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Abstract— Big RDF (Resource Description Framework) graphs,
which populate the emerging Semantic Web, are the core data
structure of the so-called Big Web Data, the “natural”
transposition of Big Data on the Web. Managing big RDF graphs
is gaining momentum, essentially due to the fact that this task
represents the “baseline operation” of fortunate Web big data
analytics. Here, it is required to access, manage and process
large-scale, million-node (big) RDF graphs, thus dealing with
severe spatio-temporal complexity challenges. A possible solution
to this problem is represented by the so-called MapReduce-
model-based algorithms for managing big RDF graphs, which try
to exploit the computational power offered by the MapReduce
processing model in order to tame the complexity above. In this
so-depicted scientific context, this paper provides a critical
survey on MapReduce-based algorithms for managing big RDF
graphs, with analysis of state-of-the-art proposals, paradigms
and trends, along with a comprehensive overview of future
research trends in the investigated scientific area.
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L

Big Web Data (e.g., [1,2]) are a relevant class of big data
(e.g., [43,42,3]) occurring on the emerging Semantic Web.
Here, big RDF (Resource Description Framework) graphs
(e.g., [4,5,6,30]) play the major role, since a relevant number
of Web entities can be modeled in terms of graphs, also nicely
capturing their inter-connections, and used to represent and
mine Web knowledge derived from big data (e.g., [29]). This
paradigm is actually applied to a wide collection of interesting
cases, ranging from social networks to biological data
processing, and so forth.

The phenomenon is strongly stirred-up by the proliferation
of a rich family of big data processing frameworks and
platforms, among which MapReduce [7] and Hadoop [8] are
the reference solutions for distributed programming over
large-scale repositories and the corresponding computational
platforms, respectively (e.g., [49]). Indeed, based on these big
data processing solutions, it is possible to design and develop
algorithms and tools for managing Web big data, with
possibilities that are far beyond classical parallel and
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distributed processing methodologies. Coupled with this
exciting programming/deploying opportunity, the amenity of
designing and devising Web big data analytics (e.g., [29]) that
extract “actionable knowledge” from the Semantic Web is
really leading the recent Web scene, with a plethora of
successful applications among which Web advertisement is
just a fortunate and well-known instance. Several real-life
applications have confirmed the reliability and the
effectiveness of using RDF graphs in various modern
scenarios. To give an example, Tian and Patel [50] propose a
tool for querying large graph-databases produced by large-
scale scientific applications, where approximate, rather than
exact, graph matching is required, mostly due to the noisy and
incomplete nature of real graph datasets. The proposed
technique for supporting approximate matching of large graph
queries introduces a novel indexing method that incorporates
graph structural information in a hybrid index structure, yet
exposing high pruning power and linear size-scalability as the
database size scales linearly.

In this so-delineated scenario, the issue of effectively and
efficiently managing big RDF graphs is gaining momentum,
essentially because big data analytics for the Web largely
found on this computational task in the vest of “baseline
operation”. Indeed, a leading solution in this context is
represented by the so-called MapReduce-model-based
algorithms for managing big RDF graphs and big RDF
databases (being the latter one the “natural” way of
representing RDF graphs in memory). Basically, these
approaches try to exploit the computational power of the
MapReduce processing model in order to tame the spatio-
temporal complexity inducted by accessing, managing and
processing large-scale, million-node (big) RDF graphs.
Recent studies (e.g., [51,52]) have already highlighted the
suitability of the MapReduce model for RDF data processing,
especially because RDF sub-graphs can be easily mapped on
nodes of a distributed architecture on top of which
MapReduce is running. Of course, this is not the only solution
available in literature. A complete survey of other
processing/programming models for big data processing is
available in Kune ef al. [49].
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Based on the current literature focusing on MapReduce-
based algorithms for big RDF graph management, we can
identify the following three main classes of algorithms:

o  MapReduce-based  algorithms  for big data
processing;

o MapReduce-based algorithms for managing RDF
graphs,

e MapReduce-based algorithms for managing RDF
databases.

