri, R.V., Devi, G.L., Ramesh, N., 2024. Federated learning with blockchain-
based model aggregation and incentives. Int. J. Comput. Appl. URL https://api.
semanticscholar.org/CorpusID:268557243.

Dias, H., Meratnia, N., 2022. BlockLearning: A modular framework for blockchain-based
vertical federated learning. In: International Conference on Ubiquitous Security.
URL https://api.semanticscholar.org/CorpusID:256903037.

Drungilas, V., Vaičiukynas, E., Jurgelaitis, M., Butkienė, R., Čeponienė, L., 2021.
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