The first one represents a class of algorithms devoted to
the general goal of processing big data on the Web, with a
clear reference to RDF data. The second one represents a class
of algorithms specifically devoted to the issue of managing
RDF graphs. Finally, the third one represents a class of
algorithms that focus on the issue of managing RDF databases
definitely.

Inspired by the motivations above, in this paper we
propose a critical survey on MapReduce-based algorithms for
managing big RDF graphs, with analysis of state-of-the-art
proposals, paradigms and trends. We complete our analytical
contributions by means of a comprehensive overview of
future research trends in the investigated scientific area.

The rest of the paper is organized as follows. In Section 2,
we provide definitions, concepts and examples on RDF
graphs. Section 3 focuses on MapReduce-based algorithms
for big data processing. In Section 4, we move the attention
on MapReduce-based algorithms for managing RDF graphs.
Section 5 considers MapReduce-based algorithms for
managing RDF databases. In Section 6, we draw future
research directions in the context of MapReduce-based
algorithms for big RDF graphs. Finally, Section 7 concludes
the paper.

II.

Since RDF graphs play a central role in our research, in
this Section we focus in a greater detail on definitions,
concepts and examples of such very important data structure
of the popular Semantic Web. RDF is a Semantic Web data
model oriented to represent information on resources
available on the Web. To this end, a critical point is
represented by the fact that RDF model metadata about such
Web resources, which can be defined as data that describe
other data. Thanks to metadata, RDF can easily implements
some very important functionalities over the Semantic Web,
such as: resource representation, querying resource on the
Web, discovering resources on the Web, resource indexing,
resource integration, interoperability among resources and
applications, and so forth. RDF is primarily meant for
managing resources on the Web for applications, not for end-
users, as to support querying the Semantic Web (e.g., [20]),
Semantic  Web interoperability (e.g., [21]), complex
applications (e.g., [22]), and so forth.

Looking into more details, RDF is founded on the main
assertion that resources are identified on the Web via suitable
Web identifiers like Uniform Resource Identifiers (URI) and
they are described in terms of property-value pairs via
statements that specify these properties and values. In an RDF
statement, the subject identifies the resource (to be described),
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the predicate models the property of the subject, and the
object reports the value of that property. Therefore, each RDF
resource on the Web is modeled in terms of the triple (subject,
predicate, object). This way, since Web resources are
typically connected among them, the Semantic Web
represented via RDF easily generates the so-called RDF
graphs. In such graphs, RDF models statements describing
Web resources via nodes and arcs. In particular, in this graph-
ware model, a statement is represented by: (i) a node for the
subject; (if) a node for the object; (iii) an arc for the predicate,
which is directed from the node modeling the subject to the
node modeling the object. In terms of the popular relational
model, an RDF statement can be represented like a tuple
(subject, predicate, object) and, as a consequence, an RDF
graph can be naturally represented via a relational schema
storing information on subjects, predicates and objects of the
corresponding Web resources described by the RDF
statements modeled by that graph (e.g., [23]).

Figure 1, borrowed from Herman [24], shows an example
where information on the Web regarding the book “The Glass
Palace”, by A. Ghosh, occur in two different sites in the vest
of different media, one about the English version of the book,
and the other one about the French version of the book.
According to this, the two different Web resources are
represented by two different relational schemas (see Figure 1).
Figure 2, instead, shows the corresponding RDF graphs for
the two different Web resources, respectively.

As highlighted before, one of the goal of RDF graphs is
allowing the easily integration of correlated Web resources.
This is, indeed, a typical case of Web resource integration
because the two RDF graphs, even if different, describe two
different media of the same resource. It is natural, as a
consequence, to integrate the two RDF graphs in a unique
(RDF) graph, even taking advantage from the ‘“natural”
topological nature of graphs, as shown in Figure 3. In
particular, the integration process is driven by recognizing the
same URI that identifies the book resource.

Another nice property of the RDF graph data model that
makes it particularly suitable to Semantic Web is its “open”
nature, meaning that any RDF graph can be easily integrated
with external knowledge on the Web about resources
identified by the URIs it models. For instance, a common
practice is that of integrating RDF graph with Web knowledge
represented by Wikipedia [25] via ad-hoc tools (e.g., DBpedia
[26]). This contributes to move the actual Web towards the
Web of data and knowledge. Figure 4 shows the RDF graph
of Figure 3 integrated with knowledge extracted from
Wikipedia via DBpedia.

It is worth noticing that, when RDF graphs are processed,
applications can easily extract knowledge from them via so-
called RDF query language [27] or other Al-inspired
approaches (e.g., [28]). In addition to this, mining such graphs
is critical for a wide range of Web applications. To give an
example, traversal paths can be used as “basic” procedures of
powerful analytics over Web Big Data (e.g., [29]). This
further gives solid motivation to our research.



Figure 1.

III. MAPREDUCE-BASED ALGORITHMS FOR BIG DATA

PROCESSING

This Section focuses on algorithms devoted to the general
goal of processing big data on the Web, with a clear reference
to RDF data.

Dittrich and Quiané-Ruiz [9] put light on main issues and
challenges of big data processing over MapReduce, by
highlighting actual data management solutions that found over
this computational platform. Several aspects are touched,
including job optimization, physical data organization, data
layouts, indexes, and so forth. Finally, a comparative analysis
between Hadoop-MapReduce and Parallel DBMS is
provided, by highlighting their similarities and differences.

Chen et al. [10] investigates interactive analytical
processing in big data systems, with particular emphasis over
the case of MapReduce, even considering the industrial
applicative setting. In more detail, authors capture and model
typical big data processing workloads, which are
characterized by several small, short and increasingly
interactive jobs, which clearly contrast with the large, long-
running batch jobs for which MapReduce was originally
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Different Web Media for the Same Book (left) and their Corresponding Relational Schemas (right) [24].

designed. In line with this trend, authors provide an empirical
analysis of MapReduce traces from several business-critical
deployments inside Facebook and Cloudera instances in a
wide range of applications scenarios ranging from e-
commerce to telecommunication systems, from social media
to large-scale retail systems, and so forth. As a result of their
empirical analysis, authors provide a new class of MapReduce
workloads that are composed by inferactive analysis
components making heavy use of query-like programming
frameworks on top of MapReduce.

Papailiou et al. [30] introduce and experimentally assess
H>RDF, an innovative, fully-distributed RDF framework that
combines MapReduce with NoSQL (distributed) data stores.
With respect to the state-of-the-art contributions, H>RDF
allows two distinctive characteristics to be achieved: (7) high
efficiency in both simple and multi-join SPARQL queries [31]
via joins that execute on the basis of query selectivity; (if)
alternatively-available centralized and MapReduce-based join
execution that ensures higher speed-up during query
evaluation. The system is targeted to billions of RDF triples
even with small commodity Clouds, and its performance over
that of comparative methods is experimentally proven.

Figure 2. The Two RDF Graphs Corresponding to the Two Different Web Media for the Same Book Reported in Figure 1 [24].

900



Przyjaciel-Zablocki et al. [32] similarly focus the attention
on the problem of efficiently supporting SPARQL join queries
over big data in Cloud environments via MapReduce. The
novelty of this research effort relies on an implementation of
the distributed sort-merge join algorithm on top of
MapReduce where the join is computed during the map phase
completely. The problem of cascaded executions that may
derive from executing multiple joins is addressed during the
reduce phase by ensuring that the “right-hand” side of the join
is always pre-sorted on the required attributes. Experiments
show an excellent performance over comparative approaches.

Finally, at the mere system-side, several works focus the
attention on very interesting applicative settings, such as the
case of supporting MapReduce-based big data processing on
multi-GPU systems (e.g., [11]), and the case of efficiently
supporting  GIS  polygon overlay computation with
MapReduce for spatial big data processing (e.g., [12]).

IV. MAPREDUCE-BASED ALGORITHMS FOR MANAGING
RDF GRAPHS

This Section concerns with algorithms specifically
devoted to the issue of managing RDF graphs.

Choi et al. [13] focus the attention on the problem of
effectively and efficiently supporting scalable storage and
retrieval of large volumes of in-memory-representations of
RDF graphs by exploiting a combination of MapReduce and
HBase. The solution conveys to the so-called RDFChain
framework, whose storage schema reflects al// the possible
join query patterns, thus providing a reduced number of
storage accesses on the basis of the joins embedded in the
target queries. In addition to this, a cost-based map-side join

of RDFChain is provided. This allows to reduce the number
of map jobs significantly.

Kim et al. [14] consider the research challenge of
optimizing RDF graph pattern matching on MapReduce.
Authors correctly recognize that the MapReduce computation
model provides limited static optimization techniques used in
relational DBMS, such as indexing and cost-based
optimizations, hence it is mandatory to investigate dynamic
optimization techniques for join-intensive tasks on
MapReduce. With this idea in mind, authors extend their
previous Nested Triple Group data model and Algebra
(NTGA) for efficient graph pattern query processing in the
Cloud [15] and achieve the definition of a scan-sharing
technique that is used to optimize the processing of graph
patterns with repeated properties. Specifically, the proposed
scan-sharing technique eliminates the need for repeated
scanning of input relations when properties are used
repeatedly in graph patterns.

Finally, Zhang et al. [16] propose a cost-model-based
RDF join processing solution using MapReduce to minimize
the query responding time as much as possible. In particular,
authors focus the attention on SPARQL queries in a shared-
nothing environment on top of MapReduce, and propose a
technique based on which they (1) first transform a SPARQL
query into a sequence of MapReduce jobs, and (2) then create
a novel index structure, called A/l Possible Join tree (APJ-
tree) for reducing the searching space inducted by the optimal
execution plan of a set of MapReduce jobs. To speed up the
join processing, they employ hybrid join and Bloom filters for
performance optimization. Authors complete their analytical
contributions by means of an extensive set of experiments on
real data sets that prove the effectiveness of the proposed cost
model.
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Figure 3. RDF Graph Obtained via Integrating the Two RDF Graphs of Figure 2 [24].

V. MAPREDUCE-BASED ALGORITHMS FOR MANAGING
RDF DATABASES

The relevance of RDF query processing via MapReduce
has been highlighted by several studies (e.g., [33, 34, 35]).
Basically, these works focus the attention on RDF data
management architectures and systems designed for Cloud
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environments, with a special focus to large-scale RDF
processing. Approaches investigated here mainly consider
several special tasks that can be performed on the Web via
RDF, such as Web data publishing and Web data exchanging.
Within this scientific niche, this Section considers algorithms
that focus on the issue of managing RDF databases.



Gergatsoulis ef al. [36] focus the attention on querying
linked data based on MapReduce. Linked data can easily be
modeled via RDF databases. In particular, authors consider
linked data that are arbitrarily partitioned and distributed over
a set of Cloud nodes, such that input queries are decomposed
into a set of suitable sub-queries, each one involving data
stored in a specific node. The proposed method is two-step in
nature. In the first step, sub-queries are executed on the
respective node in an isolated manner. In the second step,
intermediate results are combined in order to obtain the final
answer to the input query. The innovation introduced by this
research effort consists in the fact that the proposed query
algorithm is independent on all the parameters of the model,
i.e. linked data partitioning, local data storage, query
decomposition mechanism, local query algorithm.

SPARQL query processing over RDF data has attracted a
lot of attention from the research community as well. In this
context, several approaches have been proposed recently.
Schitzle et al. [37] address the problem of supporting
SPARQL queries over very large RDF datasets via mapping
SPARQL statements over Piglatin [38] programs. These
programs are finally executed in terms of a series of
MapReduce jobs on top of a Hadoop cluster. The study also
provides an interesting experimental trade-off analysis on top
of a popular benchmark dataset. Nie ez al. [39] also investigate
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scalability issues of processing SPARQL queries over Web-
scale RDF knowledge bases. To this end, authors propose an
innovative partitioning method particularly suitable to RDF
data that introduces the nice amenity of providing effective
indexing schemes for supporting efficient SPARQL query
processing over MapReduce. Still in this area, Du et al. [40]
and Punnoose ef al. [41] provide anatomy and main
functionalities of a semantic data analytical engine and a
Cloud-enabled RDF triple store, respectively. Both embed
several points of research innovation over state-of-the-art
proposals.

Urbani et al. [17] study how to apply compression
RDF  processing with
MapReduce. Authors point the specific case of Semantic Web,
where many billions of statements, which are released using
the RDF data model, exist. Therefore, they propose to apply a
novel data compression technique in order to tame the severity
of data size, and thus design a set of distributed MapReduce-
based algorithms to efficiently compress and decompress a
large amount of RDF data. In particular, they apply a
dictionary encoding technique that maintains the structure of
the (Web) data. The solution is implemented as a prototype
using the Hadoop framework, and its performance is
evaluated over a large amount of data and scales linearly on
both input size and number of nodes.

foriginal | LE palais des i
e

foaf/Person

Aeoimtpagy http:h
f:nom -
. i
m
wisbn e
foaf:nam wireferencel hitp:iidbpedia.orgl../The_Glass_Palace
w:author_of
’ -
http:idbpedia.org/../The_Hungry_Tide
wilong wilat
weauthor_of
rg/../The_ a_Ch

Figure 4. RDF Graph Obtained via Integrating the RDF Graph of Figure 3 with Wikipedia Knowledge Extracted via DBpedia [24].

Still in the context of optimization issues, Ravindra and
Anyanwu [18] propose a novel nested data model for
representing intermediate data of RDF processing concisely
using nesting-aware dataflow operators that allow for lazy
and partial un-nesting strategies. Indeed, authors correctly
recognize that, during RDF data processing, intermediate
results of joins with multi-valued attributes or relationships
contain redundant sub-tuples due to repetition of single-
valued attributes. As a consequence, the amount of redundant
content is high for real-world multi-valued relationships in
typical data-intensive instances such as social networks or
biological datasets. Unfortunately, in MapReduce-based
platforms, redundancy in intermediate results contributes
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avoidable costs to the overall 1/O, sorting, and network
transfer overhead of join-intensive workloads due to longer
workflows. Therefore, in order to deal with this challenge, the
proposed approach reduces the overall /O and network
footprint of a workflow by concisely representing
intermediate results during most of a workflow's execution,
until complete un-nesting is absolutely necessary.

Finally, Ravindra and Anyanwu again [19] focus the
attention on query optimization aspects of massive data
warehouses over RDF data. In this context, a relevant problem
is represented by the evaluation of join queries over RDF data
when triple patterns with unbound properties occur. A clear
example to this case is represented by edges with “don’t” care



labels. As a consequence, when evaluating such queries using
relational joins, intermediate results contain high redundancy
that is empathized by such unbound properties. In order to
face-off this problem, authors propose an algebraic
optimization technique that interprets unbound-property
queries on MapReduce via using a non-relational algebra
based on a TripleGroup data model. Novel logical and
physical operators and query rewriting rules for interpreting
unbound-property queries using the TripleGroup-based data
model and algebra are formally introduced. The proposed
framework is implemented on top of Apache Pig [44], and
evaluated using both synthetic and real-word benchmark
datasets and demonstrated the benefits of the framework.

VI

There are a number of research directions to be considered
by future efforts in the context of big RDF graph management.
In the following, we report on some among the most
noticeable ones. Corresponding solutions should be, of-
course, devised on top of suitable MapReduce/Hadoop
infrastructures.

FUTURE RESEARCH DIRECTIONS

Storage Solutions for Large-Scale Big RDF Graphs: In-
memory representation of large-scale big RDF graphs
constitutes an open problem. In this context, a column-based
approach is one of the promising research directions.

Indexing Big RDF Graphs: Indexing data structures improve
query processing on big RDF graphs. Building cost-effective
indexing data structures is a classical open problem that gets
worse when big RDF graphs are considered. Several
opportunities such as cluster indexing solutions arise here.

Fragmentation/Partition Paradigms for Big RDF Graph
Management: In fully-distributed big RDF graph
management, fragmentation/partition paradigms can really
improve the overall throughput of the reference computational
infrastructure. This because, according to the fully-distributed
paradigm, large-scale big RDF graphs are systematically
fragmented into smaller RDF graphs and distributed on top of
a Cloud architecture, so that smaller computations on smaller
(sub-)graphs are possible on different Cloud nodes. Merging
intermediate results is still an open, deriving problem.

Flexible Query Languages for Big RDF Graphs: Extending
the capabilities of Web big data analytics can be possible via
introducing flexible query languages for big RDF graphs.
This means enriching actual RDF query language syntax by
adding novel features such as preference query processing,
approximate query answering, query expansion methods, and
so forth, specifically tailored to big RDF graphs.

Integration with NoSQL Databases: NoSQL databases can
be considered as the “natural” repositories for big RDF
graphs, due to their intrinsic characteristic of being prone to
support high-performance query processing, large-scale
transaction management, and support for long-running
computations. All the latter ones are important requirements
for effective and efficient big RDF graph management.
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Uncertain Big RDF Graph Management: 1t is well-known
that real-life applications and systems are characterized by
imprecise and uncertain data. Big RDF graphs can be of such
a nature too, as originated by a plethora of scientific
applications like bio-informatics tools, genomic computing
platforms, micro-array data processing components, and so
forth, which all naturally introduce imprecision and
uncertainty in data. This calls for modes, techniques and
algorithms that should be capable of efficiently managing
uncertain big RDF graphs still in the presence of these
challenging factors (e.g., providing complete answers over
incomplete big RDF sub-graphs). It is important to note that
this topic is widely investigated in literature (e.g., [47,48]),
hence interesting correlations can inspire future work.

Privacy-Preserving Big RDF Graphs Management:
Protecting the privacy of big RDF graphs while managing
them will become critical for next-generation Cloud
applications and systems that process such graphs. In this
context, several solutions can be considered, such as
approaches devoted to RDF data obfuscation (e.g., node
obfuscation) or to generalization/abstraction methodologies
(e.g., sub-graphs generalizing other sub-graphs via
isomorphism).

Big RDF Graph Analytics: Devising suitable big RDF graph
analytics is another hot topic in the context of big RDF graph
management, also following similar initiatives developed in
other related scientific contexts (e.g., [45,46]). Indeed, this
imposes us to provide effective and efficient support for low-
level operations that can be applied to the underlying big RDF
graphs directly, such as query processing, keyword-based
searching, sub-graph merging, and so forth.

VIL

Starting from the emerging need for effective and efficient
algorithms for big RDF graph management, as required by
modern Cloud applications and systems, in this paper we have
presented a critical survey on MapReduce-based algorithms
for managing big RDF graphs, with analysis of state-of-the-
art proposals, paradigms and trends. Big RDF graphs on the
Web have been described deeply, and several examples on
their usage in modern Big Web Intelligence scenarios have
been provided. We have also provided a comprehensive
overview of future research trends in the investigated
scientific area. Our final aim is that, overall, this contribution
will represent a precious milestone on the exciting research
road towards achieving effective and efficient MapReduce-
based algorithms for supporting big RDF graph management.

CONCLUSIONS
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